图形学数学--向量

1、向量的性质

一个n维向量V可以表示为

V = < V1 , V2 ,… Vn >

Vi 称为V的分量。如三维点P的分量表示为 Px , Py , Pz

定理1.1
对于给定的任何两个系数a,b 以及任意三个向量P、Q、R都有

P+Q = Q+P
(P+Q)+R = P+(Q+R)
(ab)P = a(bP)
a(P+Q) = aP+aQ
(a+b)P = aP+bP

定理1.2

||P|| >= 0
当且仅当P=<0, 0, 0…0>时 ||P||=0
||aP|| = |a|*||P||
||P+Q|| <= ||P||+||Q||

2、点积

定理1.3
两个n维向量P、Q的点积记做 P Q
P Q = ni=0PiQi

如三维空间中 P Q = PxQx+PyQy+PzQz

定理1.4
对于给定的两个向量P、Q,点积P Q满足
P Q = ||P|| ||Q|| cosα

P·Q>0 方向基本相同,夹角在0°到90°之间
P·Q=0 P、Q相互垂直
P·Q<0 方向基本相反,夹角在90°到180°之间
角度越小 P、Q方向越相近
点积的结果不再是向量

2.2 向量的投影
这里写图片描述
向量U在V上的投影为U’ 长度为d
投影U’记做 projVU = UV||V||2V
U相对于V的垂直分量记做 perpVU = U - projVU

3、向量的叉积

两个三维向量的叉积又称向量积,其结果是一个向量且垂直于原来相乘的两个向量。

定义1.6
两个3D向量P、Q的叉积记做P × Q, 结果:
P × Q = < PyQzPzQy,PzQxPxQz,PxQyPyQx >

定理1.7
设P、Q为任意两个3D向量,则有(P × Q) P=0、(P × Q) Q=0

定理1.8
||P × Q|| = ||P|| ||Q|| sinα

定理1.9
Q × P = -P × Q
P × P-0 = <0, 0, 0>
P × Q × R = P2 Q-(P Q)P

4、向量空间

定理1.10
向量空间是一个集合V,它的元素称为向量
V对于加法运算封闭。即对于任意元素P,Q 它们的和P+Q也是V的元素
V对于乘法运算封闭。
向量空间中存在一个元素0,对于V的任意元素P都有 P+0 = 0+p = P
向量中的任意元素P,都有一个元素Q 使得Q+P=0

参考:
点积、叉积:http://blog.csdn.net/dcrmg/article/details/52416832
向量投影:http://www.cnblogs.com/graphics/archive/2010/08/03/1791626.html

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值