目录
摘要:
本文对灰色预测算法进行了研究。在GM(1,1)模型中,发展系数a和灰色作用量u是两个关键的参数,对系统的性能有较大的影响。传统的方法使用最小二乘法来求解,不仅计算复杂,而且预测结果的误差也较大。论文对此进行了研究,并提出了一种改进的灰色预测算法PSOGP。PSOGP的主体仍使用GM(1,1)模型,但在求解相关参数时,PSOGP使用了粒子群优化算法。仿真试验表明,与经典的GM(1,1)模型相比,PSOGP算法的预测精度得到了较大的提高。
研究背景:
灰色预测法是一种对含有不确定因素的系统进行预测的方法,它属于时间序列分析方法的一种。灰色预测法的基本思想是:系统的时间序列数据中蕴含着系统演化的信息,所以对已有的数据进行研究,可以找出其蕴含的规律,并进而推知系统未来的发展动态。由于计算简单,所需先验知识不多,因此自诞生以来,灰色预测法在网络流量规划、电信话务量预测、灾害预警等领域均得到了广泛的应用,并发挥出越来越大的影响力。
灰色预测法的研究对象是灰色系统,所谓灰色系统是指同时包含已知信息和未知信息的系统。灰色预测法通过对灰色系统进行建模工作,能够有效地挖掘出系统输出数据的内在规律,从而为理解和预测系统的状态提供帮助。在灰色预测法中,GM(1,1)模型是目前应用最多的灰色模型。但是,随着GM(1,1)模型的应用推广,其缺陷也逐渐显露出来。灰色预测算法的精度不高,结果相对粗糙。很多学者对其进行了研究,并提出了不少改进的方案。刘树等人对灰色预测GM(1,1)模型和GM(1,1)残差模型问题进行了较多的分析。
本文也对此进行了研究。我们认为,GM(1,1)模型中发展系数与灰色作用量的值较为关键,对预测的结果会有较大的影响。传统方法一般使用最小二乘法来求解,误差较大,不够精确。本文对其进行了改进,使用粒子群优化(ParticleSwarmOptimization,PSO)算法来求解GM(1,1)的参数,并在此基础之上提出了基于PSO的灰色预测算法(aPSObasedGreyPredictionalgorithm,PSOGP)。仿真试验表明,PSOGP的预测精度比GM(1,1)模型要高。
GM(1,1)模型
GM(1,1)是使用最为广泛的一种灰色模型。其主要过程是,首先对原始数据进行累加,得到具有一定规律性的新序列,对该序列使用一些曲线来逼近,得到了逼近曲线之后,将其作为预测模型,对系统进行预测。
对得到的结果进行一次累减还原操作,可到一个数据序列X={X(1),X(2),X(3),…},这个序列的前 n 项是对原始序列的 拟合值,后面的数据则是对系统的预测值。
基于PSO的灰色预测算法
PSO 属于群智能算法,它是 Russell 与 James 受鸟群觅食 启发所提出的一种演化算法。PSO 算法的主要思路是将待求 解问题转化为一个在多维空间中寻找最优位置的问题,其求 解过程就是使用一群微粒在这个空间中寻找代表最优解的最佳位置。在求解过程中,粒子之间可以相互交流信息,从而调 整自己的搜索方向与前进速度。