人工智能借助计算机系统与算法,赋予机器执行常规需人类智慧才能完成任务的能力,属于信息技术行业。它位列我国 “新基建” 重点战略的七大领域,且在《国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》中,被列为七大科技前沿领域攻关之首,行业发展迅速,对大量技术技能人才需求迫切。
一、人工智能行业技术技能人才需求情况
(一)行业发展现状
自2021年至2023年,中国AI核心产业规模持续扩大,到2023年已达5784亿元人民币,同比增长13.9%,企业数量突破4500家。期间,智能芯片、开源框架等核心技术取得重大进展,智能传感器、智能网联汽车等产品创新不断涌现。我国的超算、智算、云算协同发力,使得算力规模位居全球第二。
从产业链角度看,AI分为基础层、技术层和应用层。基础层涵盖智能芯片、物联网、大数据和云计算;技术层包括计算机视觉、智能语音技术、自然语言处理及机器学习;应用层则覆盖了智能金融、智慧零售、智能家居等15个热门领域。
在技术创新方面,自2020年Open AI发布GPT-3以来,大模型时代正式开启,标志着AI技术和应用达到了新的高度,并推动了一场深刻的产业变革,重塑生产结构,革新商业模式,甚至影响管理方式。
(二)区域经济规模与分布
在全国范围内,东部地区的人工智能经济规模显著高于中部和西部地区。其中,浙江以5242.83亿元的经济规模居首,占东部总经济规模的33.71%。西部地区的四川省则是该区域的领头羊,经济规模达780.3亿元。中部地区以河南省为首,经济规模为700亿元。
随着基础设施如AI芯片和算力的不断完善,以及算法的不断优化,跨模态、多模态AI技术逐渐成熟,进一步推动了AI技术的普及与应用,尤其是在智能制造、智慧城市等领域。同时,产业链各环节间的合作日益紧密,催生了一批具有竞争力的AI企业。
(三) 人工智能行业技术技能人才需求分析
1. 技术技能人员从业岗位
根据《互联网周刊》联合eNet研究院与德本咨询发布的“2023人工智能企业百强”榜单分析。从产业链角度看,人工智能行业岗位可分为技术层岗位、应用层岗位、基础层岗位和部分衍生岗位:
技术层岗位:如机器学习算法工程师、深度学习算法工程师、推荐算法工程师、自动驾驶算法工程师等。
应用层岗位:包括AI项目经理、AI产品经理、AI售前解决方案工程师等。
基础层岗位:涵盖大数据开发工程师、智慧IC工程师、智能芯片工程师等。
衍生岗位:例如机器人训练营教练、智能手臂工程师、工业机器人系统操作员等。
为便于研究,结合典型工作任务分析,将其细分为以下13类岗位:
产品工程师、系统运维工程师、应用开发工程师、模型开发工程师、应用测试工程师、解决方案工程师、数据标注工程师、数据处理工程师、技术支持工程师、系统架构工程师、技术服务工程师、模型训练工程师和芯片工程师。
2. 技能人员从业规模与学历结构
根据调查数据显示,行业对学历要求普遍较高,具体分布如下:
本科及以上学历:占比63.36%,主要从事模型、算法、解决方案、芯片设计、规划及管理等岗位。
高职专科毕业生:占比28.04%,主要负责系统维护、技术支持、应用测试、数据标注和数据处理等工作。
中职毕业生:仅占7.64%,多从事相关产品的生产制造等岗位。
硕士和博士层次的毕业生集中在高端岗位,如模型开发、算法设计和芯片研发;本科毕业生则更多参与应用开发、系统架构和技术支持;高职专科毕业生则承担技术执行层面的工作。
3. 未来技术技能人才需求趋势
截至2023年8月,人工智能领域新岗位数量已达到2022年全年水平。随着岗位数量激增,人才供需矛盾进一步加剧:
2022年人工智能行业的供需比为0.63;
2023年1-8月下降至0.39;
预计到2030年,供需比将进一步降至0.33。
根据预测,到2030年,中国人工智能领域的市场需求将达600万人,而实际供应量仅为200万人,人才缺口高达400万。这意味着未来8年内,熟练人工智能专业人员的需求将是2022年的6倍。
4. 岗位需求结构分析
通过对人工智能百强企业的数据分析,发现行业呈现出多元化技术和高质量岗位需求的特点。其中,岗位需求人数最多的是应用开发工程师,占比28.16%。其次是产品工程师和系统运维工程师,分别占比20.62%和10.34%。相比之下,芯片工程师和模型训练工程师的需求规模较小,分别为1.32%和1.09%。
这一数据表明,尽管核心技术岗位需求占比相对较低,但其重要性不容忽视。同时,应用开发和产品工程相关岗位成为行业发展的核心驱动力。
5. 人工智能行业技术技能岗位能力素质新要求
随着人工智能在各领域的持续深入应用,其与其他学科领域的交叉渗透不断加速,有力推动了各行业的变革与迭代。人工智能作为一门综合性的前沿学科以及高度交叉的复合型学科,其范畴广泛且复杂。技术的发展离不开与计算机科学、数学、社会科学等多学科的深度融合,这也使得未来人工智能行业的人才需求方向呈现出多样化趋势。
(1)知识要求
据调查企业的反馈结果来看,占比超过 50%的知识包括算法基础知识、计算机网络相关基础知识、数据库基础知识、图像处理基础知识、机器学习基础知识、深度学习基础知识。此外,Python 开发知识的占比接近 50%,同样处于较高水平。这表明,上述 7 项知识是人工智能行业技术技能人才需要重点掌握的核心知识。
(2)技能要求
依据中职、高职专科、高职本科人工智能专业简介中对技能的要求,系统整理了 10 项关键能力,具体如下:
数据结构与算法分析、程序设计、数据库设计能力;
编写数据采集、数据清洗、数据标注、数据特征分析、数据挖掘脚本的能力;
模型选择、搭建、训练、测试和评估能力;
深度学习框架的安装、模型训练、推理部署的能力;
利用计算机视觉、智能语音、自然语言处理等技术,依据典型应用场景进行人工智能应用集成设计和开发的能力;
部署、调测、运维人工智能系统的能力;
基于行业应用与典型工作场景解决业务需求的人工智能技术综合应用能力;
主流操作系统的应用与配置能力;
信息技术和数字技术应用能力;
探究学习、终身学习和可持续发展的能力。
据调查显示,占比在 50%以上的能力可概括为软件开发能力、数据处理能力、模型开发和训练能力、系统框架和部署能力。这些能力基本构成了人工智能行业技术技能人才的核心能力体系。
(3)职业素质
调查数据表明,企业对职业素质高度重视。除“安全意识”选项的选择比例未超过 50%外,其余选项的选择比例均在 50%以上。排在前 10 位的职业素质分别是:团队合作精神、良好职业道德、爱岗敬业精神、遵纪守法、创新精神、诚实守信、责任意识、组织协调能力、人际交往能力、质量意识。
二、我国职业院校人工智能类专业设置与人才培养情况
根据教育部发布的《职业教育专业目录(2021年)》
高职本科:涵盖人工智能工程技术、计算机应用工程、软件工程技术、大数据工程技术、云计算技术、嵌入式技术等。
高职专科:包括人工智能技术应用、计算机应用技术、软件技术、大数据技术、云计算技术应用、嵌入式技术应用、智能产品开发与应用、智能互联网技术等。
中职:设有如人工智能技术与应用、计算机应用、软件与信息服务、大数据技术应用等。
(一)职业院校人工智能类专业设置情况
自2023年起,中职开始设立人工智能技术与应用专业。在此之前,中职主要通过与高职合作采用“3+2”模式培养人才。根据教育部2023年的数据,全国共有478所高职专科学校开设了人工智能技术应用专业,覆盖29个省、自治区、直辖市;而24所高职本科学校则开设了人工智能工程技术专业,覆盖16个省份。除西藏和青海外,其他省市均已开设相关专业。
(二)职业院校人工智能类专业招生就业情况
1. 专业招生情况
中职:2021年至2023年,招生人数分别为3,038人、8,977人和9,198人(新增的人工智能技术与服务专业)。其他相关专业同期招生人数显著增加。
高职专科:人工智能技术应用专业的招生数从2021年的10,752人增长到2023年的49,936人。其他相关专业也显示出强劲的增长趋势。
高职本科:人工智能工程技术专业的招生规模从2021年的89人迅速增至2023年的1,450人。
预测未来三年内,各层次教育将分别提供如下人才供给:
中职:人工智能技术与应用专业10,106人;其他相关专业606,094人。
高职专科:人工智能技术应用专业184,221人;其他相关专业1,957,879人。
高职本科:人工智能工程技术专业92,014人;其他相关专业1,901,186人。
2. 专业就业情况
调查显示,人工智能专业毕业生的主要就业方向前三名是人工智能技术服务、人工智能技术应用及设备销售。运维、训练与测试以及数据标注是最常见的工作岗位。这表明高职院校的毕业生更多地投身于服务和应用领域,而非高端技术研发岗位。尽管大多数院校的人工智能专业毕业生就业率超过90%,但专业对口率仅为14.29%至35.24%不等,提示院校需在维持高就业率的同时,进一步提升专业对口率。
三、人工智能行业技术技能人才需求与职业院校人才培养匹配分析
1. 学历层次人才供给不足
根据调查数据,各学历层次的人才总缺口约为457万人,其中高职本科的人才缺口最大,占比81.22%,其次是高职专科(14.75%),中职(4.02%)。值得注意的是,尽管92.66%的岗位要求本科及以上学历,但实际供给中,高职本科和高职专科的人才数量分别为139.63万和146.72万,远不能满足行业对高学历人才的需求。
2. 专业点布局与行业区域布局不匹配
行业规模排名前十的地区集中在东部,如浙江、上海、北京等。然而,专业点数量最多的十个地区中有五个不在产业规模前十内(山东、重庆、河北、安徽、江西),这表明专业点布局与行业需求存在显著差距。此外,东部地区的行业布局占比为79.91%,而其专业布局仅占44.68%,显示出明显的供需不平衡;中部和西部地区也存在类似问题,专业布局过多而行业规模较小。
3. 人才培养规模与企业需求不匹配
预计2024-2026年全国人工智能行业人才需求为786.99万人,而同期职业院校提供的相关专业人才供给仅为329.58万人,导致人才缺口达457万余人,其中中职缺口18.39万人,高职专科缺口67.48万人,高职本科缺口371.52万人。这显示了当前人才培养规模远远无法满足企业的实际需求。
四、人工智能行业技术技能人才需求与职业院校人才培养质量匹配分析
1. 专业培养目标与岗位需求基本匹配
通过对人工智能岗位能力素质关键词与不同学历层次的专业培养目标进行对比发现,虽然“探究学习、终身学习”未在培养目标中明确提及,但在教学标准中有体现。“解决方案”的能力对于职业教育学历层次来说过高,通常由硕博毕业生承担。总体而言,各学历层次的专业培养目标与岗位需求基本匹配,但仍需结合具体课程内容进一步确认。
2. 专业课程设置与行业需求存在差距
尽管三个学历层次的课程设置合理地涵盖了人工智能的基础知识和技术核心,但在对接新兴技术和工业标准方面仍显不足。例如,增强学习、自动驾驶等新技术未能及时引入课程体系,且实践环节与工业标准的联系不够紧密。此外,跨学科知识的整合也有所欠缺,这对学生综合应用能力和行业适应性构成了挑战。
3. 毕业生职业素质与企业要求存在差距
企业高度重视的职业素质包括团队合作精神、职业道德、爱岗敬业等,这些在现有专业教学标准中均有体现。然而,作为一门高度交叉的复合型学科,人工智能还要求员工具备较高的综合素质,如技术融合能力和行业融合能力,而这正是当前中职、高职专科及本科教育尚未充分涵盖的部分。
为了更好地满足人工智能行业的快速发展需求,职业院校应不断优化专业设置、调整课程结构,并加强与行业需求的对接,以提高毕业生的职业素质和就业竞争力。同时,还需关注新兴技术的发展趋势,确保教育内容与时俱进,为社会输送更多高质量的技术技能人才。
五、对我国职业院校人工智能类专业设置的意见与建议
(一)职业院校人工智能专业设置的指导意见
1. 扩大人工智能相关专业人才培养,解决各层次人才需求问题
截至2025年1月,国家职业教育中,高职本科开设的人工智能专业仅1个,高职专科2个,中职1个。随着技术进步,现有课程体系已无法满足当前人工智能的发展要求。因此,提出以下建议:
高职本科:增设人工智能芯片与算力优化技术专业,培养芯片架构设计、低功耗优化及边缘计算部署能力的专业人才,以应对国产芯片研发需求。
高职专科:增加多模态交互与具身智能专业,结合视觉、语音等数据处理技术,培养适应人机协同机器人开发的人才,并向垂直行业(如医疗、农业)发展。
中职:增设人工智能训练师与数据标注工程专业,系统化培训数据标注、模型调优技能;同时,设立智能产品营销与服务专业,强化AI产品的市场分析和客户需求转化能力。
所有学历层次都应重视人工智能安全与伦理治理方向的人才培养,以应对合规监管趋势。
2. 调整专业布局和招生规模,解决供需不平衡问题
目前,东部地区产业规模占全国79.91%,但专业布局集中在中部,导致供需失衡。建议:
扩大东部地区的职业教育规模,特别是浙江、上海等地,增加专业设置并扩大招生规模。
对于山东、重庆等专业布局过大的地区,适当缩减招生规模,避免就业困难。
3. 科学设计专业课程体系,确保知识和职业素质符合企业需求
鉴于人工智能技术快速发展,课程体系需持续更新。具体措施包括:
高职本科:强化编程与算法能力,增设高级数据结构、算法设计等课程。
高职专科:增强物联网与边缘计算、云计算与大数据处理能力,加入物联网技术和云计算平台应用课程。
中职:加强基础编程能力和人工智能硬件的应用能力,通过Python、Java编程语言课程提升学生的基础技能。
4. 深入开展校企共育人才,解决人才培养与行业发展不匹配的问题
为适应市场的快速变化,职业院校应深化与企业的合作,采用订单式培养模式,制定针对性的培养计划,并建立质量监控机制,保障合作培养的质量。
5. 强调数据安全意识的培养,确保国家人工智能领域的数据安全
在培养专业技术技能人才的同时,必须注重数据安全意识的培养,包括:
开设专门的数据安全课程,传授基本的安全知识和技能。
加强职业道德教育,引导学生树立正确的价值观和职业操守。
在实践教学环节中加强数据安全管理,保护实验数据不被泄露或滥用。
(二) 职业院校人工智能专业设置的政策建议
1.优化专业目录,增设专业
建议国家教育部门启动新一轮高职专业目录修订,在高职本科的电子与信息大类中增加 “AI 芯片与算力优化技术”“智能传感器与物联网工程” 等专业;在高职专科增设 “多模态交互与具身智能” 以及与垂直行业深度应用相关的专业;在中职增设 “AI 训练师”“数据标注工程”“智能产品营销与服务” 等专业。在国家专业目录未发布前,职业院校可根据自身情况灵活开设相关方向课程,以满足人工智能行业对专业技能人才的需求。
2.扩大招生规模与加强专业建设
国家和地方政府应加快高职本科院校和专业建设,满足人工智能行业对高端技能人才的需求。其一,在各省、市、自治区增加高职本科院校数量,或在高职院校中增设人工智能本科专业,打通职业教育上升通道,形成从中职到高职专科再到高职本科的人工智能专业衔接体系,夯实人才技术基础,扩大高端人才储备。其二,打造国家级人工智能专业职业教育培养项目,开发高质量、持续更新的培训课程,加强 “双师型” 教师培养,做好教师资源储备。
3.深度产教融合,适配行业发展需求
为适配人工智能技术高速发展需求,建议国家或地方政府加大对产业学院建设的支持,设立专项资金,鼓励企业与职业院校共建人工智能产业学院,全方位校企共建,实现 “入学即入职”。职业院校应利用市域产教联合体、全国行业产教融合共同体,与企业和院校在产业园区共建 “转化带动型孵化机构”,实现人才、技术、数据、场地、资金、管理等资源共享,创新深度产教融合机制,使人才培养实时对接企业需求。
4.国际交流与标准输出
鉴于非洲、东南亚等地区人工智能技术人才匮乏、专业建设滞后,建议国家扩大与这些地区的学历互认,搭建合作平台,鼓励院校开展 “职教出海” 项目。职业院校应与国际院校合作制定人工智能专业教学标准、课程标准和教材,为教育国际化提供支撑;联合国内科技企业研发教学装备,服务海外课程教学。
5.强化教育指导
人工智能产业发展迅速、影响重大,而职业院校人工智能专业教育处于初期阶段,急需支持。地方教育行政部门应组织本地人工智能行业企业专家定期指导职业院校专业建设,开展产教融合学术交流和人才培养质量评价,确保人才培养质量满足产业需求。