微积分(3)


title: 微积分三
tags: 微积分
top_img: ‘https://img1.imgtp.com/2022/09/11/OpNDn0WY.jpg’
cover: ‘https://img1.imgtp.com/2022/09/11/OpNDn0WY.jpg’
abbrlink: 470d838d
date: 2022-09-11 15:22:52
comments:

向量与向量值函数

点积(Dot Products)

已知两个二维或者三维的非零向量uv,它们的点积是
u ⋅ v = ∣ u ∣ × ∣ v ∣ c o s θ u·v=|u| \times |v|cos \theta uv=u×vcosθ
其中, θ \theta θuv之间的夹角,且 0 ≤ θ ≤ π 0 \le \theta \le \pi 0θπ

 

正交向量(Orthogonal Vectors)

当两个向量uv称为是正交,有u·v=0。这两个正交的非零向量相互垂直。

 

点积(Dot Products)

已知两个向量 u = < u 1 , u 2 , u 3 > u=<u_1,u_2,u_3> u=<u1,u2,u3> v = < v 1 , v 2 , v 3 > v=<v_1,v_2,v_3> v=<v1,v2,v3>,
u ⋅ v = u 1 v 1 + u 2 v 2 + u 3 v 3 u·v=u_1v_1+u_2v_2+u_3v_3 uv=u1v1+u2v2+u3v3
 

正交投影(Orthogonal Projection of u into v)

u在v上的(正交投影)

v ≠ 0 v \ne 0 v=0,则u在v上的正交投影
p r o j v u = ∣ u ∣ c o s θ ( v ∣ v ∣ ) proj_vu=|u|cos \theta(\frac{v}{|v|}) projvu=ucosθ(vv)
正交投影也可以用如下的公式计算
p r o j v u = s c a l v u ( v ∣ v ∣ ) = ( u ⋅ v v ⋅ v ) v proj_vu=scal_vu(\frac{v}{|v|})=(\frac{u·v}{v·v})v projvu=scalvu(vv)=(vvuv)v
其中u在v方向的纯分量
s c a l v u = ∣ u ∣ c o s θ = u ⋅ v ∣ v ∣ scal_vu=|u|cos \theta = \frac{u · v}{|v|} scalvu=ucosθ=vuv
y58FM.png

ps:proj相较于scal的区别是其方向是否跟投影的向量一致。

 

 

证明

u = < u 1 , u 2 , u 3 > u=<u_1,u_2,u_3> u=<u1,u2,u3>
( u 1 + u 2 + u 3 ) 2 ≤ 3 ( u 1 2 + u 2 2 + u 3 2 ) (u_1+u_2+u_3)^2 \le 3(u_1^2+u_2^2+u_3^2) (u1+u2+u3)23(u12+u22+u32)
过程如下

v = < u 2 , u 3 , u 1 > v=<u_2,u_3,u_1> v=<u2,u3,u1> u ⋅ v = u 1 u 2 + u 2 u 3 + u 3 u 1 u·v=u_1u_2+u_2u_3+u_3u_1 uv=u1u2+u2u3+u3u1 ∣ u ∣ ∣ v ∣ = u 1 2 + u 2 2 + u 3 2 |u||v|=u_1^2+u_2^2+u_3^2 u∣∣v=u12+u22+u32

因此有 u 1 u 2 + u 2 u 3 + u 3 u 1 ≤ ∣ u ∣ 2 u_1u_2+u_2u_3+u_3u_1 \le |u|^2 u1u2+u2u3+u3u1u2

( u 1 + u 2 + u 3 ) 2 = u 1 2 + u 2 2 + u 3 2 + 2 ( u 1 u 2 + u 2 u 3 + u 3 u 1 ) ≤ u 1 2 + u 2 2 + u 3 2 + 2 ∣ u ∣ 2 = 3 ∣ u ∣ 2 (u_1+u_2+u_3)^2=u_1^2+u_2^2+u_3^2+2(u_1u_2+u_2u_3+u_3u_1) \le u_1^2+u_2^2+u_3^2+2|u|^2 = 3|u|^2 (u1+u2+u3)2=u12+u22+u32+2(u1u2+u2u3+u3u1)u12+u22+u32+2∣u2=3∣u2

叉积(Cross Product)

uv叉乘 u × v u \times v u×v是一个大小为
∣ u × v ∣ = ∣ u ∣ ∣ v ∣ s i n θ |u \times v| = |u||v|sin \theta u×v=u∣∣vsinθ
的向量,其中其方向根据右手定则判断

 

计算叉积

u = u 1 i + u 2 j + u 3 k u=u_1i+u_2j+u_3k u=u1i+u2j+u3k v = v 1 i + v 2 j + v 3 k v=v_1i+v_2j+v_3k v=v1i+v2j+v3k,则
$$
u \times v =\begin{vmatrix}
i&j & k\
u_1&u_2 &u_3 \
v_1&v_2 &v_3
\end{vmatrix}=\begin{vmatrix}
u_2 &u_3 \
v_2&v_3

\end{vmatrix}i-
\begin{vmatrix}
u_1 &u_3 \
v_1& v_3

\end{vmatrix}j+
\begin{vmatrix}
u_1&u_2 \
v_1&v_2

\end{vmatrix}k
$$
注意:线性代数运算中,偶数项系数为负

 

 

空间直线与曲线

直线方程(Equation of a Line)

过点 p 0 ( x 0 , y 0 , z 0 ) p_0(x_0,y_0,z_0) p0(x0,y0,z0)且以向量 v = < a , b , c > v=<a,b,c> v=<a,b,c>为方向的直线方程 r = r 0 + t v r = r_0+tv r=r0+tv,或
< x , y , z > = < x 0 , y 0 , z 0 > + t < a , b , c > , − ∞ < t < ∞ <x,y,z>=<x_0,y_0,z_0>+t<a,b,c>,-\infty <t<\infty <x,y,z>=<x0,y0,z0>+t<a,b,c>,<t<
 

空间曲线

r ( t ) = < f ( t ) , g ( t ) , h ( t ) > = f ( t ) i + g ( t ) j + h ( t ) k r(t)=<f(t),g(t),h(t)>=f(t) i +g(t)j+h(t)k r(t)=<f(t),g(t),h(t)>=f(t)i+g(t)j+h(t)k

y5XPG.png
导数与切向量(Derivative and Tangent Vector)

r ( t ) = f ( t ) i + g ( t ) j + h ( t ) k r(t)=f(t)i+g(t)j+h(t)k r(t)=f(t)i+g(t)j+h(t)k其中f,g,h是(a,b)上的可导函数,则r在(a,b)上有导数,且
r ′ ( t ) = f ′ ( t ) i + g ′ ( t ) j + h ′ ( t ) k r'(t)=f'(t)i+g'(t)j+h'(t)k r(t)=f(t)i+g(t)j+h(t)k
r ′ ( t ) ≠ 0 r'(t) \ne 0 r(t)=0时, r ′ ( t ) r'(t) r(t)是在对应 r ( t ) r(t) r(t)处的切向量(速度向量)。

 

 

单位切向量(Unit Tangent Vector)

r = f ( t ) i + g ( t ) j + h ( t ) k r=f(t)i+g(t)j+h(t)k r=f(t)i+g(t)j+h(t)k是一条光滑参数曲线,其单位切向量是
T ( t ) = r ′ ( t ) ∣ r ′ ( t ) ∣ T(t)=\frac{r'(t)}{|r'(t)|} T(t)=r(t)r(t)
 

曲线的长度

对于曲线方程, r ( t ) = < f ( t ) , g ( t ) , h ( t ) > r(t)=<f(t),g(t),h(t)> r(t)=<f(t),g(t),h(t)>,在 a ≤ t ≤ b a \le t \le b atb上的弧长
L = ∫ a b f ′ ( t ) 2 + g ′ ( t ) 2 + h ′ ( t ) 2 d t = ∫ a b ∣ r ′ ( t ) ∣ d t L=\int_{a}^{b} \sqrt{f'(t)^2+g'(t)^2+h'(t)^2}dt=\int_{a }^{b}|r'(t)|dt L=abf(t)2+g(t)2+h(t)2 dt=abr(t)dt
 

极坐标曲线的弧长

设f是区间 [ α , β ] [\alpha ,\beta ] [α,β]上的连续函数,极坐标曲线 r = f ( θ ) r=f(\theta) r=f(θ) [ α , β ] [\alpha ,\beta ] [α,β]上的弧长
L = ∫ α β f ( θ ) 2 + f ′ ( θ ) 2 d θ L=\int_{\alpha}^{\beta} \sqrt{f(\theta)^2+f'(\theta)^2}d\theta L=αβf(θ)2+f(θ)2 dθ
 

曲率与法向量(Curvate and Normal Vectors)

弧长作为参数的函数

r ( t ) r(t) r(t)描述一条光滑曲线, t ≥ a t \ge a ta弧长由
s ( t ) = ∫ a t ∣ v ( u ) ∣ d u s(t)=\int_{a}^{t}|v(u)|du s(t)=atv(u)du
其中, ∣ v ∣ = ∣ r ′ ( t ) ∣ |v|=|r'(t)| v=r(t),等价地, d s d t = ∣ v ( t ) ∣ > 0 \frac{ds}{dt}=|v(t)|>0 dtds=v(t)>0。如果 ∣ v ( t ) ∣ = 1 |v(t)|=1 v(t)=1对所有 t ≥ a t \ge a ta成立,则参数t是弧长。

 

 

曲率Curvature

设r描绘一条光滑参数曲线,记s为弧长,且 T = r ′ / ∣ r ′ ∣ T =r'/|r'| T=r/∣r是单位切向量,曲率 κ ( s ) = ∣ d T d s ∣ \kappa (s)=|\frac{dT}{ds}| κ(s)=dsdT

 

曲率公式

设r是一条光滑参数曲线,其中t是任意参数,如果 v = r ′ v=r' v=r是速度,T是单位切向量,则曲率是
κ ( t ) = 1 ∣ v ∣ ∣ d T d t ∣ = T ′ ( t ) r ′ ( t ) \kappa (t)=\frac{1}{|v|}|\frac{dT}{dt}|=\frac{T'(t)}{r'(t)} κ(t)=v1dtdT=r(t)T(t)
 

曲率替代公式

设r时光滑曲线上运动的物体的位置,曲线的曲率
κ = a × v ∣ v ∣ 3 \kappa =\frac{a \times v}{|v|^3} κ=v3a×v
其中 v = r ′ v=r' v=r是速度, a = v ′ a=v' a=v是加速度。

 

单位主法向量(Principal Unit Normal Vector)

设r描述光滑参数曲线,在曲线上 κ ≠ 0 \kappa \ne 0 κ=0的点P处的单位主法向量
N = d T / d s ∣ d T / d s ∣ = 1 κ d T d s N=\frac{dT/ds}{|dT/ds|}=\frac{1}{\kappa }\frac{dT}{ds} N=dT/dsdT/ds=κ1dsdT
实际中使用等价公式
N = d T / d t ∣ d T / d t ∣ N= \frac{dT/dt}{|dT/dt|} N=dT/dtdT/dt
 

单位副法向量(Unit Binormal Vector)和挠率(Torsion)

单位副法向量
B = T ⋅ N = v × a ∣ v × a ∣ B=T·N=\frac{v \times a}{|v \times a|} B=TN=v×av×a
挠率
τ = − d B d s ⋅ N = ( v × a ) ⋅ a ′ ∣ v × a ∣ 2 = ( r ′ × r ′ ′ ) ⋅ r ′ ′ ′ ∣ r ′ × r ′ ′ ∣ 2 \tau =-\frac{dB}{ds}·N = \frac{(v \times a)·a'}{|v \times a|^2}=\frac{(r' \times r'')·r'''}{|r' \times r''|^2} τ=dsdBN=v×a2(v×a)a=r×r′′2(r×r′′)r′′′

名词总结

名称英文
位置函数Position function
单位切向量Unit tangent vector
单位主法向量Principal unit normal vector
曲率Curvature
单位副法向量Unit Binormal Vector
挠率Torsion

 

 

多元函数(functions of serveral variables)

平面和曲面(planes and surfaces)

空间平面的一般方程

过点 P 0 ( x 0 , y 0 , z O ) P_0(x_0,y_0,z_O) P0(x0,y0,zO)且法向量为 n n n的平面方程
a ( x − x 0 ) + b ( y − y 0 ) + c ( z − z 0 ) = 0 a(x-x_0)+b(y-y_0)+c(z-z_0)=0 a(xx0)+b(yy0)+c(zz0)=0

a x + b y + c z = d , 其中 d = a x 0 + b y 0 + c z 0 ax+by+cz=d,其中 d=ax_0+by_0+cz_0 ax+by+cz=d,其中d=ax0+by0+cz0
 

平行平面(Parallel)与正交平面(Orthogonal Planes)

解题时可根据,平行平面和正交平面来进行求解。

 

迹(trace)

一个空间图形与xy平面的相交为xy-迹,同理还有xz-迹,yz-迹。

 

  • gOdNc.png

 

法向量求法

想求一个平面的法向量,可以令平面中相交的两条线叉乘即得。

已知两个平面求其相交的直线

1.先求两个平面的法向量

此时我们只需要找到平面上的一个和平面的法向量

2.令 x = 0 x=0 x=0,可得在yz平面上的两条线,及其焦点。

3.将两个法向量叉乘记得获得平面的向。

 

已知三个平面求其焦点

1.由上列方法已知两个平面求相交的直线

2.直接将已求出的交线带入第二个平面方程即可。

 

极限与连续性

内点(Interior)和边界点(Boundary Point)

边界点相较于内点,边界点包含边缘。

开集(Open)和闭集(Closed Sets)

如果区域由所有的内点组成,则它是开的,如果区域包含所有的边界点,则它是闭的

 

机选不存在的双路径判别法

如果(x,y)沿f的定义域中两条不同的路径趋于(a,b)时,f趋于两个不同的值,则$\lim_{(x,y) \to (a,b)}f(x,y) $不存在。

 

连续性

如果函数f满足

1.f在(a,b)处有定义

2.$\lim_{(x,y) \to (a,b)}f(x,y) $存在

3. lim ⁡ ( x , y ) → ( a , b ) f ( x , y ) = f ( a , b ) \lim_{(x,y) \to (a,b)}f(x,y) =f(a,b) lim(xy)(a,b)f(x,y)=f(a,b)

则称f在(a,b)处连续。

 

计算技巧(双路径判别法)

如果在计算时出现$\lim_{(x,y) \to (0,0)}f(x,y) $的情况

1.我们可以直接令 x = y 或 x = − y x=y或x=-y x=yx=y(分两种情况讨论),从而化两个未知数为一个未知数。

2.可以先令 x = 0 x=0 x=0求y化简的值,也可以先令 y = 0 y=0 y=0求x化简后的值。

3.可以令 x = n y x=ny x=ny,n可取任意常数。

4.可令 x = y 2 x=y^2 x=y2

主要用于双路径判别法,判断出两个结果不一致即可。

 

判断 R 2 R^2 R2在方程中的哪一点连续

1.方程中,分母等于零的情况

2.如果时分段函数,一般情况下计算断点的值,大部是断点处不连续。

 

判断是否为连续

可以将函数方程转化为极坐标方程, x = r c o s θ , y = r s i n θ x=rcos\theta, y=rsin\theta x=rcosθ,y=rsinθ转换,如果化简后的结果里面没有r即为极限不存在,如果结果里面有r,则说明此函数的极限存在。

 

 

偏导数(Partial Derivatives)

偏导(Partial Derivatives)

f在(a,b)处对x的偏导
f x ( a , b ) = lim ⁡ h → 0 f ( a + h , b ) − f ( a , b ) h f_x(a,b)=\lim_{h \to 0}\frac{f(a+h,b)-f(a,b)}{h} fx(a,b)=h0limhf(a+h,b)f(a,b)
eg: f y x 函数 f f_{yx}函数f fyx函数f先对y求偏导,然后对x求偏导

混合偏导相等

如果 f f f在点D点连续,则在D点有 f x y = f y x f_{xy}=f_{yx} fxy=fyx

 

 

链法则(The Chain Rule)

链法则

z是关于x和y的在其定义域上的可微函数,其中x和y是t在区间I上的可微函数,则
d z d t = ∂ z ∂ x d x d t + ∂ z ∂ y d y d t \frac{dz}{dt}=\frac{\partial z}{\partial x} \frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt} dtdz=xzdtdx+yzdtdy
 

 

隐函数求导(Implicit Differentiation)

设F在其定义域上可微,并假设 F ( x , y ) = 0 F(x,y)=0 Fx,y=0,定义y是x的可微函数,只要 F y ≠ 0 F_y \ne 0 Fy=0,有
d y d x = − F x F y \frac{dy}{dx}=-\frac{F_x}{F_y} dxdy=FyFx

证明隐函数求导

F ( x , y , z ( x , y ) ) = 0 F(x,y,z(x,y))=0 F(x,y,z(x,y))=0z是x和y的可微函数,证明 ∂ z ∂ x = − F x F z \frac{\partial z}{\partial x} =-\frac{F_x}{F_z} xz=FzFx和$\frac{\partial z}{\partial y}=-\frac{F_y}{F_z} $
F ( x , y , z ( x , y ) ) = F x ⋅ 1 + F y ⋅ 0 + F z ∂ z ∂ x = 0 F(x,y,z(x,y))=F_x·1+F_y·0+F_z\frac{\partial z}{\partial x} =0 F(x,y,z(x,y))=Fx1+Fy0+Fzxz=0
因此可得
∂ z ∂ x = − F x F z \frac{\partial z}{\partial x} =-\frac{F_x}{F_z} xz=FzFx
 

 

方向导数和梯度(Directional Derivatives and the Gradient)

方向导数

f f f ( a , b ) (a,b) a,b处可微, u = < c o s θ , s i n θ > u=<cos \theta ,sin\theta> u=<cosθ,sinθ>是xy-平面上的单位向量,则 f f f在点 ( a , b ) (a,b) (a,b)处沿方向 u u u的方向导数是
D u f ( a , b ) = lim ⁡ x → 0 f ( a + h c o s θ , b + s i n θ ) − f ( a , b ) h D_uf(a,b)=\lim_{x \to 0} \frac{f(a+hcos\theta,b+sin\theta)-f(a,b)}{h} Duf(a,b)=x0limhf(a+hcosθ,b+sinθ)f(a,b)
 

方向导数(Directional Derivative)

f f f ( a , b ) (a,b) (a,b)处可微, u = < u 1 , u 2 > u=<u_1,u_2> u=<u1,u2>是xy-平面上的单位向量,f在点 ( a , b ) (a,b) (a,b)处沿方向u的方向导数是
D u f ( a , b ) = < f x ( a , b ) , f y ( a , b ) > ⋅ < u 1 , u 2 > D_uf(a,b)=<f_x(a,b),f_y(a,b)>·<u_1,u_2> Duf(a,b)=<fx(a,b),fy(a,b)><u1,u2>
 

梯度(Gradient)

f f f在点 ( x , y ) (x,y) (x,y)处可微分, f f f ( x , y ) (x,y) (x,y)处的梯度是向量值函数
▽ f ( x , y ) = < f x ( x , y ) , f y ( x , y ) > = f x ( x , y ) i + f y ( x , y ) j \bigtriangledown f(x,y)=<f_x(x,y),f_y(x,y)>=f_x(x,y)i+f_y(x,y)j f(x,y)=<fx(x,y),fy(x,y)>=fx(x,y)i+fy(x,y)j
由梯度的定义可知,f在点(a,b)处沿着单位向量 u u u的方向导数可写为$D_uf(a,b)=\bigtriangledown f_(a,b)·u $

 

最速上升和最速下降(Directions of Change)

1. f f f ( a , b ) (a,b) (a,b)处沿梯度 ▽ f ( a , b ) \bigtriangledown f(a,b) f(a,b)方向有最大增长率,沿这个方向的增长率是 ∣ ▽ f ( a , b ) ∣ |\bigtriangledown f(a,b)| f(a,b)

2,其最大的下降速度是 − ∣ ▽ f ( a , b ) ∣ -|\bigtriangledown f(a,b)| f(a,b)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-g0FadgKn-1667029676526)(%E5%BE%AE%E7%A7%AF%E5%88%86%E4%B8%89.assets/image-20220920192710338.png)]

 

切平面与线性逼近(Tangent Planes and Linear Approximation)

F(x,y,z)=0的切平面方程

设F在点 P 0 ( a , b , c ) P_0(a,b,c) P0(a,b,c)处可微,且 ▽ F ( a , b , c ) ≠ 0 \bigtriangledown F(a,b,c)\ne 0 F(a,b,c)=0,曲面 F ( a , b , c ) = 0 F(a,b,c)=0 F(a,b,c)=0 P 0 P_0 P0处的切平面是过 P 0 P_0 P0且正交于 ▽ F ( a , b , c ) \bigtriangledown F(a,b,c) F(a,b,c)的平面,切平面的方程是
F 0 ( a , b , c ) ( x − a ) + F y ( a , b , c ) ( y − b ) + F z ( a , b , c ) ( z − c ) = 0 F_0(a,b,c)(x-a)+F_y(a,b,c)(y-b)+F_z(a,b,c)(z-c)=0 F0(a,b,c)(xa)+Fy(a,b,c)(yb)+Fz(a,b,c)(zc)=0
 

z=f(x,y)的切平面

f f f在点 ( a , b ) (a,b) (a,b)处可微,曲面 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( a , b , f ( a , b ) ) (a,b,f(a,b)) (a,b,f(a,b))处的切平面方程是
z = f x ( a , b ) ( x − a ) + f y ( a , b ) ( y − b ) + f ( a , b ) z=f_x(a,b)(x-a)+f_y(a,b)(y-b)+f(a,b) z=fx(a,b)(xa)+fy(a,b)(yb)+f(a,b)

线性逼近(Linear Approximation)

平面 z = f ( x , y ) z=f(x,y) z=f(x,y)的线性逼近是在该点处的切平面,其方程为
L ( x , y ) = f x ( a , b ) ( x − a ) + f y ( a , b ) ( y − b ) + f ( a , b ) L(x,y)=f_x(a,b)(x-a)+f_y(a,b)(y-b)+f(a,b) L(x,y)=fx(a,b)(xa)+fy(a,b)(yb)+f(a,b)
 

 

微分dz

f f f在点 ( a , b ) (a,b) (a,b)处可微,当因变量从 ( a , b ) (a,b) (a,b)变化到 ( a + d x , b + d y ) (a+dx,b+dy) (a+dx,b+dy)时, z = f ( x , y ) z=f(x,y) z=f(x,y)的变化
△ z ≈ d z = f x ( a , b ) d x + f y ( a , b ) d y \bigtriangleup z \approx dz =f_x(a,b)dx+f_y(a,b)dy zdz=fx(a,b)dx+fy(a,b)dy
 

 

最大/最小值问题

导数与极大值极小值(Local Maximum / Minimum Values)

如果 f f f ( a , b ) (a,b) (a,b)处有极大值或者极小值,并且偏导数 f x f_x fx f y f_y fy ( a , b ) (a,b) (a,b)处存在。则 f x ( a , b ) = f y ( a , b ) = 0 f_x(a,b)=f_y(a,b)=0 fx(a,b)=fy(a,b)=0

 

临界点(Critical Point)

( a , b ) (a,b) (a,b) f f f的定义域的一个内点,如果下列条件之一成立:

1. f x ( a , b ) = f y ( a , b ) = 0 f_x(a,b)=f_y(a,b)=0 fx(a,b)=fy(a,b)=0

2. f x f_x fx f y f_y fy ( a , b ) (a,b) (a,b)处不存在

( a , b ) (a,b) (a,b)称为 f f f的一个临界点,临界点是极大值和极小值的候选点

 

鞍点(Saddle Point)

( a , b ) (a,b) (a,b)是函数的一个临界点,如果存在一些点 ( x , y ) (x,y) (x,y)满足 f ( x , y ) > f ( a , b ) f(x,y) > f(a,b) f(x,y)>f(a,b)和另外一些点 ( x , y ) (x,y) (x,y)满足 f ( x , y ) < f ( a , b ) f(x,y)<f(a,b) f(x,y)<f(a,b),则称f在 ( a , b ) (a,b) (a,b)处有一个鞍点。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wAUllhaA-1667029676528)(%E5%BE%AE%E7%A7%AF%E5%88%86%E4%B8%89.assets/image-20220920205504651.png)]

 

二阶导数判别法

f f f的二阶偏导数是在以点 ( a , b ) (a,b) (a,b)为圆心的某个开圆盘上连续,其中 f x ( a , b ) = f y ( a , b ) = 0 f_x(a,b)=f_y(a,b)=0 fx(a,b)=fy(a,b)=0.令 D ( x , y ) = f x x f y y − f x y 2 D(x,y)=f_{xx}f_{yy}-f^2_{xy} D(x,y)=fxxfyyfxy2

1.如果 D ( a , b ) > 0 且 f x x ( a , b ) < 0 D(a,b)>0且f_{xx}(a,b)<0 D(a,b)>0fxx(a,b)<0,则 f f f ( a , b ) (a,b) (a,b)处有极大值

2.如果 D ( a , b ) > 0 且 f x x ( a , b ) > 0 D(a,b)>0且f_{xx}(a,b)>0 D(a,b)>0fxx(a,b)>0,则 f f f ( a , b ) (a,b) (a,b)处有极小值

3.如果 D ( a , b ) < 0 D(a,b)<0 D(a,b)<0,则 f f f ( a , b ) (a,b) (a,b)处有鞍点

4.如果 D ( a , b ) = 0 D(a,b)=0 D(a,b)=0,则判断法无结果

 

求最大值/最小值(Absolute Maximum/Minimum Values)

f f f R 2 R^2 R2的有界闭集R上连续,欲求 f f f在R上的最大值和最小值:

1.确定 f f f在R中所有临界点处的值

2.求 f f f在R边界上的最大值和最小值

求边界点的值中,其中边界分很多情况

<1> ( x , y ) : x 2 + y 2 ≤ 4 (x,y):x^2+y^2 \le 4 (x,y):x2+y24

x = 2 c o s θ , y = 2 s i n θ 且有 0 ≤ θ ≤ 2 π x=2cos\theta,y=2sin\theta且有0\le\theta\le2\pi x=2cosθ,y=2sinθ且有0θ2π将x,y的值带入其中,即可用 θ \theta θ求出最大值和最小值。

<2> R = ( x , y ) : − 2 ≤ x ≤ 2 , − 1 ≤ y ≤ 1 R=(x,y):-2\le x\le2,-1\le y\le1 R=(x,y):2x2,1y1

先考虑 x = ± 2 x=\pm2 x=±2.y为任意值的情况;之后考虑 y = ± 1 y=\pm1 y=±1,x为任意值的情况。

<3>在函数 y = x , y = 2 x , y = 2 y=x,y=2x,y=2 y=x,y=2x,y=2之间包围。

可以分别将每一个式子带入求导。从而求出每个式子的最大值。

3.在第一步和第二步求出函数值,最大者是 f f f在R上的最大值,最小者是 f f f在R上的最小值。

 

求与平面最近的点

如果有平面方程 x + y + z = 4 x+y+z=4 x+y+z=4和点 p ( 0 , 3 , 6 ) p(0,3,6) p(0,3,6),求平面相对于点的最近距离。

1.有 z = 4 − x − y z=4-x-y z=4xy,带入得平面上的坐标 Q ( x , y , 4 − x − y ) Q(x,y,4-x-y) Q(x,y,4xy)

2.问题转化为P点与Q点之间得距离

w = x 2 + ( y − 3 ) 2 + ( x + y + 2 ) 2 w=x^2+(y-3)^2+(x+y+2)^2 w=x2+(y3)2+(x+y+2)2

3.求出其临界点,及 w x = w y = 0 w_x=w_y=0 wx=wy=0的时候。就是最近的点。

 

 

拉格朗日乘子法(Lagrange Multipliers)

平行梯度(Parallel Gradients)

目标函数 f f f,约束曲线 g g g

f f f R 2 R^2 R2的一个区域上的可微函数,区域包含由 g ( x , y ) g(x,y) g(x,y)给出的光滑曲线C。假设 f f f在C上的点P ( a , b ) (a,b) (a,b)处有极值,则 ▽ f ( a , b ) \bigtriangledown f(a,b) f(a,b)与C在P处的切线正交。假设 ▽ g ( a , b ) ≠ 0 \bigtriangledown g(a,b)\ne 0 ga,b=0,于是存在一个实数 λ \lambda λ(拉格朗日乘子)使得 ▽ f ( a , b ) = λ ▽ g ( a , b ) \bigtriangledown f(a,b)=\lambda \bigtriangledown g(a,b) f(a,b)=λg(a,b)

 

 

二元拉格朗日乘子法

有目标函数 f f f和约束方程 g g g,为求 f f f在约束条件 g ( x , y ) = 0 g(x,y)=0 g(x,y)=0下的最大值和最小值

1.求x,y和 λ \lambda λ的值(如果存在),满足方程
▽ f ( x , y ) = λ ▽ g ( x , y ) 和 g ( x , y ) = 0 \bigtriangledown f(x,y)=\lambda\bigtriangledown g(x,y)和g(x,y)=0 f(x,y)=λg(x,y)g(x,y)=0
2.在第一步得到的值(x,y)中,选择对应的最大和最小函数值,它们就是 f f f在约束条件下的最大值或则最小值。

 

距平面的最短距离

1.先列出与点的距离方程,例如与点 ( − 2 , 5 , 1 ) (-2,5,1) 251

其方程可为 f ( x , y , z ) = ( x + 2 ) 2 + ( y − 5 ) 2 + ( z − 1 ) 2 f(x,y,z)=(x+2)^2+(y-5)^2+(z-1)^2 f(x,y,z)=(x+2)2+(y5)2+(z1)2,且有 g ( x , y , z ) = 2 x + 3 y + 6 z − 10 = 0 g(x,y,z)=2x+3y+6z-10=0 g(x,y,z)=2x+3y+6z10=0

2.计算其梯度 ▽ f = < 2 x + 4 , 2 y − 10 , 2 z − 2 > \bigtriangledown f=<2x+4,2y-10,2z-2> f=<2x+4,2y10,2z2>, ▽ g = < 2 , 3 , 6 > \bigtriangledown g=<2,3,6> g=<2,3,6>

3.拉格朗日乘子法,计算 λ \lambda λ化简可得最短距离的坐标。

4.将坐标带入即可求出最短距离。

 

 

多重积分(Multiple Integration)

体积与二重积分

极限
lim ⁡ △ → 0 ∑ n k = 1 f ( x ˉ k , y ˉ k ) △ A k \lim_{\bigtriangleup \to 0} \sum_{n}^{k=1}f(\bar{x}_k ,\bar{y}_k) \bigtriangleup A_k 0limnk=1f(xˉk,yˉk)Ak

∬ R f ( x , y ) d A \iint_{R}^{} f(x,y)dA Rf(x,y)dA

如果f在R上非负,则二重积分等于区域R上 z = f ( x , y ) z=f(x,y) z=f(x,y) x y − xy- xy平面所包围的立体的体积

 

矩形区域上的二重积分(Double Integrals on Rectangular Regions)

假设 f f f在矩形区域 R = ( x , y ) : a ≤ x ≤ b , c ≤ y ≤ d R={(x,y):a\le x \le b,c \le y\le d} R=(x,y):axb,cyd上连续, f f f在R上的二重积分还可以用下列公式计算。
∬ R f ( x , y ) d A = ∫ c d ∫ a b f ( x , y ) d x d y = ∫ a b ∫ c d f ( x , y ) d x d y \iint\limits_{R}^{} f(x,y)dA=\int_{c}^{d}\int_{a}^{b}f(x,y)dxdy=\int_{a}^{b}\int_{c}^{d}f(x,y)dxdy Rf(x,y)dA=cdabf(x,y)dxdy=abcdf(x,y)dxdy

平面区域上的平均值

f ˉ = 1 R 的面积 ∬ R f ( x , y ) d A \bar{f}=\frac{1}{R的面积}\iint\limits_{R}^{} f(x,y)dA fˉ=R的面积1Rf(x,y)dA

一般区域上的二重积分

非矩形区域上的二重积分(Double Integrals over Nonrectangular Region)

设区域R在上下分别由连续函数 y = g ( x ) y=g(x) y=g(x) y = h ( x ) y=h(x) y=h(x)的图像所围,并且由直线 x = a x=a x=a x = b x=b x=b所围,若 f f f在R上连续,则
∬ R f ( x , y ) d A = ∫ a b ∫ g ( x ) h ( x ) f ( x , y ) d x d y \iint\limits_{R}^{} f(x,y)dA=\int_{a}^{b}\int_{g(x)}^{h(x)}f(x,y)dxdy Rf(x,y)dA=abg(x)h(x)f(x,y)dxdy

用二重积分求区域的面积

设R是xy-平面内的区域,则
R 的面积 = ∬ R d A R的面积=\iint_{R}dA R的面积=RdA
 

 

极坐标下的二重积分

f f f在xy-平面内的区域 R = ( r , θ ) : 0 ≤ a ≤ r ≤ b , α ≤ θ ≤ β R={(r,\theta):0\le a\le r \le b,\alpha \le \theta \le \beta} R=(r,θ):0arb,αθβ上连续,其中 β − α ≤ 2 π \beta - \alpha \le 2\pi βα2π,则
∬ R f ( r , θ ) d A = ∫ α θ ∫ a b f ( r , θ ) r d r d θ \iint\limits_{R}^{} f(r,\theta)dA=\int_{\alpha}^{\theta}\int_{a}^{b}f(r,\theta)rdrd\theta Rf(r,θ)dA=αθabf(r,θ)rdrdθ

极坐标区域的面积

A = ∬ R d A = ∫ α β ∫ g ( θ ) h ( θ ) r d r d θ A=\iint\limits_{R}^{} dA=\int_{\alpha}^{\beta}\int_{g(\theta)}^{h(\theta)}rdrd\theta A=RdA=αβg(θ)h(θ)rdrdθ

 

 

三重积分

三重积分(Triple Integrals)

D = ( x , y , z ) : a ≤ x ≤ b , g ( x ) ≤ y ≤ h ( x ) , G ( x , y ) ≤ z ≤ H ( x , y ) D={(x,y,z):a \le x \le b,g(x) \le y \le h(x) ,G(x,y) \le z \le H(x,y)} D=(x,y,z):axb,g(x)yh(x),G(x,y)zH(x,y)其中g,h,G,H是连续函数,在D上的连续函数 f f f的三重积分可以用如下累次积分计算:
∭ D f ( x , y , z ) d V = ∫ a b ∫ g ( x ) h ( x ) ∫ G ( x , y ) H ( x , y ) f ( x , y , z ) d z d y d x \iiint\limits_{D}^{} f(x,y,z)dV=\int_{a}^{b}\int_{g(x)}^{h(x)}\int_{G(x,y)}^{H(x,y)}f(x,y,z)dzdydx Df(x,y,z)dV=abg(x)h(x)G(x,y)H(x,y)f(x,y,z)dzdydx

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

y江江江江

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值