【文献翻译】ISSF:实例分离和语义融合

该研究提出了一种三维点云分割网络,包含实例分割和语义分割两个分支。通过实例分离模块利用质心信息增强实例特征,语义融合模块利用注意力机制提升语义一致性。网络在训练时分别用交叉熵和判别损失进行监督,测试时采用mean-shift聚类获取实例标签。该方法旨在改善点云中实例和语义的分割效果。
摘要由CSDN通过智能技术生成

摘要 实例分离模块:用实例特定的质心位置来补充位置不变性语义特征,以帮助分离不同的实例;语义融合模块:基于注意力机制,将注意图编码到实例嵌入空间中,并将注意图应用到语义特征空间中进行语义信息融合。

整体框架

该工作采用三维点云作为输入,并预测每个点的实例标签和语义标签。网络包含两个并行的分支:一个用于实例分割,另一个用于语义分割。在这两个分支之间,提出了两个新的模块:实例分离模块和语义融合模块,使语义特征和实例特征相互受益。
在这里插入图片描述

结构概述

输入点云 V ∈ R n × d V \in \mathbb R^{n \times d} VRn×d,特征编码器提取点的高等级特征 F ∈ R n × f F \in \mathbb R^{n \times f} FRn×f,然后两个并行的分支接收 F F F,进行语义分割和实例分割。语义分割解码器将 F F F 映射到语义特征 S ∈ R n × f S \in \mathbb R^{n \times f} SRn×f,最后利用两个独立的全连接层(FC)和一个SoftMax层预测每个点属于语义标签 c c c的概率 P ∈ R n × c P \in \mathbb R^{n \times c} PRn×c。实例分割解码器将 F F F映射到实例特征 I ∈ R n × f I \in \mathbb R^{n \times f} IRn×f,下面两个FC层输出每个点的实例嵌入特征 E ∈ R n × e E \in \mathbb R^{n \times e} ERn×e
在这里插入图片描述
为了建立两个分支之间的合作关系,设计了两个模块:实例分离模块(如图中紫色所示)和语义融合模块(如图中蓝色所示)。实例分离模块预测特定于实例的质心 O ∈ R n × 3 O \in \mathbb R^{n \times 3} ORn×3 O O O S S S 连接起来,用来创建语义感知的实例特征 I ′ ∈ R n × f I' \in \mathbb R^{n \times f} IR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值