Lyapunov stability analysis、LaSalle’s invariance principle、Barbalat’s lemma

本文探讨了Lyapunov稳定性定理在系统稳定性分析中的局限性,以及LaSalle不变集原理在处理自治系统时的适用性。同时,强调了Barbalat's Lemma在分析非自治系统渐进稳定性中的关键作用,作为补充工具来解决导数问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Lyapunov稳定性定理虽然在实际系统稳定性分析和理论研究中得到了广泛的应用,但是应用该定理分析系统的渐进稳定性时,导数为负定的Lyapunov函数时有时难以找到,尽管LaSalle不变集原理可以处理Lyapunov函数的导数为半负定的情况,但是只适用于自治系统。
Barbalat引理弥补了Lyapunov稳定性定理和Lasalle不变集原理的不足,在分析非自治系统稳定性方面起到了十分关键的作用
Barbalat’s Lemma是用来解决针对Non-Automonous System得出渐近稳定结论的工具,是一个有关函数与它的导数渐近稳定的纯粹地数学结论
在这里插入图片描述
在这里插入图片描述

参考资料链接

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值