Barbalat引理与类李雅普诺夫引理,及它们在自适应控制系统设计的应用

本文解析了Barbalat引理及类李雅普诺夫引理,通过实例展示了如何运用类李雅普诺夫引理进行自适应控制系统设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对Barbalat引理和类李雅普诺夫引理的理解是学习自适应控制系统设计的关键,看过B站DR_CAN大神的视频后,我按我的理解在这里记录一下。

1 介绍

类李亚普诺夫引理(Lyapunov-like Lemma)可以说是Barbalat引理(Barbalat Lemma)的推论,所以这里对两个引理都作以介绍。

1.1 Barbalat Lemma

如果可微函数 f ( t ) f(t) f(t),满足:
(1)当 t → ∞ t\to\infty t时, f ( t ) f(t) f(t)存在有限的极限,即
lim ⁡ t → ∞ f ( t ) = C ( C 为 有 限 的 常 数 ) \lim_{t \to \infty} f(t)=C(C为有限的常数) tlimf(t)=C(C)
(2) f ˙ ( t ) \dot{f}(t) f˙(t)一致连续 ( 等价于 f ¨ ( t ) \ddot{f}(t) f¨(t)有界 )
那么,当 t → ∞ t\to\infty t时, f ˙ ( t ) → 0 \dot{f}(t)\to0 f˙(t)0

这个引理的证明网上有很多,想了解的可以点我的链接或自己搜一下。我这里说一通俗的理解。
对于条件(1),这里的 t → ∞ t\to\infty t没有指明是正无穷还是负无穷,所以应当是两者都要满足,函数 f ( t ) f(t) f(t)应当类似于下图的反正切函数。
对于条件(2), f ˙ ( t ) \dot{f}(t) f˙(t)一致连续的意思是, f ˙ ( t ) \dot{f}(t) f˙(t)在定义域内的任意点都是连续的,即不会出现的跳变,这可以保证 f ( t ) f(t) f(t)是有界且光滑的,不会出现不可导的点,不会有突然的偏折。
这两个条件加起来,说明 f ( t ) f(t) f(t)有界连续光滑 lim ⁡ t → ∞ f ( t ) = C ( C 为 有 限 的 常 数 ) \lim_{t \to \infty} f(t)=C(C为有限的常数) limtf(t)=C(C),这样当 t → ∞ t\to\infty t时, f ˙ ( t ) 只 能 → 0 \dot{f}(t)只能\to0 f˙(t)0
在这里插入图片描述

1.2 Lyapunov-like Lemma

如果标量函数 V ( x ) V(x) V(x)满足:
(1) V ( x ) V(x) V(x)有下界;
(2) V ˙ ( x ) \dot{V}(x) V˙(x)半负定;
(3) V ˙ ( x ) \dot{V}(x) V˙(x)对时间是一致连续的。
那么当 t → ∞ t\to\infty t时, V ˙ ( x ) → 0 \dot{V}(x)\to0 V˙(x)0

条件(3)让 V ( x ) V(x) V(x)光滑连续,条件(2)让 V ( x ) V(x) V(x)单调递减,条件(1)让 V ( x ) V(x) V(x)不会无限减小,这样结论就不言而喻了。

2 来自DR_CAN大神(B站)的例子

对于系统
(1) x ˙ = a x 2 + u \dot{x}=ax^2+u \tag{1} x˙=ax2+u(1)
其中 a a a是定常但未知,这意味着我们得设计的控制器得适应 a a a。举个例子,对弹簧滑块系统,我们要设计一个控制器使得滑块的质量m变化时,不用改变控制的任何参数,就可以让滑块跟踪我们设计好的轨迹。这里不设计弹簧滑块系统的控制器了,读者有兴趣自己试吧。
控制目的:让状态 x x x跟踪给定的 x d x_d xd
首先,引入
(2) e = x d − x e=x_d-x \tag{2} e=xdx(2)

(3) e ˙ = x d ˙ − x ˙ = x d ˙ − a x 2 − u \dot{e}=\dot{x_d}-\dot{x}=\dot{x_d}-ax^2-u \tag{3} e˙=xd˙x˙=xd˙ax2u(3)
为了让 e → 0 e\to0 e0,令 e ˙ = − k e , 其 中 k > 0 \dot{e}=-ke,其中k>0 e˙=ke,k>0,那么
(4) u = x d ˙ − a x 2 + k e u=\dot{x_d}-ax^2+ke \tag{4} u=xd˙ax2+ke(4)
但是, a a a未知,所以我们得估计一下 a a a的值, u u u也只能用 a a a的估计值
(5) u = x d ˙ − a ^ x 2 + k e u=\dot{x_d}-\hat{a}x^2+ke \tag{5} u=xd˙a^x2+ke(5)
假设 a a a的估计值为 a ^ \hat{a} a^,与 a a a的残差为 a ~ \widetilde{a} a ,即
(6) a ~ = a − a ^ \widetilde{a}=a-\hat{a} \tag{6} a =aa^(6)
求导
(7) a ~ ˙ = a ˙ − a ^ ˙ = − a ^ ˙ \dot{\widetilde{a}}=\dot{a}-\dot{\hat{a}}=-\dot{\hat{a}} \tag{7} a ˙=a˙a^˙=a^˙(7)
假设关于 e e e a ~ \widetilde{a} a 的Lyapunov函数为
(8) V ( e , a ~ ) = 1 2 e 2 + 1 2 a ~ 2 V(e,\widetilde{a})=\frac{1}{2}e^2+\frac{1}{2}\widetilde{a}^2 \tag{8} V(e,a )=21e2+21a 2(8)
求导,并带入(3)(5)(7)式,化简
(9) V ˙ ( e , a ~ ) = e e ˙ + a ~ a ~ ˙ = − k e 2 − a ~ ( e x 2 + a ^ ˙ ) \dot{V}(e,\widetilde{a})=e\dot{e}+\widetilde{a}\dot{\widetilde{a}}\\ \qquad \qquad \qquad \qquad=-ke^2-\widetilde{a}(ex^2+\dot{\hat{a}}) \tag{9} V˙(e,a )=ee˙+a a ˙=ke2a (ex2+a^˙)(9)
(9)式第一项 − k e 2 -ke^2 ke2是负定的,但是第二项 − a ~ ( e x 2 + a ^ ˙ ) -\widetilde{a}(ex^2+\dot{\hat{a}}) a (ex2+a^˙)却很难负定,但可以让它为零
(10) a ~ ( e x 2 + a ^ ˙ ) = 0 \widetilde{a}(ex^2+\dot{\hat{a}})=0 \tag{10} a (ex2+a^˙)=0(10)
那么
(11) a ^ ˙ = − e x 2 \dot{\hat{a}}=-ex^2 \tag{11} a^˙=ex2(11)
此时
V ˙ ( e , a ~ ) = − k e 2 \dot{V}(e,\widetilde{a})=-ke^2 V˙(e,a )=ke2
它是半负定的。
由(8)式, V ( e , a ~ ) ≥ 0 V(e,\widetilde{a})\geq0 V(e,a )0,有下界。 V ¨ ( e , a ~ ) = − 2 k e e ˙ = − 2 k e ( − k e ) = 2 k e 2 \ddot{V}(e,\widetilde{a})=-2ke\dot{e}=-2ke(-ke)=2ke^2 V¨(e,a )=2kee˙=2ke(ke)=2ke2是有界的,因为 V ˙ \dot{V} V˙半负定, e e e在Lyapunov意义下稳定,即有界,所以 V ˙ \dot{V} V˙是一致连续的。满足了Lypunov-like Lemma,所以当 t → 0 t\to0 t0时, V ˙ → 0 \dot{V}\to0 V˙0,即 e → 0 e\to0 e0
由(5)(11)式,我们就得到控制器为
u = x d ˙ − a ^ x 2 + k e = x d ˙ − ( ∫ 0 t − e x 2 d τ ) x 2 + k e = x d ˙ + x 2 ∫ 0 t e x 2 d τ + k e u=\dot{x_d}-\hat{a}x^2+ke\\ \qquad \qquad \qquad =\dot{x_d}-(\int_{0}^{t}-ex^2d\tau )x^2+ke\\ \qquad \qquad =\dot{x_d}+x^2\int_{0}^{t}ex^2d\tau +ke u=xd˙a^x2+ke=xd˙(0tex2dτ)x2+ke=xd˙+x20tex2dτ+ke

3 总结

本文通俗的解释了一下Barbalat Lemma和Lyapunov-like Lemma,并给出了一个利用Lyapunov-like Lemma的设计自适应控制的例子。强调一下,这是我看B站DR_CAN大神的视频总结而来的,希望大家去B站支持一下他。

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值