Vol.1前言
在社会科学领域,如心理学、教育学和社会学,甚至是医学领域,研究事物随时间发展的过程是研究者关注的重点。例如,心理学家可能研究自我概念和道德感如何随着年龄的增长而变化;教育学的研究者可能会探讨学生逻辑思维能力如何随着年级的提高而增强;护理学研究可能追踪疾病症状的发展过程。
潜增长曲线模型(Latent Growth Curve Models, LGCM)有助于探究上述问题,该模型可以分析一段时间或某些特定时间点总体的初始状态水平和平均增长趋势,以及个体之间的差异。具体来说,包括:
总体的初始状态水平;
总体的平均增长趋势;
初始状态水平的个体差异;
平均增长趋势的个体差异;
初始状态水平和平均增长趋势的关系;
LGCM有很多种不同的别名。例如,潜在轨迹模型(Latent Trajectory Model,LTM),潜增长曲线模型(LGCM;Kaplan,2000),潜增长模型(Latent Growth Models,LGM)或潜增长曲线模型(Latent Variable Growth Curve Modeling)。如果大家看到不同的叫法,完全不用惊慌,有可能说得是一回事儿。
我们将对该模型的基本原理和mplus应用进行介绍,如果觉得这部分较难理解和枯燥,也可以直接跳到太长不看版(Vol.3),此处会根据一个例子进行mplus代码撰写和结果讲解。
举例——以线性回归分析为例
假如我们希望知道初中生自尊水平随时间的变化趋势,为此我们分别于四个时间点测量了50个初中生的自尊水平。
基于线性回归分析的思路,我们可以构建这组被试的回归方程,通过最小二乘法,计算截距b和斜率a。
y = α + βx
·截距α的含义:当自变量为