【研读分享】
经典贝叶斯网络融合论文|1-《A novel method for combining Bayesian networks, theoretical analysis, and its applications》
1、论文介绍
本篇论文的中文名称是《一种结合贝叶斯网络、理论分析和应用的新方法》。
论文链接:https://www.sciencedirect.com/science/article/abs/pii/S0031320313005232
作者是Guang Feng, Jia-Dong Zhang和Stephen Shaoyi Liao,于2014年发表至Pattern Recognition期刊(SCI一区,影响因子8.4)。
我们选择解读这篇论文的原因在于它引入了一种创新的贝叶斯网络组合方法,这一方法在知识融合领域具有重要意义。
WINNOW AI正在积极构建一个丰富的知识库体系,旨在为用户提供更全面高效的数据清洗建议,这篇论文提供了一种有效的知识网络融合方案。
2、研究问题和目的
这篇论文的核心研究问题是如何开发一种新的贝叶斯网络组合方法,以实现知识融合的有效性和效率。
作者的研究目的是解决现有贝叶斯网络组合方法的局限性,提出一种通用的组合方法,旨在结合任何贝叶斯网络的结构和参数,同时保持条件独立性和个体贝叶斯网络参数的特征。
通过这一研究,作者旨在提高贝叶斯网络在实际应用中的性能表现,如推荐系统、银行直销营销和疾病诊断等领域。下文简称贝叶斯网络为BN。
3、方法概述
在深入讨论所提出的方法之前,论文中应用了两个假设,这两个假设也是其他现有的贝叶斯网络组合方法所做的。
首先,假设原始贝叶斯网络同样重要,即不考虑生成贝叶斯网络的数据样本的数量,因为在获得贝叶斯网络之后,它不包含关于样本数量的信息。
其次,假设存在一个由单个贝叶斯网络共享的祖先排序,这有助于避免循环。对于多贝叶斯网络的融合,区分为内部变量和外部变量。
3.1内部变量和外部变量
对于内部变量,其至少一个BN中的所有父节点都属于公共变量,而外部节点的两个BN中父节点的两组分别包含至少一个非公共变量。例如图1,设指两个BN中公共变量。则
,对于右侧BN的节点B,无父节点表示为