约束项的使用
constraints 模块的函数允许在优化期间对网络参数设置约束(例如非负性)。约束是以层为对象进行的。具体的 API 因层而异,但 Dense,Conv1D,Conv2D 和 Conv3D 这些层具有统一的 API。
约束层开放 2 个关键字参数:
- kernel_constraint 用于主权重矩阵。
- bias_constraint 用于偏置。
from keras.constraints import max_norm
model.add(Dense(64, kernel_constraint=max_norm(2.)))
可用的约束
MaxNorm
MaxNorm 最大范数权值约束。
keras.constraints.MaxNorm(max_value=2, axis=0)
映射到每个隐藏单元的权值的约束,使其具有小于或等于期望值的范数。
参数
- m: 输入权值的最大范数。
- axis: 整数,需要计算权值范数的轴。 例如,在 Dense 层中权值矩阵的尺寸为 (input_dim, output_dim), 设置 axis 为 0 以约束每个长度为 (input_dim,) 的权值向量。 在 Conv2D层(data_format=“channels_last”)中,权值张量的尺寸为 (rows, cols, input_depth, output_depth),设置 axis 为 [0, 1, 2] 以越是每个尺寸为 (rows, cols, input_depth) 的滤波器张量的权值。
NonNeg
权重非负的约束。
keras.constraints.NonNeg()
UnitNorm
映射到每个隐藏单元的权值的约束,使其具有单位范数。
keras.constraints.UnitNorm(axis=0)
参数
axis: 整数,需要计算权值范数的轴。 例如,在 Dense 层中权值矩阵的尺寸为 (input_dim, output_dim), 设置 axis 为 0 以约束每个长度为 (input_dim,) 的权值向量。 在 Conv2D 层(data_format=“channels_last”)中,权值张量的尺寸为 (rows, cols, input_depth, output_depth),设置 axis 为 [0, 1, 2] 以越是每个尺寸为 (rows, cols, input_depth) 的滤波器张量的权值。
[source]
MinMaxNorm
MinMaxNorm 最小/最大范数权值约束。映射到每个隐藏单元的权值的约束,使其范数在上下界之间。
keras.constraints.MinMaxNorm(min_value=0.0, max_value=1.0, rate=1.0, axis=0)
参数
- min_value: 输入权值的最小范数。
- max_value: 输入权值的最大范数。
- rate: 强制执行约束的比例:权值将被重新调整为 (1 - rate) * norm + rate * norm.clip(min_value, max_value)。 实际上,这意味着 rate = 1.0 代表严格执行约束,而 rate <1.0 意味着权值 将在每一步重新调整以缓慢移动到所需间隔内的值。
- axis: 整数,需要计算权值范数的轴。 例如,在 Dense 层中权值矩阵的尺寸为 (input_dim, output_dim), 设置 axis 为 0 以约束每个长度为 (input_dim,) 的权值向量。 在 Conv2D 层(data_format=“channels_last”)中,权值张量的尺寸为 (rows, cols, input_depth, output_depth),设置 axis 为 [0, 1, 2] 以越是每个尺寸为 (rows, cols, input_depth) 的滤波器张量的权值。