贝叶斯信息融合 MATLAB,信息融合理论研究进展:基于变分贝叶斯的联合优化

本文综述了信息融合理论的发展,特别是基于变分贝叶斯方法的联合优化在多源信息融合中的应用。探讨了雷达数据处理、多目标跟踪、传感器网络中的异常检测等领域的理论和技术。通过引用多个相关著作和研究,阐述了信息融合在不同场景下的关键算法和实施策略,如粒子滤波、卡尔曼滤波和贝叶斯网络等,并强调了MATLAB在该领域的应用。
摘要由CSDN通过智能技术生成

[1]

潘泉, 程咏梅, 梁彦, 杨峰, 王小旭.多源信息融合理论及应用.北京:清华大学出版社, 2013.

Pan Quan, Cheng Yong-Mei, Liang Yan, Yang Feng, Wang Xiao-Xu. Multisource Information Fusion Theory and Application. Beijing: Tsinghua University Press, 2013.

[2]

Llinas J, Waltz E. Multisensor Data Fusion. Norwood, MA: Artech House Publisher, 1990.

[3]

何友, 修建娟, 关欣.雷达数据处理及应用.第3版.北京:电子工业出版社, 2013.

He You, Xiu Jian-Juan, Guan Xin. Radar Data Processing with Applications (Third Edition). Beijing: Publishing House of Electronics Industry, 2013.

[4]

Hall D L, Llinas J. Handbook of Multisensor Data Fusion. Danvers: CRC Press, 2001.

[5]

周宏仁, 敬忠良, 王培德.机动目标跟踪.北京:国防工业出版社, 1991.

Zhou Hong-Ren, Jing Zhong-Liang, Wang Pei-De. Maneuvering Target Tracking. Beijing: National Defense Industry Press, 1991.

[6]

Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. New York: John Wiley and Sons, 2004.

[7]

王增福, 潘泉, 梁彦, 刘慧霞.天波超视距雷达数据处理算法综述.中国电子科学研究院学报, 2011, 6(5): 477-484

Wang Zeng-Fu, Pan Quan, Liang Yan, Liu Hui-Xia. A review of data processing algorithms for Over-The-Horizon radar. Journal of China Academy of Electronics and Information Technology, 2011, 6(5): 477-484

[8]

Yadav S, Shroff G, Hassan E, Agarwal P. Business data fusion. In: Proceedings of the 18th IEEE Conference on Information Fusion. Washington, DC, USA: IEEE, 2015. 1876-1885

[9]

Chang Y F, Chen C C, Lin S C. An intelligent context-aware communication system for one single autonomic region to realize smart living. Information Fusion, 2015, 21: 57-67

[10]

Liu Y, Chen X, Cheng J, Peng H. A medical image fusion method based on convolutional neural networks. In: Proceedings of the 20th IEEE Conference on Information Fusion. Xi'an, China: IEEE, 2017. 1070-1077

[11]

Bosman H H W J, Iacca G, Tejada A, Wörtche H J, Liotta A. Spatial anomaly detection in sensor networks using neighborhood information. Information Fusion, 2017, 33: 41-56

[12]

Anderson C, Breimyer P, Foster S, Geyer K, Griffith J D, Heier A, et al. A network science approach to open source data fusion and analytics for disaster response. In: Proceedings of the 2015 18th International Conference on Information Fusion. Washington, DC, USA: IEEE, 2015: 207-214

[13]

潘泉, 于昕, 程咏梅, 张洪才.信息融合理论的基本方法与进展.自动化学报, 2003, 29(4): 599-615 http://www.aas.net.cn/CN/abstract/abstract13929.shtml

Pan Quan, Yu Xin, Cheng Yong-Mei, Zhang Hong-Cai. Essential methods and progress of information fusion theory. Acta Automatica Sinica, 2003, 29(4): 599-615 http://www.aas.net.cn/CN/abstract/abstract13929.shtml

[14]

潘泉, 王增福, 梁彦, 杨峰, 刘准钆.信息融合理论的基本方法与进展(Ⅱ).控制理论与应用, 2012, 29(10): 1233-1244 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201210001

Pan Quan, Wang Zeng-Fu, Liang Yan, Yang Feng, Liu Zhun-Ga. Basic methods and progress of information fusion (Ⅱ). Control Theory and Applications, 2012, 29(10): 1233-1244 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201210001

[15]

Li X R, Jilkov V P. Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1255-1321

[16]

Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters. IEEE Transactions on Signal Processing, 2012, 60(2): 545-555

[17]

Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482

[18]

Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188

[19]

Frank A, Smyth P, Ihler A. Beyond MAP estimation with the track-oriented multiple hypothesis tracker. IEEE Transactions on Signal Processing, 2014, 62(9): 2413-2423

[20]

Li Q, Sun J P, Sun W. An efficient multiple hypothesis tracker using max product belief propagation. In: Proceedings of the 20th International Conference on Information Fusion. Xi'an, China: IEEE, 2017. 1042-1049

[21]

Li X H, Willett P, Baum M, Li Y A. PMHT approach for underwater bearing-only multisensor—multitarget tracking in clutter. IEEE Journal of Oceanic Engineering, 2016, 41(4): 831-839

[22]

Song T, Kim H, Musicki D. Iterative joint integrated probabilistic data association for multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 642-653

[23]

Oh J, Russell S, Sastry S. Markov chain Monte Carlo data association for multi-target tracking. IEEE Transactions on A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值