最近想复习一下现代控制理论,在B站看到了DR_CAN大神做的视频,但对其中涉及的拉塞尔不变性定理理解地不太好,特地查了一下,写下来与君分享。
1、介绍
拉塞尔不变性定理是对Lyapunov直接法(Lyapunov第二法)的补充,它能在系统的 V ˙ \dot{V} V˙半负定时也得到一个平衡点是渐近稳定的。但是需要注意,这个定理只能用于自治系统。自治系统指的是,系统的微分方程不显含时间 t t t的系统。如果想看严格的定理描述,大家可以去这个链接看,我会结合维基百科上的描述来解释。
2、较(bu)好(tai)理(yan)解(ge)的理论描述
对于系统:
x
˙
(
t
)
=
f
(
x
(
t
)
)
\dot{x}(t)=f(x(t))
x˙(t)=f(x(t))
满足
f
(
0
)
=
0
f(0)=0
f(0)=0。
首先我们要明白,一个系统的状态的有无数条轨迹,从不同的初始时刻开始,状态
x
x
x会沿不同的轨迹线运行。用
s
(
x
,
t
,
x
0
,
t
0
)
s(x,t,x_0,t_0)
s(x,t,x0,t0)表示一条解的轨迹,它从
t
0
t_0
t0时刻的
x
0
x_0
x0开始,到
t
t
t时刻的
x
x
x,
s
(
x
,
t
,
x
0
,
t
0
)
s(x,t,x_0,t_0)
s(x,t,x0,t0)上的点称为包含于轨迹
s
s
s的聚点。
假设集合
A
=
{
x
:
V
˙
(
x
)
=
0
}
A=\lbrace x:\dot{V}(x)=0 \rbrace
A={x:V˙(x)=0},它表示所有满足
V
˙
(
x
)
=
0
\dot{V}(x)=0
V˙(x)=0的聚点的集合。
s
s
s表示一条轨迹,它上面的聚点包含于
A
A
A,所有
s
s
s的集合为
I
I
I。这段话仔细看一下,比较绕。
如果可以找到一个标量函数
V
(
x
(
t
)
)
V(x(t))
V(x(t)),
V
(
0
)
=
0
V(0)=0
V(0)=0,且对所有非零
x
(
t
)
x(t)
x(t)满足:
V
(
x
)
>
0
V
˙
(
x
)
≤
0
V(x)>0\\ \dot{V}(x)\leq0
V(x)>0V˙(x)≤0
即
V
(
x
)
V(x)
V(x)正定,
V
˙
(
x
)
\dot{V}(x)
V˙(x)半负定。
并且,如果除了
x
(
t
)
=
0
(
t
≥
0
)
x(t)=0(t\geq0)
x(t)=0(t≥0)这条轨迹(其实就是从初始状态
x
(
t
0
)
=
0
x(t_0)=0
x(t0)=0开始,状态一直没变,也就是
x
(
t
)
≡
0
x(t)\equiv0
x(t)≡0(在
(
t
0
,
t
)
(t_0,t)
(t0,t)这段时间内),没有其他轨迹包含于
I
I
I中,那么
x
=
0
x=0
x=0这个状态点是渐近稳定的。
理解这个定理的关键是,理解轨迹
x
(
t
)
=
0
x(t)=0
x(t)=0和状态点
x
=
0
x=0
x=0这两个概念的区别,前者是一条状态走过的线,对于两状态的系统,其实就是相图;而后者只是单纯的一个点。
例子:带摩擦的单摆系统
图中小球的质量为
m
m
m,摆线长
l
l
l,与垂直方向的夹角为
θ
\theta
θ,摩擦系数为
k
k
k,摩擦力为
−
k
l
θ
˙
-kl\dot{\theta}
−klθ˙。
对于这样一个单摆系统,它的运动学方程为
(1)
m
l
θ
¨
=
−
m
g
sin
θ
−
k
l
θ
˙
ml\ddot{\theta}=-mg\sin\theta-kl\dot{\theta} \tag{1}
mlθ¨=−mgsinθ−klθ˙(1)
令
x
1
=
θ
x_1=\theta
x1=θ,
x
2
=
θ
˙
x_2=\dot{\theta}
x2=θ˙,(1)式可以写成
(2)
x
1
˙
=
x
2
\dot{x_1}=x_2\\ \tag{2}
x1˙=x2(2)
(3)
x
2
˙
=
−
g
l
sin
x
1
−
k
m
x
2
\dot{x_2}=-\frac{g}{l}\sin x_1-\frac{k}{m}x_2 \tag{3}
x2˙=−lgsinx1−mkx2(3)
我们用这个系统的总能量来表示Lyapunov函数,总能量=动能+势能,即
(4)
V
(
x
)
=
1
2
m
l
2
x
2
2
+
m
g
l
(
1
−
cos
x
1
)
V(x)=\frac{1}{2}ml^2x^2_2+mgl(1-\cos x_1) \tag{4}
V(x)=21ml2x22+mgl(1−cosx1)(4)
求导,化简,得
(5)
V
˙
(
x
)
=
−
k
l
2
x
2
2
\dot{V}(x)=-kl^2x_2^2 \tag{5}
V˙(x)=−kl2x22(5)
显然,
V
(
0
)
=
0
V(0)=0
V(0)=0,而
V
˙
(
x
)
\dot{V}(x)
V˙(x)是半负定的,由Lyapunov直接法不能得到
x
=
0
x=0
x=0是渐进稳定的。
但是,此时
A
=
{
(
x
1
,
x
2
)
∣
V
˙
(
x
1
,
x
2
)
=
0
}
=
{
(
x
1
,
x
2
)
∣
x
2
(
t
)
=
0
}
A=\lbrace(x_1,x_2)|\dot{V}(x_1,x_2)=0\rbrace=\lbrace(x_1,x_2)|x_2(t)=0\rbrace
A={(x1,x2)∣V˙(x1,x2)=0}={(x1,x2)∣x2(t)=0}
即,要让一条轨迹包含于
A
A
A,那这条轨迹的
x
2
(
t
)
x_2(t)
x2(t)必须一直为零,则
x
2
˙
=
0
\dot{x_2}=0
x2˙=0,同时这条轨迹也满足(3)式,那么
x
1
(
t
)
=
0
x_1(t)=0
x1(t)=0也必须一直成立,所以除了
x
=
0
x=0
x=0,A中不包含其他任何轨迹,所以
x
=
0
x=0
x=0是渐近稳定点。