你见过有调节的网络分析吗?保姆级教程!!!

PSYCH统计实验室

写在前面

近年来,网络分析方法被广泛应用于心理学、精神病学等领域,被用来控制节点之间的复杂相互作用。根据分析数据的时间特征,我们可以将常见的网络分析研究简单分为横断网络分析、纵向网络分析、动态(密集追踪)网络分析。这些研究大部分仅探讨了节点之间的两两关系,但对于更复杂机制的考察很少,例如调节作用。并且,在考察调节作用的网络分析研究中,相当一部分仅仅是简单的将整个样本分为几个子样本(例如分为男性和女性)分别进行网络分析。因此,为了更准确的估计调节变量对节点网络的作用,有研究者开发了有调节的网络分析技术。

上一期,自习室为大家介绍了网络分析的基本内容,今天小室将继续向大家介绍有调节的网络分析模型!

Vol.1 概述

在本文中,我们将简单介绍有调节的网络分析模型(moderated network models, MNMs),并展示了在R中如何实现。据笔者所知,至今为止(2024年4月10日)有两个R包可以构建MNMs,分别是mgm(Haslbeck & Waldorp, 2020)和modnets(Swanson, 2020)。在这篇文章中,我们首先介绍modnets。

Vol.2 载入包

图片

(没错就是短短的一行代码构成了一整节的内容,但排版菌爱放这别管())

Vol.3

查看数据

图片

查看包自带的示例ggmDat,数据包含6个变量,其中v1至v5为网络节点,v6为调节变量。

Vol.4

估计无向横断网络的

在modnets包中,估计网络是通过fitNetwork()函数。首先,我们使用示例数据和fitNetwork()函数来估计网络,并且我们将调节变量M作为一个普通的节点。由于示例数据是连续数据,因此我们采用fitNetwork()函数默认的高斯图形模型(Gaussian Graphical Model, GGM)方法估计网络。

图片

图片

图片

其次,我们也可以将其与传统网络分析的方法相比较。例如,采用bootnet包中的estimatenetwork()函数来估计网络。

图片

图片

图片

可以看到,两种方法所得到的网络是相似的。

Vol.5

 估计有调节的横断网络

众所周知,采用GGM方法估计无向网络模型是构建偏相关矩阵。然而,当模型中包含调节因子、协变量或任何高阶交互项时,这种方法就不合适了。因此,可以使用另一种称为节点智能回归的方法(Epskamp et al., 2018),该方法基于一种称为邻域选择(neighborhood selection)的结构学习图论方法,并需要通过一系列单变量回归模型来估计网络结构。也就是说,为网络中为每个节点构建一个单独的回归模型,然后跨模型聚合系数以形成最终的网络结构。

图片

 例如,假设我们想对三个变量X1、X2和X3的相互关系进行建模。采用节点回归方法,我们将首先构建三个独立的单变量回归方程:

图片

假设斜率参数β表示有向的有条件关系,例如:在本例中,β12为控制X3后,X2对X1预测作用的斜率。我们可以将相关系数对组合起来,得到变量之间的无向的有条件关系(即偏相关)。例如,这里X1和X2之间的偏相关可以定义为:

ω1,2 =

图片

需要注意的是,β12和β21的符号总是相同的,当且仅当两个斜率参数以相同的协变量为条件(例如,X3作为两个模型中的协变量),并且n > p。

当外生协变量作为预测因子被包括在节点回归中时,这种等价性是成立的,但当交互作用项被包括进来时,它就不再成立了。例如,假设我们在当前示例中包含了一个潜在的调节变量Z。我们现在有了下面的等式:

图片

这里笔者用括号把主效应项和交互作用项分开,其中与主效应相关的参数用β表示,而与交互作用相关的参数用δ表示。

在这些情况下,我们不能直接聚合主要的效应参数并将它们转化为偏相关。然而,我们仍然可以通过对相关系数对取平均值来近似变量之间的有条件的相关性;这是心理网络文献中采用的一种常见方法,即使不包括交互作用,也可以计算出精确的部分相关性。

现在让我们来试试吧!

图片

使用ggmData数据构建有调节的网络模型,其中M作为调节变量。

图片

其中’M’为调节变量的变量名

图片

在图中,绿色的实线表示两个节点之间呈正相关关系,红色的实线表示负相关关系。绿的虚线表示两个节点之间的关系受到了调节变量’M’的正向调节(p < 0.05)。由于我们使用的是默认设置(默认默认默认!),该网络采用的是“OR”规则。这意味着,在两个节点之间,只要有一个β系数显著大于0,两个节点之间就可以画出边。但如果我们采用的是“AND”规则,则必须两个β系数都显著大于0,并采用公式(β12 + β21)/2计算边。

我们分别采用“OR”和“AND”规则估计模型。

图片

图片

左图和右图分别是“OR”和“AND”规则下的网络。可以发现,在当前数据中,两个模型是一致的。

此外,我们还可以在plot()函数中加上mnet = TRUE,将调节变量在图中显示出来。加上elabs = TRUE,同时显示边的系数。

图片

图片

另外,还可以通过加上predict=TRUE,将每个节点相关的预测误差在节点周围绘制为饼状图(不能和mnet = TRUE同时使用)。对于连续变量,预测误差的类型由参数con决定。对于分类变量,预测误差的类型由cat参数决定。

图片

图片

Vol.6

绘制调节效应图

就像传统的调节效应分析,在MNMs中我们也可以估计两个节点之间单向预测关系的调节边际效应图。

图片

图片

       红线表示估计的边际效应,灰色带为95%置信区间。图顶部的95%CI反映了相互作用效应的覆盖区间。在图中,我们可以看到,调节变量M是如何调节节点V4对节点V5的预测作用。具体而言,当M小于-3时,随着M的增加,V4对V5的负向预测作用不断减小;当M大于-3时,随着随着M的增加,V4对V5的正向预测作用不断增大。

       同理,我们也可以反过来估计M调节下的V5对V4的预测作用。

图片

图片

       可以发现,M调节下的V4和V5之间的相互预测关系是高度相似的。

Vol.7

估计节点的中心性指标

       类似与传统的网络分析,MNMs也可以估计各个节点的中心性指标,例如Betweeness、Closeness、Strength、ExpedInfluence。

图片

图片

(图片有点长,排版菌把它分成了两半,请大家连起来食用)

图片

进一步查看每个节点的中心性指标,scale=TRUE表示取标准化值。

图片

图片

Vol.8

边的稳定性/准确性估计和差异检验

类似于传统网络分析,需要采用Bootstrap方法,进一步对网络的稳定性/准确性进行检验。首先,对网络中的边计算Bootstrap置信区间。

图片

图片

左图代表交互作用的边,图右代表成对节点的边。图中黑线代表Bootstrap法得出的均值,红线达标原样本估计的均值。灰色部分代表两种方法对应的置信区间。两条线重复较多,灰色面积较小说明结果稳定。

进一步通过caseDrop bootstrap方法估计边的稳定性。

图片

图片

     

  检验边之间是否存在差异。

图片

图片

       黑色方格代表两个边之间存在显著性差异,灰色则代表两个边之间差异不显著。

Vol.9

节点的稳定性/准确性估计

    

   类似于边的稳定性/准确性估计,我们也可以估计节点的稳定性/准确性。

图片

图片

     

 进一步通过caseDrop bootstrap方法估计节点的稳定性。

图片

图片

      

检验节点中心性之间是否存在差异。

图片

图片

       黑色方格代表两个节点的中心性之间存在显著性差异,灰色则代表两个节点的中心性之间差异不显著。

图片

小室的展(da)望(bing)

在本节中,我们系统回顾了横断的MNMs的基本分析步骤。在实例数据只包含较少的变量,但在我们的实际分析中,经常会面临网络中包含几十个节点的情况。那么我们如何判断将哪些节点纳入网络呢?此外,面对纵向数据或密集追踪数据,又如何构建MNMs呢?敬请期待我们之后的章节!

Subscribe

图片

以上就是本期的分享啦,感谢大家的阅读~

同时也欢迎大家在评论区或公众号后台留言,提出自己的建议或问题~

参考文献:

Epskamp, S., Waldorp, L. J., Mõttus, R., & Borsboom, D. (2018). The gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453–480. https://doi.org/10.1080/00273171.2018.1454823

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data. Journal of Statistical Software, 93(8). https://doi.org/10.18637/jss.v093.i08

Swanson, T. J. (2020). Modeling Moderators in Psychological Networks. University of Kansas.

更多资讯

关注我们

图片

Unity 抠人像的原理是基于计算机视觉技术中的图像分割算法。这种算法可以将一张图片分割成多个区域,进而实现抠图的效果。其中最常用的图像分割算法是基于深度学习的语义分割算法。 具体来说,语义分割算法会将一张图片中的每个像素都标记上对应的类别,比如人像、背景、物体等等。在抠图的场景中,我们需要将人像标记出来,并将背景去除,从而实现抠图的效果。 下面是一些保姆的抠图教程,手把手教你如何进行抠图: 1. 使用 Photoshop 的磁性套索工具进行抠图 磁性套索工具是 Photoshop 中常用的抠图工具之一,它可以根据颜色的相似度自动选取区域。使用磁性套索工具进行抠图时,需要先调整磁性套索工具的参数,比如设置套索的宽度和磁性强度等。 2. 使用在线抠图工具进行抠图 现在有很多在线抠图工具可以使用,比如 Clipping Magic、Remove.bg 等等。这些工具使用的是深度学习算法,可以自动识别人像并将背景去除,使用起来非常方便。 3. 使用 Unity 的抠图插件进行抠图 Unity 中也有一些非常好用的抠图插件,比如 Alpha Mask、Simple Mask 和 Smart Mask 等等。这些插件可以帮助开发者快速实现抠图的效果,无需手动进行抠图操作。 总之,抠图是计算机视觉技术中一个非常重要的应用场景,也是游戏开发中常的需求之一。掌握抠图的技巧和方法,可以帮助开发者快速实现游戏中的各种效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值