金融衍生品定价原理

绝对定价

未来现金流贴现(股票和债券)

相对定价

利用标的资产价格和衍生品价格之间的内在关系,直接根据标的资产价格推出衍生品价格

无套利定价

衍生品定价的基本假设,包括复制定价、状态价格定价、风险中性定价

复制定价

假设一只不支付红利的股票,当前时刻 t 股票的价格为 S。基于股票的某个期权价值为 f,期权到期日为 T,在期权存续期,股票价格或者上升到 Su,相应的期权回报为 f_u,或者下降到 Sd,相应的期权回报为f_d。连续无风险利率为 r 。为保证无套利条件,股票的价格要满足:

\frac{Su}{S}>e^{r(T-t)}>\frac{Sd}{S} \Rightarrow u>e^{r(T-t)}>d                                              (1)

构造无风险组合:

1 份 看涨期权空头  + \Delta 份股票多头

\Delta S u -f_u = \Delta S d - f_d \Rightarrow \Delta=\frac{f_u-f_d}{Su-Sd}                                           (2)

无风险利率为 r,在无套利条件下,有:

S \Delta -f=(Su \Delta - f_u)e^{-r(T-t)}\Rightarrow f=e^{-r(T-t)}[Pf_u+(1-P)f_d],,where,P=\frac{e^{r(T-t)}}{u-d}   (3)

状态价格定价

Arrow证券:在某一特定状态发生的条件下,交割一单位的购买力(1元钱);如果该状态没有发生,则该证券的持有者什么也得不到,此类证券通常称为“基本证券”。

状态价格,指在特定的状态发生时回报为1,否则回报为0的资产在当前的价格。

如果未来有n中状态的价格已知,通过各个状态下的回报,就可以进行定价。

对于股价二叉树(S\overset{up}{\rightarrow} Su \ or \ S\overset{down}{\rightarrow} Sd),假设有两个Arrow证券1和2,具有互斥状态,购买Su份基本证券1和Sd份基本证券,该组合在T时刻的回报与股票是相同的,即

S=\pi _u S u+ \pi _d S d\ \Rightarrow \ 1=\pi _u u+ \pi _d d;           (4)

购买1份基本证券1和1份基本证券2,该组合在T时刻总能获得1元,这是无风险组合,在无套利条件下,有:

\pi _u+ \pi _d=e^{-r(T-t)} \ \Rightarrow \ \pi _d e^{r(T-t)}+\pi _u e^{r(T-t)}=1;      (5)

\pi _u = \frac{1-de^{-r(T-t)}}{u-d} ,\ \pi _d = \frac{ue^{-r(T-t)}-1}{u-d} , \ u > e^{r(T-t)} > d, \ \Rightarrow \ \pi _u > 0, \pi _d > 0; (6)

对于支付 Su 和 Sd ,状态定价的一般表达式为:

S = Su \pi _u + Sd \pi _d                                          (7)

风险中性定价

涉及到上升下降概率,构造概率,根据上述公式,令t=0,

1 = e^{rT} \pi _u + e^{rT}\pi _d;         (8)

上式右边第一项可看作是上升状态概率,P_u = e^{rT}\pi _u

右边第二项可以看作是下降状态概率,P_d = e^{rT}\pi _d;且 P_u+P_d=1

S=e^{-rT}(P_uSu+P_dSd);        (9)

对于随机支付 Su 和 Sd ,在对应概率 P_u, P_d 下的期望值按无风险利率贴现。

在风险收益率y下,

S=e^{-yT}(Prob_uSu+Prob_dSd);    (10)

y = r + 风险溢价;Prob_u,Prob_d是真实世界的上升和下降的概率,在风险厌恶世界里,y>r,

所以,Prob_u>P_u,\ Prob_d<P_d

这种风险中性概率对实际概率的扭曲,隐含了真实世界的风险厌恶程度和风险溢价的大小。

鞅定价

计价单位(计价物)

无风险资产、有风险资产

采用无风险资产作为计价物

假设初始价值为1,t时刻计价物价值 R(t) = e^{rt}

R=R(0)=1 ,\ R(T) = R_u=R_d=e^{rT};     (11)

\frac{S}{R}=P_u \frac{Su}{R_u} + P_d \frac{Sd}{R_d}                (12)

这是鞅过程(Martingale)。

假设X为一个随时间变化的随机变量(随机过程),X(t)为该随机变量的当前值,X(s)为该随机过程的未来值(s>t),若这个过程满足:

X(t)=E_t[X(s)]                   (13)

则这个随机过程是一个鞅过程(E 表示期望,即未来值在 t 时刻的期望值等于 t 时刻的当前值)。

可以将\frac{S(T)}{R(T)}理解为是一个与时间有关的随机变量,它在风险中性概率下是一个鞅过程。也即,

\frac{S(0)}{R(0)}=E_0^R(\frac{S(T)}{R(T)})                 (14)

这是鞅定价公式。

风险资产作为计价物

采用其他资产,如黄金、股票作为计价物,考虑红利收益。假设股票红利收益率为q,假设期初价格S_0,t时刻价格为S_t,计价物期初的价值为V(0)=S_0,计价物t时刻价值为V(t) = e^{qt}S_t

假设红利收益q=0的情形,根据公式S=S_u \pi _u+S_d\pi _d\Rightarrow 1=\frac{S_u\pi _u}{S}+\frac{S_d\pi _d}{S}        (15)

定义 q_u=\frac{\pi _u S_u}{S}>0, \ q_d=\frac{\pi _d S_d}{S}>0, \ q_u +q_d=1                    (16)

q_u为第一种状态出现的概率,q_d为第二种状态出现的概率。采用风险资产S为计价单位,则有:

\frac{P}{S}=q_u\frac{P_u}{S_u}+q_d\frac{P_d}{S_d}                            (17)

采用风险资产S作为计价物,其他资产P和风险资产S的比值P(t)/S(t)q_u,q_d概率分布下是一个鞅过程。

以num表示计价物,鞅定价的一般表达式为:

\frac{P(t)}{num(t)} = E_t^{num}(\frac{P(T)}{num(T)}), \ E_t^{num}表示以资产 num 为计价物时的概率分布下的期望值。

鞅定价公式应用

欧式看涨期权到期支付:C(T)=max\{S(T)-K,0\},可以写成

C(T)=S(T) \cdot I - K \cdot I

变量I 满足当S(T)>=K时为1,反之为0;

定义两个期权:C_S(T)=S(T) \cdot I \ ;\ C_D(T)=I;

前者为欧式看涨股份数字期权,到期资产价格大于协议价格,则支付一份股票,否则支付0;

后者为欧式看涨数字期权,到期资产价格大于协议价格,则支付一元,否则支付0;

C_S(T)期权定价,以风险资产作为计价物,

\frac{C_S(0)}{S(0)}=E_0^S(\frac{S(T) \cdot I}{S(T)}) \ \rightarrow C_S(0)=S(0) \cdot E_0^S(I)=S(0) \cdot prob^S[S(T)\geqslant K]

C_D(T)期权进行定价,以无风险资产作为计价物

\frac{C_D(0)}{R(0)}=E_0^R(\frac{I}{R(T)}) \ \rightarrow C_D(0)=e^{-rT}E_0^R(I)=e^{-rT} \cdot prob^R[S(T)\geqslant K]

因此:

C(0)=S(0) \cdot prob^S[S(T)\geqslant K] - Ke^{-rT} \cdot prob^R[S(T)\geqslant K]

上式中prob^S[S(T)\geqslant K]是风险资产作为计价物时的资产价格分布下,期权被执行的概率,也就是B-S模型的 N(d1);prob^R[S(T)\geqslant K]是无风险资产作为计价物时的资产价格分布下,期权被执行的概率,也就是B-S模型的 N(d2)。

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值