对Barbalat引理和类李雅普诺夫引理的理解是学习自适应控制系统设计的关键,看过B站DR_CAN大神的视频后,我按我的理解在这里记录一下。
1 介绍
类李亚普诺夫引理(Lyapunov-like Lemma)可以说是Barbalat引理(Barbalat Lemma)的推论,所以这里对两个引理都作以介绍。
1.1 Barbalat Lemma
如果可微函数 f ( t ) f(t) f(t),满足:
(1)当 t → ∞ t\to\infty t→∞时, f ( t ) f(t) f(t)存在有限的极限,即
lim t → ∞ f ( t ) = C ( C 为 有 限 的 常 数 ) \lim_{t \to \infty} f(t)=C(C为有限的常数) t→∞limf(t)=C(C为有限的常数)
(2) f ˙ ( t ) \dot{f}(t) f˙(t)一致连续 ( 等价于 f ¨ ( t ) \ddot{f}(t) f¨(t)有界 )
那么,当 t → ∞ t\to\infty t→∞时, f ˙ ( t ) → 0 \dot{f}(t)\to0 f˙(t)→0。
这个引理的证明网上有很多,想了解的可以点我的链接或自己搜一下。我这里说一通俗的理解。
对于条件(1),这里的
t
→
∞
t\to\infty
t→∞没有指明是正无穷还是负无穷,所以应当是两者都要满足,函数
f
(
t
)
f(t)
f(t)应当类似于下图的反正切函数。
对于条件(2),
f
˙
(
t
)
\dot{f}(t)
f˙(t)一致连续的意思是,
f
˙
(
t
)
\dot{f}(t)
f˙(t)在定义域内的任意点都是连续的,即不会出现的跳变,这可以保证
f
(
t
)
f(t)
f(t)是有界且光滑的,不会出现不可导的点,不会有突然的偏折。
这两个条件加起来,说明
f
(
t
)
f(t)
f(t)是有界连续光滑
且
lim
t
→
∞
f
(
t
)
=
C
(
C
为
有
限
的
常
数
)
\lim_{t \to \infty} f(t)=C(C为有限的常数)
limt→∞f(t)=C(C为有限的常数),这样当
t
→
∞
t\to\infty
t→∞时,
f
˙
(
t
)
只
能
→
0
\dot{f}(t)只能\to0
f˙(t)只能→0。
1.2 Lyapunov-like Lemma
如果标量函数 V ( x ) V(x) V(x)满足:
(1) V ( x ) V(x) V(x)有下界;
(2) V ˙ ( x ) \dot{V}(x) V˙(x)半负定;
(3) V ˙ ( x ) \dot{V}(x) V˙(x)对时间是一致连续的。
那么当 t → ∞ t\to\infty t→∞时, V ˙ ( x ) → 0 \dot{V}(x)\to0 V˙(x)→0
条件(3)让 V ( x ) V(x) V(x)光滑连续,条件(2)让 V ( x ) V(x) V(x)单调递减,条件(1)让 V ( x ) V(x) V(x)不会无限减小,这样结论就不言而喻了。
2 来自DR_CAN大神(B站)的例子
对于系统
(1)
x
˙
=
a
x
2
+
u
\dot{x}=ax^2+u \tag{1}
x˙=ax2+u(1)
其中
a
a
a是定常但未知,这意味着我们得设计的控制器得适应
a
a
a。举个例子,对弹簧滑块系统,我们要设计一个控制器使得滑块的质量m变化时,不用改变控制的任何参数,就可以让滑块跟踪我们设计好的轨迹。这里不设计弹簧滑块系统的控制器了,读者有兴趣自己试吧。
控制目的
:让状态
x
x
x跟踪给定的
x
d
x_d
xd。
首先,引入
(2)
e
=
x
d
−
x
e=x_d-x \tag{2}
e=xd−x(2)
则
(3)
e
˙
=
x
d
˙
−
x
˙
=
x
d
˙
−
a
x
2
−
u
\dot{e}=\dot{x_d}-\dot{x}=\dot{x_d}-ax^2-u \tag{3}
e˙=xd˙−x˙=xd˙−ax2−u(3)
为了让
e
→
0
e\to0
e→0,令
e
˙
=
−
k
e
,
其
中
k
>
0
\dot{e}=-ke,其中k>0
e˙=−ke,其中k>0,那么
(4)
u
=
x
d
˙
−
a
x
2
+
k
e
u=\dot{x_d}-ax^2+ke \tag{4}
u=xd˙−ax2+ke(4)
但是,
a
a
a未知,所以我们得估计一下
a
a
a的值,
u
u
u也只能用
a
a
a的估计值
(5)
u
=
x
d
˙
−
a
^
x
2
+
k
e
u=\dot{x_d}-\hat{a}x^2+ke \tag{5}
u=xd˙−a^x2+ke(5)
假设
a
a
a的估计值为
a
^
\hat{a}
a^,与
a
a
a的残差为
a
~
\widetilde{a}
a
,即
(6)
a
~
=
a
−
a
^
\widetilde{a}=a-\hat{a} \tag{6}
a
=a−a^(6)
求导
(7)
a
~
˙
=
a
˙
−
a
^
˙
=
−
a
^
˙
\dot{\widetilde{a}}=\dot{a}-\dot{\hat{a}}=-\dot{\hat{a}} \tag{7}
a
˙=a˙−a^˙=−a^˙(7)
假设关于
e
e
e和
a
~
\widetilde{a}
a
的Lyapunov函数为
(8)
V
(
e
,
a
~
)
=
1
2
e
2
+
1
2
a
~
2
V(e,\widetilde{a})=\frac{1}{2}e^2+\frac{1}{2}\widetilde{a}^2 \tag{8}
V(e,a
)=21e2+21a
2(8)
求导,并带入(3)(5)(7)式,化简
(9)
V
˙
(
e
,
a
~
)
=
e
e
˙
+
a
~
a
~
˙
=
−
k
e
2
−
a
~
(
e
x
2
+
a
^
˙
)
\dot{V}(e,\widetilde{a})=e\dot{e}+\widetilde{a}\dot{\widetilde{a}}\\ \qquad \qquad \qquad \qquad=-ke^2-\widetilde{a}(ex^2+\dot{\hat{a}}) \tag{9}
V˙(e,a
)=ee˙+a
a
˙=−ke2−a
(ex2+a^˙)(9)
(9)式第一项
−
k
e
2
-ke^2
−ke2是负定的,但是第二项
−
a
~
(
e
x
2
+
a
^
˙
)
-\widetilde{a}(ex^2+\dot{\hat{a}})
−a
(ex2+a^˙)却很难负定,但可以让它为零
(10)
a
~
(
e
x
2
+
a
^
˙
)
=
0
\widetilde{a}(ex^2+\dot{\hat{a}})=0 \tag{10}
a
(ex2+a^˙)=0(10)
那么
(11)
a
^
˙
=
−
e
x
2
\dot{\hat{a}}=-ex^2 \tag{11}
a^˙=−ex2(11)
此时
V
˙
(
e
,
a
~
)
=
−
k
e
2
\dot{V}(e,\widetilde{a})=-ke^2
V˙(e,a
)=−ke2
它是半负定的。
由(8)式,
V
(
e
,
a
~
)
≥
0
V(e,\widetilde{a})\geq0
V(e,a
)≥0,有下界。
V
¨
(
e
,
a
~
)
=
−
2
k
e
e
˙
=
−
2
k
e
(
−
k
e
)
=
2
k
e
2
\ddot{V}(e,\widetilde{a})=-2ke\dot{e}=-2ke(-ke)=2ke^2
V¨(e,a
)=−2kee˙=−2ke(−ke)=2ke2是有界的,因为
V
˙
\dot{V}
V˙半负定,
e
e
e在Lyapunov意义下稳定,即有界,所以
V
˙
\dot{V}
V˙是一致连续的。满足了Lypunov-like Lemma,所以当
t
→
0
t\to0
t→0时,
V
˙
→
0
\dot{V}\to0
V˙→0,即
e
→
0
e\to0
e→0。
由(5)(11)式,我们就得到控制器为
u
=
x
d
˙
−
a
^
x
2
+
k
e
=
x
d
˙
−
(
∫
0
t
−
e
x
2
d
τ
)
x
2
+
k
e
=
x
d
˙
+
x
2
∫
0
t
e
x
2
d
τ
+
k
e
u=\dot{x_d}-\hat{a}x^2+ke\\ \qquad \qquad \qquad =\dot{x_d}-(\int_{0}^{t}-ex^2d\tau )x^2+ke\\ \qquad \qquad =\dot{x_d}+x^2\int_{0}^{t}ex^2d\tau +ke
u=xd˙−a^x2+ke=xd˙−(∫0t−ex2dτ)x2+ke=xd˙+x2∫0tex2dτ+ke
3 总结
本文通俗的解释了一下Barbalat Lemma和Lyapunov-like Lemma,并给出了一个利用Lyapunov-like Lemma的设计自适应控制的例子。强调一下,这是我看B站DR_CAN大神的视频总结而来的,希望大家去B站支持一下他。