视觉SLAM理论与实践进阶-手写VIO-5

视觉SLAM理论与实践进阶-手写VIO-5

一、单目BA求解器

在这里插入图片描述
1) Problem::MakeHessian()代码片段

void Problem::MakeHessian() {
    TicToc t_h;
    // 直接构造大的 H 矩阵
    ulong size = ordering_generic_;
    MatXX H(MatXX::Zero(size, size));
    VecX b(VecX::Zero(size));
    for (auto &edge: edges_) {
        edge.second->ComputeResidual();
        edge.second->ComputeJacobians();
        auto jacobians = edge.second->Jacobians();
        auto verticies = edge.second->Verticies();
        assert(jacobians.size() == verticies.size());
        for (size_t i = 0; i < verticies.size(); ++i) {
            auto v_i = verticies[i];
            if (v_i->IsFixed()) continue;    // Hessian 里不需要添加它的信息,也就是它的雅克比为 0
            auto jacobian_i = jacobians[i];
            ulong index_i = v_i->OrderingId();
            ulong dim_i = v_i->LocalDimension();
            MatXX JtW = jacobian_i.transpose() * edge.second->Information();
            for (size_t j = i; j < verticies.size(); ++j) {
                auto v_j = verticies[j];
                if (v_j->IsFixed()) continue;
                auto jacobian_j = jacobians[j];
                ulong index_j = v_j->OrderingId();
                ulong dim_j = v_j->LocalDimension();
                assert(v_j->OrderingId() != -1);
                MatXX hessian = JtW * jacobian_j;
                // 所有的信息矩阵叠加起来
                H.block(index_i,index_j, dim_i, dim_j).noalias() += hessian;
                if (j != i) {
                    // 对称的下三角
                    H.block(index_j,index_i, dim_j, dim_i).noalias() += hessian.transpose();
                }
            }
            b.segment(index_i, dim_i).noalias() -= JtW * edge.second->Residual();
        }
    }
    Hessian_ = H;
    b_ = b;
    t_hessian_cost_ += t_h.toc();
//    Eigen::JacobiSVD<Eigen::MatrixXd> svd(H, Eigen::ComputeThinU | Eigen::ComputeThinV);
//    std::cout << svd.singularValues() <<std::endl;
    if (err_prior_.rows() > 0) {
        b_prior_ -= H_prior_ * delta_x_.head(ordering_poses_);   // update the error_prior
    }
    Hessian_.topLeftCorner(ordering_poses_, ordering_poses_) += H_prior_;
    b_.head(ordering_poses_) += b_prior_;
    delta_x_ = VecX::Zero(size);  // initial delta_x = 0_n;
}

2)SolveLinearSystem()部分代码如下:

void Problem::SolveLinearSystem() {
    if (problemType_ == ProblemType::GENERIC_PROBLEM) {
        // 非 SLAM 问题直接求解
        // PCG solver
        MatXX H = Hessian_;
        for (ulong i = 0; i < Hessian_.cols(); ++i) {
            H(i, i) += currentLambda_;
        }
//        delta_x_ = PCGSolver(H, b_, H.rows() * 2);
        delta_x_ = Hessian_.inverse() * b_;
    } else {
        // SLAM 问题采用舒尔补的计算方式
        // step1: schur marginalization --> Hpp, bpp
        int reserve_size = ordering_poses_;
        int marg_size = ordering_landmarks_;
        MatXX Hmm = Hessian_.block(reserve_size, reserve_size, marg_size, marg_size);
        MatXX Hpm = Hessian_.block(0, reserve_size, reserve_size, marg_size);
        MatXX Hmp = Hessian_.block(reserve_size, 0, marg_size, reserve_size);
        VecX bpp = b_.segment(0, reserve_size);
        VecX bmm = b_.segment(reserve_size, marg_size);
        // Hmm 是对角线矩阵,它的求逆可以直接为对角线块分别求逆,如果是逆深度,对角线块为1维的,则直接为对角线的倒数,这里可以加速
        MatXX Hmm_inv(MatXX::Zero(marg_size, marg_size));
        for (auto landmarkVertex : idx_landmark_vertices_) {
            int idx = landmarkVertex.second->OrderingId() - reserve_size;
            int size = landmarkVertex.second->LocalDimension();
            Hmm_inv.block(idx, idx, size, size) = Hmm.block(idx, idx, size, size).inverse();
        }
        MatXX tempH = Hpm * Hmm_inv;
        H_pp_schur_ = Hessian_.block(0, 0, ordering_poses_, ordering_poses_) - tempH * Hmp;
        b_pp_schur_ = bpp - tempH * bmm;
        // step2: solve Hpp * delta_x = bpp
        VecX delta_x_pp(VecX::Zero(reserve_size));
        // PCG Solver
        for (ulong i = 0; i < ordering_poses_; ++i) {
            H_pp_schur_(i, i) += currentLambda_;
        }
        int n = H_pp_schur_.rows() * 2;                       // 迭代次数
        delta_x_pp = PCGSolver(H_pp_schur_, b_pp_schur_, n);  
        delta_x_.head(reserve_size) = delta_x_pp;

        VecX delta_x_ll(marg_size);
        delta_x_ll = Hmm_inv * (bmm - Hmp * delta_x_pp);
        delta_x_.tail(marg_size) = delta_x_ll;
    }
}

二、滑动窗口算法测试

在这里插入图片描述
1) Problem::TestMarginalize() 代码片段如下

void Problem::TestMarginalize() {
    // Add marg test
    int idx = 1;            // marg 中间那个变量
    int dim = 1;            // marg 变量的维度
    int reserve_size = 3;   // 总共变量的维度
    double delta1 = 0.1 * 0.1;
    double delta2 = 0.2 * 0.2;
    double delta3 = 0.3 * 0.3;
    int cols = 3;
    MatXX H_marg(MatXX::Zero(cols, cols));
    H_marg << 1./delta1, -1./delta1, 0,
            -1./delta1, 1./delta1 + 1./delta2 + 1./delta3, -1./delta3,
            0.,  -1./delta3, 1/delta3;
    std::cout << "---------- TEST Marg: before marg------------"<< std::endl;
    std::cout << H_marg << std::endl;
    // TODO:: home work. 将变量移动到右下角
    /// 准备工作: move the marg pose to the Hmm bottown right
    // 将 row i 移动矩阵最下面
    Eigen::MatrixXd temp_rows = H_marg.block(idx, 0, dim, reserve_size);
    Eigen::MatrixXd temp_botRows = H_marg.block(idx + dim, 0, reserve_size - idx - dim, reserve_size);
    H_marg.block(idx, 0, reserve_size - idx - dim, reserve_size) = temp_botRows;
    H_marg.block(reserve_size - dim, 0, dim, reserve_size) = temp_rows;
    // 将 col i 移动矩阵最右边
    Eigen::MatrixXd temp_cols = H_marg.block(0, idx, reserve_size, dim);
    Eigen::MatrixXd temp_rightCols = H_marg.block(0, idx + dim, reserve_size, reserve_size - idx - dim);
    H_marg.block(0, idx, reserve_size, reserve_size - idx - dim) = temp_rightCols;
    H_marg.block(0, reserve_size - dim, reserve_size, dim) = temp_cols;
    std::cout << "---------- TEST Marg: 将变量移动到右下角------------"<< std::endl;
    std::cout<< H_marg <<std::endl;
    /// 开始 marg : schur
    double eps = 1e-8;
    int m2 = dim;
    int n2 = reserve_size - dim;   // 剩余变量的维度
    Eigen::MatrixXd Amm = 0.5 * (H_marg.block(n2, n2, m2, m2) + H_marg.block(n2, n2, m2, m2).transpose());
    Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> saes(Amm);
    Eigen::MatrixXd Amm_inv = saes.eigenvectors() * Eigen::VectorXd(
            (saes.eigenvalues().array() > eps).select(saes.eigenvalues().array().inverse(), 0)).asDiagonal() *
                              saes.eigenvectors().transpose();
    Eigen::MatrixXd Arm = H_marg.block(0, n2, n2, m2);
    Eigen::MatrixXd Amr = H_marg.block(n2, 0, m2, n2);
    Eigen::MatrixXd Arr = H_marg.block(0, 0, n2, n2);
    Eigen::MatrixXd tempB = Arm * Amm_inv;
    Eigen::MatrixXd H_prior = Arr - tempB * Amr;
    std::cout << "---------- TEST Marg: after marg------------"<< std::endl;
    std::cout << H_prior << std::endl;
}

终端编译之后结果显示如下:
在这里插入图片描述

友情提示:代码下载需要C币,请事先判断是否对您有帮助,谨慎下载哦!!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值