机器学习--多项式回归04

本文记录了机器学习中的多项式回归模型的学习过程,包括模型理论和具体案例。通过调整参数n,观察并绘制回归方程,以理解模型如何拟合数据。
摘要由CSDN通过智能技术生成

学习目标:

机器学习----多项式回归

学习内容:

1、 多项式回归

学习记录:

  • 多项式回归

模型:

# 1.将一元多项式回归问题转换成多元线性回归问题
# 2.将第一步骤得到多项式的结果中w1,w2...当作样本特征,交给线性回归器训练多元线性模型
import sklearn.pipeline as pl
import sklearn.preprocessing as sp
import sklearn.linear_model as lm 
model=pl.make_pipeline(
    sp.PolynomialFeatures(n),#实现第一步,n最高项次数
    lm.LinearRegression()
)

案例:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值