连续时间模型

1 布朗运动

1.1 性质

随时间不断变化的随机过程,随机变量服从均值为0,方差与时间有关的运动。

满足:

性质1,时间u > s,变化量 B(u) - B(s) 为均值0,方差为时间长度 u - s 的正态分布;

B(u) - B(s) = \varepsilon \sqrt{u-s} \ ,\ \varepsilon \sim N(0,1) \ , \ B(s)=E_S[B(u)] (1)

布朗运动是一个鞅过程。

性质2,对于任意两个不重叠的时间间隔上,B(t)增量是相互独立的。

1.2 描述

B(t_i)=B(t_{i-1}) + z\ \sqrt{\Delta t} \ , \ z \sim N(0,1) (2)

1.3 二阶变差

f 是一个连续可导函数,其在时间区间 [0, T] 上的二阶变差等于0:

0=t_0<t_1<t_2<...<t_n=T \\ \\ \lim\limits_{max(t_{j+1}-t_j) \to 0}\sum_{j=0}^{n-1}(f_{t_{j+1}}-f_{t_j})^2 \to 0

布朗运动B(t) 是一个连续不可导函数,其在时间区间 [0, T] 上的二阶变差以概率1趋近与T,可以表示为如下形式:

0=t_0<t_1<t_2<...<t_n=T \\ \\ \lim\limits_{max(t_{j+1}-t_j) \to 0}\sum_{j=0}^{n-1}[B(t_{j+1})-B(t_j)]^2 \to T

布朗运动的二阶变差:

\Delta t \to 0,\ \Delta B(t)=B(t+\Delta t)-B(t),\\ \\ { By\ definition\ ,\ we \ know... }\ E[\Delta B(t)]=0, \ Var[\Delta B(t)]=\Delta t \\ \\ As.. \ Var[\Delta B(t)]= E[\Delta B(t)^2] - ( E[\Delta B(t)])^2\Rightarrow E[\Delta B(t)^2] =\Delta t \ \\ \\ so.. \ \ Var[\Delta B(t)^2] =E[\Delta B(t)^4] -(E[\Delta B(t)^2] )^2 \\ \\ \ \ \ \ =E[\Delta t^2z^4]-\Delta t^2=\Delta t^2(E[z^4]-1)=2\Delta t^2\ ,\ \\ \\ where \ \ z \sim N(0,1), \ \ E[z^4]=3.

微分形式:

so.. \ \ \lim\limits_{\Delta t\to 0} [\Delta B(t)]^2=\Delta t \\ \\ Differential\ form\ is\ : \ [dB(t)]^2=dt

鞅过程:

E[(dB(t))]=0

常用的三个基本微分形式:

1.\ \ (dt)^2=0 \\ \\ 2.\ \ (dt)(dB(t))=0 \\ \\ 3.\ \ (dB)^2=dt

2 Ito过程

2.1 定义

伊藤过程是指一个随机变量X(t),随时间变化的规律可以表示为

dX(t)=u(t)dt+\sigma (t)dB(t)

B(t)是布朗运动,u 、\sigma为两个随机过程,分别称为过程 X 在时间 t 的“漂移”系数和“扩散”系数,当取常数时,称伊藤过程 X 为 (u ,\sigma)---布朗运动。

 2.2 Ito积分

对任何T,将X的变化量按时间加总,可以得到:

X(T)=X(0)+\int_{0}^{T}u(t)dt+\int_{0}^{T}\sigma (t)dB(t) \\ \\ where \ \ \int_0^T\sigma (t)dB(t)\ \ \ similar \ to\ \sum_{i=1}^{N}\sigma (t_{i-1} )\Delta B(t_i) \\ \\ \ and \ \ 0=t_0<t_1<t_2<...<t_n=T\ ,\ \ (t_{i+1}-t_i )\to 0

2.3 Ito过程的性质

X的期望值为 u(t)dt 的期望值,u=0时,X是一个鞅过程。X(T)的方差为:

Var[X(T)]=E[\int_0^T\sigma ^2(t)dt] < \infty

as. \ dX=udt+\sigma dB \\ \\ (dX)^2=(udt+\sigma dB)^2=u^2(dt)^2+2u\sigma dtdB+\sigma ^2 (dB)^2=\sigma ^2dt

2.4 Ito引理

y=G(x,t),如果x是一个普通变量。y 的全微分方程为:

dG=\frac{\partial G}{\partial t}dt+\frac{\partial G}{\partial x}dx

如果 x 是一个随机过程,那么:

dG=\frac{\partial G}{\partial t}dt+\frac{\partial G}{\partial x}dx+\frac{1}{2}\frac{\partial^2 G}{\partial t^2}(dt)^2+\frac{1}{2}\frac{\partial^2 G}{\partial x^2}(dx)^2+\frac{1}{2}\frac{\partial^2 G}{\partial t \partial x}dtdx+...

当 x 是一个伊藤过程时,dx 的平方项不能忽略

dG=\frac{\partial G}{\partial t}dt+\frac{\partial G}{\partial x}dx+\frac{1}{2}\frac{\partial^2 G}{\partial x^2}(dx)^2 \\ \\ \\ dx=u(t)dt+\sigma (t)dB(t), \ (dx)^2=\sigma ^2(t)dt \\ \\ \\ dG=[\frac{\partial G}{\partial t}+\frac{\partial G}{\partial x}u(t)+\frac{1}{2}\sigma ^2(t)\frac{\partial^2 G}{\partial x^2}]dt+\sigma (t)\frac{\partial G}{\partial x}dB(t)

2.5 多维Ito过程

若存在过程\rho (可能是随机过程),使得给定 t 时信息条件下两个正态分布的随机变量的协方差可以表示为   E_t [\int_t^u \rho (s)ds]  ,则其为两个布朗运动的相关系数。当 \rho 为常数时,

B_x(u)-B_x(t) \ ,\ B_y(u)-B_y(t)的相关系数为:

\rho = \frac{COV(X,Y)}{\sqrt{Var(X)} \sqrt{Var(Y)}}=\frac{\int_t^u\rho ds}{\sqrt{u-t} \sqrt{u-t}}=\frac{(u-t)\rho}{u-t}=\rho

(dX(t))^2=\sigma_x^2(t)dt\, \\ \\ (dY(t))^2=\sigma_y^2(t)dt\, \\ \\dX(t)dY(t)=\sigma_x(t) \sigma _y(t)dt\, \\

Z(t) = g(t, X(t), Y(t))

dZ=\frac{\partial g}{\partial t}dt+\frac{\partial g}{\partial x}dx+\frac{\partial g}{\partial y}dy+\frac{1}{2}\frac{\partial^2 g}{\partial x^2}(dX)^2+\frac{\partial^2 g}{\partial y^2}(dY)^2+\frac{\partial^2 g}{\partial x \partial y}dXdY

2.6 Ito引理的运用

if Z=XY, then

\frac{dZ}{Z}=\frac{dX}{X}+\frac{dY}{Y}+(\frac{dX}{X})(\frac{dY}{Y})

if Z=Y/X, then

\frac{dZ}{Z}=\frac{dY}{Y}-\frac{dX}{X}-(\frac{dX}{X})(\frac{dY}{Y})+(\frac{dX}{X})^2

if Z=e^X , then

\frac{dZ}{Z}=dX+\frac{(dX)^2}{2}

if Z=logX , then

\frac{dZ}{Z}=\frac{dX}{X}-\frac{1}{2}(\frac{dX}{X})^2

compounding / Discounting. let  Y(t)=e^{\int_0^tq(s)ds}  ,for some (possibly random) process q and define Z=XY for any Ito process X. We have dY(t) = q(t)Y(t)dt , and

\frac{dZ}{Z}=qdt+\frac{dX}{X}

3 红利再投资资产

考虑一个股票投资, X(t) 表示 t 时刻该投资组合中股票的份数,0 时刻持有一份股票,即 X(0)=1;

股票的红利支付率为 q;

瞬时红利率支付为 qS(t)X(t)dt ;

将该部分红利用于再投资购买新的股票,可以购买的新股票数量为 qX(t)dt  ,此为股票增量,

dX(t)=qX(t)dt \\ \\ \Rightarrow X(t)=e^{qt}X(0) \ , \ \\ \\ where. \ X(0)=1 \ ,\ \Rightarrow \ X(t)=e^{qt}

资产价值: V(t)=X(t)S(t)

X(0)=1,q(t)=q 为常数时,资产价值:

V(t)=e^{qt}S(t)

其微分形式为:

\frac{dV}{V}=qdt+\frac{dS}{S}\\ \\ \\ as. \ for Z=xy\ , \ dZ=\frac{\partial Z}{\partial x} dx + \frac{\partial Z}{\partial y}dy=ydx+xdy \\ \\ \\ \Rightarrow \frac{dZ}{Z}=\frac{y}{Z}dx+\frac{x}{Z}dy=\frac{dx}{x}+\frac{dy}{y}

经济含义:资产收益包括两个部分,红利收益和资产利得。

4 几何布朗运动

随机过程S若为几何布朗运动,则满足:

\frac{dS}{S}=udt+\sigma dB(t)

上式表示,在 dt 瞬间,S 的变化率的期望为 udt,变化率的方差为 \sigma ^2dt。u为漂移项,表示几何布朗运动以平均增长率 u 增加,\sigma 为波动率。

等价形式:

d\ logS(t)=(u-\frac{1}{2}\sigma ^2)dt+\sigma dB(t)                (1)

logS(t)=logS(0)+(u-\frac{1}{2}\sigma ^2)t+\sigma B(t)

S(t)=S(0)e^{ut-\sigma ^2 t/2+\sigma B(t)}

模拟几何布朗运动,(1)写成离散形式:

\Delta logS=(u-\frac{1}{2}\sigma ^2) \Delta t+\sigma \Delta B

logS(t_i)=logS(t_{i-1})+(u-\frac{1}{2}\sigma ^2)\Delta t + \sigma \sqrt{\Delta t}z

z ~ N(0,1)。

5 计价物和概率变换

变换概率测度时,Ito过程只有漂移项会发生变化,扩散系数和相关系数不会受影响。

5.1 计价物

考虑三个资产:

1、无风险资产R,计价物 R(t)=e^{rt}

2、风险资产S(红利收益率为q),计价物V(t)=e^{qt}S(t)

3、风险资产及计价物Y(不分红或分红已经包括在资产价格中);

各自满足如下随机过程:

\frac{dR}{R}=rdt

\frac{dS}{S}=u_sdt+\sigma _sdB_s

\frac{dY}{Y}=u_ydt+\sigma _ydB_y

B_s\ ,\ B_y 存在一定相关性,相关系数是 \rho ,dB_sdB_y=\rho dt 。

5.2 概率测度变换

找到某一计价物下,风险资产的随机过程。具体步骤如下:

1、确定资产价格与计价物的比值(根据鞅定价原理,该比值在某一个概率测度下为一个鞅过程);

2、对资产价格与计价物的比值运用Ito引理;\alpha ^{num}

3、鞅过程的漂移项为0,这一性质计算 dS/S 的漂移项。

不同计价物下,资产价格的对数表示式

num 为某一计价物,

d log S=\alpha ^{num} dt + \sigma _sdB^{num}

\alpha ^{num} 对应的是不同计价物下,价格对数的随机过程的漂移项系数。

\alpha^R=r-q-\sigma_S^2/2\ , \\ \\ \alpha^V=r-q+\sigma_S^2/2\ , \\ \\ \alpha^Y=r-q+\rho \sigma _s \sigma_y-\sigma_S^2/2

5.3 尾部概率计算

到期时,股票价格对数分布:

logS(T)=logS(0)+\alpha^{num}T+\sigma B^{num}(T)

不同计价物下的尾部概率,如计算 S(T)\geqslant K 的概率:

S(T)\geqslant K\Leftrightarrow logS(T)\geqslant logK\Leftrightarrow \sigma B^{num}(T) \geqslant logK-logS(0)- \alpha ^{num}T \\ \\ \\ \Leftrightarrow \frac{B^{num}(T)}{\sqrt{T}}\geq \frac{ logK-logS(0)- \alpha ^{num}T}{\sigma \sqrt{T}} \\ \\ \\ \Leftrightarrow z\equiv -\frac{B^{num}(T)}{\sqrt{T}}\leq \frac{ log\frac{S(0)}{K}+ \alpha ^{num}T}{\sigma \sqrt{T}}=d

z~N(0,1)。

z小于d 的概率记为 N(d),

prob^{num}(S(T)\geq K)=N(d)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值