算法——寻找两个有序数组的中值

1. 算法描述

有两个数组 A 和 B,均为有序排列,A的长度为m,B的长度为n,求 A 和 B 合在一起后的中值.

2. 问题分析

  • 这里要注意一下:要充分利用 A和B均为有序的特性
  • 该问题进一步可转化为求A和B的任意K值,如三分位、四分位.

思路一:将A和B合并成新的数组

/**
	 * 合并有序数组,然后寻找K值
	 * 
	 * @param a
	 *            有序数组a
	 * @param b
	 *            有序数组b
	 * @param k
	 *            k值位置,0<=k<=a.length+b.length-1
	 * @return k值
	 */
	public static int findKthByMerge(int[] a, int[] b, int k) {
		System.out.println("Find kth by merge array first");
		int[] ab = new int[a.length + b.length];
		int ai = 0, bi = 0, abi = 0;
		while (ai < a.length && bi < b.length) {
			ab[abi++] = (a[ai] < b[bi]) ? a[ai++] : b[bi++];
		}
		while (ai < a.length) {
			ab[abi++] = a[ai++];
		}
		while (bi < b.length) {
			ab[abi++] = b[bi++];
		}
		System.out.println(Arrays.toString(ab));

		return ab[k];
	}

这种方法最容易想到,合并成有序数组后即可求任意k值, 其时间复杂度为 O(m+n), 空间复杂图为O(m+n)

这里反思一下:真的需要合并数组吗?


思路二:采用扫描计数方法

/**
	 * 无需合并数组,利用计数机寻找K值
	 * 
	 * @param a
	 *            有序数组a
	 * @param b
	 *            有序数组b
	 * @param k
	 *            k值位置,0<=k<=a.length+b.length-1,k同时充当计数器
	 * @return k值
	 */
	public static int findKthByCounter(int[] a, int[] b, int k) {
		System.out.println("Find kth by counter");
		int ai = 0, bi = 0;
		int kth = 0; // 保存K值
		while (ai < a.length && bi < b.length && k >= 0) {
			kth = (a[ai] < b[bi]) ? a[ai++] : b[bi++];
			k--;
		}
		while (ai < a.length && k >= 0) {
			kth = a[ai++];
			k--;
		}
		while (bi < b.length && k >= 0) {
			kth = b[bi++];
			k--;
		}
		return kth;
	}

本算法是对算法一的改进,用一个临时变量保存K值,而不需要讲新合并的数组单独存储,节省了存储空间。

其 时间复杂度为O(m+n), 空间复杂度为O(1).


到此都是线性时间复杂度,已经是非常高效了,但又没有更加高效的方法进一步降低时间复杂度呢?

这里注意到原数组有序特性,利用二分特性可以将复杂度降至对数级别。


思路三:递归二分

/**
	 * 递归二分查找K值
	 * 
	 * @param a
	 *            有序数组a
	 * @param b
	 *            有序数组b
	 * @param k
	 *            K值位置,0<=k<=m+n-1
	 * @param aStart
	 *            数组a初始查找位置
	 * @param aEnd
	 *            数组a结束查找位置
	 * @param bStart
	 *            数组b初始查找位置
	 * @param bEnd
	 *            数组b结束查找位置
	 * @return k值
	 */
	public static int findKth(int a[], int b[], int k, int aStart, int aEnd,
			int bStart, int bEnd) {

		int aLen = aEnd - aStart + 1;
		int bLen = bEnd - bStart + 1;

		// 递归结束条件
		if (aLen == 0) {
			return b[bStart + k];
		}
		if (bLen == 0) {
			return a[aStart + k];
		}
		if (k == 0) {
			return a[aStart] < b[bStart] ? a[aStart] : b[bStart];
		}

		// 将k按比例分配到a和b中,(k+1)=ka+kb,
		int ka = (k + 1) * aLen / (aLen + bLen);
		int kb = (k + 1) - ka;
		ka += aStart;
		kb += bStart;

		// 因为a和b有序,aStart-ka , bStart-kb yi
		// 最大值进行比较		
		if (a[ka] > b[kb]) {
			k = k - (kb - bStart); // bStart - kb 这段应当排除,调整k值
			aEnd = ka; // 新k值可能存在于 aStart - ka 
			bStart = kb; // 新k值可能存在于 kb - bEnd 之间
		} else {
			k = k - (ka - aStart);
			bEnd = kb;
			aStart = ka;
		}
		return findKth(a, b, k, aStart, aEnd, bStart, bEnd);
	}
本方法计算中值每次将范围缩小一半,故而 其 时间复杂度为 lg(m+n).


3. 测试算法

public static void main(String[] args) {
		int A[] = { 0, 10, 30, 40, 50, 80, 89, 99, 101 };
		// int A[]={};
		int B[] = { -1, 33, 36, 56, 80, 83, 97, 98, 200 };
		// int B[] = {};
		int k = 0;
		int kth = 0;

		k = (A.length + B.length - 1) / 2;
		System.out.println("A.length=" + A.length + "\t" + Arrays.toString(A));
		System.out.println("B.length=" + B.length + "\t" + Arrays.toString(B));
		System.out.println("k-index = " + k);

		kth = findKthByMerge(A, B, k);
		System.out.println(kth);

		kth = findKthByCounter(A, B, k);
		System.out.println(kth);

		System.out.println("递归查找");
		kth = findKth(A, B, k, 0, A.length - 1, 0, B.length - 1);
		System.out.println(kth);
	}

输出结果如下:

A.length=9	[0, 10, 30, 40, 50, 80, 89, 99, 101]
B.length=9	[-1, 33, 36, 56, 80, 83, 97, 98, 200]
k-index = 8
Find kth by merge array first
[-1, 0, 10, 30, 33, 36, 40, 50, 56, 80, 80, 83, 89, 97, 98, 99, 101, 200]
56
Find kth by counter
56
递归查找
56


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值