商业中的量子计算和区块链指南(二)

原文:zh.annas-archive.org/md5/fe0c2b1b6dea032e7c6950de21934dd5

译者:飞龙

协议:CC BY-NC-SA 4.0

第七章:AVVP 人工智能研究主任B. Rajathilagam 博士的采访

我在**Amrita Vishwa Vidyapeetham(AVVP)**获得了工程学士学位。我在 2003 年毕业,并搬到孟买开始我的第一份软件顾问工作。如果有人问我是否有一段我想要重温的生活时光,那毫无疑问就是我在这个了不起的机构度过的时光。多年来,我毕业后,AVVP 只变得更好,我为现在的学生感到嫉妒!

AVVP 成为印度前十名机构的原因很大程度上是由于教学教职员的素质。当我在我的基金 Green Shores Capital 见到我的初创企业时,我经常告诉他们创始人需要成为故事讲述者。最好的讲故事者通常比其他人成长更快,因为他们可以将自己的愿景描绘得如此出色,以至于人们感到受启发,想成为初创企业旅程的一部分。老师也是如此。不同之处在于老师比初创企业的创始人更加无私,后者经常梦想着赚取数十亿美元。

我生命中最好的故事讲述者是我的妈妈。她是一位了不起的老师,多亏了她,我才成为今天的我。第二好的毫无疑问是 BRT 博士,她在我们的大学生活中给了我们三年的授课。当我见到她时,我开玩笑地告诉她我不记得她教给我们的面向对象编程系统(OOPS)概念了;但我永远也忘不了她给我们提供的电梯例子,让那些概念生动起来。

在过去的几年里,我一直与 BRT 保持着联系,参与了各种倡议。她已经在大学内领导人工智能和机器学习研究一段时间了。大学内的研究最好的一面是它专注于解决在印度本地确定的社会问题。

我们一直在讨论大学的研究生如何能够得到全球的支持。我们还评估了与大学内的研究工作分享协同效应的初创企业。因此,我对大学研究团队试图解决的现实问题有很好的理解。

因此,我知道如果我能采访 BRT,我将为这本书获得一些宝贵的见解。她立即同意帮助我。在本章中,BRT 栩栩如生地展现了新兴技术(如人工智能、量子计算和区块链)可以解决的社会挑战。采访脚本如下:

阿伦: 女士(这是我在整个谈话中称呼她的方式),感谢您抽出时间。很高兴有机会采访您,为这本书做采访。您能否简单介绍一下您的职业生涯,您在大学中的当前角色,以及您如何参与量子计算领域?

BRT:我的量子计算机之旅始于我的特征工程研究。我发现我们在特征工程方面已经达到了饱和点,无法捕捉信号、图像、视频等方面的细微细节。我认为有许多领域是传统算法无法捕捉的。我们已经到达了性能不符合我们期望的瓶颈。因此,在我的研究过程中,我正在寻找能够克服这些局限性的算法。我发现量子计算原理固有地具有解决这些限制的特性和能力。

量子力学的一个基本概念是群论。群论定义了量子力学中的原子粒子的特性。它提供了数学表示和抽象,可以帮助你解决你正在尝试解决的现实世界问题。我们正在处理的一些多维问题可以用群论表示。

我开始研究使用量子力学原理的算法。利用群论技术,我们为信号开发了特征滤波器(G-lets),这些滤波器也可以用于多维信号。在数学抽象中有一种自然流动,可以捕捉量子力学。因此,它在量子计算机上的运行比在经典计算机上更无缝。然后,我们制作了一个用于信号处理的量子算法,以捕捉特征。随后,我们还制作了一个经典版本,尽管它无法与量子版本相比。

对我来说令人兴奋的部分是,即使是为经典计算机量身定制的简化版本算法,也超越了许多现有的传统特征算法。例如,假设你正在持续听一个人讲话,然后偶尔听到鸟的信号——信号频率不断变化。假设你必须捕捉信号从人声转变为鸟声的时刻。使用现有的经典算法有时可能会非常困难。

在量子计算机中,你应该能够并行进行这些操作。这是量子计算机的一个重要能力,对我来说非常令人兴奋。这种能力随后将我们引入到机器学习领域。机器学习需要大量的特征和数据来理解潜在的模式。因此,如果你能处理如此多的数据并观察模式,量子计算机就成为一个更好的选择。因此,这就是我开始研究量子机器学习的方式,尽管我仍然也在进行经典机器学习的研究。

我正在研究为量子计算机开发模拟器的公司。我们在 NASA 的 Quantum Artificial Intelligence Laboratory(QuAIL)中有 D-Wave 的量子计算设置。我密切关注这些公司,我注意到在过去的 5 年中,对量子计算机的兴趣激增了。

当然,也会遇到障碍。要克服的关键障碍之一是硬件。如何在室温下维持这种原子粒子设置?这是一个真正的挑战,特别是当我们希望量子计算机在商业上扩展时。然而,退火技术的到来比我们最初预期的要早。现在,使用退火进行优化变得更加成功,这将对该领域产生很大推动作用。这是因为退火方法从头开始使用量子原理进行了深思熟虑。

尽管像 IBM 等大公司专注于通用门,但我认为它在商业上可行还需要大约 20 年左右的时间。

阿伦:那么,你认为模拟器会首先起飞吗?

BRT:绝对是的。编写量子算法对于初学者来说并不容易。他们将从模拟器开始,因为他们将能够理解环境。

阿伦:这正是我从富士通首席科学家那里得到的信息。他提到,随着退火的领先,优化解决方案将成为这个领域的低 hanging fruit。基于门的解决方案可能需要更长的时间。

BRT:是的,这将需要时间,因为半导体行业仍在努力解决如何使其在可控环境温度下正常运行的问题。我们还需要解决错误率。这是行业正在解决的两个主要障碍。研究人员正在非常努力地致力于纠错目标。

阿伦:我曾经与一位正在研究用于量子纠错的 Noisy Intermediate Scale Quantum(NISQ)技术的研究人员交谈过。他强调,这是一个必须改善基础设施以降低错误率的关键领域。所以,告诉我们你目前在研究中做的有趣工作吧。

BRT:作为研究工作的一部分,我们进行模拟和实际数据分析。在模拟器中,我们能够模拟我们选择的场景和参数。因此,算法的复杂性是由我设计和决定的。由于问题的复杂性是由我设计的,我可以选择扩展它。在我看来有挑战的地方(采用传统方法),我可以选择在量子模拟器中进行。我们正在研究的一个用例是交通事故检测。

目前,在印度我们没有任何监视交通的基础设施,除了一些复杂信号、高速公路上和一些重要十字路口上安装了一些摄像头。在世界其他地方,除了道路基础设施,他们还建立了数字基础设施。这样的数字基础设施在印度根本不存在。阻止我们的是创建这个基础设施的成本。例如,我们目前拥有的摄像头在夜间或恶劣天气下将毫无用处。如果你必须设置一个雷达来克服技术限制,那么每公里的实施成本将达到 30 万印度卢比(约 3.2 万英镑)。成本更低的雷达存在噪音信号的挑战。

Arun: 所以,这是不可持续的。

BRT: 这根本不是一个可持续的解决方案。他们正在德里的一个困难路口试验 3D 雷达,但它的工作距离影响了解决方案的可行性。现在让我们看看其他现有的技术——传感器、网络物理系统、物联网设备——你会把它们放在路上的哪里呢?再次强调,它们的工作范围是一个挑战。实际上,有一个机会让那些能够克服当前限制的系统的人来解决这个问题。

Arun: 那么,考虑到这个问题的解决方案,我们是否可以在汽车、公共汽车和摩托车上安装物联网设备呢?可以在这些车辆上安装物联网设备,实时跟踪。这将是一个更容易的方法,可以随时了解整个交通系统的状态。如果有一个中央交通管理系统,这些物联网设备连接到,我们可以首先实时捕获交通数据来管理交通。而且,我们还可以进行预测分析,比如说,每天有 2,000 辆车在特定时间通过一个十字路口。我们可以相应地制定交通法规和管理资源。你觉得呢?

BRT: 这将解决这个大难题的一部分。然而,物联网设备的范围、车辆行驶的速度以及良好连接性的缺乏将限制解决方案的功效。有了 5G 技术,你将会有更好的解决方案。但是,就我们今天所见,快速连接、实时传输数据并对其采取行动存在着实际的困难。这并不是因为没有软件解决方案。

Arun: 如果硬件解决方案存在局限性,无人机可以帮忙吗?

BRT: 是的。无人机是潜在解决方案的另一个方面。你可以在此基础上添加其他解决方案,使其变得全面。你可以通过无人机获得全局视角。也许在高峰时段,你可以在交通系统的特定部分飞行无人机。所有这些都将连接到一个分层网络,你可以建立一个解决方案。你看,这完全是一个多维问题要解决。在印度繁忙城市之间协调这一点,在目前阶段仍然有很长的路要走。

Arun: 是的,这里也存在着一种相关/相互依赖问题。比如,有 10 个人驾驶进入一个交叉路口,他们之间都存在关联。所以,如果你想对这种交通的行为模型进行建模,我们需要模拟这 10 个人是如何相互影响的。

BRT: 看看对整个城市和特定道路的时空影响。比如说,一条道路被堵塞,人们将通过另一条路线驾驶,以避开这个拥堵点。这可能会导致另一条路也被堵塞。

所有周围地区开始变拥堵,那里就出现了瓶颈。为了分散交通,这不是关于解决系统中的单一点;你需要协调一致地努力,以便预防交通拥堵,如果发生,你需要尽快分散它们。

Arun: 那么我们在这项研究和解决方案方面进展到哪个阶段了?

BRT: 我们正在研究一个可以在更远范围内工作的雷达。有一些曾在雷达技术领域工作过的已经退休的印度空间研究组织(ISRO)科学家。我们还有一名曾与雷达技术合作过的印度空军退役中校。我们正在与他们合作,制定一个雷达解决方案。我们发现,次级雷达是这个问题的较好解决方案。雷达将部署在路边,就像你可以在车辆上安装它们一样。你可以称其为物联网设备,或者你可以纯粹称其为雷达。耦合技术(雷达和物联网)可以帮助我们改进网络形成本身。车辆内的技术仅解决了交通管理问题的一部分。

印度政府主要侧重于首先建设物理道路基础设施。只有在此之后才会进行网络的数字化和物联网化。因此,这取决于我们这样的组织为这些问题提出创新解决方案。

我们提出的一些解决方案最初可能不够理想。但我们可以与政府就存在的问题展开对话。如果我们能够建立一个量子解决方案,我们可以向政府展示该解决方案在小规模上的有效性,并展示给他们应该投资以扩展全国道路的网络基础设施。

Arun: 但我们需要量子解决方案吗?难道我们不能通过经典计算机来实现这个吗?

BRT: 我认为量子解决方案绝对可以帮助解决复杂性问题。首先是数据量和你必须考虑的相互关系。量子解决方案中的数据相关性和协方差将有更好的可视性。你将能够更好地可视化它。否则,你将不得不分析一个维度的因素,可能无法可视化和分析多维数据。

这正是量子机器学习可以胜任的工作,而这是经典计算机所无法做到的。

Arun:那么,你正在研究其他智能城市用例吗?

BRT:我们已经了解了非多项式(NP)问题。预计量子计算机将解决 NP 时间问题。我看到一个有趣的链接,一个公司在 GitHub 上放出了他们针对旅行推销员问题的代码,这是一个 NP 问题。如果我们能开始解决 NP 问题,那么我们将为以前无法考虑的一系列问题找到全新的解决方案,并且我们将通过量子计算的力量为这些问题得到新鲜的解决方案。

现在你拥有了量子计算的选择,解决 NP 问题的方法也就有了全新的途径。在今天的世界中,机器学习很大程度上只能由经典计算机来进行。当量子机器学习成为主流时,我们将在一个完全不同的层面上运作,解决非多项式类型的问题。

Arun:有意思。这让我想起了我正在进行的物流对话。你提到了旅行推销员的例子。在类似情况下,使用现有技术来获得全球最佳航线是我们面临的问题。目前,尚未使用任何无缝方法来解决这个问题。因此,物流将是一个巨大的领域,适用于退火优化。

BRT:是的,物流是一个可以从量子技术中受益匪浅的大型行业。由于一些关键的物流问题是基于优化的,我们可以使用量子退火来识别这一行业的解决方案。

回到智能城市用例,我想最后再谈谈地理空间数据。卫星数据可以帮助城市的基础设施项目。例如,当你想建造一座公寓时,你可能想了解它对其他地方的阴影影响,可见性对其他地方的影响等等。

我们可以模拟城市中的洪水情况; 我们可以模拟防火逃生路线和 CCTV 摄像头的位置,以确保最大的覆盖面。当我们使用地理空间数据为智能城市寻找答案时,我们可以发现许多这样的方面。

这些问题中,许多也是基于优化的,可以使用量子解退器来解决。

Arum:我们(在绿岸资本)已经投资了一家名为 GYANA 的公司,他们已经在你提到的一些地理空间数据用例上进行了工作。在智能城市场景中,它确实是一个强大的工具。你还想对使用量子和经典机器学习技术的智能城市解决方案做出其他观点吗?

BRT:好吧,我们现在可以转向医疗保健了。你提到了优化问题。我们为什么要在数值计算中进行优化?数值计算的精度对我们得到的结果有很大影响。在机器学习和深度学习技术中,我们依靠优化技术来改善我们的计算。这种计算的精度在量子计算机中可以更好地处理。例如,Python 是一种编程语言,它本身并不限制我要计算的数字的大小和小数位数,但我正在运行它的经典计算机受到硬件固有限制,所以我在这方面受到限制。

我们可以使用量子计算机实现的精确计算取决于量子位的数量。现在,让我们以医疗保健和制药为例。镰刀细胞贫血疾病在印度部落人口中流行。患有这种疾病的人患有扭曲的红细胞。这可能是一种遗传病,也可能是由环境引起的一种病症。如果你看看这些患者,他们大部分时间都在疼痛中。作为治疗的一部分,这些患者服用止痛药。

这些患者接受的药物剂量以毫克为单位。要按规模提供这种治疗,我们将需要为每个患者制定治疗计划,并知道在特定时间点需要开多少剂量的处方。这个过程与分发药物的物流结合在一起,会变得非常复杂非常快。

在印度,部落健康由初级卫生保健中心或超级专科医院管理。印度有多少个初级卫生保健中心?我们 69% 的人口生活在农村。许多村庄没有初级卫生保健中心,在许多这些初级卫生保健中心中,医生通常不可用(有时,他们根本不会出现!)。

先不说重症监护室、伤亡、紧急情况和其他极端情况。甚至日常健康,一种止痛药,对印度村民来说通常也不是可以获得的东西。这就是目前的情况。

机器学习支持对药物剂量进行非常细致的诊断和建议。借助历史数据,医学专家可以做出更准确的诊断。由机器学习驱动的数字远程医疗解决方案可以在医疗领域引起一场革命,不仅在诊断方面,而且在向农村人口有效分发药物方面也是如此。

我们正在与一些居住在距离我们大学校园 15 公里半径范围内的部落人民合作。他们最近的政府医院距离他们有 35 公里远。即使是交通也是一个主要挑战:他们只有一辆每天出现一次的公交车。只有一次!

一个村庄有 450 人,另一个村庄有 150 人。早上 7:00 有一辆公共汽车。这是他们唯一可用的交通工具。如果有紧急情况,他们必须拨打紧急服务电话。这在印度是非常常见的事情。嗯,在这种情况下,机器学习驱动的数字解决方案可以因治疗精度和药物分配的精度而产生很大的区别。在现有的超级专科医院中,我们可以集成数字解决方案进行远程咨询。

甚至治疗周围的物流也可以管理。每个村庄都建立超级专科医院基础设施是不可能的。医生不会亲自去村庄。我们需要一个数字化的全球性解决方案。

阿伦:你如何收集关于谁需要定期服药的情报?如果一个村庄有 600 人,其中 10 人患有疾病,首先需要找到一种解决方案来确定药物的需求。需要有一个物流解决方案建议经销商可以定期采取的最佳路线。您如何在地面上收集这一切的情报?是否有任何物联网设备?

BRT:是的,物联网设备可以用于收集信息。可穿戴设备可以用作社区套件。有一些公司会到村庄采集数据使用这些套件。但数据收集没有一个单一的解决方案。研究人员和行业有很多机会为社区诊断数据收集构建解决方案。我们需要具有非侵入性传感器并准确的物联网设备。

我们正在研究使用血流提供诊断数据点的超声波传感器。印度传统的Nadi(脉搏诊断)治疗已经使用这项技术数个世纪。

Nadi Pariksha 是古老的阿育吠陀技术,可以准确诊断身体的身体、心理和情绪不平衡。这是一门非侵入性科学,有助于找到疾病的根本原因,而不只是症状。

还有一项研究是他们拍摄眼睛和眼中的血管的照片。通过这样做,他们确定您体内有问题的部位。研究人员也在这个主题上发表了文章。我的观点是,我们可能需要超越传感器来扩展这一可行模型。你需要更好的医疗设备来捕捉足够的数据。

我们在校园内有一个小诊所。校园内有一个小型实验室测试设置。我们正在收集数据,看看在这个阶段我们能为一些到校园工作的部落人口做些什么。我们的一个博士生正在研究这个问题。

幸运的是,这里没有资金问题,因为政府愿意为部落福利投入大量资金。这并不是纯粹的商业解决方案,因此私营部门对此没有太多兴趣。否则,我们早就找到解决方案了。

Arun:在这种情况下,量子设备如何提供帮助?有什么实际应用吗?

BRT:目前仍然是早期阶段,但当量子计算机成为主流时,我们应该能够扩展一些创新的解决方案。在实际操作中,我们可以考虑小型量子设备,这些设备可以帮助更好地处理数据。在5G的帮助下,我们可以打造由量子位电路驱动的物联网设备。

在医疗方面,我们也有阿姆里塔的超级专科医院,这是印度第五大医院。我们在这家医院引入了最先进的技术,它可能是印度最好的医院之一。你可以在这家医院获得国外的任何治疗。最近,他们成功地为一名未出生的婴儿进行了肾脏手术。

然而,我们知道,通过创新的解决方案,我们可以做得更多。例如,考虑在重症监护病房中患有心脏病的患者。他们的病情通常不会突然恶化。通常会有一些微小的信号,可能只有细心的人类眼睛才能注意到。

但如今机器学习并不容易捕捉到这些信号。这些信号非常微弱,而且由于需要审核的大量患者数据,通常也会被人类忽视。这是量子技术可以提供帮助的地方。

医疗保健解决方案需要能够模仿自然。从这个意义上说,量子计算机在医疗保健方面应该比经典计算机更有效。借助人工智能和机器学习,我们可以整合所有捕获的数据并取得进展。所以,这就是医疗保健。

Arun:听起来不错;我们谈谈网络安全吧?我认为这是量子计算和区块链技术都有所重叠的一个重要领域。

BRT:是的,我想在这个背景下讨论区块链。区块链和量子计算的共同点是它们都涉及加密技术。但我担心,一旦量子计算成为主流,可能是区块链的末日。区块链在其当前形态下,可能在量子世界中不再具有相关性。区块链社区需要迅速适应,才能保持相关性。

我听说量子抗性账本可能会改变现状,但我不是区块链专家。所以,我也不确定。

在网络安全方面,目前量子密码学是无法破解的。原因在于,如果有人监听信息,他们会干扰整个设置。赛里斯在这一领域处于领先地位,他们最近通过量子纠缠成功演示了卫星通信。他们成功地通过这种量子原理将信息传输了数千英里。

回到纠缠,我认为我们仍然有几个使用量子特性的用例和机会尚未真正探索。使用量子密码学进行信息的安全传输不需要像基于门的量子计算需要的那么多基础设施。因此,它们(量子密码学和信息安全)将比基于门的解决方案更快成为主流。

想象一下我们讨论过的最后两个用例 - 医疗数据和密码学。在金融和医疗保健领域,我们面临的挑战之一是数据安全。如果我们能将量子密码学和医疗数据结合起来,并提供作为服务,这可能对行业产生革命性的影响。

赛里斯在量子密码学领域已经远远领先其他国家,而印度则做得不够。

Arun:这很好地引出了我对你的另一个问题。在英国,我们有一个名为 Innovate UK 的政府支持的项目。我了解到他们在量子计算的研发工作上投资了超过 4 亿英镑。此外,加拿大也投资了类似数额的资金,但赛里斯在这个领域的投入可能是最多的。他们为量子计算研究分配了数十亿美元的研发资金。

以这种速度,鉴于对量子计算的研发投入很少,印度不会落后吗?由于对加密货币的禁令,我们已经在区块链和该领域的创新上落后了。在政府的支持如此缺乏的情况下,我们如何追赶呢?

BRT:印度政府的大部分资金承诺都用于由印度理工学院(IITs)主导的研究。总理纳伦德拉·莫迪在一般情况下表现得相当不错。他引入了一个叫做卓越学院的东西,那将包括像比尔拉理工学院和科学学院(BITS Pilani)和 Manipal 大学这样的其他顶尖教育机构。

这也将有助于我们更好地与全球大学合作,并招募外国教师。然而,从资金的角度来看,大部分资金都被分配给了印度理工学院(IITs),而其他机构只能获得分配预算的一小部分。由于缺乏量子计算的生态系统,我认为我们无法与赛里斯竞争。甚至像英国这样的国家可能也会与他们竞争,因为例如赛里斯为研发分配的资金比英国多 10 倍。

各国需要记住,像量子计算这样的技术的研发和成功,就像我们在冷战时期看到的国防和军事技术的成功一样。如果赛里斯率先达到量子霸权,我会感到惊讶如果他们与印度或美国分享技术。他们会利用它来保持在信息战中的领先地位。

Arun:这是一个对比印度和赛里斯的好练习。像往常一样,赛里斯领先几年。让我们谈谈半导体行业以及它将如何受到量子计算机的影响。

BRT:半导体设备是一个有趣的领域。如果你看看量子比特电路,我们使用硅芯片和氢原子来制造它们。麻省理工学院最近在《自然》杂志上发表了一篇文章,称氢原子可以在室温下用于制造量子比特。我密切关注这项研究。我有一些材料科学的同事。其中一个正在研究氢燃料电池。

我们在量子计算中用于叠加的自旋——这个特征在量子计算和材料科学中是共同的。

材料科学家已经拥有了可以捕获离子的设备。这是半导体行业可以借鉴的材料数据科学行业建立更好设备的地方。如果你想想,量子计算机将粒子物理作为基本元素,而我们有很多不同类型的粒子。我们还没有真正尝试过所有这些粒子来构建量子比特电路。它们都具有不同的特性,因此根据适用性,我们可能会有相当多的量子比特构造选项。

对粒子行为的更深入理解可能会打乱量子比特发展行业。就像我们在几家半导体公司中看到的那样,在量子计算机(硬件)中可能不会出现垄断。

我想再提一点,即量子计算研究只有在多学科专家共同努力时才能取得成功。计算机科学家、物理学家和材料科学家都需要共同创造这个领域的有意义创新。这只有在像麻省理工学院这样的社区中才会发生,我们需要全球范围内产业的意识和能力。目前,我只看到印度的很少几个机构在这个领域工作。印度空间研究组织正在研究这个问题,但甚至在那里也只是从卫星通信的角度。

这就是为什么对量子计算和围绕它的创新拥有更全面的生态系统是如此关键的原因。

Arun:那里有很多重要的观点。半导体行业变得不那么垄断的想法很有趣。我认为当这种情况发生时,这可能是一个令人耳目一新的发展。夫人,我没有其他问题了。非常感谢您的时间和见解。

BRT:感谢你联系我,我很高兴我们能够实现这一点。

结论

即使在大学听了将近 20 年的 BRT 后,她在采访中也给我带来了一些行业见解,启发了我。她对技术的热情非常明显,尤其是如果你有幸听到这次采访的录音的话。在没有那个的情况下,我会快速列出这次采访章节的主要收获。

我们谈到了量子机器学习如何改变农村地区的生活。BRT 在与印度村庄合作时发现了她所确定的机会。然而,如果以小规模执行,没有理由为什么这些技术不能在世界其他农村地区扩大规模。

她提到的关于医疗保健的例子让我特别感动。如果像她提到的那样使用一个由量子机器学习驱动的中央数字基础设施来实现解决方案,这个行业可以变得更加高效和有效。她还提及了几个其他医疗保健应用案例,比如使用机器学习进行诊断,以及量子计算机如何在这方面增加价值。

我已经将这次采访作为智能城市章节的灵感来源。在那一章中,讨论的一些观点已经被更详细地探讨了。BRT 提到的一个关键点是生态系统的重要性,以及技术优势如何帮助国家在信息竞争中领先。

最后,她对半导体行业的见解以及如何利用量子计算机来改变这个行业的想法令人感兴趣。在不同的量子比特电路解决方案出现时,世界可以拥有更多这方面的竞争。

我们还有另外两个采访章节将涉及错误校正和与网络安全相关的量子计算应用主题。

第八章:对治理的影响

治理指的是政府和公民社会如何达成决策以满足民众需求。它是利用宪法中定义的一套原则来运行政府的机制。政治涉及治理的艺术,但通常被认为超越了治理;它还是一个个人或组织建立和执行治理的手段。

本章讨论了近年来政府和政治如何利用新兴技术提供公共部门服务。

世界各国政府根据地方优先事项制定了多个任务。发展中国家政府关注司法效率、消除贫困、医疗保健和人民的基本需求。在发达地区,政府诚信、财务自由和商业自由都是重要方面。在拥有公共医疗保健和福利的州,失业和医疗保健福利是公民期望的重要方面。

尽管世界各国政府的优先事项有所不同,但一个方面在各国政府中普遍存在;与私营部门相比,它们在数字化和创新方面的步伐相对较慢。缺乏足够的激励是原因之一。对于金融服务或医疗保健行业的企业而言,采用创新有竞争上的理由。没有技术优势,它们往往会很快变得不重要。然而,由于缺乏竞争,政府没有这样的压力。

这并不是说政府没有推动其功能数字化的动力。在发达世界,随着互联网和移动设备的普及率日益提高,一些公共机构已经数字化。税务局、驾驶执照部门,更重要的是签证和移民服务都已经数字化。然而,在这方面还有更多工作可以做。

似乎有更多新兴技术被用于个人或政党竞选办公室。当个人和政党竞选组建政府时,对技术的需求似乎就消失了。参选组建政府的个人和政党利用社交媒体数据进行行为和预测分析。社交媒体上的趋势和模式被理解并用来利用选民的情感倾向,以赢得选民的支持。

因此,社交媒体已成为顶级政党和领导人推动其议程的工具。无论是 2016 年的美国选举,还是英国脱欧公投,或者 2014 年的印度选举,社交媒体都发挥了重要作用。利用社交媒体进行选举宣传的努力现在已经在应用人工智能AI)方面有了新的发展。这项技术已被用于情感分析和理解会引发特定选民反应的敏感词语。

使用人工智能来理解选民的行为可以利用量子计算扩展到全新的水平。 人工智能目前可以进行情绪分析,但当它用于对选民在选举中的行为进行建模时,它就显得力不从心了。 为了对选举结果进行建模,必须对一个国家的不同地区之间的相关性进行建模是必不可少的。 这将提供有关一个国家某一地区选民观点的变化如何影响该国其他地区选民的信息。

在本章中,我讨论了量子机器学习在选举建模中的应用。 总部位于华盛顿特区的 QxBranch 公司,由首席执行官迈克尔·布雷特和首席数据科学家马克斯·亨德森领导,利用量子机器学习对 2016 年的美国选举进行了建模。

除了人工智能和量子机器学习的应用外,区块链在公共部门也有几个用例。 我们还看到政府试点了区块链等新兴技术。 瑞士、爱沙尼亚和迪拜一直在各个治理方面试验区块链。 央行数字货币,区块链的重要金融服务用例,可以帮助为纳税人带来透明度并遏制腐败。 本章将涉及区块链技术在这些情境中的用途。 让我们首先来看看过去几年全球政治和社会组织在社交媒体上的使用情况。

政治中的社交媒体

随着社交媒体成为主流,组织开始依赖它来了解客户的情绪。 查看 Twitter 数据以了解任何负面趋势或声誉问题的人工智能算法对于改变公众看法非常有用。 使用这些工具的组织已经成功地通过其客户参与模型更加积极地管理了与他们客户的互动。

“良好的声誉需要多年时间来建立,但一瞬间就能毁掉。”

沃伦·巴菲特

意图积极与客户互动的组织将需要掌握社交媒体对其品牌的情绪。 在快速变化的千禧一代和 Z 一代客户世界中,进行互动交流是至关重要的。

2016 年美国选举中看到了数据分析技术在竞选活动中的应用。 它的使用程度存在争议,并在最高层级引起了争议。 然而,人工智能和行为科学在与选民互动方面的应用后来被证明是有效的。 Twitter 和 Facebook 等渠道允许政客直接与选民互动。

“我喜欢它,因为我也可以表达我的观点,而我的观点对很多看着我的人来说非常重要。”

唐纳德·特朗普

在印度,纳伦德拉·莫迪总理在 2014 年选举以及此后的社交媒体宣传中非常成功。截至 2019 年第二季度,他在全球范围内拥有超过 4500 万的 Twitter 追随者。在拥有 6500 万追随者的唐纳德·特朗普之后,莫迪是在社交媒体上拉拢追随者方面最成功的人。

值得注意的是,在 2014 年至 2019 年担任总理期间,莫迪竟然从未与新闻媒体见过面。尽管如此,他在与追随者的对话渠道方面相当成功。他建立了作为竞选的一部分的营销能力,这帮助他的政党以绝对多数赢得了选举。这是自 1984 年以来任何印度政党首次以多数票赢得选举。

当政治家试图以自上而下的方式利用技术时,希望在政策制定中发表意见的市民也巧妙地利用了社交媒体。市民利用社交媒体为关键活动赢得支持。2019 年 4 月,数千名活动人士走上了伦敦街头,敦促英国政治家采取更多措施来遏制伦敦的气候变化。

2017 年,大约有 200 万人在钦奈的马里纳海滩聚集,抗议禁止他们传统的斗牛活动。政府最初禁止斗牛活动是因为受到动物福利组织的压力。然而,当地人争辩说,他们的斗牛形式并没有像世界其他地区那样伤害动物。斗牛活动被用作寻找社区中最强壮的公牛的手段,并且对该牛品种的繁衍至关重要。

这些抗议活动是通过社交媒体策划的。它们是和平的,大多由千禧一代和 Z 一代的公民领导。持续了一个星期,并导致印度政府撤销了禁令。抗议者还同意对斗牛活动进行监管以确保动物不受伤害。

社交媒体已经成为市民、活动家和游说者通过宣传来推动政治决策的主要工具。它还帮助政治家和政府利益相关者营造一种他们易于接近且离选民只有一步之遥的感觉。

由于这种行为的融合带来的对话为了解该国不同地区市民的优先事项提供了丰富的数据。政治家们可以利用这些数据进一步定制他们的信息给特定年龄、性别、社区、地区或这些因素的组合的受众。这已经为下一部分设定了背景,下一部分是关于人工智能如何帮助选举建模的。

选举建模

由于大数据的飞速增长,使用 AI 算法来对问题进行建模解决现在成为可能。预测分析公司一直在工作的关键领域之一是建模选举结果。

历史上,选举结果是用两种关键方法进行建模的。选民在选举之前被问及他们将投谁的票,这种方法被称为民意调查。另一种方法是在选民离开投票站时被问及他们投票给谁。这种方法被称为出口调查。出口调查通常比民意调查更准确地预测选举结果。

近年来,出口调查的准确性受到了挑战。在过去的三次印度选举和 2018 年最新的澳大利亚选举中,出口调查都不准确。

随着预测分析和统计建模变得更加流行,已经对一些经济指标及其与选举结果的相关性进行了建模。结果令人惊讶的是,关键的经济指标似乎对选举几乎没有影响。例如,美国的国内生产总值(GDP)只能解释二战后发生的选举中的 33%。在二战前这个数字降到了 23%。资料来源:fivethirtyeight.blogs.nytimes.com/2011/11/18/which-economic-indicators-best-predict-presidential-elections/

失业率并不能很好地预测选举结果。我期望一个国家的公民会投票给一个能降低失业率的政府,反之亦然。比如,在英国,2019 年失业率达到了 44 年来的最低水平。然而,2019 年对执政党保守党的选民情绪普遍是消极的——可能是由于他们对脱欧的处理方式。

在许多发达国家,失业率与选举结果之间的相关性很少明显。在新兴市场,失业一直是家庭的主要问题。例如,拉丁美洲的选举结果与失业之间的相关性是不可忽视的。

返到美国选举,它们中没有任何支持信息表明失业率是选举结果的良好指标。我们可能也需要考虑到这种分析是基于仅有 16 次美国选举的数据。这个样本空间可能太小,无法提供有意义的选举结果相关性。

社会福祉是我们可能要考虑的另一个维度,以帮助解释选举结果。事实上,对选举结果与社会福祉和幸福因素之间的相关性进行研究已经产生了积极的结果。

研究人员将所有这些因素汇总为所谓的“国民幸福”,作为执政政府的关键绩效指标,以便获得连任。2019 年 5 月,新西兰政府透露,在民粹主义政策时期,他们正在为他们的公民推出一项“幸福”预算。预计总理雅辛达·阿德恩将宣布一项涉及心理健康、儿童贫困和社会不平等等问题的预算。

新西兰的这一政权已经出台了禁止塑料和对抗气候变化的政策。然而,在这样做的过程中,雅辛达·阿德恩也因未将重点放在解决底线问题上而受到批评,尤其是在该国面临经济放缓的时候。

过去已经将经济和社会指标结合起来预测选举。在世界某些地区,在选举前几个月,还存在一个重要的模式,被称为“政治商业周期”。这是一种趋势,其中执政党开始在选举前几个月制定有利于选民的经济政策。

政治商业周期已被观察为新兴经济体的常见现象,在这些地方,选民对政党的这些明显的把戏不够警觉。在世界上更发达的地区,政治商业周期则更为微妙。

尽管存在这些可能影响选举结果的政治、经济和社会工具,但深科技新秀、政客武器库中最强大的技术之一是社交媒体。这个想法是利用社交媒体来建模选民行为,通过这些微妙的技巧引发某些有利行为。

另一个来自 2016 年美国选举的观察是,大多数预测模型未能预测最终结果。这些预测失败归因于它们无法对各州之间的相关性进行建模。这正是量子退火可以解决的限制。在下一节中,我们将详细介绍量子机器学习和量子退火技术是如何结合起来对美国选举进行建模的。

量子机器学习

怀俄明州华盛顿特区的量子计算公司 QxBranch 提出了一种量子机器学习方法来建模美国选举。他们利用了 2016 年美国选举来创建他们的机器学习模型。全连接图模型被确定为美国各州之间相关性的最佳拟合模型。以下示意图展示了图模型可能的样子。

在建模变量之间的相关性的连接图形模型中,一个关键挑战在于使用经典计算实现它们。这些模型很强大;然而,它们不能使用现有的计算基础设施生成。近期量子计算的发展已经解决了训练这些模型所需的计算能力需求。当涉及到相关变量时,图形网络现在是一个现实的选择。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 1:图形网络示意图 来源:https://medium.com/@neerajsharma_28983/intuitive-guide-to-probability-graphical-models-be81150da7a

现在让我们看看 BM,这是一种在选举建模中使用的深度学习技术。

Boltzmann 机器

量子机器学习领域的一个有趣研究领域是深度量子学习。这涉及研究量子设备和算法对经典深度学习模型(如图形模型和深度神经网络DNNs))的影响。

在 1985 年,Geoffrey Hinton 和 Terry Sejnowski 发明了一种称为Boltzmann 机器BM)的无监督深度学习模型。这样做,他们引发了几个称为深度模型的神经网络的发展。BM 基于玻尔兹曼分布,这是统计力学的一部分。

BM 的一个应用是模拟熵和温度等参数对量子状态的影响。Hinton 曾以核电厂的示意图作为理解 BM 的应用。BM 是一个强大的图形模型,可以归类为 DNN。

传统的神经网络模型没有它们的输入节点连接。BM 在根本上与此不同,输入是连接的。因为这些节点彼此连接,它们交换信息(例如我们选举示例中的相关性)并自动生成后续数据。因此,它们被称为生成式深度模型。图 2代表具有节点连接的 BM。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 2:Boltzmann 机器中的隐藏和可见节点

灰色节点在图 2中代表隐藏节点,白色节点代表可见节点。可见节点是我们测量的变量,隐藏节点是我们不测量的变量。机器首先需要输入数据。一旦输入数据,节点就会学习它们的参数、数据中的模式以及这些变量之间的相关性,并形成一个高效的系统。因此,BM 被归类为无监督的深度学习模型。

尽管提供了一个强大的模型,但是 BM 可能很难训练。使用经典计算基础设施训练这些网络的成本可能是禁止性的,从而限制了它们在主流工业应用中的应用。然而,有了量子计算基础设施,训练这样的网络似乎更可行。

QxBranch 已经使用由 D-Wave 系统生产的量子退火装置来实现选举建模的 BMs。这些设备可以比传统计算机更好地处理算法的计算需求。由于量子超定态和隧道效应特性,某些类型的能量景观在退火过程中可以更有效地使用量子计算来探索。因此,我们可以训练 BMs 来解决选举建模的复杂性。

在一个退火过程中,系统被置于基态,然后绝热演化过程开始。如果过程足够缓慢,系统应该在最终状态提供最佳结果,这也将是一个基态。然而,存在一定概率系统可能不会最终处于基态。因此,通过使用 BMs 对相关性进行建模和量子退火来识别低能态,可以实现类似选举建模的优化问题的解决方案。

以下部分描述了 QxBranch 在 2016 年美国选举中使用 D-Wave 量子退火机器进行的实验。

QxBranch 选举模型

在 BM 中模拟美国总统选举时,一个美国州被表示为二进制单位。在模拟中赢得最多选举票的总统候选人被分类为选举的获胜者。

投票结果的状态被映射到候选人身上。例如,民主党将被定义为 1,共和党将被定义为 0。模型中每个州都被分配了不同的权重。州的权重根据它们对全国投票的影响来确定。

建模一阶矩项需要确定一个州投票给候选人的概率。用于对此进行建模的数据来自 FiveThirtyEight。该数据涉及各州的时间平均民意调查结果。因此,如果认为民主党候选人赢得纽约的可能性为 70%,那么代表纽约的变量的一阶矩将是 0.7。

对每个州的两位候选人的预计投票份额在选举前 6 个月内计算。这些预计投票份额被用于计算每个州的一阶矩项。这是模型中的简单部分。计算二阶项更困难。二阶项涉及对州之间的相关性进行建模。这可以解释为两个州在一次选举中最终得到相同投票结果的可能性。

在确定相关性时,发现投票给同一党派的州之间存在高度相关,反之亦然。在模型中,高相关性由高二阶矩表示,低相关性由低二阶矩表示。相关性受人口统计、地理位置以及在某些情况下经济因素的影响。

使用过去 11 次美国总统选举的数据来识别州之间的相关性。如果两个州一直投票给同一党派,相关性会更高;如果州在历史上投票给不同的党派,相关性会较低。

从以往总统选举的数据中得出的相关性中,给予了最近选举数据更高的权重。例如,过去五次选举中两个州之间的相关性将获得比之前选举中识别的相关性更高的权重。

由于量子计算基础设施的硬件限制,必须使用一些基本假设简化模型。D-Wave 2X 系统无法嵌入 50 个美国州模型和华盛顿特区。因此,华盛顿特区和马里兰州被省略,因为它们成为民主党获胜区的可能性接近 100%。一旦模型基本就位,就必须定期使用数据进行训练。

接下来的部分详细介绍了模型取得的成果,以及与用于预测和建模选举结果的现有方法相比的结果。

主要实验

本节描述了 QxBranch 使用 DWave 量子退火器进行的实验。还评估了训练算法的过程和取得的结果。

一旦确定了变量和数据需求,就开始使用选举数据对 BM 进行训练。使用 DWave 量子退火设备对 2016 年 6 月至 11 月的数据进行训练了多个完全连接的 BM。然而,由于限制,训练必须每两周进行一次,而不是每天进行一次。训练网络包括 150 次迭代,其中包括随机化系数。

在第一次训练后,每两周进行一次过程,重点关注一阶矩。他们进行了 25 次迭代,以使结果收敛到稳定的总和误差。训练的这个阶段几乎没有对一阶矩进行任何改变。

将每个量子比特的结果映射到一个状态。这是为了找出哪位候选人赢得了一个样本。候选人赢得的选举票数被添加到模型中。这样,每个样本都导致候选人赢得或输掉选举。

通过标识赢得的样本数量,确定了克林顿赢得的概率。然后将此数字除以总样本数量,得出克林顿获胜的概率。

需要时间加权算术平均数函数来获取选举结果的平均预测。

通过实验,观察到了一些众所周知的选民行为模式。倾向于民主党或共和党的州具有非常低的相关系数。伊利诺伊州和内布拉斯加州被确定为民主党和共和党候选人的坚定支持者。具有最高相关系数的州是激烈竞争的州。

现在让我们看一下 QxBranch 的工作与现有选举民意调查方法的比较。FiveThirtyEight 是一个提供选举民意调查结果的网站。他们从 2008 年开始做这项工作,并且在 2010 年成为《纽约时报杂志》的特许功能。比较 QxBranch 的方法和 FiveThirtyEight 的方法将有助于了解 QxBranch 算法的有效性。

就像 QxBranch 的模型,他们识别出了影响选举结果的州一样,FiveThirtyEight 的预测也有一个被称为“临界点概率”的度量标准。“临界点概率”被定义为“一个州提供决定性选票在选举人团中的概率”。在选举日,他们排名最高的 10 个州中,有 7 个州与 QxBranch 模型中排名前 10 个最相关的州相同。

总之,QxBranch 所使用的方法论包括对一阶项和二阶项进行建模。一阶项涉及识别一个国家的获胜者,而二阶项则识别了国家之间的相关性。尽管算法很复杂,只进行了少量简化,量子基础设施就能产生良好的结果。

该算法的真正考验将在 2020 年美国大选时进行。这个模型是否能帮助提前识别出胜者?在世界其他民主国家使用时,很值得看看这个模型需要如何调整。毫无疑问,科技将在未来几年内影响全球的民主进程。

现在让我们来看看区块链在全球公共部门活动中的运用情况。

区块链,治理和选举

治理是区块链的关键设计原则之一。这使得这项技术非常适合于政府和一些公共领域的用例。身份管理、电子治理、选举以及土地登记管理都已经试用了区块链。

了解区块链内部治理所使用的不同策略将会有益。一旦我们从治理角度了解了这个框架,我们就可以讨论它在世界各国的使用情况。

治理模型

这次讨论的重点是区块链在组织和国家治理中的应用。然而,了解区块链所使用的治理模型是至关重要的。这将帮助我们了解它如何作为国家治理模型的一种。

关键的区块链网络已经使用了几种治理策略作为其平台/协议的基本构建模块。众所周知的治理策略如下:

  1. 区块链上的治理

  2. 终身的仁慈独裁者

  3. 核心开发团队

  4. 开放治理

区块链上的治理

在这种模式中,治理规则被存储在链上的智能合约中。智能合约提供了区块链所需的治理和预定义了改变它们的程序。当需要修改区块链规则时,用户可以依赖内置方法。

终身仁慈独裁者

这种方法可能是管理区块链最简单的方法。在这种模式下,区块链的创造者是关于区块链的所有决定的最终权威。尽管它简单,这种模式导致高度集中的决策。在危机时期,这可以帮助快速行动;然而,集中化的决策也有其自身的风险,因为它可能导致滥用权力。

以太坊采用了"终身仁慈独裁者"的区块链治理模式。尽管用户和开发者对以太坊区块链的路线图提出他们的看法,Vitalik Buterin 是关于以太坊路线图的关键决定的最终权威。

核心开发团队

运行区块链协议业务的公司首先面临的挑战是在市场上赢得客户使用他们的区块链之前,建立一个开发者社区。在B2C企业到消费者)和B2B企业到企业)模式之后,区块链引入了D2D开发者到开发者)模式。这凸显了开发者在商业模式中的重要性。发展贡献者社区已成为区块链业务与获取客户一样重要的一环。

由于这个快速变化的景观,让开发者成为区块链治理模式的一部分是公平的。最活跃的开发者子集决定应该包含在区块链中的功能。控制区块链的开发和发布路线图在核心开发团队手中。

这种策略已经在开源编程项目中使用,开发者对项目的推出有决定权。

开放治理

"终身仁慈独裁者"模式可能是最为集中式的治理形式。随着治理模式的发展,区块链采用了开放治理模式。在这里,为区块链做出决定的团队由区块链的用户自己选择。

Hyperledger 采用开放治理模式来决定他们的技术路线图。他们的技术指导委员会TSC)由用户和开发者组成,在技术决策上具有最终权威。

每年,TSC 都是由 Hyperledger 社区内一群专注的用户和开发者选出的。这也使得活跃的开发者和用户对关键决策有话语权。区块链生态系统内的社区发展是如此重要,以至于参与治理已成为参与的一个关键动机。

这也有助于确保网络中的任何关键决策都是以大多数用户和开发人员为考虑对象的。由于区块链的治理主要掌握在由网络选择的小团队手中,这或许反映了世界各地民主结构的特点。这也可能是高度集中和去中心化治理理念之间的正确平衡。

现在我们已经审查了区块链内的治理模式,让我们看看区块链在治理中的应用。世界各国开始在其公共部门职能内进行区块链实验。领先的“政府区块链”倡议之一是智慧迪拜。

智慧迪拜

2017 年 1 月,迪拜启动了一项将所有政府交易数字化的倡议。这将由区块链技术提供支持,计划于 2020 年启动,并计划每年削减 1 亿次纸质交易。多亏了智慧迪拜,与政府和私营部门实体合作启动了 130 多个项目。

智慧迪拜的一些关键倡议包括迪拜数据倡议、迪拜区块链战略、幸福议程、迪拜人工智能路线图和迪拜无纸化战略。

2017 年 2 月,公共部门和私营部门启动了一项试点项目。与阿联酋国民银行、桑坦德银行和 Aramex 等主要金融服务提供商合作,使用 IBM 云和 Hyperledger 进行贸易金融和物流试点。

2017 年第二季度,迪拜移民和签证部门启动了数字护照的工作。该系统集成了生物识别验证和身份信任框架。它由一家总部位于英国的公司 Object Tech 与区块链技术合作推出。

另一个与政府和私营部门组织合作的倡议随之而来。 ConSensys 被任命为迪拜区块链倡议的城市顾问。 IBM 和 ConSensys 领导了区块链应用的建设,涵盖了警务、电力、人类发展和水务等公共部门办公室。

迪拜土地部推出了一项用于土地登记的区块链倡议。他们还将区块链扩展给租户,使他们能够在不提供任何文件的情况下完成数字支付。

2017 年底,迪拜宣布发行一种主权加密货币,名为 EmCash。这将在全国范围内的零售店使用。一家名为 Pundi X 的区块链公司已经创建了一个名为销售点POS)的设备,该设备将接受 EmCash。计划在未来几年内创建超过 10 万个接受 EmCash 的商店。

智慧迪拜倡议致力于四个关键目标:

  • 综合日常生活服务

  • 城市资源的优化利用

  • 预测风险并保护人民

  • 丰富的生活和商业体验

他们计划在 2021 年实现这一目标,并且以他们设定的速度已经走在了实现这一目标的道路上。迪拜智慧城市倡议一直在通过使用或试验新兴技术为公共部门流程增加效率而创建常规头条。执行需要公共私营部门合作的倡议一直相当困难。然而,这并没有挫伤迪拜智慧城市倡议的士气。

公共部门和政府流程的数字化是所有希望提升数字化能力的重要国家值得关注的领域。它肯定更像是一场马拉松,而不是一场短跑,往往需要比私营部门项目更长的时间。然而,随着迪拜智慧城市倡议的成熟和形成,它们可以成为全球学习的案例。尽管我们对迪拜在这一领域的工作投来仰慕的目光,但还有另一个国家已经将区块链用例引入到了全球的公民中。现在让我们来看看爱沙尼亚以及它如何利用区块链带来电子治理。

e-Estonia

当讨论电子治理和数字化公共部门流程时,很难忽视爱沙尼亚。它是一个国家如何拥抱新兴技术,使公共部门服务变得即时、无缝且成本效益的例子。

爱沙尼亚于 1991 年 9 月脱离苏联独立,经过 57 年的时光。其中一个关键里程碑是在 2000 年,也就是新千年之际,数字签名被赋予了与手写签名相同的法律价值。因此,由短码支持的数字身份证成为可能。

这一突破导致了一系列公共部门数字化倡议的涌现。税务和海关局成为了国家首个提供电子服务的公共部门机构。他们允许个人和企业在线提交税务申报。这也成为了名为 e-Estonia 的数字化社会门户的基石,这个数字平台让世界上更发达的地区感到羞愧。

e-Estonia 得到了 X-Road 的支持,这是一个数字交换系统,组织可以安全地交换信息。银行、电信公司、土地登记处和税务服务都成为了这个平台的一部分,以和谐的方式运行。有关 X-Road 增长的统计数据令人鼓舞。作为 X-Road 和更广泛的数字化爱沙尼亚计划的一部分,关键指标如下:

  • 超过 1000 个组织加入了这个平台,包括 99% 的国家服务。

  • 全球有 52000 个组织间接参与了这个计划。

  • 每年,系统处理 5 亿次查询,节省了 1400 年的工作时间。

  • 超过 98% 的爱沙尼亚人拥有一张包含芯片的身份证,使个人能够在线访问服务。

  • 每年有 5000 万数字签名,每年节省五个工作日。

  • 走向数字化的经济影响价值相当于该国国内生产总值的 2%。

  • 爱沙尼亚 98%的税务申报现在都是通过电子方式提交的,流程通常需要 3-5 分钟。

  • 一键式纳税申报系统被誉为 e-Estonia 的主要好处之一。

2005 年,爱沙尼亚成为了全球首个在全国范围内提供在线投票选项的国家,并且在 2007 年的议会选举中也是首个这样做的国家。随着所有这些数字化倡议,他们是最早拥抱区块链技术的国家之一,这一点也不令人惊讶。

尽管进行了数字化努力,但 e-Estonia 倡议面临着挑战;其中一个挑战是大量公共部门数据容易受到网络攻击的威胁。通过所有数字化努力实现的效率,如果系统的安全性受到损害,这些效率将毫无用处。

作为对已识别的风险的减轻措施,区块链技术得到了试验,并帮助了该倡议的口号,“没有人——不是黑客,也不是系统管理员,甚至不是政府本身——能够操纵数据并逃脱惩罚。”开发区块链的爱沙尼亚密码学家发表了这一声明,以描述他们的意图,即所有生态系统利益相关者都将保持诚实。

2019 年 3 月,当国家去选举他们的下一届政府时,44%的选民使用了名为 i-voting 的数字投票平台。之前的选举有 31%的选民使用了该系统。

使用手机投票的人数从上次选举的 12%增加到了 30%。这帮助稳步提高了选举投票率,从 2005 年的 47%增加到了 2019 年的 64%。来源:e-estonia.com/solutions/e-governance/i-voting/

i-voting 系统使用区块链为该过程增加透明度。投票结束后立即公布选举结果。可以说,在一个人口很少的小国家中,实时选举结果可能并不具有操作上的挑战性。然而,这是其他国家的未来发展方向。

爱沙尼亚的土地登记和医疗系统也在使用区块链创建透明度。患者的病历存储在区块链中,医生可以在紧急情况下使用它们进行评估。患者也可以在线访问他们的数字化医疗史。如果患者想知道哪些医生访问了他们的档案,这也可以完全透明。

该系统每年提供了 50 万次医生查询和 30 万次患者查询。该系统产生的数据对于卫生部门的政策决策至关重要,以便可以据此合理分配资源。

e-爱沙尼亚及其平台(例如 i-Voting 和 X-Road)的成功已在全球范围内得到认可。X-Road 系统正在冰岛、芬兰、吉尔吉斯斯坦、阿塞拜疆、巴勒斯坦、越南、萨尔瓦多和阿根廷等国家推广。现在让我们看看爱沙尼亚是如何通过 e-居民身份使非爱沙尼亚人能够访问其公共部门服务的。

爱沙尼亚和 e-居民身份

2014 年 12 月,爱沙尼亚推出了一项 e-居民计划,允许非爱沙尼亚人访问其数字服务,包括公司注册、银行业务、支付和税务。该计划取得了巨大成功,吸引了来自世界各地的顶尖人才。

  • 到目前为止,来自 150 个国家的超过 40,000 人已获得 e-居民身份。

  • 已成立超过 6,000 家企业,通过税收贡献了约 1,000 万欧元(860 万英镑)。

  • 该国目标是到 2025 年拥有 1,000 万名“e-爱沙尼亚人”,并在国家之间创建“电子服务”的“单一市场”。

    “即使我们只有一百万多一点,但多亏了爱沙尼亚的能力,我们可以在短短十分钟内完成一千万次付款、一千万次请求和一千万次签约。即使是十倍大的国家也无法超越我们。但好消息是,加入我们这个独特的数字权力公民俱乐部是可能的。”

——爱沙尼亚总统 Kersti Kaljulaid

爱沙尼亚是利用区块链和人工智能等技术实现政府服务数字化转型的地方。因此,其他国家从他们的平台中汲取灵感。e-居民身份更进一步吸引了来自世界各地的人们在爱沙尼亚开展业务。

多亏了其数字化努力,爱沙尼亚的初创企业社区蓬勃发展。创办和经营企业的便利性对于早期阶段的企业至关重要。如果经营企业的操作痛点得到解决,企业可以专注于其核心价值主张。无论是电信、金融科技还是清洁技术,爱沙尼亚拥有欧洲最高密度的初创企业。以下是关于爱沙尼亚初创企业生态系统的一些有趣统计数据:

  • 该国有超过 550 家初创企业,人口仅超过 100 万。

  • 2018 年有超过 3,763 人受雇于初创企业。

  • 这些初创企业筹集了 3.2 亿欧元(2.75 亿英镑)。

爱沙尼亚可能无法像非洲的 m-Pesa 成功或赛里斯的阿里巴巴和腾讯波浪那样取得飞跃性影响。然而,通过使用区块链和尖端数据智能技术,他们向世界展示了数字治理的可能性。

欧洲公共部门组织在使用区块链方面的应用并不止于爱沙尼亚。奥地利也通过他们的举措成为新闻头条。更多详情请参阅下一节。

维也纳代币

区块链技术的一个有趣方面是,一些领先的技术生态系统存在于硅谷以外。传统上,大多数新兴技术都起源于硅谷并有其大公司在那里。这得益于硅谷的资本流动和投资者的风险偏好。无论是经典计算公司、社交媒体、人工智能公司,甚至许多量子计算公司,它们都与硅谷有着紧密的联系。

然而,区块链并非完全是这种情况。该技术的初期繁荣集中在亚洲。欧洲在接受和采用该技术方面排名第二。包括加密谷在内的几个欧洲枢纽出现并让该地区取得了领先地位。家族办公室和机构投资者以一种过去只有硅谷才能夸耀的方式支持了该技术的崛起(以及炒作)。

维也纳一直是最近一些区块链行业发展的核心。其中一个关键倡议是对开放政府数据OGD)进行公证化。这是为了方便地方政府员工使用食品券。维也纳还正在建立一个基于区块链的代币,以激励市民的良好行为。

对于这个系统,我的第一个想法是它与赛里斯社会信用系统的相似之处。赛里斯一直在试验基于人工智能的社会信用系统以加强良好的市民行为。然而,根据西方的说法,这是一个备受争议的计划,它忽视了消费者数据隐私。阿里巴巴等私营部门公司也参与提供所需数据使这个计划得以实施。该系统的一个例子是,市民可以根据他们是否按时支付信用款来获得交通等日常设施的使用权限。

然而,维也纳的“文化代币”计划是为市民的任何良好行为设立的奖励。市民可以使用代币来获取维也纳市的艺术和文化。奖励范围计划扩展到其他几项市民服务。

该计划正在帮助维也纳当局减少碳排放,通过奖励市民在市中心步行而不使用汽车。从长远来看,文化代币可以在几项其他关键倡议中使用,并过渡为维也纳代币。

现在让我们来看看联合国是如何在全球范围内利用区块链技术推进其倡议的。

联合国和难民

联合国一直处于利用区块链进行公共部门创新的最前沿。在过去几年中,联合国发起了几项倡议,取得了在追踪援助、遏制腐败和最重要的是确保价值链责任方面的切实利益。

联合国等组织在处理金融和政府组织时面临着许多运营挑战。这些组织中的许多都位于政权敌对且腐败水平高的地区。通过透明平台有效分发人道主义援助是一个具有挑战性的过程。

因此,受益者数据存在风险,如果财政援助无法追溯到最后一公里,可能成为财务管理和腐败的源头。为了解决这些挑战,联合国的世界粮食计划署WFP)推出了一个名为 Building Blocks 的计划。支持 Building Blocks 核心论点的研究表明,直接将援助资金转移给受益人是最有效的,并且有利于当地经济。

然而,在慈善/援助行业中实现去中介化并完全透明地掌握资金流动并非易事。2018 年,联合国 WFP 分发了价值 16 亿美元的现金转账记录。他们需要一种技术平台来更有效、更高效地实现这一点。

Building Blocks 计划于 2017 年启动,就是为了做到这一点。2017 年,WFP 在巴基斯坦信德省开始了一个概念验证,使用区块链的功能对受益人交易进行认证和注册。该技术消除了中间商,并允许 WFP 与受益人之间进行安全快速的交易。到 2018 年,该平台已有超过 10 万名难民加入。他们可以用虹膜扫描证明身份并支付杂货费用。

Building Blocks 平台使用了 Ethereum 区块链的受许可版本。一年后,该平台在约旦的两个难民营推出。之前采用的食品券系统迅速被用于食品和杂货的虹膜扫描结账系统取代。随着难民信息与联合国难民署(联合国的难民机构)整合,生物特征认证用于记录每笔交易及其背后的受益人。

这在难民营中节省了 98% 的交易费用。Building Blocks 现在正准备升级。他们正在探索在约旦的难民营中使用手机货币。这也将迅速扩展,为经常在不同国家生活和工作的难民提供经济身份。由于难民的身份是在区块链上管理的,他们的交易被注册,对于想了解其财务背景的当局来说是很容易获取的。

在接受 Coindesk 的采访中,WFP(世界粮食计划署)的创新与变革主任 Robert Opp 评论了该计划的主要成就。

“Azraq 和 Zaatari 难民营的 106,000 名叙利亚难民都在基于区块链的系统上兑换他们的现金转账。 到目前为止,价值超过 2,350 万美元的权利已通过 110 万次交易转移给难民。 到 2019 年 3 月,Opp 预计将有额外的 40 万名难民通过区块链接受援助。”

这些国家需要帮助的家庭不必等待数周才能收到他们的现金。 在过去,他们不得不依赖于中间组织中的腐败官员来收取资金。 通常,资金的相当一部分是支付给分发现金的中介机构的,原因既是运营的,也是腐败的。 然而,所有这些参与方都可以通过这项技术被去中心化。

在过去的两年里,我很高兴与三家不同的区块链初创公司讨论了这个用例。 Disberse、AidTech 和 Agriledger 都致力于为慈善事业和联合国主导的倡议带来责任。 Disberse 和 AidTech 使用区块链将慈善/援助交易的主要利益相关者引入他们的网络。 交易实时跟踪,并提供即时报告和透明度。

另一方面,Agriledger 正在与联合国合作,为农民生产的食品提供端到端的可追溯性。 他们正在与联合国在海地的原型上合作,并已在赛里斯和非洲启动了项目。 另一家初创公司 Banqu,由非洲难民领导,也专注于为非洲妇女提供经济身份。

Agriledger 有很多工作要做,因为他们试图在联合国的帮助下提高食品供应链的效率。 农民可以拥有他们的食品生产和物流,中间商可以提供他们的服务并分得一部分收入。 这使得食品供应链更加透明,并允许农民在更多信息的支持下定价产品。 购买食品的客户也可以清楚地追溯商品的来源。

结论

在 2018 年 11 月的新加坡金融科技节上,印度总理纳伦德拉·莫迪发表了主题演讲。 他提到,初创公司使用诸如区块链之类的行话来增加他们在投资者中的估值。 在过去的三十年里,我从未见过印度政治领导人关注创新趋势。 这可能是印度初创企业生态系统成熟的迹象,但也是由于政府对技术的关注。

政府和治理已经是几个世纪的传统故事了。 对于大多数国家来说,数字化政府机构和流程并不是首要任务。 然而,在过去的 10 年中,情况发生了变化。 随着爱沙尼亚、迪拜、格鲁吉亚、印度和新加坡等国家探索了几项数字化倡议,我们肯定会看到几个跨越式的时刻和可以在其他地方复制的案例研究。

选民行为从未像今天这样被深入理解或曝光。社交媒体和选民在选举期间产生的数据是一个至关重要的工具,有时可能会对他们产生负面影响。多亏了深度学习算法和量子计算,政治家可以模拟一个国家的选民行为,并相应地规划他们的竞选活动。这种智能也可以帮助他们决定政策决策,并希望实施更好的治理。

所有这些都指向一个受欢迎的趋势,即政府越来越意识到这些技术可以赋予他们信息上的竞争优势。如今的时代,国家不再使用核武器进行战争,而是通过数据和信息。装备自己的一种方法是将防务预算重新投入到开发尖端技术中。

通过更好地管理公民行为,追踪经济中的现金流动,并更好地了解选民的情绪,政府将拥有必要的工具来做出明智的政策决策。过去,大多数政策是通过那些没有今天所提供的数据管理能力的模型和框架制定的。

另一个关键点是,一些技术相当实惠和民主化,不仅是大型经济体才能够以有意义的方式使用它们。相反,像爱沙尼亚这样的小型经济体已经迅速采用了区块链和数据分析。

联合国等组织 embracing 区块链和人工智能等技术以产生规模化影响也非常重要。慈善/援助价值链由于地方当局和中间人的存在而效率低下且容易受到腐败影响,但这可以得到解决。随着这些技术被用来为难民提供经济身份,国家边界变得不再重要。治理可以真正实现全球化。

第九章:马克斯·亨德森,Rigetti 和 QxBranch 高级数据科学家的采访

在我开始写这本书之前,我觉得我对我将要关注的行业和用例有很好的把握。我对书的流程有一个清晰的愿景,以及我将要涵盖的真实世界问题。然而,通过我写书的过程中所做的研究,我意识到有些领域我应该触及,而我之前没有计划过的。与马克斯·亨德森的采访对我作为作者来说无疑是一种意外之喜,而这是我之前没有计划过的。我希望它能为你,读者,揭示量子计算的一个有趣应用。

我和马克斯在社交媒体上有一段时间的相识。我们互动过彼此的帖子,但从未采取下一个合乎逻辑的步骤,给彼此发一条私人消息并打个招呼。直到 2019 年初,我联系他,想和他谈谈他在 QxBranch 所做的事情。那时候,马克斯只在 QxBranch 工作,他在 Rigetti 的额外角色是后来才实现的。

我知道马克斯正在研究一个非常有趣的问题——对美国选举进行建模。他在 2016 年选举中做了一些工作,我在第八章对治理的影响中进行了讨论。

我很想了解他是如何将这个问题确定为可以使用量子计算机来建模的问题的前因后果。我联系了他。

马克斯非常乐意交谈,我们初步讨论了他正在做的事情。他确认他正在从事量子机器学习,以确定选举建模的解决方案。他还澄清说,他是一个涉足业务发展的数据科学家。这意味着他从事的是简化围绕量子计算的叙述的业务。

那正是我在寻找的人。我告诉他我想在我的书中写一写他的工作。马克斯对这个想法很开放,我们结束了通话,并决定先想想再做决定。

几天后,我给马克斯写信,表达了我对如何在量子机器学习中捕捉他正在做的事情的想法。马克斯很喜欢,我们同意进行一次录音采访。

以下是采访内容。对我来说,其中一个关键的收获就是有效利用社交媒体。在我看来,社交媒体不能像面对面的对话那样将人们联系起来,但它可以帮助建立关系,从而达到互惠互利的结果。现在让我们开始采访吧:

阿伦:嗨,马克斯,谢谢你今天加入我。让我们开始介绍一下你自己。让我们谈谈你自己,你的背景,你的公司以及一切是如何发生的。

Max: 是的,基本上我的背景是物理学。我在费城的德雷塞尔大学获得了物理学博士学位。我当时正在做神经网络的生物物理模型,试图通过模拟解释我们的大脑在老化过程中可能会发生的变化。这自然使我对机器学习算法产生了浓厚的兴趣,因为它们是生物物理神经网络的良好抽象版本。它们使我们能够使用更简单的模型来捕捉一些我们的大脑所做的非常强大的事情。

同时,我曾在洛克希德·马丁公司实习。在 2011 年,他们购买了第一个商用量子设备。自 2011 年以来,我一直在研究量子硬件。最初,我们几乎完全关注优化类问题,随着时间的推移,量子机器学习变得更加有前途。

我继续在这些研究领域继续研究,并且现在我在 QxBranch 工作,这也是在类似的领域工作。我的工作的一个重要部分是帮助公司确定我们经营的不同业务线上的痛点。我们研究一些困难的计算问题,我的角色是为这些问题确定量子计算解决方案。提出用更全面和可扩展的视角来解决这些问题的新方法相当有趣。

Arun: 你提到了你在量子机器学习方面的专业知识。让我们花一些时间来谈谈机器学习的一些驱动因素,以及为什么它比以往任何时候都更加相关。在过去的十年左右,我们已经看到了数据的大爆炸。社交媒体导致了我们可以挖掘的数据量。这是人工智能(AI)利用并成为主流的好时机,这正是我们在各个行业中看到的情况。然而,从概念上看,AI 和机器学习已经存在了相当长的时间。那么,在过去的五到六年中发生了什么事情,使 AI 成为了真实存在?你对如何利用量子计算原理来实现“类固醇 AI”有何看法?

Max: 广义地说,你知道机器学习是在过去几十年里发展起来的一个领域。自从上个世纪 80 年代以来,出现了一些非常强大的工具。在那个时候,有一些非常强大的模型,但因为我们没有足够的数据,所以它们根本不实用。此外,我们的计算机也不够大,无法让它们运行。大数据时代和计算机价格低廉的时代使得机器学习从一个研究课题发展成为一个极其强大的工具。

现在地球上的每一家财富 500 强公司都在研究机器学习。我们可以考虑一种类似的扩展,即量子机器学习。即使我们拥有大量的数据点和比以前更强大的计算机,仍然存在一些计算上困难的问题,而传统计算机只是卡住了。特别是如果他们想要得到准确的解决方案时。

量子机器学习实际上是通过研究特定类型的机器学习问题开始的。像搜索非结构化列表,以及一些很棒的理论模型(主成分分析,聚类等),这些领域量子似乎比任何已知的经典算法都更快。但是,在处理这些算法时遇到了一大堆实际障碍,使得其中一些方法变得非常困难。

最近,一些通过量子算法实现的这些模型的加速效果已经被去量子化了。出现了新的经典量子启发式算法,它们的性能与这些量子算法相匹配。

在过去的五年里,几乎每种量子机器模型在能够在物理设备上运行方面都处于停滞状态,直到我们解决了一些基础科学问题,这些问题使得更大规模的、经过错误校正的设备成为可能。在过去的五年里,人们真正开始考虑以稍微不同于最初设想的方式使用量子计算机,并且它们更具实验性。

受到了相当多的研究关注的一个问题是使用诸如 D-Wave 所生产的绝热量子装置来建模玻尔兹曼分布,这是许多强大图形模型的核心。一些这样的问题在规模上无法有效地通过经典计算机估算。这是因为问题归结为试图从指数级别的状态中采样,随着问题变得越来越大,你就无法用经典计算机做到这一点。

绝热量子计算 (AQC) 是一种利用在绝热条件下运行的量子机械过程的计算模型。作为一种通用量子计算形式,AQC 运用了量子物理系统中表现出的叠加、隧道效应和纠缠的原理。

来源: oxfordre.com/physics/physics/view/10.1093/acrefore/9780190871994.001.0001/acrefore-9780190871994-e-32

对于某些建模任务,仿真量子退火器似乎表现得和真实的量子退火器一样好。

我们相信,通过将某些图形模型映射到这个自旋玻璃哈密顿量上,你可能会得到一个更好的表示,而且只需有限数量的测量就能训练这些非常强大的模型。我们已经用 D-Wave 设备来映射这些图形模型。还有一个完全不同的话题领域,直到 2016 年才真正存在,最近确实发生了爆炸性增长:这是一个我称之为量子特征提取算法的研究领域。

一些例子包括量子储存计算和量子电路学习。我们刚刚在 QxBranch 发表了一篇关于量子卷积神经网络的论文。基本上,这个想法是使用通用门控的量子电路,你可以将经典数据传递过去,并通过测量最终状态来提取数据。你可以把这理解为对原始数据进行某种非线性函数的解释。

这基本上就是最复杂的机器学习模型正在做的事情。它们试图使用经典转换来提取非线性数据。这个想法是看看我们是否可以使用各种类型、风味、初始化和编码方式的量子电路。然后用量子非线性来从经典数据中提取有用的特征,这可以在更广泛的机器学习环境中使用。所以这是量子机器学习世界中令人兴奋和非常新的研究方向,目前正在引起真正的关注。

例如,考虑一个算法来识别一个三维空间中的猫。我们首先需要从可用的数据中识别特征(颜色、形状),这些特征可以被算法用于识别猫。通过量子计算,可以从所有其他数据点中分离出有用的信息。一旦关键数据点被确定,然后可以使用经典计算机来识别它是一只猫。量子计算机甚至可以在嘈杂的环境中发现特征。

阿伦:有一个经常出现的话题,你也隐约提到过,就是可能存在一种混合模型,介于经典和量子计算之间,可能加速量子计算的主流应用. 我最近与富士通交谈过,他们有一个基于量子原理的数字退火器,但它实际上并不是一个量子基础设施。不过,它解决问题的能力似乎比经典计算机更好。你认为这种[混合模型]可能会成为趋势吗?

马克斯:这是一个非常好的问题。有一整个研究领域可以广泛称为量子启发应用。就像你说的那样,它们从量子力学中吸取了某种启示,但它们仍然完全是使用经典计算机实现的。有理由认为在那里有一个非常有前途的道路,因为我们可以使用那种基础设施部署真正的世界应用。

从某种意义上说,我们已经完善了经典计算。我们已经构建了非常大、非常快、非常并行的经典计算能力。我们相信,有一些捷径,可以通过这种方法以更大规模的连接性对真实量子计算机进行近似建模。也许有一些理由来考虑这种实现方式来解决某些类型的问题。所以是的,模拟器是一个很好的例子。Rigetti 和富士通有模拟数字模拟器,这表明行业内的人们清楚地理解了这个领域的发展方式。

我们刚刚通过与 Innovate UK 合作的项目建立了自己的大型量子模拟器。这是一个活跃的研究领域,可能是纯粹的经典计算世界与量子计算机的“真实交易”的一个很好的垫脚石。有很多有趣的量子启发解决方案,这并不仅意味着试图使用经典计算机模拟量子系统。

还有一些人尝试创新算法的例子。Ewin Tang 在量子计算社区中是一个相当有名的人物,因为她实际上发现了一种使用量子启发方法对推荐系统进行指数级改进的算法。她实际上在量子启发研究领域中对量子计算算法进行了去量子化,在这个领域中,人们深入挖掘量子算法的加速是否在“实现公平竞争”的前提下保持,允许经典计算机具有与量子算法相同的访问和查询属性。

量子化的一个例子是推荐算法,在其量子对应物之后开发出了经典算法,并且表现相似。例如,推荐算法帮助亚马逊根据用户的购买历史预测用户可能喜欢购买什么。

Ewin Tang 使用运行时间为多项式的经典算法解决了推荐问题。因此,经典算法的性能优于由 Kerenidis 和 Prakash 开发的量子算法。

目前有一些问题受益于量子加速,如果你对你可以从输入数据集中采样和查询的内容做出一些假设,可能会有一个具有类似加速的经典[算法]。也许有一些经典方法可以比以前认为可能使用经典算法获得的结果更好。

Ewin Tang 的著名论文真正展示了,思考量子解决方案时,你实际上可以提出新颖的经典方法。那篇论文特别是你在一个试图产生真正现实影响的领域中寻找的光芒四射的例子。

我们需要非常准确地理解一些论文中声称实现指数加速的假设。汤格基本上将其中一些假设放大到微观层面,当她做到这一点时,它打开了一个新的经典想法之门。如果你采取这种方法,整个"受量子启发"领域是一个非常有趣的领域,特别是在短期到中期内。

阿伦:确实,我认为这也许是未来的发展方向,马克斯。我认为会有一个时期,这种混合方法可能是经典和量子时代之间的桥梁。这也将帮助我们,因为这些"受量子启发的技术"的稳定性将比当前量子基础设施要好得多。

现在让我们来谈谈你。目前你关注的重点领域是什么?你正在解决哪些有趣的问题?

马克斯:正如我之前提到的,我们发表的一个有趣的论文,我是第一作者,称之为 quanvolutional 神经网络,这是我创造的词语。基本上将量子与卷积结合在一起,实质上类似于量子版本或扩展了经典卷积或神经网络。你提到了混合量子-经典系统可能是我们近期将看到最多进展的地方。我认为这绝对正确。因此,这确实是更好地理解量子如何明确地作为已经存在范式的组成部分之一的另一个步骤。

我们仍在早期探索和表征卷积神经网络,我对此非常兴奋。我们仍在积极研究和表征各种形式的玻尔兹曼机,用于自编码器和基于绝热设备(如 D-Wave 或模拟设备)的量子方法。因此,这是我们正在与许多研究人员合作开展的另一个研究领域。

阿伦:非常好,谢谢你。现在,让我们来谈谈我们已经讨论了一段时间的具体论文。告诉我们你是如何想到这个问题并决定解决它的。也请告诉我们这个过程。你应该经历了数据收集的过程,把数据输入到你建立的引擎中,然后对其建模,接着获取额外的数据并用那些数据测试模型,依此类推。请能不能为我们详细描述一下这个过程?这对读者来说将非常有趣。

马克斯:是的,完全正确。我第一次想到这个想法是在 2016 年总统竞选期间。在竞选实际结束之前,我在 QxBranch 工作,并考虑到美国各州或多或少都采用"胜者通吃"的方式分配选举票,可能带来的负面影响-不像许多其他国家那样进行更多比例性的分配。

例如,如果你在宾夕法尼亚州占据多数,你就会获得所有那些选举人票。这让我真正思考,“哦,这太有趣了,你几乎可以将其建模成一个量子位的二进制系统。”

一天结束时,当你进行测量时,每个状态都在做出一个二元选择,这就像我们测量量子系统时发生的情况一样。

人们基本上没有过多考虑状态之间的相关性。因此,如果你正在看新泽西州,你的结果应该与纽约州的结果非常相关,因为人口非常相似;两者都有相似的人口统计数据,并且位于国家的相似地区。你会假设纽约州和新泽西州的单次测量应该比纽约州和亚利桑那州更相关;那些是非常不同的地方,有着非常不同的人。

这个想法最终是出于这样一个事实,即选举与二进制系统很好地契合。此外,各州之间存在相关性的事实促使人们尝试将其放在量子计算机上。对于量子计算机来说,其优势确实在于它们是内在相关的系统。你无法影响系统的一部分而不影响其余部分。我已经在早期量子设备上进行了相当多的研究的一个机器学习算法叫做 Boltzmann 机器。它具有表达美国总统选举的确切类型问题的所有理想属性。

实际上,你需要一个模型,可以为每一个可能的结果分配一个概率。所以,如果你有 50 个状态,就有 2⁵⁰种可能的结果。如果你正在做一个真正的预测,每一个潜在的结果都不为零,即使其中一些结果的概率非常低。所以在一天结束时,最好的预测将有能力为所有可测量的结果创建准确的概率,然后将所有这些东西加在一起,给出一个真正的概率预测。

实际上,这在实践中非常困难的原因是因为有大量可能的结果,而且没有人愿意计算所有这些数字。人们通常做近似,或者他们会忽略状态之间的相关性,因为这样很容易对单个状态建模,然后只需将所有单个结果相加即可。我们有了这样的想法,也许我们可以将这个映射到一个量子系统上。当系统处于叠加状态时,理论上它同时处于所有可能的状态。通过进行有限数量的样本,我们可能会通过利用驱动该系统的基本物理学原理,得到对这个完整概率分布的非常好的近似。

简而言之,这就是我们为什么认为这是一个强大的建模方法的原因。这是一个非常难以经典方式进行的概率分布,但我们认为量子计算机有一些自然的适应性。将其放在 D-Wave 等量子计算机上对于这种建模工作是一个很容易的选择。在整个过程中,我们能够成功生成通过了你想要的所有检验的结果。

我们从 FiveThirtyEight 那里获得了数据,他们是做这种选举数学建模的领先机构。在整个过程结束时,我们预测的结果与 FiveThirtyEight 自己产生的一般趋势线相匹配。同时,我们的模型对特朗普的态度比 FiveThirtyEight 模型稍微乐观一些——这是一个有趣的结果。

我们并不是说量子方法更优越。但是,我们真的相信,获得对可能状态数量成指数增长的良好近似是一个困难的问题,而这些量子系统可能比经典计算机更自然、更本能地处理。我们正在考虑为 2020 年重新进行这项研究,并尝试此次进行实时操作。我们认为现在是量子计算机的早期阶段,但这对于可能适用于近期设备的问题类型来说是一个非常合适的选择。这个问题也足够小,以至于你现在实际上可以将整个美国选举适应到 D-Wave 上。

看看在下一个选举周期会发生什么将会很有趣。

Arun:我猜一年后我们就会知道了。马克斯,你提到了一个有趣的观点,人们往往很快就会选择变量,或者说忽略变量之间的相关性。这样做会让事情变得更简单,但可能不太准确。例如,在金融服务行业,当人们进行投资组合再平衡时,改变特定资产类别的权重会对同一投资组合内的其他配置产生影响。

相关性使整个建模和优化任务变得更加复杂。在金融服务中,我们遇到了主成分分析PCA)。这简化了优化过程。你们的量子解决方案是否正在考虑这个问题?

Max:是的。投资组合再平衡实际上是我们研究使用量子计算进行金融应用的确切用例之一。我认为总会有人试图实施简化方法,试图摆脱处理相关性的计算负担。根据你所处理的实际系统,可能会有一些简化,可以让你做更多或更少的事情。你可以摆脱这些复杂性,但仍然能很好地代表问题。

然而,在某些其他问题中,往往涉及高度相关的系统,这些逼近可能效果不佳。这取决于每个问题的具体情况。这还取决于你的结果需要有多好。在极端情况下,如果你想准确模拟具有相关性的系统的相互作用,你就不能进行逼近并期望结果会很好。肯定有一些技术可以帮助克服问题,但这取决于情况和你需要的精确度。

阿伦:谢谢你。我有几个问题打包在一起。如果我让你用水晶球预测一下,几年后你和 QxBranch 会在什么地方?问题的后半部分是:在你的发展路线图上,最大的障碍是什么?解决了就会让你的生活变得更轻松的事情?

马克斯:是的,非常好。我想提一下量子计算堆栈,这样我们就有一个共同的参考点。量子计算堆栈描述了不同公司在新兴的量子计算生态系统中构建不同层级,以执行不同任务的情况。在堆栈的最底层是那些在实验室里努力构建新型量子计算机的公司或研究团体。而 QxBranch 则位于堆栈的对立面,在顶部。我们试图构建底部和中间部分之上的软件层。这将被量化分析人员、数据科学家或软件开发人员使用,以利用量子算法,而无需了解量子物理学。这些用户将非常类似于今天世界上的普通数据科学家;他们可能不了解晶体管的工作原理,但他们也没必要了解——即使他们的计算机使用了很多晶体管。这是 QxBranch 的发展方向:为不了解量子物理学的用户构建利用量子的软件。

我们希望继续与个别公司合作,找出他们最困难的问题所在。然后,我们希望开发量子算法和应用,使那些不需要知道算法原理但需要了解这种算法如何适用于他们使用案例的人能够轻松访问。这是 QxBranch 放置赌注的地方。我们是量子软件公司,在量子计算堆栈的顶层。我们将在几周内发布我们的软件平台的第一个版本,以实现这一点。

阿伦:很高兴听到这个消息,马克斯,祝你的软件发布顺利。那么,你们面临什么挑战?目前是什么在阻碍你们的增长或进展?

Max:回到量子计算技术栈,根据你在技术栈中的位置,你面临的挑战将会不同。对于技术栈底部的人来说,挑战确实是研究和科学挑战。要构建更好的量子硬件,你必须找出能够增加量子位的相干时间的技术,以便获得更低的错误率。你必须找出可以让你的量子位系统扩展的布局。对于硬件提供商来说,有一系列工程和物理问题需要解决。

对于软件提供商来说,存在着不同的挑战集合,其中一些挑战是如何弥合技术人员和学科专家之间的鸿沟。在像银行这样的组织中,将要从事量子计算的人们并不完全脱离量子计算的复杂性。他们不能完全对量子计算的工作原理一无所知。这是一个中间阶段,早期受益于量子计算的人们也将需要对量子计算的工作原理有更深入的了解。在帮助客户确保他们充分了解基本技术的过程中确实存在挑战,这样他们就能理解它可能对他们的业务产生什么影响。

另外,量子软件始终会受到硬件进展的限制。我们可以构建一些良好的软件工具,但如果最终没有硬件工具可以与该软件框架连接,那么解决特定行业问题的量子应用公司将在这方面面临困难。你知道,我们不是试图推动技术栈的那一部分。因此,我们最终依赖于硬件提供商制造出与业务应用相关性的良好量子硬件。所以,我认为这是技术栈顶层人员面临的挑战。

阿伦:因此,让我们期待整个技术栈的更好创新,这样一个团队不会被另一个团队所阻碍。在这一点上,Max,我想我们已经到了采访的尾声。我想再次感谢你的时间和精彩见解。

Max:不客气,阿伦。随时告诉我书的进展如何。

阿伦:绝对。

结论

与 Max 的讨论帮助我拓展了对量子计算应用的视野。直到我偶然发现 Max 的工作,我才了解到量子计算在金融服务、物流、医疗保健和其他传统数据丰富的行业中的应用。然而,在这一背景下,政治是一个新的行业,并且它非常需要数据。

马克斯与我们分享的另一个有趣观点是量子计算堆栈中的痛点。在这里需要注意的是,量子计算技术堆栈的各个层面都在创新,而堆栈的每一层(无论是硬件还是应用)都有其自身的挑战。堆栈中某一部分创新的减速会对整个堆栈中的创新产生深远影响。

与戴夫·斯内林的讨论非常相似,马克斯也认为量子计算的发展可能会有一个混合步骤。混合步骤可能涉及新古典计算方法。在第五章与富士通公司院士戴夫·斯内林博士的访谈中,我们看到数字退火器如何成为经典和量子计算之间的桥梁。

但对我来说,本章最重要的收获是,领导民主政府形成依赖于尖端技术的人们。社交媒体数据是使所有对了解选民感兴趣的各方工作的关键组成部分。我希望当马克斯在 2020 年美国选举中使用他的应用程序时,我们将看到更多的突破性成果。

第十章:对智慧城市和环境的影响

技术使我们的生活变得更美好。然而,许多使我们受益的技术不幸地对环境造成了损害。我们能否在朝着更可持续的生活方式迈进的同时保持现代生活方式呢?本章重点介绍了量子计算和区块链在智慧城市和环境应用方面的应用,以及这些应用可能给我们带来的一些答案。

我们是地球上曾经走过的最聪明的物种。大自然赋予了人类不可思议的身体和心智能力。伴随着巨大的力量也伴随着责任。当我们开始利用技术和人力资源来改善我们的生活时,必须以可持续的方式进行。我们需要意识到我们与动植物王国的朋友共享这个世界。更重要的是,我们必须考虑我们想让我们的后代继承怎样的世界。

社会各个层面的创新都需要对我们生活的世界的长期健康保持一致。除了技术丰富外,智慧城市还可能意味着更加绿色的城市。在本章中,我将介绍技术如何用于交通管理、废物管理和气候建模等应用。

那么,我为什么关心呢?

26 年多前,我和一群朋友以及我的老师一起前往参加考试。我们去考试中心的交通工具是一辆牛车。在我印度泰米尔纳德邦的村庄里,这曾经是一个常见的景象。这个村庄叫梅拉加拉姆,位于泰米尔纳德邦和喀拉拉邦交界处,西高止山脉的山脚下,距离约 5 英里。

曾经有一个时期,我们可以去我们房子的天台看到被称为"主瀑布"的瀑布。这是印度南部顶级旅游景点之一,每年 6 月至 8 月期间定期被全球各地的人们参观。这是一个美丽的村庄,我仍然梦想着能够从"家"里,也就是从我的村庄工作。

我度过大部分时光的学校叫希尔顿中学。学校由一个颇具魅力的贝尔先生领导;一个我们都尊敬和喜爱的人。我们都对学校有很多回忆。它位于印度最南端两个邦的边界的山脚下仅一英里的地方。季风带来雨水,我们能够从教室的窗户看到我们称之为"旧瀑布"的瀑布。

学校有一个美丽的花园,甚至学校的食堂(我们称之为"mess")也在花园的中心。我们每天早上乘坐学校巴士上学,途中会经过湖泊、绿色田野、瀑布、茂密的植被和小溪。仔细想想,对比起今天我孩子们在英国上学时的通勤,这更像是每天的郊游而不是通勤。

我们的家离学校有几英里远,周围也是绿色的社区。我们家对面有一个蚂蚁丘,离我们家的大门大约有一个板球球场的距离。我们家周围是稻田,稻米在那里被种植。我们的许多邻居养着牛、鸡和干草堆,我们会在那些田地里玩整天。

在每年 6 月和 7 月的季风季节以及 11 月,我们会在铅笔盒里收集一些小红色绒毛般的虫子。我在那个村庄住到 15 岁,然后搬到了炎热、潮湿、拥挤和污染的钦奈市上高中。

我几乎认为我的家乡的绿色山丘、美丽的风景和轻柔的小雨是理所当然的。钦奈对我的身体是一个冲击。我会骑车上学,当我回家时,我得洗掉额头上的黑烟灰。在夏季,路上的焦油会融化。我知道我离开了天堂去寻找一个更好的生活。这不应该是这样的。

这一章将智慧城市与环境联系在一起是有原因的。智慧城市不仅仅是为了让我们的城市充斥着追踪市民行为的设备。它们不仅仅是为了从这些设备中获取数据,并做出实时决策以优化城市的运作。它们还意味着确保城市不必失去其绿色才能变得聪明和复杂。

每当我想在社交媒体上分享有趣的内容时,我的首选都是环境意识、气候变化和塑料污染的内容。这些故事中有人带领着清理塑料污染海滩的行动,或者在辞去高薪工作后创造了数百英亩的森林土地。这些故事激励着我。

那么,新兴技术如何有助于创建智慧城市呢?最近,我开着特斯拉从伦敦希斯罗机场回到肯特的家。副驾驶座位上坐着一位在英特尔工作了几十年的朋友。我们讨论着特斯拉自动驾驶引擎背后的人工智能在印度道路上的部署方式。

交通管理是量子计算机的一个很好的应用案例。这些机器将需要得到来自物联网设备和电信提供商的地理空间数据的支持。在交通管理是一个重大挑战的新兴经济体中,已经试点使用人工智能来更好地解决问题。然而,这个问题远未得到解决。

随着世界专注于使我们的城市变得更好,确保我们在这个过程中不伤害环境至关重要。朝着智慧城市的努力也应该是保护环境的一部分。气候变化已经成为世界各地最高层次的讨论话题。自然纪录片谈到了极地冰雪融化及其对野生动植物和气候模式的影响。

关于气候变化是否仅仅是一个我们可能不得不经历的周期,或者是人为造成的问题,仍然存在争议。有人认为这仅仅是一个缺乏足够数据点支持的理论,有人认为在过去的 10-15 年里,人类已经造成了大部分的气候变化。

这是否是技术可以帮助评估的事情?像 PolArctic 这样的初创公司正在对北极冰的融化及引起其融化的变量进行建模。建立气候变化及其周围变量的综合模型是一项困难的任务。量子计算可能是模拟自然工作方式的最佳平台。过去的技术在这项任务上并不成功。将自然或物理建模到经典计算机中比在量子计算机中更困难。

当我们模拟气候变化时,我们进入了相互依赖变量的领域。在本章中,我将讨论通过智慧城市创新使我们的生活更美好,通过理解自然的创新使我们的世界更美好的努力。

智慧城市

全球范围内的智慧城市倡议涉及在城市各处使用数据捕获设备,为城市居民提供情境化和最优化的服务。到 2025 年,智慧城市市场预计将达到 7000 亿至 2.4 万亿美元。很难确定正确的数字,但这是发达国家和新兴经济体的巨大全球市场。

有几个智慧城市用例涉及区块链和量子机器学习。在本章中,我们将涉及以下一些领域:

  • 停车

  • 交通管理

  • 城市规划

  • 垃圾收集

智能停车

典型情况下,在智慧城市项目中,我们看到政府与私营部门密切合作以取得成果。例如,英国的一个计划旨在提高停车效率。该过程涉及实时获取车辆数据和停车位可用情况。虽然有几个应用程序可以保存停车数据,但将它们全部纳入中央存储库以提供智能服务的数据标准尚未制定。

因此,英国政府在 2019 年 5 月发布了一项关于标准化停车应用程序数据的公告。这些数据将包括停车数据的可用性、允许的时间和价格。这将通过一个综合平台向所有汽车司机提供。来源:www.gov.uk/government/news/uk-on-verge-of-revolution-to-make-parking-easier-and-help-british-high-streets

此类倡议面临的挑战在于,一个国家的人民正在与政府分享大量个人数据。集中保存此类数据令数据所有者感到担忧。这为黑客提供了机会,但也允许决策者访问某些类型的数据,这些数据可能被公民视为侵犯隐私。

区块链可以帮助降低这些数据的所有权。即使是许可的区块链,也可以由事先同意的一组实体充当公共信息的门户,比完全集中的设置要好。纯粹主义者可能不愿称许可账本为区块链,但在我看来,在完全走向欣赏纯粹分散的生态系统之前,中心化世界需要进行几次迭代升级。

有像委托权益证明DPoS)这样的协议,可以由少数几个节点来验证交易。虽然它们没有权限更改交易细节,但它们可以在网络中签署和广播交易。在 DPoS 协议中,代表是由网络通过投票选择的。因此,如果有一个不诚实的代表节点,网络可以通过投票将其撤销。

这些协议可以作为过渡到分散的数据世界的桥梁。然而,我仍然相信即使在目标状态下也会存在一定程度的中央集权。回到我们的智能城市示例,结合良好的元数据管理,区块链的使用可能是数据隐私的未来。在英国有像 people.io 和 Nuggets.life 这样的公司专注于解决数据隐私的问题。

尽管像智能停车这样的技术在英国这样的国家可能会有重要价值,但在许多新兴市场,交通管理是一个重大问题。现在让我们看看技术如何帮助解决这个问题。

交通管理

一想到交通管理,我脑海中浮现的画面就是印度混乱的道路。管理和规范像印度这样的国家的道路是当今技术面临的最大挑战之一。15 年前我搬到英国时,我经历了取消和重新学习驾驶技能的过程。

现在,我在英国的道路上比在印度的道路上更自如。多才多艺的司机可以在这两个国家舒适地开车,但坐落在我大脑中的智能引擎却难以适应。人类大脑需要花费大量精力来适应在两个非常不同的环境之间的转换复杂性。在人工智能达到应对这种情况所需的复杂程度之前,可能还需要一段时间。

然而,并不是说不能通过在这些背景下部署尖端技术来实现效率。在我与印度阿姆里塔大学的研究主任的交谈中,她透露他们正在进行使用机器学习进行交通管理的研究。

在我与富士通的讨论中,他们透露他们的量子启发式数字退火器也解决了交通管理问题。他们在仓储分布场景中部署了他们的解决方案,并实现了 45%的效率,找到了最佳路线。

将地理空间数据与传感器和雷达数据相结合可以有效地管理交通。由于全球手机的普及,大部分地区都可以获取来自移动电话基站的地理空间数据。使用这些数据可以实现对拥挤的积极识别。历史数据中的模式也可以预测交通堵塞的概率。

使用这些数据更容易识别城市的某一部分的拥挤,但很难预测拥挤。雷达部署在新兴市场以识别交通拥堵,然而,由于硬件成本和在实时情况下捕获和传输大量数据的挑战,它们不可扩展。在印度,雷达传感器的成本可能高达£40,000,这使得广泛部署成为不可行的选择。

交通摄像头结合图像识别算法可以识别拥挤的十字路口。当结合无人机使用时,这对实时管理交通拥堵非常有用。然而,智慧城市必须向交通拥堵的预测建模和解决方案识别方向发展。

在印度钦奈进行的一项最近的实验中,城市繁忙地区设置了 64 台摄像头。一天内约有 90,000 名违规者被识别并处以罚款。识别到的违规行为包括逆行、禁止通行、闯红灯和三人骑行。这表明即使在实施此类控制的范围较小且有限的情况下,也可以获得效率。

地理空间数据可以识别交通流量。这些数据可以帮助模拟城镇的某一部分有多少人在什么时间驾车到达另一部分。可以捕捉到这些数据的模式。然而,更难建模的行为点是一个城市的某一部分交通增加、事故或路障如何影响城市其他部分的交通。这就是量子退火器可以使用的地方。

在量子退火过程中,用于优化的信息被输入到一个物理系统中。在量子退火器上建模交通管理问题与旅行推销员问题非常相似,如《第二章,量子计算 - 主要讨论点》中所讨论的那样。量子系统准备在问题的许多可能解的叠加态中。不同可能解的概率通过退火过程演化。

随着退火过程的进行,能量较低的选项成为问题的可能解决方案。通过系统的基态识别的解的概率最高。这个过程使用的哈密顿函数管理系统的能级信息。

在繁忙城市的交通管理中有两个需要考虑的方面。一是不断发生的交通拥堵,以及如何解决它们,二是预测交通拥堵的发生。实时数据采集可以使资源被分配到交通拥堵的地区。

能够预测交通拥堵可以使道路工程、事故管理和交通管理变得更有效率。随着自动驾驶车辆开始变得主流,管理交通的综合基础设施变得愈发重要。

城市规划

在世界许多地方,城市规划和治理由理事会和管理城市的公共部门组织完成。我们将要涉及的过程包括理解新建筑、天桥、公园和道路对市民生活的影响。

新建筑、公园和道路基础设施是快速发展的城市的重要补充。然而,它们也会影响城市的碳足迹、排水基础设施、雨水管理和交通管制。需要将地理空间数据与 3D 建模技术相结合,以优化城市空间的利用,造福市民。

废物收集

随着自动化接管世界,几家公司正在进行研究,以确定其对就业岗位的影响。根据普华永道公司最近的一份报告,英国的废物管理行业预计受自动化的影响最大。如下图所示,该行业超过 62%的工作岗位有可能被机器取代。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 1:自动化导致就业岗位受到威胁的预测图表 出处:www.pwc.co.uk/economic-services/ukeo/pwcukeo-section-4-automation-march-2017-v2.pdf

我会对关于废物管理行业的上述统计有不同的理解。高百分比向我们表明,只需少量的智能自动化即可在废物管理行业获得许多效率。本次讨论的具体关注点是废物收集流程。

废物收集的当前流程涉及卡车在城镇的每条街道上行驶,并从垃圾箱中收集垃圾。在英国,已经对带有传感器的垃圾箱进行了试点测试。这些传感器可以提供垃圾箱的装满程度信息,以便只需要收集更满的垃圾箱。垃圾箱上的传感器也可以在它们装满时发送警报。

在英国与拉格比自治市议会展开的试点项目中,使用太阳能智能垃圾箱,帮助将年收集垃圾数量从 51,000 减少到 1,509。随着这一过程成为主流,可能会有进一步的效率提升。例如,量子退火器可以通知垃圾收集卡车收集垃圾的最快路线。

从可持续性的角度来看,传感器可以向市政府提供垃圾最少的家庭信息。市政府可以制定智能税收制度,为垃圾最少的家庭提供退税。我们可以进一步确定垃圾最多的家庭,并对他们征收更多的税款。随着物联网变得日益普及,量子计算的应用可以帮助实现规模效应。

气候建模

除了一些气候变化怀疑论者外,大多数人都认识到气候变化是一个我们不能再忽视的重要现象。根据世界自然基金会WWF)的数据,地球每年失去 1870 万英亩的森林,相当于每分钟失去 27 个足球场的面积。这是一个严重的问题,因为森林是碳汇,树木吸收和储存二氧化碳。

有一个假设认为气候变化或全球变暖是一个周期性事件。自上一个周期以来,冰河时代之后,全球温度在 1 万年的时间里上升了 3°C 到 8°C。当前的科学共识是,人类行为导致的碳排放是加速这一气候变化周期的一个重要因素。政府间气候变化专门委员会IPCC)的研究已经确定,最近的气候变化与人类活动有 90% 的关联性。来源:www.ipcc.ch/

碳排放和温度上升在过去的 200 年也有记录,并且被发现密切相关。有很大可能性是这些排放物在温度上升中起着因果作用,因为二氧化碳(CO[2])等温室气体被认为会在大气中吸热,导致全球温度上升。参考:www.nature.com/articles/srep21691

然而,情况并非尽是悲观。大自然有着奇特的方式,能够从灾难中复苏生命。最近有一篇关于乌克兰切尔诺贝利的文章给了我希望。三十年前发生的切尔诺贝利事故糟糕到现在“切尔诺贝利”一词已经成为灾难的代名词。1986 年,切尔诺贝利核反应堆突然释放了大量能量。随后数日,空气中弥漫着放射性物质。事故造成的死亡人数估计有数千人。

自灾难发生以来,当时是苏联地区的一片区域已经被遗弃了 2600 平方公里。然而,三十年后,切尔诺贝利的植物和动物生命都已经回归。一篇关于该地区复苏生态系统的最新文章描述了植物如何适应了放射性环境。Business Insider 的文章称,切尔诺贝利今天的植物和动物生命比 1986 年灾难之前都要好。来源:www.businessinsider.com/chernobyl-exclusion-zone-animal-refuge-2019-5?r=US&IR=T

这表明,如果我们付出系统性努力来恢复我们失去的森林,气候变化的影响是可以逆转的。恢复森林需要几十年的时间。因此,在此期间,我们迫切需要借助技术来应对气候变化。虽然长期的重新造林工作提供了一种有前途的缓解方案,但我们还需要能够应对当前世界各地正在经历的气候极端情况。一个双管齐下的方法是有效管理气候变化所必需的。

技术可以帮助促进气候变化建模的两个关键领域:

  1. 量子退火和机器学习可以帮助我们对世界各地的空间和时间气候条件进行预测建模,使我们能够预测并管理世界各地的极端天气事件。

  2. 量子计算可以帮助我们确定和量化气候变化最有影响力的驱动因素,进而为全球缓解方案提供信息。

第一个是一种战术性的练习,可以帮助我们预测、监测和管理全球范围内的极端天气模式。第二个是一种更具战略性和实验性的方法,我们在其中确定人类必须接受的关键生活方式变化,以长期应对气候变化。

了解气候变化需要数据涵盖多个变量 - 这些已知变量会影响一个地区的气候条件。它们是:

  • 生物地理学

  • 大气环流

  • 海洋循环

  • 地球的倾斜

生物地理学

生物地理学指的是植物和动物在地球上的分布。正如我们之前讨论的,拥有地、冰、植物和动物的最佳组合至关重要。当冰层过厚时,植物和动物会争夺土地,就像冰河时期一样。通过冰河时期的气候变化导致猛犸象和剑齿虎等物种灭绝。然而,我们更可能遇到的气候变化是冰的融化。这可能导致生活在极地地区的动物灭绝。

动物物种的灭绝影响了地球的植被模式,进而影响气候模式。曾经有过这样的情况,引入某些动物(如海狸)到生态系统中会改变自然景观和一个地区的气候模式。这种现象被称为“反馈循环”。海狸影响了河流和溪流的流动,从而影响了植被。随着植被模式的变化,会出现新物种的动物来进一步影响景观和生命的平衡。来源:www.nature.com/articles/nature10574

因此,了解一个地区、大陆甚至一个行星的生物地理对数千年来气候模式的影响至关重要。动物、植物、景观和气候模式的演化之间存在固有的相互依赖关系。这样的环境被称为“开放系统”;这些系统由于我们无法控制系统内的变量以及变量相互作用的倾向而变得极为复杂。这些特征使得传统计算机(以及气候科学家)极难模拟这些行为。

大气环流

地球大气中的空气运动始于赤道。赤道处的高温使空气上升。随着空气上升,变冷并导致冷凝,进而降雨。这是影响世界范围内天气和植被模式的重要现象。随着空气从高压区向低压区移动,它创造了世界上干湿不同的区域。

从赤道到赤道南北 30°的空气运动形成了沙漠。由于这部分空气的水分很少,这个地区的降雨量较少。这个区域被称为哈德利环流。如下图所示,每个区域都有特定的空气运动模式,并具有不同的名称。空气的运动形成了蒸发、冷凝和降水的循环,影响了全球的天气模式。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 2:全球大气环流示意图

海洋流

海洋流对全球天气模式有影响。海洋中的温度以三维模式流动,即东到西,北到南,以及表面到深处。热带海洋中的风从东向西吹。因此,陆地沿海地区的温度梯度从东到西。例如,太平洋西部比东部温暖 8°C。

然而,随着贸易风减弱,暖水由于重力作用向东移动。当这种暖湿的天气模式向东移动到南美洲沿海地区时,我们看到厄尔尼诺效应。

厄尔尼诺现象会导致南美西北部地区升温。由于海洋表面最温暖的部分产生了最多的蒸发,我们也会看到热带风暴向东移动。这影响了地球上的天气模式。厄尔尼诺现象每隔几年发生一次,科学家们无法准确预测它。

地球的倾斜

地球的倾斜会影响风的大气环流。由于倾斜,地表的空气会被偏转。偏转的空气在北半球初始轨迹的右侧流动,在南半球则相反。地球绕太阳的轨道上的革命形成了气候周期。

这些周期长达 10 万年。在这些周期中,地球的倾斜从 21.5°变化到 24.5°。由于倾斜影响了太阳的输入、海洋流和大气环流,它对气候周期产生了显著影响。

量子计算解决方案

正如前面描述的,由于存在多个相互依赖的变量,影响地球气候的意义重大,因此使用经典计算方法难以有意义地模拟气候模式。量子计算机应该能够处理模拟气候变化所需的数据。第一步需要明确确定气候变化是由人类行为引起的。

2019 年 1 月,埃克森美孚与 IBM 的量子计算能力合作进行环境建模。模拟自然现象最好由量子计算机完成,因为自然本质上是量子机械的。要在经典计算机上完成这项工作,需要将物理学转化为计算机科学,然后加载到计算机中。在量子计算机中,物理学以其本来的状态被编码。没有翻译,因此在这个过程中没有信息丢失。因此,使用量子计算机模拟其行为应该更加准确。

在我最近与一位物理学家的谈话中,他提到量子计算机应该是模拟物理学的好工具。除了量子计算机在计算能力上的提升外,它模仿自然的事实使得如果正确利用,能更好地模拟自然的行为。

南加州大学也正在利用量子计算机解决气候变化难题。随着量子机器学习和退火过程变得主流,我们将会有几种解决方案可以每天使用,以了解我们对环境造成的影响。我们将能够更好地预测天气条件,并更有效地管理极端情况。

结论

在智能城市和气候建模中应用量子机器学习和退火技术仍处于非常早期阶段。与金融服务和医疗保健应用相比,这些应用仍然远远落后。虽然新兴技术在智能城市应用可能会暂时等待,但我们必须对气候变化有一个牢固的理解。

气候变化的新兴影响也许是影响我们生活和未来世代生活的一些最重要的现象。政策制定者必须利用量子计算等技术来推动最高层次的决策制定。以气候变化为中心的自上而下的方法将帮助我们作为公民抵抗人类行为对我们星球的长期影响。

我们迄今为止已经涵盖了量子计算在医疗保健、金融服务和智能城市领域的应用。在接下来的章节中,我们将探讨量子计算在物流领域的应用,物流是使用经典计算机难以解决的一些最困难的问题。我们还将研究抗量子攻击的账本,这可以被区块链社区用来做好量子准备。

第十一章:牛津大学量子计算研究员山姆·麦卡德尔的采访

在本书的几个前章中,我已经触及了量子计算走向主流的障碍。量子计算的一个主要障碍是错误校正的挑战。在经典计算机中,比特有两种状态,“0”和“1”。因此,错误校正要容易得多。在量子计算机中,量子比特在计算过程中的任何时间点都可以处于叠加状态。因此,要在不中断计算的情况下观察和校正它们的值更加困难。

量子计算中的错误修正是一个迷人的领域,有几种技术正在被探索。因此,我想专门进行一次采访,因此一个章节,来讨论这个主题。我在布里斯托大学的一个量子计算活动上遇到了山姆·麦卡德尔。他在活动上做了一个关于他在牛津大学的研究的演讲。该研究集中在量子错误校正上。

山姆在活动上的演讲非常引人入胜,主要是因为他简化了叙述。他在演讲中仍然在必要时讲解技术内容,但清楚地表明观众对他的演讲很感兴趣,并提出了几个有趣的问题。这与我看待这项技术的方式一致。尽管量子计算的数学和物理内部复杂,但从使用案例的角度来看,始终有简化的空间。

因此,我联系了山姆,询问他是否愿意为这本书接受采访。我希望我们的采访重点放在错误校正和他在牛津大学的研究上。山姆很友好地同意了,在几次电子邮件互动之后,我们设法进行了一次录音采访。采访内容如下:

阿伦:我们现在正在录音。谢谢你抽出时间来,山姆。

最近,我和一家为医疗保健领域创建量子计算解决方案的公司的 CEO 进行了交谈。他告诉我一些我们都知道但没有准确表达的事情。

经典计算机将物理概念转化为计算机可理解的代码,并基于该代码复制物理过程。在将物理变成经典计算机上的物理之前,需要经历三个阶段。量子计算机则更自然地模拟物理过程,而不需要太多的转化。因此,在使用量子计算机模拟自然过程时,信息损失较少。这很有趣,因为我们在这里讨论量子计算机内的信息损失。让我们谈谈量子计算机中的错误校正以及与经典计算环境中的错误校正有何不同。

山姆:让我们首先讨论经典和量子计算机背景下的错误。在经典机器中,你必须考虑"位翻转"错误;从零到一的概率性位翻转。这些错误也存在于量子计算机中。然而,量子计算机还受到另一种类型的错误的影响,称为相位翻转错误,这些也需要被纠正。

这些错误可以通过纠错技术来解决。在经典纠错码中,我们可以复制我们的位并执行多数投票方案。因此,在经典计算机中,除了硬盘和其他需要长时间存储内存的设备外,你不需要太多的纠错性能。

这些也内置了一些冗余,这样可以阻止信息随时间的流逝而逐渐降解,但它们的故障级别很低。大约是 10¹⁵中的一部分。在今天的经典计算机中,我们更关注处理在编程过程中发生的错误。因此,在经典计算机中,我们并不真正担心纠错作为一种限制。

相比之下,量子计算机对环境的敏感性要高得多。因此,纠错要更加谨慎。如果在经典硬盘中大约是 10¹⁵的一个部分,那么在我们现在拥有的量子计算机中,它更接近于 10²或 10³的一个部分。

如果你要长时间运行计算,你需要纠正由于与环境的相互作用而产生的缺陷。有一些方法可以使用量子纠错码来实现这一点。从难度的角度来看,当我们使用经典的纠错码时,你可以直接审查你设备中的信息。人们谈论的最常见的一个是重复码。

如果你想要存储一个单个的位,它可以是"0"或者"1",你可以简单地将它复制三次。如果发生错误,很不可能有两个位受到影响。一个错误是最有可能发生的事情,这种情况下当你查看你的三个复制位时,有两个仍然是相同的,而其中一个可能已经改变了。你可以采用多数投票的方式。你可以看出发生了什么错误并修正它们。在量子计算中则不同。

量子计算利用了两种主要的量子效应:叠加和纠缠。叠加是著名的薛定谔的猫效应 - 粒子能够同时处于两个位置,或者量子位(qubit)可以同时处于零或一的联合状态 - 只有在测量时才能揭示结果。纠缠可以宽泛地定义为两个粒子之间的比经典更强的相关性,因此不再有意义地将纠缠的两个系统视为单独的实体。这两种效应可以结合起来,使量子计算机比其经典对应物具有优势。

然而,量子信息是脆弱的,同样的效应会变得相当破坏性。在量子计算机中,由于你无法复制信息,也无法直接询问量子比特,因为那样会显示它们处于什么状态,并打断你的整个计算。你必须更聪明地去询问系统,尝试了解发生了什么错误,并找到纠正这些错误的方法。

我们的量子计算机必须位于某种环境中。计算机中的量子比特与环境相互作用。这表现为我们量子状态的降解,实质上迫使其退化到经典状态。尽管实验者尽力保护他们的量子计算机免受环境的影响(通过将它们保持在低温下、封装在真空中和/或受到磁场的保护),但错误率仍然比在经典计算机中找到的要大得多。因此,如果没有任何错误保护,系统的量子特性将很快消失。

我们可以使用纠错码为我们的量子系统提供一定程度的保护。粗略地说,这通过将量子比特的逻辑零和逻辑一状态编码到一个分布在许多量子比特上的高度纠缠的状态中来实现。我们可以对我们的量子比特进行设计巧妙的检查,这些检查不会告诉我们状态的确切内容,但至少可以告诉我们是否发生了某些错误,错误在哪里以及如何纠正它们。

Arun: 有趣。谢谢你。我们能否讨论一下今天我们对量子纠错所采用的几种方法?哪些是最常见和最流行的?

Sam: 用于纠错的主要方法基于代码。全球试图实验性地实现的大多数代码都可以用稳定器形式来描述。它实质上是一个很好地封装了代码行为方式的数学形式化。它提供了描述代码行为的良好方法,并使其更易于处理。

稳定器形式已经导致了一系列良好的代码,其中一些比其他代码更容易实验。一个广泛研究的代码被称为表面码,它与其他一些代码有些不同,因为它具有拓扑性质。

它取决于表面的拓扑结构。表面码的吸引人之处在于,你可以仅使用一个以最近邻相互作用方式排列的量子比特阵列来实现它。如果你尝试用固态量子比特、超导量子比特或硅来构建你的量子计算机,那是一个非常吸引人的架构,因为这是你的系统的自然相互作用方式。

表面码的另一个有用之处在于它具有非常高的码阈值。在这一点上你可以说:这是我系统的物理误差率。阈值表示:如果我能将误差率降到某个值以下,那么我就可以让我的代码更大。我可以不断降低计算机的整体误差率。然后纠错就会起作用。如果你高于该阈值,进行纠错就没有意义,因为这只会让一切变得更糟。

值得注意的是,在人们实际的硬件系统中实现的错误率,让人们对如果扩大这些系统并保持高质量感到有希望,这种代码可能会在实验中实现。某些研究小组在其硬件系统中实现的错误率,现在与我们对表面码阈值的估计相当。

如果这些系统在保持这些错误率的同时能够扩大,那么这可能是通往大规模量子计算机的一个有希望的途径。

阿伦:谢谢,这是关于表面码的一个有趣概述。我们也遇到了 NISQ 计算。从量子纠错的角度来看,这有什么重要性?使用 NISQ 的未来可能性有哪些?

萨姆:NISQ 代表噪声中间规模量子计算。在当前时代,我们拥有的是小型量子计算机。如果要进行纠错,就需要更大的量子计算机。在容错量子计算机中,通常会有数千个物理量子比特用于纠错。如果要实施表面码编码,可能需要一千个物理量子比特来编码一个纠错逻辑量子比特。

一个合理的问题是,为什么我们不在有噪音的量子比特上进行计算?如果你打算这样做,你运行的算法不能太长。如果运行时间太长,就会增加错误积累的机会,从而破坏你的计算结果。

采用 NISQ 时,不需要进行任何纠错;只需运行你的算法。这在化学模拟等用例中可能效果不错。

然而,在这种情况下,算法会使用更短的电路运行。当量子比特存在噪声时,相干时间就会很短。通常情况下,较短的电路运算时间较短,可以更快地得出结果,并且错误更少。

NISQ 采用了与量子纠错完全不同的方法。NISQ 通常涉及交换长电路,而不是一次次重复更小的电路。在每次重复后,你需要重新初始化系统。

如果你应用的量子电路很短,那么人们可能希望在错误积累之前就能实现电路。因此,计算涉及 100 个量子比特时,只需使用可用的 100 个有噪声的量子比特进行计算,而不是尝试将 100 个纠错量子比特编码为 100,000 个有噪声的量子比特。

显然,一个 100 量子比特的机器将比一个 100,000 量子比特的机器更容易建造,但为了使 NISQ 提案能够实现,算法必须与短电路配合工作。

NISQ 算法已经针对化学、机器学习、优化以及一系列其他问题进行了开发。然而,一个问题是很难证明 NISQ 算法会比我们目前使用的经典算法具有任何优势。

正在进行研究以证明电路可以做得足够小以减少噪声的影响。虽然已经提出了错误缓解技术,可以帮助实现这一目标,但在我们能够获得容忍噪声的短电路之前,还有很多工作要做。因此,在未来几年,随着世界各地的团队开发更大的 NISQ 机器(50 到 100 个物理量子比特)来测试这些算法,这个领域将非常有趣。

在 NISQ 中有一种混合方法,其中量子计算机执行了经典上困难的任务,而经典计算机则执行了它发现容易的任务——比如一个优化子程序。你通过这个过程迭代,这有助于你解决你正在处理的问题,无论是机器学习、优化还是化学问题。

有些错误缓解技术通过采集比自然情况下需要的更多数据,然后以巧妙的方式组合起来来工作,实际上进行一种平均化,从而可以消除一些噪声。这些技术非常有用。它们可能在从这些 NISQ 量子计算机中获取任何有用信息方面发挥关键作用。但从长远来看,它们也不能替代错误纠正。它们只能容忍少量的噪声。

阿伦:在概念上,这与云计算的演变非常相似——特别是亚马逊网络服务(AWS)。在 AWS 的初期阶段,对其基础设施的资源分配是基于低时间利用率进行的,然后几乎成为一个全新的商业模式。让我们继续讨论下一个议题。

有一个强有力的观点认为,量子计算可能至少还需 10 年时间才能成为主流。如果量子计算在未来 5 到 10 年内克服了一些主要障碍,即使在那时,我认为一些混合解决方案,如数字退火器,仍然可能是相关的。主流化量子计算所需的成本仍然很高。但是,希望在 15 到 20 年内,能够加速,使量子基础设施的成本效益更具吸引力。

你是否有任何特别关注的研究课题?你认为哪些领域将有助于加速量子计算领域的发展?

山姆:一方面,实验小组正试图实施这些纠错程序。这涉及到他们将要实施的例行程序的计算机建模,以模拟错误的类型以及克服这些错误的最佳方法。

当你引入这段代码时,你其实增加了计算的额外开销。有一些科学家致力于寻找在某种编码中实现给定算法的更加资源高效的方式。最近已经做了大量工作,已经减少了(纠错的)开销。其中一些计算是在化学领域进行的。

另一方面,有很多研究人员将研究更多的新型编码。他们不会只关注已经存在的编码,而是会研究人们之前没有深入研究的新型编码。他们希望这些编码可能在算法如何表达、纠错错误方面有一些优势,或者它是否更适合某种类型的硬件而不是其他类型的编码。

阿伦:这绝对是一个有趣的见解。我真希望所有的努力都能汇聚成有意义的东西。在工业场景中,这个领域取得一些成功会对量子计算应用有何影响?

山姆:虽然目前有希望 NISQ 算法可能在未来几年内带来量子计算机的实用应用,但目前尚未得到证明,这将需要在真实硬件系统上进行测试,因为它们变得可用。为了运行为化学、机器学习、优化或密码学开发的可证明快速算法,预计量子纠错将是必要的,因为所需的电路很长。

因此,量子纠错的新发展有望减少实现有用算法所需的资源。这包括空间资源(所需量子比特的数量,这决定了构建量子计算机的难度)和时间资源(算法运行所需的时间)。

这些指标的改善意味着有用的量子计算机将更早地面向工业应用。前者的改善意味着量子算法在较小的问题规模上可能与其经典对应物竞争,这再次意味着它们可能在更短的时间内找到应用。

因此,量子纠错技术的改进应被视为算法进步和硬件发展同样重要的一步,以实现工业上有用的量子计算机的目标。

Arun:好的。最后一个问题。量子计算机在几个工业场景中都能发挥作用。物流领域有巨大潜力,金融服务中的投资组合再平衡也很有意思。还有很多可能性。你能想到哪些使用案例,有什么特别激动人心的吗?

Sam:你提到的这些是好的应用,因为人们已经在解决机器学习问题、优化问题和金融问题方面进行了大量研究。我对使用量子计算机模拟物理系统很感兴趣。

量子计算机在制药行业中可能会很有意思,尝试弄清楚药物会起到什么作用。如果你给他们机会,让他们用电脑查看分子,并计算出它们与其他分子的相互作用方式。这对他们可能是很重要的。

同样,如果你是一个大型材料公司,你可以用催化剂做一些事情。研究催化剂与化学物质的反应以及加速反应过程是一个好的领域。致力于研发能够应对特定挑战的新材料的行业也可以考虑使用量子计算解决方案。例如,电动汽车的电池是一个例子,这里可以通过量子算法研究用于提高能源效率和快速充电的最佳材料。

一个关注重点是模拟一种存在于能够利用大气氮气产生肥料的细菌中的分子。这一过程在自然环境中以常压和温度发生。我们今天用于肥料生产的工业过程是能耗大的。已经有研究证实,纠错量子计算机是否能够辅助模拟这种分子,从而为这一过程提供新颖的见解。

如果你能够了解氮转化细菌的工作原理并复制其行为,那将是一个对世界非常有用的巨大节能。同样,有很多我们希望更好地了解,但目前还无法做到的化学材料。有了量子计算机,我们可能能够模拟这些系统,这将使我们对材料系统有全新的了解,最终甚至可能让我们设计具有我们想要特性的分子。

Arun:非常感谢你,Sam。在这个高兴的时刻,让我们结束采访。

结论

到目前为止,在我们的所有采访中,我们一直专注于量子计算的工业应用。我们已经涉及了金融服务、医疗保健、智能城市甚至政治方面的应用。Sam 的采访聚焦点不同,这是故意为之。我想要专注于量子计算进入主流的关键障碍之一——高误差率。

我们讨论了为什么量子计算机中的错误纠正比经典计算机更困难。量子比特的叠加性质使我们更难以捕捉它们的状态。当我们观察量子比特时,它们的状态会坍缩。量子计算机的这些属性使它们在解决复杂算法方面很有用,并使量子计算机上的信息更安全。然而,它们也使得错误纠正更加困难,因为我们无法轻松观察或复制信息。

在本章中,我们详细讨论了诸如使用较短电路和针对特定算法以及 NISQ 等技术。Sam 用简化的表达将这些复杂的概念栩栩如生地描述了出来。他描述了方法的纠错以及一些突破可能对量子计算产生的影响。当量子计算机内的错误纠正不再是如此大的障碍时,我们还讨论了可能的应用。例如,在计算机中建模氮固定可以在许多方面帮助世界。

一旦我们能够使用量子计算机模拟自然界中发生的氮固定过程,我们就能更好地了解在工业场景中复制它的可行性。这可以节省能源并减少碳排放。有许多类似的应用可能会对我们的生活和地球产生重大影响。

总的来说,在量子计算机内的纠错领域足够庞大,足以写一本专著。然而,我希望通过专家的意见提供一个概述,并展示纠错领域的机遇。

第十二章:对化学的影响

“量子霸权”一词是由加州理工学院的约翰·普雷斯基尔(John Preskill)于 2012 年创造的。科学家们预见到一种状态,在这种状态下,量子计算机将能够完成经典计算机无法完成的任务。尽管这是量子霸权的一个非常宽泛的定义。这或许是谷歌声称他们的柳树芯片(Sycamore chip)已实现量子霸权的原因。

柳树芯片(Sycamore)是一款 54 量子比特的处理器,能够生成随机数。用于执行此任务的算法在经典计算机上需要超过 10,000 年的时间,而在柳树芯片上只需 200 秒。IBM 对此声明提出了异议。他们计算出谷歌的柳树芯片的整个量子状态矢量可以存储在“顶点”——世界上最大的超级计算机,具有 250PB 的存储空间中。

科学家们审查了谷歌的工作,并透露出处理器具有高保真度和超快速门。但这就是量子霸权吗?

在我与量子研究人员的所有对话中,尤其是与富士通的戴夫·斯奈林(Dave Snelling)的对话中,他们强调我们需要谨慎对待围绕量子霸权的炒作。他们证实了我认为该行业显然处于起步阶段,并且任何过早的庆祝都可能适得其反的观点。

回到量子霸权的问题上,在我看来,这与计算速度关系不大。尽管量子霸权有一个通用的定义,但更多地涉及到以前从未尝试过的方式在计算机内对粒子物理进行建模的能力。它更多地涉及到解决我们甚至无法在经典计算机中准确建模的问题。此外,利用量子退火器,具有相关变量的组合优化问题将更容易解决。

这或许最适用于化学和医疗保健中的量子计算用例。我们长时间讨论了技术在医疗保健中的应用。在化学中,研究人员的目标之一是能够解决原子和分子的薛定谔方程SE)。

用于描述原子和分子的 SE 波函数,可以用来模拟这些粒子的物理化学性质。在这个阶段,不详细讨论,要点是经典计算机精确计算分子系统一直是一项艰巨的任务。

在本章中,我们主要讨论化学中的量子计算应用。我们将涉及到关注这一领域的组织、使用的技术以及研究人员正在探索的算法。

化学领域中区块链的应用也很有趣,但相对于其他行业来说,应用相对有限。除了技术在化学供应链中的应用外,我们也开始看到其在风险管理中的潜在应用。在化学工业的紧急情况下,区块链可用于灾难恢复和业务连续性管理。我们也将在本章中讨论这一点。

让我们首先看看量子计算如何帮助我们计算目前用经典计算方法无法解决的化学过程。能够模拟这些过程将使我们能够解决长期存在的工业问题,我们将看到。让我们首先看看氮固定过程。

氮固定

化学品无处不在。从我们喝的水到构成我们身体的细胞,用于农业的肥料,植物光合作用的驱动因素 - 所有这些都是基于化学物质的。了解化学反应过程中化学物质的行为对于预测反应结果至关重要。

让我们以肥料为例。肥料被用于农业以增加作物产量。在早期,农民们使用天然肥料,如动物粪便来改善作物生产。1914 年首次使用了合成肥料,自那时起,这个行业已经发展得如此之快,以至于今天,它占全球能源消耗的 1.2%。

肥料主要分为三种营养素:氮、磷和钾。氮是所有营养素中最重要的。然而,氮以氨(NH[3])的形式供给作物。将大气中的氮(N[2])转化为氨(NH[3])的过程称为氮固定

对于植物来说,这一步骤非常重要,因为它们可以代谢氨,而氮大多是不活跃的。氮固定过程自然发生,由细菌通过酶如氮酶的催化而发生。这些细菌利用这些酶将氮(N[2])转化为氨(NH[3])。自然使其看起来非常简单;然而,在工业背景下,情况并不那么简单。

在工业环境中从氮制备氨的机制称为哈伯-博斯过程。这个过程需要大量能量,占世界 CO[2]排放量的 2-3%。这不仅是因为工业过程,也是由于农业部门对氮的需求。

氮在施用后在土壤中不能长时间停留。因此,必须重新向土壤施加氮。因此,氮肥的消耗和需求高于磷和钾肥料。肥料行业消耗的总能量中有 93%被氮肥占用。

这是一个迫切需要解决的问题。植物及其利用的细菌是如何在不费吹灰之力地将氮(N[2])转化为氨(NH[3])的?为什么我们采取了如此能源密集的方法来生产化肥?我们是否能够在工业环境中复制氮与氮酶等酶之间的反应?

这似乎是值得探索的解决方案,而且确实是全球几位量子计算研究人员的研究领域。这将帮助我们减少 2-3%的 CO[2]排放,并且让我们可以毫无负罪感地吃饭。因此,我们需要开发对自然的氮固定过程的理解。但是氮和细菌之间的反应很难理解,因为经典计算机无法对其进行建模。

特别重要的是深入了解氮酶的辅因子,称为 FeMoco,如何进行氮固定的过程。获取该反应细节的实验尚未成功。

化学反应必须考虑电子相关性。这是化学反应中化学物质中的原子和分子中的电子相互作用的地方。由于电子相关性影响量子系统内电子的运动,引入了一整个新的复杂度维度。这影响了化学反应的结果,并导致简化的粒子相互作用建模不足以胜任。因此,准确预测化学相互作用的结果是极其困难的。需要高度精确的电子结构模型来模拟这些粒子的行为。

尽管在经典计算机上有一些技术,如密度泛函理论DFT),但它们仍然缺乏对化学反应建模所需的定量精度。因此,即使是只涉及一百个电子的化学反应对计算机来说也非常困难。因此,科学家正在寻求量子计算方法来解决这个问题。

目前,DFT 在获取多体(多电子)系统的薛定谔方程的近似解方面颇受欢迎。来源:newton.ex.ac.uk/research/qsystems/people/coomer/dft_intro.html

量子计算机可以模拟自然界中产生氨的化学反应,以便我们更好地理解并可能在工业场景中复制它。在这种情况下,科学家正在探索在量子计算机中执行氮酶和 FeMoco 之间相互作用模拟的方法。算法如 Trotter-Suzuki 分解和截断的泰勒级数用于模拟化学反应,精度各不相同。来源:www.pnas.org/content/114/29/7555

正在研究一种混合模型,该模型在化学反应的不同步骤中使用经典和量子计算机。通过在经典计算机中使用经过验证的 DFT 方法来执行化学反应中的分子结构优化。DFT 也可以用于验证量子计算机的输出并反馈到分子结构化过程中。这确实是为了计算电子之间相关能量而需要使用量子计算机。

探索量子计算的过程中,可以使用基于门的方法来实现量子算法,并计算相关电子的行为。科学家进行的一个实验标题为Elucidating reaction mechanisms on quantum computers,确定了三种不同的基于门的方法以及每种方法所需的资源:

  • 实现量子算法的第一种方法涉及对旋转进行序列化操作。

  • 在第二种方法中,影响自旋的哈密顿量是并行执行的。

  • 第三种方法将旋转分别建模,并在需要时传送到量子电路中。

使用逻辑 T 门和 Clifford 电路的组合,以及用于容错的表面码,他们已经表明可以分析化学反应中电子的行为。

将这些选项结合起来时,串行操作可能需要一年的时间。然而,当第一种和第三种方法结合在一起时,模拟可以在几天内完成。但是,执行此操作的成本很高,并且需要增加 20 倍的量子位数量。如果我们嵌套执行门,那么成本将增加,因为量子位数量增加,这反过来会导致执行时间的降低。

所有这些的关键要点是这项技术有着巨大的潜力。与此同时,挑战仍然存在。正如我在与山姆·麦克阿德尔的访谈中强调的,容错性是一个重要的问题需要解决。我们需要拥有一个具有多个纠错量子位的逻辑量子位。

在目前阶段,将解决方案扩展到更大的分子的成本并不是非常可行的。但是所引用的实验显示,量子计算机可以用于通过氮固定过程识别能量状态。通过更多这样的实验,完成此操作所需的时间可能会减少到仅需几天。

另一个关键突破是在 2018 年 7 月取得的,研究人员展示了由离子的量子化能态构成的量子位电路可用于模拟简单分子。可以使用仅四个被捕获的离子计算氢(H[2])等小分子的能量态。原则是阵列中的离子将准确表示正在研究的分子的电子之间的相互作用。

量子计算社区内有关离子阱量子比特优于超导量子比特的大量炒作。 在化学方面,离子阱量子比特可能更容易计算分子间相互作用。 但超导量子比特的优势在于它们更容易使用现有设备进行控制。 结果,我们可能会发现量子设备采用“对人而言是马,对事而言是鹿”的方法,也就是为每项工作找到合适的工具。

在这两种量子比特的研究人员之间展开的健康竞争总是有益的。 它有助于创新的速度和质量。 一旦我们能在容错量子比特电路上完成几百个门,我们应该能够在几个小时内模拟固氮,而不是几天甚至几个月。

尽管存在这些挑战,这些实验和突破给我带来了希望,我们很快将解决规模化化学问题。化学在使世界更绿色、更清洁和总体更好方面的作用几乎无法被夸大。 通过在实验室条件下模拟自然过程的能力,我们将不必重新发明化学过程。 我们可以从自然行为中获得灵感,因此创造尽可能接近自然的化学过程。我们已经讨论了量子计算如何帮助我们更准确地模拟量子系统,特别是在固氮方面。 另一个可能为世界增加巨大价值的关键化学用例是碳捕捉。 让我们详细看看。

碳捕捉

我们生活在一个出现持续的全球各地天气异常的时期。 目前,这些天气异常的影响相当局部化。 在 2020 年,我们看到澳大利亚出现了大火,整个大陆的温度上升,加利福尼亚发生森林大火,亚洲和非洲出现前所未有的洪水——所有这些都是日常自然事件,都向我们表明我们正处于气候紧急状态。

世界各地的科学家已经达成共识,气候变化正在发生。 过去三个世纪的工业革命,提高了我们向大气中排放二氧化碳(CO[2])的速度。

全球人口激增至约 78 亿人增加了对食品的需求,因此也增加了对农业的需求。 由于人口增加对农产品的压力,已导致农业用地的扩大,进而导致大规模的砍伐森林。

工业化和农业导致了 CO[2]排放到大气中。 我们产生的 CO[2]和其他温室气体将地球包裹在一层毯子中,阻止了热量的逸出。 森林可能是这个问题的解决办法,但砍伐森林正在减少森林对地球气候模式的影响。

树木从大气中吸收 CO[2],从而减少保暖效应。树木还向大气中释放水。一棵大树每天可以向大气中释放约 1000 升的水。例如,亚马逊雨林大约有 6000 亿棵树,每天平均释放 200 亿公吨水(假设是晴天),起到空调的作用。

然而,在亚马逊雨林,森林砍伐规模庞大。我们每分钟失去 150 英亩的森林,每年失去 7800 万英亩的森林。我们已经失去了亚马逊雨林的 20%。亚马逊雨林对全球气候模式和降水的重要性不容小觑。因此,我们需要一个 B 计划来确保至少减少释放到大气中的 CO[2]。

碳捕集是将大气中的碳困住并隔离在储存单元中的过程。然而,捕集空气中的碳并不是一件容易的事情。我们如何知道捕集碳的最佳设备和化学物质是什么?这就是量子计算可以帮助我们解决的问题。

碳捕集可以分为预燃捕集、后燃捕集和氧燃烧。我们主要关注后燃捕集,在工业过程结束时,捕集、压缩和储存排放的 CO[2]烟气。

要大规模从空气中捕集 CO[2],我们将需要配备能够高效完成工作的正确捕集技术设备和化学物质。目前,碳捕集和封存(CCS)方法使用液态胺/氨溶剂清洗排放的 CO[2]。这些溶剂本身产生的能源密集型,有效地使碳捕集过程自我失效。

下一代碳捕集方法主要集中在活性炭ACs)、沸石和分子筛上。ACs 是一种具有高孔隙度和表面积的碳形式。它们已被证明在碳捕集方面效果更好,而且成本也比 CCS 方法低。

但我们尚不了解功能化 ACs 与 CO[2]之间的相互作用。美国化学学会发表的一篇研究论文描述了使用量子理论(非量子计算)分析此相互作用,可在www.claudiocazorla.com/JPCC-Ca-CO2.pdf查阅。

研究探讨了利用钙原子对 AC 材料进行表面掺杂,并研究了掺杂材料与 CO[2]之间的相互作用。他们使用了我们之前讨论过的 DFT 方法,就像在肥料案例中一样。他们还确定了掺钙碳材料具有高碳捕集能力。

在同一实验中,他们确定氮(N[2])与掺钙碳材料的结合能力较差。实验分析了钙掺杂石墨烯的吸附能力,并证明了其有效性。实验还涵盖了材料表面积方面的过渡状态,以及材料表面积改变时碳捕集能力的差异。

总的来说,这项研究表明,如果我们能够大规模进行碳捕集,对地球将产生重大潜在影响。虽然我们有几种选项可以进行碳捕集,但我们将需要使用正确的技术来帮助确定一个最佳和可持续的解决方案。利用量子计算来理解反应将有助于确定选项及其与碳捕集的功效。

尽管做出了所有努力,但要理解碳捕集过程仍有大量工作要做。IBM 和 Exxon Mobil 已经共同使用量子计算进行了多项对环境有益的应用。预测环境建模、碳捕集和优化电网是该计划预期的三个关键结果。Exxon 是第一家与 IBM 在此类计划上合作的能源公司。

这就是我们对量子计算在化学中的应用的探讨结束了。您可能还记得我们在第六章 对医疗保健和制药业的影响 中也涉及了一些有趣的分子分析主题。因此,我在本章中提出了量子计算在化学中的一些潜在应用,这些应用我们之前尚未涉及。

化学和量子计算的一个有趣方面是能够利用噪声中间尺度量子NISQ)设备。让我们看看为什么 NISQ 是化学应用的一个好选择。

NISQ 和化学

在我与 Sam McArdle 的采访中,我们讨论了 NISQ 作为充分利用“坏”量子比特的方法。在典型的带有纠错的逻辑量子比特中,您可以有少量量子比特进行计算,以及大量量子比特进行纠错。例如,使用表面码,您可以有一千个嘈杂的量子比特和一个无误差的量子比特。

虽然在 NISQ 中,我们使用噪声比特来进行计算。由于这些量子比特是嘈杂的,进行计算所需的时间必须很短。如果计算不够快,我们可能会得到容易出错的结果。通常,这种设置将涉及一个较短的电路和没有纠错量子比特。每次重复后系统都会重新初始化,以确保错误不会累积。

因此,我们需要使用一个可以适应较低相干时间的方法。相干时间只是指量子状态可以存活的时间跨度。传统上,一种叫做量子相位估计QPE)的方法被用于模拟波函数的时间演化。使用 QPE 在化学反应上进行计算首先由 Aspuru-Guzik 和 Seth Lloyd 设想,但 QPE 需要一个有效的容错设备,因为它具有更高的相干时间。通过容错设备,QPE 能够计算化学哈密顿量的基态能量。

QPE 和高相干电路深度对化学而言可能是限制因素。

最近出现了另一种叫做变分量子本征求解器VQE)的方法,用于辅助模拟分子相互作用,并取得了令人满意的结果。VQE 需要比 QPE 更短的相干时间,并且可以在具有低相干时间的嘈杂量子比特上使用。因此,VQE 可用于 NISQ 设备,以模拟化学反应的目的。(资料来源:pdfs.semanticscholar.org/00ee/5a3cc1d14da2ec3e0ab15674dfb29b1d233c.pdfpubs.rsc.org/en/content/articlepdf/2019/cp/c9cp02546d)。

但是,为什么 NISQ 适合研究化学呢?我们需要理解这个上下文中的“噪音”来回答这个问题。在量子计算的环境中,“噪音”指的是量子比特(构成电路的粒子)与它们的环境的相互作用。在量子计算的其他应用中,比如随机数生成,这可能导致计算中的错误。

然而,在化学中,我们使用量子计算机来复制自然和物理,噪音代表了分子存在和相互作用的环境。当使用嘈杂的量子比特来模拟分子行为时,它告诉我们分子在自然界中将会如何行为。这是我们潜在可以利用的特性,而在这种情况下噪音成为了一个特征。

由此可见,量子计算的最大痛点之一成为化学模拟中的不可或缺的特性。哈佛大学的材料理论研究空间,名为 NarangLab,致力于利用 NISQ 来发现新的电子材料。

传统计算机实际上并没有很好地应对模拟电子材料。这可以通过使用量子计算机来更好地解决。电子材料也主要由有规律排列的原子组成。因此,我们不需要模拟所有原子来研究这些材料的行为。挑选几个典型的原子就足够了,只需要几个量子比特来模拟它们的相互作用。

尽管化学反应存在复杂性,但我相信这可能是一个比许多其他领域更快开始出现商业应用的领域。 使用 VQE 进行化学模拟的 NISQ 应用肯定会改善这些解决方案的"上市时间"。

正如本章前面讨论的,其中一些解决方案,例如氮固定和碳捕获,对环境可能产生巨大影响。 减少碳排放和生产化肥的能源足迹是具有长远影响的成就。 正如我们在第六章中讨论的对医疗保健和制药业的影响,了解化学反应也可以帮助我们更好、更快地建模药物的功效。

现在让我们转向另一个关注的技术—区块链,以及它如何在化学中发挥作用。

化学中的区块链

到目前为止,我们已经看到区块链在不同行业中的应用,并在此过程中确定了一些区块链属性,可以在类似模式下在不同行业中发挥作用。 例如,可以在供应链中使用区块链来减少文书工作,实现即时付款,并推动效率。 这对制药行业和化工行业同样适用。

同样,区块链智能合同可以作为一种基于数据的方法,自动执行和履行生态系统参与者、供应商、供应商和供应链参与者之间的合同义务。 这在物流和医疗保健中都是真实存在的,在化学行业也是一样的。 因此,我不会回头看之前章节中讨论过的那两个例子,而是将重申这些化学用途。

然而,每个行业都有其独特之处,当讨论技术和创新如何帮助它们实现效率、增长或更好的收入机会时,最好触及一下。 看看化学工业,我可以看到区块链在两个关键应用方面发挥作用:

  • 促进产业生态系统

  • 灾难恢复和灾后规划

让我们依次看看这些应用程序。

促进产业生态系统

我大学毕业后在孟买生活了大约一年,并在一家名为 Patni Computers 的技术咨询公司工作。 我的基地是 Navi Mumbai,也是信实工业总部所在地。 信实是印度最大的品牌之一,由传奇人物 Dhirubhai Ambani 创立。 他的儿子 Mukesh 和 Anil 已接管了公司。

Mukesh 在推动品牌前进方面表现得非常出色,而他的兄弟 Anil - 在印度众所周知并被《福布斯》等媒体报道的沦落,表现则相对不那么出色。在我在 Navi 孟买的日子里,我可以看到信实正在建立他们自己的小生态系统。在这种情况下,生态系统代表供应商、供应商和其他供应链利益相关者。即使是他们在城市中的实体存在也展示了全生态系统范围内的参与,涵盖了供应商、供应商和其他利益相关者。信实化学品今天是信实帝国的一个重要组成部分,2019 年报告的收入达到 900 亿美元。

这种生态系统行为仍然存在,只是行业生态系统内的参与和数据共享是以数字形式发生的。与食品生态系统类似,化学行业也需要采取一种市场化的方法(不是市场模式)来与不同的利益相关者分享数据。

这种参与可以帮助建立围绕创新的更好标准,并帮助生态系统共同努力为某些特定目的创建特定化学品。回到我们的肥料例子,如果价值链核心的公司能与供应商合作,创建可能需要对其供应链进行定制调整的专有肥料配方,那将会使创新和差异化变得更加容易。

德国巴斯夫公司,全球最大的化学生产商,正在与区块链公司 Quantoz 合作。他们建立了一个平台,用于由物联网(IoT)驱动的支付,还有其他几个利益相关者也参与其中。在生态系统背景下使用区块链在化学行业仍处于早期阶段。然而,一旦有几个试点证明了效力,就有真正的机会进行扩展。

我们已经介绍了区块链如何帮助我们了解化学品的生产过程。对于化学厂的灾难恢复,有必要实现供应链的端到端可追溯性和透明度,这有助于化学品的制造、物流、存储和分配。现在让我们来看看区块链在化工厂灾难恢复中的应用。

灾害恢复

1984 年 12 月 2 日,印度博帕尔市发生了一场重大灾难,至今仍然困扰着当地社区。联合碳化物杀虫剂工厂释放了约 30 吨甲基异氰酸酯等有毒气体。这种气体与大气混合,影响了居住在附近城镇和村庄的约 60 万人。直到现在,死亡人数已达 1.5 万人,包括即时死亡和多年来的死亡。许多人失去了视力,邻近地区的人们也面临健康问题。

关于社区中死亡和疾病与事故之间联系的综合研究尚未进行。人权组织仍然声称有数吨化学品被埋在地下,印度政府已宣布该地点受到污染。化学工业,就像能源部门一样,在帮助世界解决了几个问题方面取得了巨大成就。但是,当事情出错时,事情会变得非常糟糕。

在这些情景下,灾难恢复变得非常重要。在进行灾难恢复时,了解化学品的影响至关重要。就博帕尔气体泄漏事故而言,让我们快速看看区块链如何帮助灾难恢复机制。

区块链上关于供应链、库存和原材料使用情况的数据可以在几乎实时的注册表中捕获。这将使我们能够评估生产的化学品量可能被释放到空气中的数量。根据跟踪到工厂的化学品数量以及危机后剩下的数量,我们将立即能够计算出问题的规模。

一旦评估了释放到环境中的化学品量,就可以制定关于所需药品的数量和质量的即时解决方案。由于区块链支持的注册表的不可变性,我们还将知道是什么导致了事故。特别是如果我们追踪了供应链和原材料、中间产品以及最终产品在制造过程中的流通,我们将知道事情出了什么问题。

将物联网传感器整合到流程中,可以在微观水平上跟踪温度和原材料供应速率,这将是有用的。随着所有这些数据的跟踪,它可以帮助灾后审计和保险流程。审计员可以根据数据做出关于供应链变更、运营流程变更和化学流程调整的决策,并相应地增加治理和控制以确保业务连续性。

所有通过过程捕获的数据都可以为未来的运营卓越定义最佳实践提供宝贵的参考。化工行业,就像能源部门一样,可以从这些数据驱动的倡议中受益良多。2018 年的一份埃森哲报告强调了使用区块链作为化工行业灾难恢复的黄金数据源。然而,这种用例尚未在规模上得到证明。

正如我们在前几章中所指出的,区块链应用在供应链管理、贸易融资和智慧城市领域正变得越来越受到关注。任何需要管理和保持生产、运输和分发商品完整性的价值链都是区块链的极好用例。然而,对于这项技术来说,现在还为时过早。这是一个 12 岁的技术,几乎肯定会经历它的寒冬。

结论

深度技术,如量子计算和区块链,可以在化工行业创新和运营方式上带来范式转变。量子计算在化学中的应用案例与医疗保健中的类似,主要是利用量子算法和设备模拟和计算化学反应。

对于量子计算化学应用来说,还有两个关键加速因素。一个是分子可以更自然地在量子位上使用不同的电路进行建模。我们看到困禁离子量子位比超导量子位电路更适合化学。另一个有趣的方面是利用 NISQ 设备进行化学研究的能力。NISQ 设备对化学来说可能是完美的,因为噪声可以用作模拟分子行为的特征。

在密码学的量子计算解决方案中,情况并非完全如此;因此,利用噪声量子位的能力,化学应用是特殊的。我们还提到了使用需要较低相干时间的 VQE 等技术。所有这些因素的综合作用下,化学解决方案有可能成为该行业中首批商业化的解决方案。

然而,化学行业对区块链的潜力还没有真正觉醒。当数据跟踪和共享发生在不可变记录上时,从风险管理和灾难恢复的角度来看,它可能带来的影响可以增加很多价值。我们还提到了为什么区块链生态系统在化学行业中可能相关,因为它们有助于更轻松地为特定化学品创建定制供应链。

在这个行业中有很多机会,对于那些能够开发解决方案以超越当前限制的人来说。要使这些解决方案成为主流,需要克服技术障碍。但关键的要点是,对于化学品行业来说,量子计算应用可能会超前于区块链应用。在随后的章节中,我们将探讨量子计算可能对密码学造成的风险。

第十三章:物流对物流的影响

几年前,我在牛津大学赛德商学院上一堂全球商业战略课。讲课的人曾经是沃尔沃在赛里斯的负责人。他接管沃尔沃赛里斯业务时,公司的销售额仅有几百万美元,但他将其发展成了一个价值数十亿美元的帝国。

他正在解释沃尔沃采取的策略,以在赛里斯市场保持其竞争优势。当我们讨论他们的赛里斯故事时,讨论也涉及到了印度。沃尔沃高管说:“印度至少比赛里斯落后十年。”

我真的无法接受那个评论。我问他为什么会这么说,当印度有 GDP 数据、人口、不断增长的中产阶级和更高水平的英语熟练度时。他提到这是因为印度国内破碎的供应链和物流基础设施。印度的每个邦都有不同的税收规则和法规,当一个公司在多个邦运营时,高效处理供应链是一项重大负担。

这不仅仅是印度面临的挑战。这是全球范围内的挑战,全球业务的物流往往是企业的负担。诺基亚之所以无法在 2007-2008 年迅速应对苹果的崛起,其中一个主要原因就是其供应链不够灵活。

尽管供应链是几个行业的关键问题,但道路、铁路和空运的有效利用也可能是一个重要因素。所有世界上攀升 GDP 梯队的主要经济体都必须保持一个健全的制造业。物流是一个国家制造业能力的基本要素。

在一个严重依赖分销的行业,物流效率即使提高了一小部分,也可能带来巨大的成本节约。当这些效率在一个国家范围内扩展时,可以导致 GDP 的增长。

在我与富士通的戴夫·斯内林讨论时,他提到物流可能是经典计算机最难解决的问题。这不仅是因为问题空间的复杂性,还因为需要解决的约束条件。据他说,这是一个量子计算机可能产生严重影响的行业。

除了物流之外,以安全、可靠的方式在网络中进行通信也是至关重要的。依赖于高效运输和货物交换的分销网络也依赖于信息的安全、可靠和快速交换。量子传送是一个重要的应用案例,它可以补充物流部门。这在军事物流中尤其如此,那里的信息交换经常需要与物流手段相辅相成。

转到区块链,贸易金融和供应链管理似乎是技术最有用的领域。世界各地有几个倡议致力于证明区块链在物流和贸易金融中的应用。

在本章中,我将涉及物流、交通和供应链管理中的挑战,以及量子计算和区块链如何可以用来解决行业中的一些瓶颈问题。

让我们从谈论良好基础设施和有效物流的基础中开始:有效的交通管理系统。

交通管理系统

物流和运输行业是维持工业化经济运转的基础。我们处于汽车被连接到网络的时代。网络服务器始终知道该网络上每辆车的位置。自动驾驶汽车距离成为主流还有几年时间,但连接的汽车肯定已经出现了。

其他交通方式也是如此。公共交通也逐渐开始数字化驱动。赛里斯最近宣布了一列从北京到张家口每小时行驶 350 公里的无人驾驶列车。

由于该领域的数字化,我们拥有了数据及其提供的智能的奢侈。这种智能可以用来使交通系统更加高效。一个简单的例子是特斯拉如何管理其汽车网络。特斯拉汽车本质上是轮子上的电脑。它们连接到一个服务器,该服务器知道该网络上每辆车的位置。

如果我是一名特斯拉司机,在行驶途中寻找一个超级充电站,我可以看着特斯拉汽车的仪表盘,它会告诉我最近的超级充电站。更重要的是,它还会告诉我充电站有多空闲。它之所以能做到这一点,是因为服务器知道每辆车的位置,如果有五辆车在一个有六个充电点的站点充电,它可以告诉我只有一个充电点是空闲的。

这是智能交通管理的简单实现。2018 年 11 月,大众汽车公司宣布他们正在研究量子计算解决方案来预测交通流量和运输需求。该解决方案将类似于航空交通管制系统。系统通过不断的交互知道车辆的位置,并能为连接到系统的车辆提供优化路线。

我们生活在一个碳排放量排名第二的世界,仅次于工业碳排放。这样的解决方案不仅会节省时间和成本,还将帮助我们大规模减少碳排放。然而,只有更多的汽车制造商联合起来,这些解决方案才能起到作用。

大众在他们的量子探索中并不孤单。丰田、宝马、福特和其他几家公司也在研究交通管理系统。在我与戴夫·斯内林的采访中,他提到了富士通的 Digital Annealer 如何已经帮助宝马改善他们的制造流程。

为了建立一个可用的交通管理系统,我们需要所有汽车制造商都配备传感器,这些传感器与服务器不断进行交互。我们还需要这些汽车制造商围绕这些数据交互建立标准。让我们看看为什么这很重要。

假设 A 驾驶一辆福特车,B 驾驶一辆丰田车。两者都在道路上,并开始向服务器发送数据并从服务器接收交通信息。现在,对于 A 来说,这些数据只能是关于道路上的福特汽车,对于 B 来说,这些数据只能是关于道路上的丰田汽车。除非道路上有 90% 的汽车是同一品牌,否则这可能不会太有帮助。参考链接:www.frontiersin.org/articles/10.3389/fict.2017.00029/full

让所有汽车制造商共同协商并就数据交换标准和握手机制达成一致是很重要的。一旦在我们的示例中实现了这一点,驾驶福特车的 A 将能够获得有关 B 的信息,反之亦然。这是因为福特和丰田现在已经同意交换信息,并且他们的握手机制是标准化的。

想象一下,在未来的 10 到 20 年里,所有汽车制造商之间都进行信息交换。我们将在每辆汽车上都拥有一个联网的交通管理系统。服务器每秒将收到来自道路上车辆的数百万个数据点。它们将需要具有实时处理数据并向汽车驾驶员返回有意义的交通见解和指令的能力。

使用联网汽车的解决方案是未来的发展方向。然而,可以利用当今的基础设施和数据源开发交通管理系统。另一种获取交通信息的选项是利用智能手机和手机基站的数据。汽车制造公司可以与电信服务提供商合作,获取有关道路上行驶人员的地理空间数据。尽管这可能不像来自联网汽车的数据那样准确,但基于从电信提供商获取的地理空间数据的交通管理系统今天已经是可能的。

这正是大众交通管理系统采用的方法。交通管理是一个组合优化问题,而 D-Wave 机器擅长解决这些问题。在大众的实验中,D-Wave 机器被用于识别在拥有 4,000-5,000 辆出租车的城市中进行交通管理的优化解决方案。

D-Wave 的量子处理单元QPU)通过使用两个关键输入来解决量子无约束二进制优化QUBO)问题。一个是以量子位状态的二进制变量向量。第二个输入是一个N x N矩阵,描述了这些量子位之间的关系。其目的是找到每辆出租车的最佳路线,以确保拥堵最小化。

对于每一辆出租车,我们知道其出发地、目的地和当前路线。然后,我们为每辆出租车确定一组备选路线。这些路线应该与出租车当前行驶的路线完全不同。因此,对于每一辆出租车A,“最终解决方案中总会有一条路线B是正确的。”每辆出租车每条路线的变量T[ab]在 QUBO 的最小值中为真。

所有出租车的这些数据都编码到 D-Wave 中,系统经历绝热退火过程。该过程确定提供最低拥堵路线的解决方案。与该过程相对应的系统低能态应该确定低拥堵路线以及在该场景中汽车可能采取的备选路线。

该系统可以通过将特定出租车的路线随机分配来进行有效性测试,这将导致为其他出租车重新分配新路线,以达到整个系统的低拥堵状态。在大众汽车的实验中,解决方案在设置系统后的 1-5 秒内就得到了。从现有的行业软件中也可以在 30 分钟内获得相同的结果。

2019 年,美国专利 US20190164418A1 授予了大众汽车的“用于预测和最大化交通流的系统和方法”。2019 年 11 月,大众汽车的系统安装在里斯本的公共汽车上,以确保它们的路线得到优化,并实现城市交通流畅。

这种量子计算解决方案可能尚未在解决这些问题上产生巨大差异,但它为更实时地解决更困难的问题打开了选项。在一个快速走向气候紧急状态的世界中,任何能够帮助节省能源、减少二氧化碳排放并降低人均碳足迹的解决方案都是朝着正确方向迈出的一步。现在让我们看看航空业如何受益于量子计算。

空客量子计算挑战

第一次商业客运航班于 1914 年 1 月 1 日从圣彼得堡飞往坦帕起飞。现在距离那次事件已经过去了一个多世纪,但航空业和航空公司的创新基本上已经停滞不前,甚至停滞不前。除了埃隆·马斯克、理查德·布兰森和杰夫·贝索斯等最近的倡议,这些倡议都集中在星际旅行上,我们几乎没有看到任何重大的航空旅行升级。

航空业大多是一种亏损的尝试,而且即使对于航空公司来说,制定正确的商业模式也已经够困难的了。在这个行业,任何研发计划都是凤毛麟角。

这种现状可能正在改变,因为空中客车正在为航空业的创新努力开拓先河。他们特别关注量子计算倡议。他们在威尔士的纽波特设立了一个量子计算应用中心。他们与威尔士政府合作设立了空中客车企业。该项目的重点是数字和低碳经济的技术研发。

空中客车的量子计算工作不仅侧重于通过更好的空中交通管理实现后勤优势。他们还在进行流体动力学、有限元模拟、空气动力学和飞行力学方面的工作。利用量子计算来建模飞行物理学可以带来几个好处。

例如,目前,对飞机机翼上空气流动进行建模可能需要 7 年时间。来源:quantumbusiness.org/quantum-computing-future-flight-aviation/

空中客车的创新目标是在几周内对每一颗与飞行机翼相互作用的空气分子进行建模。这可以帮助他们了解他们的飞行设计将如何影响燃油消耗,减少阻力,并使飞行更加可持续。他们的研究还涉及在飞行中使用先进材料以及它们对飞机效率的影响。

提高建模速度(从几年缩短到几周),无疑会加速未来更好飞机的设计和制造。空中客车显然已经意识到这项技术可能对其命运产生的影响,并投资于一家名为 QC Ware 的量子计算公司。

QC Ware 正在为化学建模、流体力学、蒙特卡洛模拟、机器学习和优化等各种用例构建量子计算能力。因此,它能够帮助空中客车应对他们的特定需求。

空中客车最近还发起了一项名为空中客车量子计算挑战赛AQCC)的竞赛。这项竞赛是由空中客车首席技术官格拉齐娅·维塔迪尼在慕尼黑的 DLD 大会上宣布的。这对航空和量子计算行业都是一项令人振奋的发展。

AQCC 呼吁量子计算生态系统与空中客车合作解决该行业面临的一些难题。比赛的重点领域如下:

  • 飞机爬升优化,可以帮助飞行实现低成本指数

  • 通过计算流体动力学CFD)进行飞机设计优化

  • 量子神经网络解决偏微分方程

  • 机翼箱体设计和重量优化以降低成本和环境影响

  • 飞机货物优化,以减少燃料使用和成本

这是一种有趣的方法,通过众包解决行业主要挑战和机遇之一。空客公司也表示,解决方案的所有权将保留给向该竞赛提交这些解决方案的团队。

从空客的尝试中很明显,量子计算被视为一种可以解决经典计算机在可行时间内难以实现的问题的技术。

显然,这对航空业来说还处于早期阶段。但全球航空业亏损,需要创新来帮助其提高运营效率和降低成本。

空客防务业务线正在研究数据安全和量子抗性密码学。现在让我们来看看量子传输和量子计算生态系统中的数据传输。

量子网络

物流依赖于及时和安全的数据和信息传输。在军事场景中,战斗机的信息需要实时传输。在自动驾驶汽车网络中,汽车的位置需要传输,并且交通控制指令需要返回给汽车。另一个用例是在空中交通管制中,需要传输有关飞行位置和速度的信息以优化交通。在所有这些场景中,我们需要确保数据安全地在发送方和接收方之间传输。

我们生活在一个数据安全技术远远落后于需求的时代。例如,在过去的十年里,亚洲有超过十亿人加入了互联网。仅在印度,2015 年至 2019 年间有 3 亿人获得了移动互联网。但是,大多数这些人并不意识到连接到万维网并进行金融交易。

数据隐私和安全对社交媒体用户和大型品牌的客户变得越来越重要。由于其数据隐私政策,标签 #FacebookIsDead 已经流行了很长一段时间。许多人开始感觉到亚马逊、谷歌和 Facebook 等大型技术公司已经垄断了互联网的使用,并且对用户数据也有明显的垄断。

虽然数据隐私是需要解决的一个问题,但数据安全是另一个我们需要解决的重大挑战。世界正在通过物联网IoT)设备变得日益连接。数据从未像现在这样在这些设备之间以及消费者和企业之间共享。自动驾驶汽车可能在未来几年成为常态,随着技术的不断进步,我们需要大力关注网络安全。

根据 Gartner 的预测,全球网络安全支出预计将在 2022 年达到 1330 亿美元。仅在 2019 年上半年,数据泄露暴露了 41 亿人的数据记录。如果我们计划在机器互联更加频繁时过上安全稳定的生活,我们需要做得更好。

随着世界充斥着数据,我们如何确保以安全的方式进行通信?我们能否拥有更安全、更私密的互联网?量子计算可以帮助吗?对于这些问题有一些答案。在量子网络中,信息被传输为量子信息,利用了一种称为纠缠的量子比特属性。

爱因斯坦将这一属性描述为“远程诡异作用”,我们在我们的第一章中进行了重点介绍。两个纠缠的粒子可以用相同的量子态来描述,因此,观察其中一个粒子的状态将影响另一粒子的状态。尽管听起来很“诡异”,但这些纠缠的粒子表现得像一个单一的量子物体,并且可以通过一个波函数来定义。

为了在粒子之间传输量子信息,它们需要被纠缠。因此,该过程从创建纠缠粒子并将其安全传输到远程位置开始。一旦成功完成这一步骤,我们就有了一个量子信息的传输通道。

当两个纠缠的粒子中的一个被分配了一个状态时,它会自动影响另一个粒子的状态,即使它们相隔数英里。当我们对其中一个粒子进行操作时,这个操作会立即反映在另一个粒子上。这个过程被称为量子隐形传态。

全球正在进行几个试点项目,旨在创建一个基于量子隐形传态原理的量子互联网。欧洲的倡议由欧洲的量子互联网联盟QIA)发起,该联盟致力于创建一个量子网络。量子网络是指纠缠的量子粒子在网络节点之间传输。量子信息通过这些纠缠的量子粒子在这些节点之间传输。

赛里斯通过努力利用光子连接不同的传输系统取得了巨大进步。赛里斯科学技术大学已经成功将纠缠粒子分发到两个地球站,一个位于华南,另一个位于青藏高原。这项工作由潘建伟在 2017 年领导,他利用了卫星基础设施进行了实验。

由于涉及的成本,这种解决方案可能在日常应用中尚不可行。有一些实验利用无人机作为传输网络的一部分,使该过程更具商业可行性。

因此,理论上,一旦建立了两个纠缠粒子,量子信息就可以传输,而没有任何人能够侵入。但是,实施量子传输的一个关键挑战是利用纠缠粒子创建传输通道。目前,许多量子网络的状态在很多方面都反映了早期互联网的状态。然而,事情正在迅速发展,全球范围内的倡议正在推动研究向前发展。

欧洲的 QIA,由本·兰恩领导,正在致力于创建一个 100 公里长的传输通道,中间点设有一个 50 公里的站点。在通道的每一端,都会创建一个纠缠离子和一个光子。然后通过光纤将光子传输到中间的站点,同时保持与对应离子的纠缠。

下一步是测量这些光子,使它们不再与它们各自的离子纠缠在一起,并通过这样做使离子纠缠。这个过程称为纠缠交换。这样一来,就可以通过一组纠缠粒子网络将量子信息传输到遥远的地方。

尽管这些实验使用一种物质(在上述情况下使用的是钙)来创建离子和光子,但当量子网络扩展时,并不一定要采用这种情况。根据量子比特的用途,可以使用不同类型的材料来创建纠缠粒子。例如,可以使用钙离子和锶离子来创建 Ca+/Sr+晶体。锶离子用于容纳进行计算的量子比特,而钙离子用于保持锶离子的冷却。

如果我们必须存储量子比特,我们可能还需要在网络中创建量子存储器(基本上是存储数据)。不过,这将需要网络范围内达成的相互一致的标准。

由于量子网络实验大多是局部的,这个行业仍处于早期阶段。然而,一旦量子网络开始在不同地区变得更为普遍,就会出现制定标准的推动,就像我们在互联网演化过程中所见到的那样。这就是量子网络可以用来传输量子数据的方法。但是量子信息的传输有多安全呢?

数据安全

创建纠缠的量子粒子,如果其中一个传输到远程节点,该设置可以用于安全的量子信息交换。当一个量子比特的状态发生改变时,它会自动影响其纠缠对的状态。利用纠缠在量子网络中传输信息的这一过程被称为量子传输。

量子传输的一个关键方面是状态从一个量子位到另一个量子位从未被复制。这也是为什么量子计算机中的错误处理是如此具有挑战性的原因。无法复制量子粒子的状态的方面被称为不可克隆性,是量子力学的一个基本公理。参考:www.nature.com/news/quantum-teleportation-is-even-weirder-than-you-think-1.22321#ref-link-6

量子粒子的不可克隆性质使得量子密码学变得强大。当观察时,量子粒子的状态会受到干扰,因此在不引起警报的情况下理论上不可能窃听传输通道。因此,在纠缠粒子之间建立传输通道是量子传输的重要一步。

安全传输和使用量子信息的另一种方法称为量子密钥分发QKD)。在这种方法中,量子密钥作为量子数据共享给发送方和接收方。如果密钥被拦截,它将干扰信息,可能需要重新发送。如果密钥没有被拦截,它可以用于编码通过经典数据传输方式共享的消息。Bb84是由查尔斯·贝内特和吉尔·巴萨德于 1984 年开发的一种 QKD 协议,它基于同一量子属性。

量子密钥分发依赖通信的两个关键方面。它需要:

  • 量子理论是正确的

  • 通信中使用的设备要可靠

直到大约 2010 年,量子密码学被认为是不可渗透的和完全可靠的。然而,在此后的 10 年里,科学家一直在努力证明产生光子的装置可能会被强光脉冲致盲。通过这种方法,检测器可以被黑客远程控制。这导致了设备独立密码学的研究。来源:www.sciencedaily.com/releases/2013/05/130528122435.htm

到目前为止,我们已经讨论了量子计算在运输和航空物理领域的用例。这些是量子技术可以帮助解决传统计算机难以应对的问题的领域。然而,量子网络的建立不仅仅是在军事情景中传输机密信息的安全可靠方式,也可能成为未来的互联网。

因此,我觉得不仅重要讨论使用高效物流网络安全传输货物,同样重要的是涉及网络中的数据传输。

我们已经讨论了量子计算在协助我们解决物流问题方面的作用,以及量子网络如何能够改变通讯和互联网。现在让我们来看看在世界各地物流和运输领域中如何探索区块链。我们会发现,在跟踪和运输世界各地货物的效率提高方面,量子计算和区块链技术具有高度互补的潜力。

物流中的区块链

全球的商业通常都建立在信任基础上。在历史上,在世界许多地区,企业通常没有大量的文件或合同协议。大多数交易都是基于信任关系进行的。然而,随着企业开始在全球范围内运营,必须有更多的流程和控制措施以保护所有相关方。

随着企业跨越国界发展,交易中涉及多个交易对手,完成文件工作通常会导致延误。官僚主义增加了交易的成本和时间。当一家跨国企业依赖跨越世界多个环节的供应链时,例如,它给其制造过程增加了低效。根据世界经济论坛的数据,减少供应链障碍可以提高世界 GDP 5%,全球贸易 15%。

在农业或食品业务的情况下,食品产品在到达超市货架之前经历了数个环节。这不仅导致运营成本和延误,而且对于新鲜食品来说,到达店铺时品质已经下降。在许多情况下,存在大量的食品浪费。

根据联合国粮食和农业组织FAO)的数据,大约三分之一的食物被浪费或丢失,发达国家损失了 6800 亿美元,发展中国家损失了 3100 亿美元。食品供应链中存在太多的低效问题需要解决。

随着世界变暖,由于降水过多或干旱条件,我们将看到食物生产出现更多波动。这扰乱了全球的贸易路线 - 我们可以看到的一个例子是斯堪的纳维亚地区贸易平衡的转变。

2018 年,干旱和水资源短缺导致该地区作物产量下降。因此,一些斯堪的纳维亚国家如瑞典成为了玉米和小麦等作物的净进口国。在那之前,它们一直是该作物的净出口国。该国的小麦产量降至 25 年低点。瑞典的谷物作物总产量从 2017 年的 320 万吨下降了 43%。然而,欧洲国家对这些作物的需求一直很高。来源:www.ja.se/artikel/58675/swedish-cereal-production-on-lowest-level-since-1959.html

让我们快速审视这种贸易转变的挑战以及对物流的影响。由于这种突如其来的不平衡,瑞典不得不进口这些作物。作物收割的短缺约为 140 万吨。

那么,你如何突然为这么大规模的进口创建物流?如何确保物流高效灵活?

瑞典在为作物进口分配港口容量以及将作物进口整合到其分销渠道中的物流方面存在挑战。这是未来国家如果必须适应气候变化的变化所需的基础设施。然而,这只是谜题的一部分;即使基础设施是为了预期而建立的,供应链和物流也需要运营高效,以减少成本负担。

瑞典是一个消费者基数相对容易管理的小国。然而,想象一下如果这种情况发生在更大的国家会怎样。即使它们是工业化国家,它们也将难以应对由气候变化驱动的全球贸易格局变化。这可能会导致全球作物价格上涨而引发通货膨胀。去年,由于谷物作物产量下降,欧洲就出现了这种情况,虽然规模较小。

关键的要点是我们将需要开始极度高效地处理我们的物流。技术可以帮助我们实现这一目标。

区块链技术可能在物流和供应链管理方面最有用。该技术最初引起的热情来自金融服务领域,一些利益相关者将其视为价值存储工具。然而,缺乏明确的全球监管框架,这一目标难以实现和扩展。尽管该技术在金融服务领域正在经历“人工智能寒冬”的时刻,也许物流领域会出现更成熟的区块链应用。

跟踪货物

区块链技术提供了几乎实时跟踪货物的能力。在一个有多个参与者的价值链中,移动货物到下一步需要几次不同的握手时,这种能力可以提高流程的效率。该技术提供的握手机制可以降低供应链中所有参与方的运营成本。

IBM 和马士基(Maersk)于 2016 年 6 月联手打造了一个名为 TradeLens 的区块链平台。TradeLens 提供供应链透明度,并帮助物流行业解决由于数据孤立而产生的问题。如今,TradeLens 已经拥有超过一半的海运集装箱货物数据。

随着这个物流提供商网络跨越大陆扩大规模,TradeLens 可以成为全球贸易平台,并遵循公开标准。这将通过提供有关货物跨越边境运输的透明度,使全球航运行业更加高效。

安永(Accenture)为物流建立了一个区块链平台,可以作为供应链交易的不可变记录。提单(一份船上货物详细清单,在交货时起到收据的作用)可以被替代,网络可以成为贸易文件的唯一真相来源。透明度和高效完成文件工作也是关键的收获。还有其他参与物流透明度工作的公司,如 ShipChain、微软和甲骨文公司。

食品供应链

让我们简要讨论一下在供应链环境中需要区块链技术的原因。区块链可用于需要网络参与者授权交易的场景。这些参与者在网络上充当节点,存储交易的副本。

在供应链场景中,这个框架可能非常有用,因为涉及的利益相关者将在区块链上注册他们的交易。例如,在一个涉及农民、物流提供商、经纪人和超市的食品供应链中,每个人都将是一个节点。当农民把作物交给物流提供商时,就有一种握手机制授权了作物的交换。握手还可以包括检查作物质量的过程。

在适当的时候,这样的基础设施将为利益相关者打造一个丰富和透明的数据生态系统,以便做出数据驱动的决策。然而,在分布式数据库中,如果这些数据受到集中控制,可能就不那么有效了。话虽如此,公共区块链应用程序在技术上也存在一些限制,正如前几章所讨论的那样。

我见过一些供应链领域的公司使用许可的区块链。现在说哪种更好还为时尚早。不过,我们已经看到足够的证据表明公共区块链生态系统尚未赢得主流信任,因此许可的区块链可以成为一座桥梁。因此,让我们现在来看看食品供应链中的区块链应用。

食品供应链在物流中是一个特例,因为它涉及易腐食品。在这种情况下,库存管理更加敏感,因为商品的寿命有限。因此,我们需要一个能够在更细粒度水平上管理库存的基础设施。区块链技术可以帮助微观层面的库存管理。

像沃尔玛、联合利华和 Provenance 这样的公司正在使用区块链来管理食品供应链。在食品行业的情况下,区块链可以用于追踪涉及食品的交易历史,一直追溯到其来源。

当库存管理发生时,如果食品库存损坏,可以选择性地销毁。当知道食品项目的历史时,可以追踪到源头,以确保将来实施必要的控制以确保更好的质量。

食品供应链也很特殊,因为其中大多数涉及小农户,他们目前正受到物流提供商或价值链中的其他中间商的利润挤压。全球有超过 5.7 亿小农户,占据了世界 75%的农业土地。对于这些农民来说,理想的情况是利用技术追踪食品产品的所有权,并在路上对食品价格进行选择性透明。

在当今世界,农民通常没有数据来评估其作物的供需情况。这削弱了他们适当定价作物的能力,并使他们受制于供应链中的中间商。然而,通过区块链创造的透明度可以改变这种情况。定价数据可以提供给农民,以确保他们没有受到剥削。

所有权是食品供应链的另一个需要解决的方面。这可能被归类为蓝天思维,但在食品价值链中,本质上是农民将其商品卖给最终客户。未来的供应链应该在商业构建中尊重并反映这一点。物流提供商、库存提供商、食品质量审计员,甚至超市,只是为农民提供服务以有效地完成销售。

因此,如果我从乐购购买一箱橙子,我实际上是从肯尼亚的一个农民那里购买的。因此,我支付购买这些橙子的钱大部分应该到达农民的口袋里。预先协商的佣金可以分配给物流提供商以提供他们的服务,以及给超市提供货架空间。

这种模式与当前模式之间有两个基本区别。一是食品产品的所有权一直由农民持有,直到消费者从他们那里购买为止。二是食品的支付几乎是通过价值链实时进行的。利用区块链技术及其智能合约功能,这两种情况都是技术上可行的。

对于消费者的好处在于,一旦他们了解到食品产品的来源,他们就知道他们所获得的质量。记住,这就是农民在过去在农贸市场上销售农作物的方式;他们产品的声誉将是他们成功或失败的关键因素。

新的全球食品供应链不应该有所不同。信任和品牌对于在伦敦销售他们的橙子的肯尼亚农民和小镇市场上的独立本地卖家一样适用。

然而,这种模式将需要各国政府强制实施于食品供应链中。由于有数个中间商将会受到损失,这对于私营企业来说并不容易。一个公私合作伙伴关系可以在一段时间内实现这一模式。AgriLedger,一个基于区块链的公司,正在与世界银行和海地政府合作解决这个确切的问题。

所有权模式可能很难改变,因为前述的中间商会对此感到不满。因此,向新的所有权模式延伸将是一个缓慢的过渡。而且,让农民成为食品项目的所有者直到它到达顾客手中,更多的是一个商业模式、过程和运营问题,而不是技术问题。

但是,通过实施区块链解决方案,农民应该可以立即获得付款。在现有的食品供应链中,农民交付作物给中间商后几个月才能收到付款。通常情况下,他们无法承受延迟,并以极大的折扣从中间商处取现金。这是因为农民无法承受工作资本的耗尽。启用即时付款后,农民应该在交付作物后的几天内,如果不是几个小时内收到款项。这不仅对农民而且对我们所有人都会构成更健康的生态系统。

还有几家其他公司正在努力改善食品供应链,但它们是从消费者的角度来解决问题的。沃尔玛的区块链计划为消费者提供了有关其食品历史的信息,从来源到购物篮。这确实是一个进步,但食品供应链需要彻底改革和“从头开始”的思考,而不仅仅是为了消费者透明度。

可持续供应链

2019 年 12 月,我参加了由 Finextra 主办的伦敦可持续金融会议。当天的焦点之一是可持续供应链。尽管演讲只有短短 20 分钟,但它让我思考到了必须使供应链可持续化的必要性,以及这将对我们的环境产生的结果。

让我们以食品供应链为例。我们将需要查看几个关键标准,以确保其可持续性:

  • 作物是否以可持续方式生产?这提出了更多细致的问题,比如:

    • 在为种植作物获取农业用地时是否涉及任何森林砍伐?

    • 作物是否使用可持续的灌溉技术生产?

    • 生产作物时是否使用了化肥?

    • 如果使用了化肥,生产它们的碳足迹是多少?

    • 是否雇用儿童来生产作物?

  • 种植作物是否以可持续方式运输?

    • 作物是否使用可持续的方式包装?是否使用塑料?

    • 将作物运送到超市的物流的碳足迹是多少?

食品供应链的一些可持续标准已经被有效地审计、报告和管理;然而,它们都记录在纸上。我们将需要一个供应链市场,收集关于所有这些方面的数据,并使用它们为超市中销售的每一种食品创建可持续性评分。

因此,当顾客查看苹果包装A和包装B时,他们将有能力不仅根据价格,而且根据供应链的质量对它们进行排名。区块链可以帮助填补创建这样一个零售客户受益的市场的许多空白。

这也可以用于消费品。联合利华一直在试验区块链,以提高其供应链的透明度和效率。他们正在关注目前相当手动和低效的美国供应链的应付账款。

来自 Provenance 的解决方案,另一家区块链公司,已经开始试验标记和追踪来自印度尼西亚的金枪鱼。他们进一步采取了一步措施,以捕捉和验证供应链利益相关者的可持续性声明。这项工作需要在其他食品以及食品供应链之外进行扩展。

所有这些信息随后可以通过二维码提供给消费者,扫描后将提供供应链的端到端视图和可持续性评分。

这些方法都已经在联合利华、沃尔玛和 Provenance 进行了试验,但是区块链技术的局限性也许是这些解决方案没有扩展的原因。随着区块链从冬眠中走出来,我们应该会看到更多大规模的实际应用。

运输

卡车业是区块链可以增加价值的一个例子。运输业内有超过 1400 亿美元被困在纠纷中。平均收到发票后 42 天才能支付款项。这都是由于卡车业务中涉及的文书工作的低效率造成的。

此外,全球约 90%的卡车公司拥有不到六辆卡车。这意味着货物和卡车的分配是另一个主要的开销,并且导致半满的卡车和运营成本泄漏。当卡车行业在区块链上管理时,大多数合同义务可以在智能合同上明确规定,并且一旦满足条件,支付就可以触发。

可以达成一种握手机制,以确定卡车行程的结束,当智能合约接收到时,它可以触发支付。这也将有助于解决这些小型卡车所有者的营运资金需求。Blockchain in Transport AllianceBiTA)是一个倡议,其成员覆盖了全球 85%以上的卡车相关交易。

随着世界朝着同日交付模式发展,卡车行业变得极其高效是至关重要的。可以在卡车上使用物联网传感器来测量货物的体积,并充分利用卡车的容量。当运输的货物对温度敏感时,物联网也可以提供帮助。

在药品运输时,物联网传感器和区块链技术的结合可以跟踪温度。如果传感器检测到温度变化,区块链可以触发警报,或对由此温度变化引起的任何约定的惩罚性损害进行计费。这也将减少纠纷场景,因为所有数据都将由区块链网络上的不可变数据支持。

一组车辆的性能也可以在区块链上注册。有像 CarFax 这样的公司,充当中介持有这些数据。然而,当买家想要了解车辆性能信息的不可变记录时,他们应该被呈现出一组经过验证的数据,这将决定车辆的价格。

就像我们提到过的其他几个行业一样,根据摩根士丹利的说法,区块链在运输垂直领域有 5000 亿美元的机会。然而,挑战在于技术本身——物流和运输都可以产生大量数据。

如果我们使用物联网来支持物流监测和测量,这也将增加数据量。迄今为止,尚未出现大规模能够实时处理这种数据量的区块链有希望的实施。在吞吐量问题解决之前,这些用例可能仍然处于试点阶段。

车辆制造

区块链的另一个关键用例是充当车辆零部件的登记处。整个制造过程可以在区块链上注册,包括原材料的来源、供应商、采购和制造步骤。制造步骤可以通过使用物联网设备进行机器级数据跟踪来监控。根据 Gartner 的报告,到 2025 年,制造业可以通过使用区块链技术节省 1760 亿美元。

所有这些数据应该能够为车辆生产线提供追溯机制。一旦车辆零部件上路后,传感器就可以跟踪车辆零部件的质量。车辆的性能也可以使用物联网设备进行测量和管理,正如前面讨论的那样。因此,当报告有故障零部件时,区块链系统将立即知道如何以及从哪里获取它。

作为替换提供的新零件,可以使用标签进行握手机制,以确保替换零件来自正确的供应商。通过这样做,车辆的健康表从早期阶段开始建立,并贯穿其整个寿命。制造业产品召回的平均成本为 800 万美元。使用区块链对零部件的端到端可追溯性可以大大降低这一成本。

卡普吉尼的一项研究对使用区块链的 447 家制造企业进行了调查,发现其中超过 60% 的企业已经改变了与供应商的互动方式。尽管存在所有这些好处,但技术需要克服一些初始障碍才能实现主流采用。

对于需要技术和运营改革的投资回报率(ROI)尚不清楚,通常会成为大型组织的主要障碍。在组织内没有明确的 ROI 叙述的情况下识别赞助商可能具有挑战性。根据卡普吉尼报告,区块链与这些大型制造公司内的传统系统和流程的互操作性(或其缺乏)是采用的另一个关键挑战。

除了我们在区块链中看到的技术限制,组织挑战仍然存在。只有清除了这两个障碍,主流采用才能实现。

我们现在已经涵盖了量子计算和区块链在运输和物流中的使用案例。正如你所见,这两种技术有潜力引领我们走向一个更高效、透明、更安全和更紧密连接的世界。

结论

在本章中,我们已经涵盖了量子计算和区块链在物流中可能实现的使用案例。这是一个由于缺乏数字化而存在几个低效的行业。因此,技术在其中创造价值可能是一个空白领域。

在量子计算中,我们提到的主要用例是高效的交通管理系统。我们讨论了当联网汽车变得更普遍时,使用量子计算的情况。利用今天的基础设施,可以使用电信数据/地理空间数据来实现交通管理。

我们还提及了空中客车试图提高航空航天工业效率的努力。使用量子计算机比使用经典机器可以更准确地模拟飞行物理学。因此,飞机机翼周围的空气动力学可以被建模,通过优化飞行起降可以实现燃油效率。在气候变化严重影响的世界中,每一点碳排放的节约都能帮助我们。

转向区块链,我们看到了它如何在供应链管理和可追溯性中的应用。食品供应链的使用案例尤其有趣,因为它在许多方面对消费者和农民都有利。我们看到了迎合供应链两端的创新。

最后,我们还提及了区块链如何帮助运输、制造和卡车行业。

这两种技术的应用非常广泛,增值潜力也不可夸大。然而,在它们被广泛采纳之前,这两种技术都面临一些重大挑战。它们应该能够在商业环境中共存,因为使用情况相互补充。在下一章中,我们将探讨量子计算和 NISQ 如何在化学领域中应用。

第十四章:IBM 合伙人 Dinesh Nagarajan 的采访

上个世纪发生了两次世界大战和几场其他的侵略和报复战争。各国相互发动战争,以获取可以使他们更强大的资源。在二战期间,希特勒入侵高加索就是其中一个例子,他追求那里丰富的石油资源。温斯顿·丘吉尔在北非的战略推进是为了控制该地区的关键港口城市,以便他能够进入印度,当时印度还是英国的殖民地。

石油的获取是上世纪下半叶在中东发生的战争的一个根本原因。然而,地缘政治问题正慢慢从耗尽的资源(如石油或铁矿石)转向一种尽管消耗但仍在增长的资源——数据。到 2025 年,全球预计将拥有 175 个泽字节的数据,其中约有 90 泽字节来自物联网(IoT)

1 泽字节 = 1 万亿字节

各国正在准备垄断数据矿,其中包括国防数据、金融数据、医疗数据和公民的个人数据。因此,重要的是要了解他们打算如何利用技术来获得数据霸权。在冷战期间,曾有一个时期,超级大国之间进行核弹头数量的军备竞赛。

今天,在诸如量子计算、区块链和人工智能等技术的专利数量上也能看到这一趋势。因此,当我们讨论这些技术时,重要的是要理解它们在国家希望主导的网络战中所起的作用。因此,当我为这本书寻找思想领袖进行采访时,我知道我需要找到这个领域的专家。IBM 的执行合伙人和全球能力领导者 Dinesh Nagarajan 显然就是其中之一。

Dinesh 和我在 2014 年在 PwC 公司共事,那时他专注于银行的网络安全提案,而我专注于首席数据官的咨询提案。他于 2016 年加入 IBM 公司,并且一直不断壮大。Dinesh 分享了他对网络风险的见解,以及技术和数据爆炸如何使我们容易受到攻击。他强调,仅仅依靠技术是无法帮助我们应对网络风险的,我们还需要确保社会各个层面都有对网络风险及其可用于保护自身的控制措施的认识。

Dinesh 的技术背景与他参与客户对抗网络风险的经历相结合,使他能够理解技术创新对数据安全和隐私的影响。他能够理解并掌握不同利益相关者在网络领域的技术能力。然而,他还能够将这种理解应用到网络战和网络风险管理的背景中。我和 Dinesh 都享受着这次采访的过程,我希望你也会觉得有用。

Arun: Dinesh,感谢你今天加入我。让我们从简短的介绍开始。给我们讲讲你在网络安全领域的职业生涯。你是如何进入 IBM 的?到目前为止你的旅程是怎样的?

Dinesh: Arun,感谢你邀请我。我是 Dinesh Nagarajan,在 IBM 的角色是合作伙伴和全球能力领导者。我全球领导 IBM 安全服务的数据和应用安全能力。我有超过 20 年的经验,在过去 15 年里,我主要在网络安全行业工作。在网络安全领域的职位上,我有幸与几家领先组织合作。我也有幸参与到硬币的两面。也就是说,我在技术方面和服务行业都有过工作。

我有机会在网络安全行业和咨询业中工作。我的工作主要是帮助英国和欧洲的大型金融公司进行网络安全转型项目。在过去一年左右,我的角色已经扩展,我的视野也随之扩大。我现在担任全球职位,关注全球网络安全转型。

我现在与北美、亚太地区和中东的客户合作。我在 IBM 工作了过去 3 年。因此,我经常旅行,与世界各地的公司会面,并帮助他们解决网络风险。这确实帮助我全面了解了网络安全世界。我可以看到客户如何处理这个领域,不仅仅是从技术的角度,还有从流程、意识甚至文化的角度。我发现这一方面非常有趣,因为网络安全既是技术问题,也是人的问题。

Arun: 这是一个很棒的观点,Dinesh。为了帮助澄清谈话的背景,让我们简要谈谈过去 20 年我们所见到的数据爆炸。点 com 繁荣帮助互联网业务模型和应用程序走向主流。我们看到许多社交媒体应用程序最初引领了数据爆炸,但现在我们看到的趋势是由物联网世界主导的。我们将会看到由自动驾驶汽车产生的每天产生的数据量达到几 TB。

数据的创建将以每年 60%的速度增长,到 2025 年将达到 175 ZB。其中约 70%将来自机器互联网。我不确定我们是否准备好从网络安全的角度管理这种数据爆炸。我们是否正在以这样的速度进行创新,以至于无法有效地管理创新的结果?这将如何影响网络安全?

Dinesh: 这是一个很好的问题。在典型情况下,随着创新解决方案和业务模型的出现,安全性总是滞后的。在某些情况下,对所有这些变化需要部署的安全机制有很好的认识。然而,在大多数情况下,缺乏理解和对网络安全重要性的认识。

过去的两三十年带来了大多数行业技术进步的一些令人着迷的增长。这是第五次工业革命。我认为变化的速度和速度是惊人的。在这个时期,大多数行业都经历了数字化,将以前的手工流程和服务转变为数字等价物。这通常伴随着数字化的数据交换和互动。

因此,今天的组织正在互联以前从未暴露在数据中心外的传统系统。这些系统可以是移动应用程序、Web 应用程序或社交媒体。组织想要为客户提供服务的方式发生了根本性的变化。现在客户消费服务的方式和需求发生了变化。他们要求更快地提供服务。客户希望在任何时候都能利用“全天候”服务,无时无刻,全天候,24/7。

客户还期望即时满足和即时反馈。这迫使组织非常灵活,并能够对这些要求做出响应。因此,今天对客户最重要的接口是数字化的。无论是金融服务、物流、医疗保健还是任何其他关键服务,我们开始更多地依赖和信任数字化手段,而不是传统的做事方式。

大多数这些交互通常发生在网络前端、移动应用或社交媒体上。下一波的互动不仅仅是在客户和这些界面之间,还包括机器之间的互动。有预测称,在未来 5 年内,物联网上将会有超过 500 亿台设备。关于数据方面的另一个有趣的预测是,即使是最小的组织在未来 3 年内产生的数据量也将是今天的 20 倍。这些数字令人震惊。

在所有这些之中,有一个关于转向云端的巨大推动。转向云端不应仅被视为技术转型。还涉及到业务转型。让我们以金融科技为例。金融科技正在推动传统银行适应新的业务模式和服务方式。由于数据托管在云基础架构上,并使用开放银行进行共享,我们看到了可以利用这些数据的第三方解决方案的新商机。通常情况下,银行可以自己创建这些解决方案。

转向云端也在改变典型的传统 IT 生态系统。以前,大多数关键应用程序和服务都托管在安全的数据中心中。现在它们部署在公共云上,并与第三方服务相互连接。因此,随着这些过渡和转变的进行,预测是未来 3 年内网络攻击将增加。不仅是网络攻击的数量,而且攻击的强度和复杂性也会增加。我们需要为此做好准备。

我们看到网络威胁行为者已经使整个网络攻击场景产业化。他们已经自动化和编排了入侵客户基础设施的方法。一旦他们入侵了基础设施,他们就能够迅速地进入目标系统。这是威胁行为者已经发展起来的复杂程度。但不幸的是,并非所有组织都能以相同的复杂程度来检测和应对网络攻击。

有很多工作正在进行以改进网络安全流程和系统。但还有很多工作要做。你一定听说过全球航运公司的勒索软件攻击,这是世界上最大的航运公司之一。有一天早上,公司的笔记本电脑上出现了红色和黑色字体的消息。员工被要求支付比特币以恢复其文件。重新启动笔记本电脑后,它们回到了那个屏幕。

攻击影响了整个网络,员工被要求关闭他们的笔记本电脑并断开网络连接。大约有 49,000 台笔记本电脑和 6,200 台服务器中的 3,500 台受到了影响。攻击造成了如此大的破坏,以至于即使是他们的 IT 团队当时也无能为力。它使整个公司停摆了大约 9 天,当 2,000 台笔记本电脑恢复正常运转时,他们又开始了业务。这是一家每 15 分钟就会有一艘船在世界各地的港口停靠的公司,大多数船只都能搭载 20,000 个集装箱。如果这样一家大公司都成为网络攻击的受害者,那么更小的组织如何应对就很难想象了。

现在,这就是网络犯罪分子如何对即使是最大的组织也造成接近金融毁灭的影响。因此,这不再仅仅是安装防病毒软件并假设你免受病毒攻击的情况;网络安全远比这更重要。我与之交谈的许多组织都明白,一次复杂的攻击可能会让他们瘫痪数天甚至数周,并围绕此计划。然而,有几个组织可能对这种威胁的危险持否定态度。

阿伦:我们仍在讨论这里的问题陈述。与我之前的其他面试不同,那里讨论的问题是众所周知的,但网络风险通常不为人所知。我们可以从各种不同的角度看待网络风险。其中一个是您已经提到的企业角度。另一个角度是从消费者的角度看。我们看到风险的增加不仅在发达国家,也在发展中国家。

例如,我们俩都知道 Reliance Jio 在过去 2 到 3 年里让印度约 2 亿人上了移动互联网。我在 2019 年 8 月去了印度。我和家人去了庙宇。当我走出庙宇时,有一位女士在卖花,她在她的小移动摊位上挂了一个 QR 码打印单,我们用它来支付。这位女士很可能并不了解网络安全。她知道钱会通过数字方式到达她的银行账户,但对威胁的概念一无所知。

QR 码是用于数字支付的快速响应码。

我们最近也听说印度库丹昆兰核电厂被国家黑客入侵。因此,从消费者方面看,该国的增长使其暴露于新的脆弱性。公共部门官员上网,对这些网络风险毫无头绪。因此,在新兴市场,特别是在新兴市场,存在巨大的意识问题。您对此有何看法?

迪尼什:我认为意识非常重要。意识是一回事,但监管机构也应介入其中。他们需要推行服务提供商应该能够提供的基本保障措施,以保护农村人口;可以在客户和服务提供商之间建立一种责任模型,迫使他们提供网络安全保障。我认为监管机构和跨越这些增长市场的政府在其中有一定的作用。当您在为消费者创造新的服务途径和交付业务价值的新方式时,您还需要提供必要的护栏。

没有这样的控制措施,这些服务和企业将无法蓬勃发展。没有为最终消费者提供保障机制,数字空间中的信任将很快蒸发。失去客户的信任可能会对整个行业造成重大危害。因此,消费者可能会停止从特定服务提供商购买东西,因为他们更容易受到网络威胁。消费者甚至可能停止使用他们的手机进行交易,如果他们对其互联网提供商完全失去信任。

这将影响那些数字化提供产品和服务的公司。整个数字经济和金融包容性故事最终可能变成一座纸牌屋。特别是在印度,政府一直在引领创新趋势。我不明白为什么他们不能做更多的事情来建立保护脆弱消费者的护栏。

阿伦:我们已经谈到了企业安全;我们讨论了零售消费者级别的安全角色,然后是如何由监管机构提供一些解决方案。我们已经设定了背景,所以我现在要转向这一挑战的潜在解决方案。

我们俩都是背景是工程师,所以让我们花几分钟时间谈谈技术。有哪些技术解决方案,除了技术之外,我们还可以采取哪些流程、政策和行为措施?

迪内什:我们都知道,技术并非灵丹妙药。目前没有任何单一技术可以依靠来解决这个问题。另一个需要考虑的关键点是技术变化非常快。10 年前,只要你拥有一个安全的用户名和密码,你就认为自己是安全的。现在情况已经大不相同,安全措施已经从那时候起发生了很大变化。安全已经从那时起,从关注基础设施、操作系统和应用程序的保护转变为从基础设施开始逐层上移。然而,现在的焦点是在数据上。

在新的世界里,组织甚至不再拥有自己的基础设施。如果你计划在云中托管你的数据或应用程序,你不拥有基础设施,也不拥有平台或操作系统。因此,你只需要专注于保护你的数据和你客户的数据。由于这种对数据保护的关注,更多的关注和投资正在转向数据保护。因此,数据加密的关注更加集中,且有各种不同方式进行数据加密。

有加密、代币化、数据掩码以及身份和访问管理的几个新领域。生物识别身份和访问管理是数据安全的关键方面。将你的安全控制直接放在数据所在的位置,而不是在基础设施或操作系统层面上,这被认为是至关重要的。通过这种方式,你基本上在保护数据在这些不同层之间移动时的安全。

控制用户访问数据的方式变得更强大且更具适应性。我们将需要构建认证和授权功能,使用清晰的数据安全模型来保护数据。

我们还有正在变得更加主流的“向左移动”安全实践,在开发周期的早期阶段将安全控制内置于应用程序中。因此,应用程序在设计上就是安全的。虽然这些措施主要是为了防止攻击或未经授权的数据访问,但你仍然可以预期有一小部分攻击会穿透这些控制。

如果发生数据泄露,不论原因是什么,你仍然需要快速检测、响应和缓解。迅速应对攻击并保持为客户提供服务的能力称为韧性。这已经发展成一个不仅仅是技术问题而且也是业务问题的领域。问题不仅仅是有多少数据泄露了,以及你如何在技术上修复它。还涉及到有多少客户受到了数据泄露的影响,他们是否仍然能够访问你的服务,以及你是否能够继续为这些客户提供服务。因此,在技术之外,业务韧性在我们生活的新世界中占据了中心舞台。

让我们回到那家有数万台台式机和其网络受到勒索软件影响的航运公司的例子。对马士基来说,韧性意味着即使在受到攻击的情况下,仍然有能力确保他们的船只准时到达目标港口并交付集装箱。幕后的技术团队将对攻击进行取证,修复系统中的漏洞,并尝试恢复他们的计算机、服务器和网络。然而,关键在于能够在所有这些数字支持缺失的情况下运作。

回到你的问题,在航运公司的例子中,技术可能已经阻止了攻击。但由于技术变化如此迅速,组织往往需要在面对这种攻击时求助于运营韧性。我觉得行业中还缺乏一种共享关于协同攻击情报的机制。

我认为这是在规模上防范网络攻击的有效方式,因为一旦有关于攻击者作案方式的情报,他们就不得不重新考虑。他们将不得不重新制定计划发动另一次攻击。在英国和欧洲的一些行业中,有关网络攻击情报的共享已经展开了一些倡议。但是随着风险不仅仅局限于这些发达地区,需要进行更多的情报共享。

阿伦:谢谢。现在让我们来谈谈房间里的大象问题。像量子[计算]这样的尖端技术以及它对数据安全的影响引起了很多炒作。由于区块链应用所使用的加密方法(RSA 和 ECC),它们可能会过时。一旦量子计算机成为主流,互联网可能会陷入严重困境。

我们是如何为这种威胁做好准备的,而这种威胁是否也是一个机会?我们是否也可以利用量子计算来保护自己和我们的数据?

Dinesh:这是另一个有趣的问题。人们对一些新兴技术的风险和机会有一般的意识,但还没有达到我理想中的程度。人们对了解来自新兴技术的非对称加密的风险很感兴趣。去年,我们在这个领域与一些客户合作过。大多数最感兴趣的组织都是金融服务行业的组织。我们也和一些汽车公司讨论了安全机制,因为一些新兴技术已经成为主流。

组织对此很感兴趣,因为技术变革的速度通常是每 7 到 8 年一次。每次他们不得不对他们的技术或基础架构堆栈进行更改时,变化周期大约持续 7 到 8 年。这个时间框架是令他们担忧的,因为他们认为在 7 到 8 年的时间里,一些新兴技术可能会成为现实。因此,即使他们找到了一种解决方案来帮助应对网络安全的准备工作,也可能来不及面对威胁。

因此,他们所有的系统,无论是金融市场的基础设施还是自动驾驶汽车系统,都会受到影响。许多这样的公司已经开始思考、规划,并且也与他们的董事会讨论这种风险。从 IBM 的角度来看,我们认为为了保护自己免受这些新技术范式的影响,您需要经历一个成熟的过程。您不能今天开始规划,明天就解决问题,因为这些技术仍在不断发展,当您认为自己已经找到解决方案时,也许它已经过时了。

对抗这些技术可能带来的网络风险的缓解将来自于加强意识和敏捷性。我们使用术语“加密敏捷性”来指代您如何轻松地从一种加密技术迁移到另一种加密技术。因此,您需要确保您的技术堆栈足够灵活,以采用不同的加密技术,从而帮助您抵御网络攻击。

从理论上讲,我们可以利用一些新兴技术支持的信息传输方式。理论上,我们可以使我们的信息免受外部攻击。然而,现在说这是否是一个可行的解决方案还为时过早,因为技术仍在不断发展。我认为,计划应对新兴技术威胁的公司将需要经历一个成熟的过程。

每个人都应该明白技术创新对他们意味着什么以及风险是什么。一旦了解了系统和基础架构面临的风险,他们将需要经历一个规划阶段。规划阶段将涉及如何改进加密领域。需要对他们的基础架构、应用程序和流程如何变得具有加密敏捷性进行详细评估。

一旦理解了这一点,那么就只是把堆栈转换为准备好迎接计算机领域新浪潮。在未来几年中,将越来越清楚你的加密领域中哪些部分是安全的,哪些不安全。在新时代,一个加密敏捷的架构应该帮助交换和更改那些被评估为脆弱的领域。

因此,我们 IBM 的角色是提高这种意识,规划并执行评估,并带领客户通过一个成熟度周期来未来保护他们的数据。

Arun:这是关于技术措施来对抗这一威胁的很多见解。在继续讨论网络风险的其他方面之前,你还想谈谈其他方面吗?

Dinesh:是的。随着基于物联网的应用程序变得越来越普遍,我特别关注数据安全问题。大量物联网设备面临网络风险,因为物联网制造商通常不解决安全问题。他们没有在设备中构建安全性。如果他们在设计阶段考虑了安全性,那么产品的输出将比今天更好。

我希望看到的其他关键进展之一是在 DevOps 中。组织在采用 DevOps 时需要考虑数据安全。当开发人员开始构建应用程序时,需要强制执行安全设计原则。他们考虑他们的应用程序在投入生产时将如何为用户提供服务。然而,他们经常没有考虑到他们的应用程序在投入生产时将有多安全。

如果我们想要全面解决数据安全问题,那么在大计划中,有些风险需要得到缓解。组织开始更好地理解安全风险,并试图缓解它们。为了做到这一点,一些组织已经尝试进行风险评估,更重要的是风险量化。网络安全中经常重复的挑战之一是风险量化。对于组织来说,量化它们的网络风险是相当困难的。

因此,今天有很少的组织能够有效地量化风险。在组织采用网络风险框架以推动更好的成熟度并因此量化这些风险时,它们就更加做好了准备。由于组织内的网络安全专家能够量化风险,他们能够使用公司董事会会理解的语言进行讨论。因此,他们能够在高层次进行讨论,这个影响是被充分理解的,因此能够得到很好地解决。

Arun:至少在金融服务业内,我了解到可以通过运营风险资本分配方法量化网络风险。然而,在其他行业内,我还没有看到那种程度的复杂风险管理技术。

现在让我们转移到另一个我希望你发表意见的有趣话题上。你提到你现在与世界各地的客户合作。在这个十年的开头,我们之间出现了伊朗和美国之间的地缘政治局势。尽管美国使用了传统的防御和军事机制,但伊朗基本上表示他们可能会诉诸网络攻击。从那时起,美国一直在加强其保护国家免受网络攻击的活动。还有报道称,美国的电网有可能受到攻击,他们正在寻找保护的方法。因此,这是一种新时代的战争技术 - 网络战争。那么,你对此有何看法?

迪尼什:这是一个不幸的发展,此类网络攻击已经在各行各业、全球范围内进行了一段时间。每当联合国制裁出台时,网络空间的人们都会预料到一波攻击,他们需要做好准备。我不认为这种趋势会改变。你可以称之为某种正在背后进行的网络军备竞赛,这对公众来说并不是很明显。这场竞赛基于谁拥有技术、数据和信息优势,以及谁将持续领先于新技术范式的到来。

这也是一种持续的“情报获取”,“信息收集”类型的练习。例如,如果你处于物联网领域,拥有优势的人将了解物联网生态系统中的漏洞和弱点,而这些信息并没有披露。他们会保留这些信息,以便在需要时加以利用。因此,拥有先进网络能力的国家不会突然变得活跃或计划发动攻击。在任何情况下,他们始终在幕后活跃。

他们不断进行研究和侦察,并找到有关目标的信息。这有点像我们在上个世纪所知道的间谍。只不过这在很大程度上是数字化的。每个人都在收集关于特定平台或国家安全漏洞或安全缺陷的情报。有趣的是,在某些情况下,一些国家会积极策划敌对领土的弱点。他们会故意引入一定类型的后门漏洞,以便在时机成熟时始终可以利用和使用。因此,他们一直在不断活跃,我认为这将是未来不幸的情况,也是我们应该能够应对的情况。

国家不仅希望攻击可能成为目标的关键国家基础设施,而且他们还可以发动一次攻击或侵犯私人公司。我们也可能需要通过不同的视角来看待这种风险。有多少这样的国家会有足够的胆量攻击另一个国家的关键基础设施,导致大量生命损失或大规模公共破坏?我不确定那会发生。

像攻击易受攻击的组织之类的零星破坏活动可能是它们通常的目标。我不相信有人会筹划大规模的攻击来破坏整个国家并让其陷入困境。

说了这些,未来可能会发生。大多数能够进行此类攻击的组织都在暗中运作,很难看到和追踪它们。我认为他们最担心的是被认定为是对敌对国家发动网络攻击的幕后人物。没有人愿意承担这样的责任。因此,我认为这是他们在完全黑暗和隐匿下运作的最主要因素之一。

阿伦:我认为我们只需要再提一个问题。有可能某个技术突破可以挑战整个世界,听起来就像是围绕着二战左右的发明原子弹的竞赛。对此有何评论?

迪尼什:没错——信息主导权的竞争已经开始。有几个利益相关者正在这个领域投资数十亿美元以取得领先地位。对于一些人来说,这项技术将带来的数据安全优势是最重要的。对于其他人来说,更好更快地处理信息的能力是关键。这些新兴技术有很多用例,不仅仅局限于破解传统的加密技术。

这是一个硬币的一面,但是一些主要国家对这项技术的投资是带着在网络战争中发挥主导作用的目标的。这项技术的突破可能导致新的全球权力平衡。

另一个需要考虑的方面是,当突破发生时,我们甚至不知道这些国家是否会公布它。尽管所有迹象都表明突破仍然有几年的时间,但它可能已经发生了。没有人真正知道明天的格局会如何改变。这是一个非常迷人的领域。我也觉得更多的组织可能会参与到这项技术的研发工作中来。我认为通过他们的创新努力来创建一个朝着共同利益前进的社区是很重要的。

阿伦:当我们谈论研发预算时,值得注意的是赛里斯在那方面走在了前面。他们已经向量子科学投资了数十亿美元。美国正在赶上。在过去的 10 年左右,约 70%的成功专利都来自赛里斯的量子领域,而排在第二位的是美国,仅占 12%。

迪尼什:是的,我们需要更广泛的国家和组织投资这项技术。就像 Linux 的开发方式一样。它是一个由社区驱动的努力,它已经使操作系统领域实现了民主化。类似地,我希望在围绕新兴技术的创新方面有更广泛的参与,这将使它们对主流用户更具可行性。我们可能很快就会有一个利用这些新兴技术的互联网。

如果我们作为一个社区创造了所有这些,而不是将成就集中在技术周围,那将减少整个世界的风险。来自全世界的分散的研发工作一定会有助于减少网络风险。希望我们不会因为他们新兴的技术和信息优势而最终产生一个超级大国。

阿伦:是的,让我们对此抱有希望。就让我们以这个注释结束采访吧。非常感谢你对网络安全和技术进步如何影响这一领域的见解。这是一次富有洞察力的对话。

迪尼什:感谢你邀请我参加这个活动,我非常享受。

结论

在过去几年中,有时我感到技术至上几乎是不公平的,因为它可能导致超级大国或组织的出现。特别是当涉及到量子计算时。然而,全世界正在研究量子计算的几个方面。因此,我真诚地希望我们将有几个超级大国,每个都在量子技术的一个方面处于领先地位。

在量子技术的某一方面如量子通信上占据优势可能是一个令人羡慕的位置。赛里斯在量子通信方面确实处于领先地位。他们的量子卫星实验使他们走在了前列。然而,在量子计算方面仍有许多待完成的任务。当量子粒子用于传输信息或建模问题时会遇到一些挑战。必须解决其中一些障碍才能通过量子技术突破实现完全的统治。

与迪尼什的对话为一个在迅速创新的世界里的网络安全领域提供了几个关键见解。尽管量子计算机带来了威胁,但通过增加对网络安全风险的成熟度,有办法减轻风险。通过进行这种成熟度之旅,组织能够系统地识别其景观中的弱点。

通过与网络安全专家的仔细规划,组织可以为自己做好密码敏捷的准备。随着量子计算机的日益临近,我们应该能够看到其能力的演进。与此同时,如果组织能更好地了解其加密的优势和劣势,他们应该能够通过升级到更好的加密方法来解决弱点。

迪尼什还简要提到,仍然有一些组织对威胁持否认态度,他们正在将自己和客户置于危险境地。即使组织已经确定并了解了威胁,他们的 7 到 8 年的变革周期可能是影响全面实施量子安全的主要障碍。

最后,Dinesh 提出的一个关键观点是关于企业的韧性。一如既往,重要的是so what’s。我们可能把所有这些都看作技术问题。然而,当系统遭受攻击并丢失数据时,企业难以继续为客户提供服务。因此,对企业来说,达到一种操作上的韧性非常关键。说到底,重要的是客户。技术只是达到目的的手段。

第十五章:量子安全的区块链

本书的论文围绕探索两种技术展开:量子计算和区块链。我触及了这两种技术的关键概念和历史。有一些采访和专注于行业的章节,我在其中揭示了这些技术的实际应用。这是为了证明,尽管存在一些挑战,但这些技术具有基本的用例。

我们已经确定这两种技术会长久存在。它们可能会经历周期性的低谷,其相关性可能会受到质疑。然而,最具影响力的技术会在经历这样的挑战后重新浮出水面,一旦它们再次变得重要。由于限制或生态系统成熟度不足,技术可能会见到低谷。在区块链的情况下,我们触及了三难问题,突显了这项技术尚未扩展。例如,完全去中心化的账本经常难以展示当今支付基础设施能够轻松容纳的吞吐量。

在量子计算的情况下,存在着诸如量子比特与其环境之间的相互作用导致的退相干等挑战。对于这两种技术来说,现在仍然是早期阶段,需要更多的工作来实现主流采用。然而,我们之前强调的是超越局限的能力。

这两种技术的“那又怎样?”是无法否认的。它们在不同行业都有用例,可能会创造跨越式的时刻。技术带来的跨越效应影响着目标市场数百万人的生活。从个人电脑、互联网和智能手机的发明,到应用程序如 PayPal、M-Pesa 和支付宝,都影响着发达国家和发展中国家数十亿人的生活。

我们还讨论了这两种技术之间的用例如何互补。量子计算主要关注于计算基础设施,还可以提供超出今天经典计算机的智能能力。另一方面,区块链是一个数据完整性层。

在一个主要依赖数据的世界里,我们需要一种能够提供智能和模拟能力的基础设施,可以利用数据的丰富性。然而,如果没有一个框架来确保这些机器存储和使用的数据具有高质量和完整性,那么所有的智能都将毫无用处。没有智能,高完整性数据也可能只是存储在计算机上而已。

因此,我们需要这两种技术都走向主流来解决未来的数据挑战。然而,有一个问题。这两种技术正处于冲突的轨道上。密码学是量子计算和区块链的一个重要组成部分。存在这样一种潜在的情况,即我们今天拥有的区块链解决方案一旦量子计算扩展并变得主流,就会过时。

因此,尽管这些技术有商业案例支持,但我们可能只会在未来看到两种技术中的一种变得重要。不过,我们可以克服这种情况。如果区块链能够克服另一个技术障碍,它仍然可能是相关的。本章将讨论技术之间的冲突并探讨解决这种情况的方案。

与时间赛跑

尽管互联网存在挑战,但它在很大程度上为我们服务良好。它是帮助世界各地经济繁荣的主要基石之一。全球访问互联网的成本已经大幅下降。例如,仅在印度,2015 年访问移动互联网的人数从约 2.42 亿增长到 2019 年底的 4.51 亿。来源:www.statista.com/statistics/558610/number-of-mobile-internet-user-in-india/

移动普及在过去已经在世界各地创造了飞跃时刻。移动互联网的普及又进了一步。例如,非洲通过 M-Pesa 得以看到移动支付像从未有过的规模。没有移动普及,这是不可能发生的。赛里斯又进了一步,因为移动互联网的普及导致了支付繁荣,阿里支付和微信支付贡献了赛里斯 40 万亿美元移动交易额的 90%以上。

另一方面,在印度,由于移动互联网的普及,推出了几种新的商业模式。有一些创新的应用程序允许农村地区的用户使用他们的地方语言通过语音界面进行日常交易。这些模式在新兴市场尤其是罕见。然而,这种增长是有代价的。互联网的爆炸式增长带来了对网络安全的风险。

近几年来,互联网已经渗透到世界许多地方,但是许多地方对数据隐私和数据安全的理解和意识仍然严重不足。因此,我们今天所看到的增长实际上可能为明天的网络战培育了肥沃的土壤。大多数存储在服务器上并由今天的安全机制锁定的互联网数据都容易受到网络攻击的威胁。

当我们将量子计算机引入到这个混合中时,这种威胁就成为了一个定时炸弹。量子计算机可能对存储在互联网上的数据造成灾难性影响。今天我们所知的互联网上的信息交换使用Rivest–Shamir–AdlemanRSA)算法和Elliptic-Curve CryptographyECC)。这些算法用于对在互联网上传输的信息进行编码和解码。这些算法是公钥加密技术,其中用于编码数据的加密密钥是公开的,而用于解码数据的加密密钥是私密的。

让我们简要介绍一下每种加密技术涉及的内容,并提及它们在量子世界中的漏洞。

RSA 算法

在需要将消息从 A 方发送到 B 方的情况下,A 方可以只是将消息写在一张纸上,并将其发送给 B 方。如果信息是机密的并且需要受到保护,A 方可以使用加密密钥来混淆消息。只要 A 方和 B 方事先交换了密钥,B 方就可以使用密钥来解密消息并阅读。使用相同的私钥加密和解密消息的方法称为对称密钥加密。

但是如果 A 方和 B 方没有事先交换解密消息的密钥呢?这是一种不对称密钥加密技术(如 RSA 算法)非常相关的场景。在 RSA 技术中,A 和 B 将各自拥有一对密钥,包括公钥和私钥。公钥在 A 和 B 之间进行交换。A 方将使用 B 的公钥加密其消息并将其发送到 B。发送给 B 方的这条加密消息只能使用 B 方的私钥解密。

这使得 RSA 能够在事先无法共享私钥的 A 和 B 之间使用。RSA 算法已经在电子邮件和虚拟专用网络VPN)中使用,并且在许多浏览器中也可以看到。尽管在互联网上有几种用例,但 RSA 算法最近才受到关注。

RSA 算法最初是由 Ron Rivest、Adi Shamir 和 Leonard Adleman 于 1977 年开发的,甚至以他们的名字命名(Rivest,Shamir,Adleman)。然而,当时很难理解其在实际应用中的意义,因此被搁置了。到了 1997 年,随着互联网业务、电子邮件、社交媒体和微型消息变得普遍,RSA 算法突然变得相关起来。

RSA 算法基本上依赖于一个原则,即一个方向的操作相对容易计算,但反向操作极其耗费资源。这样计算的一个关键示例是质数分解。如果我取两个质数,997 和 667,我们可以很容易地得到 997*667 等于 674,969。然而,反向操作极其困难。如果我们被要求找出 674,969 的质数因子,由于涉及的计算困难和试错的数量,我们会在合理的时间范围内很难做到。

展现这种属性的算法被称为陷阱函数。识别这样的算法对于创建安全的公钥密码技术至关重要。

在上述例子中,如果你得到了两个因子之一和结果为 674,969,那么操作会变得更简单。在实际的 RSA 实现中,质数非常长。例如,RSA 1024 有 1,024 位,可能有长达 309 位的数字。

在公钥密码技术中,解决问题的难度在一个方向上与在另一个方向上解决问题的难度之间的差异是重要的。例如,对于 RSA,挑战在于随着质数因子的增加,计算一个端点上的乘积与识别另一个端点上的因子之间的困难度差异已经减小。由于移动互联网的爆炸,安全机制也不得不变得更加资源密集。

因此,RSA 被认为不是可扩展的解决方案,随着质因数变大,它变得更加资源密集。除此之外,诸如二次筛和通用数域筛这样的算法使得破解质数分解挑战相对容易了。我们需要其他替代方案来构建一个可扩展的安全解决方案。现在让我们看看其中之一,以 ECC 的形式。来源:www.comparitech.com/blog/information-security/rsa-encryption/

ECC

ECC 是一个最近开始受到关注的替代方案。它基于椭圆曲线上点的群的离散对数。椭圆曲线算法可以使用以下方程来解释:

Y² = X³ + aX +b

当我们使用上述方程映射椭圆曲线时,我们得到一个类似以下曲线变体的图表:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 1:绘制的椭圆曲线

该曲线有一些特殊特征,其中之一是它的水平对称性。位于 x 轴下半部分的曲线可以描述为位于 x 轴上半部分的曲线的镜像。然而,还有另一个从陷阱函数的角度来看更为相关的属性。

该属性可以通过想象在带有该曲线的棋盘上玩的台球游戏来解释。如果我们在曲线上的两点之间射击球,它将必然在第三点上击中曲线。可以使用曲线的形状来可视化预测第三点。

然而,如果在从起点 A 开始的几次(n)射击之后,球到达点 B,对于一个新手而言,即使知道点 B 和球的起始点,也很难理解射击次数。因此,即使我们知道了 A 和 B,要从点 A 到点 B 也是容易的,如果我们知道 n 的话。然而,即使我们知道 A 和 B,要找到 n 也是困难的。这是椭圆曲线算法的一个独特特性,使得它成为一个良好的陷阱函数。

在实际表示 ECC 的情况下,总体思路是将消息分配为上述方程中 X 的值以找到 Y。 这将给我们 (X,Y) 作为曲线上的点。 因此,使用 ECC 的安全机制将需要一个曲线方程,曲线中的一个公共点以及一个素数。 公共点可以在台球的例子中想象为被自己射击 n 次,其中 n 成为私钥。

根据欧洲研究人员最近发表的一篇论文,与 RSA 相比,ECC 提供了更好的安全性。 该论文考虑了打破加密算法所需的能量,并将其与煮水所需的能量进行了比较。 在 RSA 和 ECC 之间的比较中,要打破 228 位 RSA 算法,我们将需要相当于煮一勺水所需的能量。 另一方面,要打破 228 位 ECC 密钥,我们将需要足够的能量来煮沸地球上的所有水。 来源:eprint.iacr.org/2013/635.pdf

ECC 被视为 RSA 的更节能替代品,即使对于编码器来说也是如此。 CPU 和内存使用也更加优化。 但是,RSA 更广泛地得到了采用。 这主要是由于理解 ECC 所涉及的复杂性。 ECC 如果不够了解,可能会被错误地实施,这实际上可能成为安全漏洞。

ECC 的潜在应用很多。 美国政府已经开始为内部通信部署这种安全机制。 Apple iMessage、WhatsApp Messenger 和 Tor 匿名网络使用 椭圆曲线数字签名算法 (ECDSA) 进行安全交互。 在本书的背景下,椭圆曲线的更相关的用途可以在比特币和以太坊中找到。

现在,我们简要介绍了用于保护我们的数据的 RSA 和 ECC 技术,让我们来看看它们在量子计算机变得可行和主流时为什么会变得不安全。

量子计算意味着混乱吗?

那么,互联网安全作为今天的炸弹滴答作响的原因是什么? 如果量子计算成为主流,会不会出现混乱,这种可能性有多大? 这些都是困扰担心网络战的国家的问题。 处理敏感客户数据的顶级银行和医疗保健公司的首席执行官也担心数据安全。

让我们快速看一下量子计算世界所处的位置以及为什么它可能对全球数据安全构成威胁。 在 1994 年,彼得·肖尔提出了两种量子算法。 一个可以分解大素数,另一个可以在素数阶有限域中计算离散对数。 前者可能对 RSA 方法构成威胁,后者将处理椭圆曲线。

Shor 基本上表明,我们今天使用的几乎所有公钥加密技术都可以使用量子傅立叶攻击来破解。他使用量子傅立叶采样来找到数学对象的周期性。这反过来允许他解决因式分解问题。

过去 25 年来,量子计算机的威胁一直存在。因此,从理论上讲,量子计算算法确实可能对我们今天所了解的数据安全世界造成严重破坏。

然而,2015 年研究人员发现,需要 10 亿量子比特才能破解 RSA 2,048 位签名。这个数字(10 亿量子比特)在 2019 年修正为 2000 万。量子计算机中的噪声是一个必须在我们开始考虑其成为主流之前克服的难题。来源:cacm.acm.org/news/237303-how-quantum-computer-could-break-2048-bit-rsa-encryption-in-8-hours/fulltext

尽管如此,2012 年使用了一个 4 量子比特的量子计算机来分解 143,两年后类似大小的量子计算机能够分解 56153。因此,量子计算机的能力正以非常快的速度不断提升。2019 年 12 月,谷歌的 Craig Gidney 和皇家理工学院的 Martin Ekera 发表了一篇题为《如何使用 2000 万量子比特在 8 小时内分解 2,048 位 RSA 整数》的论文。

突然之间,破解 RSA 2,048 位数的问题变得容易了 5 倍。之前估计使用量子计算机解决该问题需要 10 亿量子比特。Gidney 和 Ekera 使用了一种称为模指数的数学技术,并证明这是执行因式分解的更有效方法。他们在研究论文中表明,当因式分解 2,048 位 RSA 整数时,他们构造的时空体积比以前的实现少了 100 倍。来源:arxiv.org/abs/1905.09749

谷歌的量子优势声明可能需要持保留态度。谷歌关于量子优势的论文于 2019 年被 NASA 泄露,随后谷歌发布了官方新闻稿。在发布会上,谷歌声称他们的 53 量子比特 Sycamore 芯片可以执行计算,而这对于最强大的经典计算机来说需要花费 10000 年才能完成。

IBM 对此作出了科学回应。他们计算出谷歌的 Sycamore 芯片的整个量子状态向量可以存储在 Summit 中——这是世界上最大的超级计算机,拥有 250PB 的存储空间。经典计算机必须借助磁盘存储才能接近基本量子计算机的能力,这一事实说明了这两种技术之间的差距。

IBM 还展示了经典超级计算机可以在大约 2.5 天内模拟 Sycamore 芯片,而不是谷歌声称的 10,000 年。谷歌所取得的资源效率确实很高,但也许量子计算机还没有像它们被吹捧的那样伟大。

微软的量子团队最近发表的另一篇文章声称,通过实施正确的算法技巧,可以更有效地破解 RSS 和 ECC。他们根据美国商务部的一个单位——国家标准与技术研究院(NIST)制定的 ECC 标准实施了他们的算法。来源:www.microsoft.com/en-us/research/wp-content/uploads/2017/09/1706.06752.pdf

该研究表明,他们的算法可以使用 2,330 个逻辑量子比特和 Toffoli 门来破解 NIST 标准曲线 P-256。同样,他们能够证明,Shor 的因式分解算法需要 6,146 个量子比特来破解 3,072 位 RSA 密钥。

Toffoli 门非常适合构建具有数千个量子比特和数十亿门的大规模可逆电路,因为它们在经典和量子环境中都能工作。这些门位于高级抽象算法和最终驱动量子计算机的低级汇编语言指令集之间。您可以在cloudblogs.microsoft.com/quantum/2018/05/02/the-quantum-computing-effect-on-public-key-encryption/找到更多信息。

在谷歌、IBM 和微软的努力下,量子计算机有很大可能在不久的将来变得更加实用。纠错能力可能变得更高效,我们将需要更少的量子比特进行计算。随着更好算法的出现,使得量子计算机更加真实,对基于 RSA 和 ECC 的安全性构成了真正的威胁。RSA 和 ECC 是互联网、政府和许多金融服务公司目前依赖的基本安全机制。

我希望能解决目前我们在互联网、银行账户、信用卡、政府机密数据和消息传递中使用的安全机制可能会因量子计算的出现而受到严重威胁的问题。黑客今天可能记录下消息,而在 10 年左右的时间里,当量子计算机可以解密消息时,读取它。对信用卡信息可能不构成重大风险,但政府和国防秘密对这类问题更为敏感。

威胁加剧的事实是,很多重要国家正在希望利用量子突破进行网络战争,并且不一定愿意透露他们在量子技术方面的进展。因此,他们可能领先于我们从 IBM、谷歌或微软等获得的基准信息。现在让我们看看可能成为主流的不同的量子安全密码学技术,以确保我们的数据具有量子抵御能力。

量子安全密码学

每个问题都是创新的机会。薛定谔的算法基于量子傅里叶取样来破解非对称密码算法。因此,希望能对量子安全的密码系统需要对量子傅立叶取样以及其他经典和量子攻击免疫。2016 年 4 月,NIST 启动了后量子密码学(PQC)标准化挑战。使命是寻找一种 PQC 技术,可能保护我们的数据免受量子计算的威胁。

在 2019 年 1 月,69 个被接受的应用中有 26 个被选为半决赛入选。NIST 的努力目标不仅仅是找到一种在纸上行得通的 PQC 技术。他们还希望确保该技术在移动和平板设备以及物联网网络中是实际可行的。在机器相互传输数据的世界中,用低资源消耗来保护它们是必要的。

让我们来看看已提交给美国国家标准与技术研究院(NIST)的不同类别的密码学技术。重要的是要确保这些技术不仅在理论上对量子计算免疫,而且在实践中规模可行。正如讨论的那样,这些协议必须能够处理薛定谔算法。接下来让我们看看基于格的加密和基于代码的加密技术。

基于格的密码学

基于格的密码学(LBC)可能是最受关注的 PQC 类型。格是一个无限延伸的点网格。由于计算机资源有限,无法表示一个格。因此,我们使用一种称为基的东西,它是一组点或向量,帮助表示一个格。

LBC 依赖于在多维格网中解决几何问题的难度。例如,要解决的几何问题可能是最短向量问题SVP),在其中我们需要识别具有短向量的良好基。不幸的是,在具有数千维的格网中这并不容易。

解决的另一个常见 LBC 问题是最近向量问题CVP),其中给定一个点 P,需要确定最近的点。出于几个原因,LBC 技术似乎是最受欢迎的 PQC 技术。

格网已经研究了 200 多年。因此,它们的数学属性被充分理解。那些在格网理解方面发挥关键作用的数学家们根本不知道量子计算机的存在。尽管如此,他们的工作提供了一些洞见,可以帮助 LBC。

格网(Lattices)提供了一种前所未有的灵活方法来开发密码协议。因此,它们是研究最多、最深的密码领域。在 NIST 收到的 PQC 标准化挑战的 82 个申请中,有 28 个是基于格网的。

与 RSA 加密不同,后者可以归类为最坏情况下的降低技术,LBC 具有平均情况下的降低。这意味着平均而言,LBC 技术是安全的,除非格网问题的每个实例都很容易解决。在 RSA 加密技术中,如果使用的数字具有某些数论属性,则很容易破解。因此,在密钥生成过程中,我们需要确保这种情况不会发生。

对于 LBC,我们只需要选择参数大小并生成密钥。除了更安全之外,它们还更节约资源。例如,基于 LBC 的技术(R-LWE)在 8 位物联网设备上的加密过程在 200 万个周期内完成。RSA 1024 加密需要多运行 2300 万个周期。来源:arxiv.org/pdf/1805.04880.pdf

这使得格网密码(LBC)在我们生活的物联网世界中非常相关。它也可以用于需要量子安全的资源高效加密技术的移动和平板设备。虽然 LBC 算法比 RSA 加密更快,但仍然比基于码的密码CBC)慢。让我们来审视这一类后量子密码学。

基于码的密码学

CBC 依赖于解码通用线性分组码的难度。该代码可以属于 Goppa 码或准循环码等系列。麦克利斯算法是一种非对称加密方案,已证明使用量子傅里叶采样无法解决它。目前尚不知道任何多项式时间的量子算法来解码线性分组码。

McEliece 算法最初是在 40 年前开发的,但并没有像 RSA 或 ECC 那样流行。这主要是因为其密钥大小巨大(通常为 0.5 MB,而 RSA 为 0.1 MB,ECC 为 0.02 MB)。然而,现在由于需要使密码学具备量子防护能力,它已成为人们关注的焦点。

CBC 的优势在于,从计算效率的角度看,通常比 LBC 方法更具性能。然而,在选择适合平台或应用的正确加密技术时,重要的是考虑诸如密钥大小、资源消耗、计算效率、签名长度和安全性信心等因素。

这两种技术(CBC 和 LBC)各有优缺点。它们的应用将根据使用环境的具体情况而变化。例如,在 IoT 环境中,我们将需要更小的密钥和相对更好的资源效率,此时基于格的密码学可能是更好的解决方案。因此,需要采用“因地制宜”的方法(针对正确的工作选择正确的工具),而不是将一种技术视为在后量子世界保护我们数据安全的万能钥匙。

类似于 NIST 挑战,欧洲委员会资助了一个由 11 所大学和公司组成的研究联盟,资金为 390 万欧元。该倡议被称为 PQCrypto。其目标是在三年内识别 PQC 技术。在提交给 NIST 的 69 个方案中,有 22 个是由 PQCrypto 的成员设计或共同设计的。来源:pqcrypto.eu.org/nist.html

尽管有所有这些充满希望的努力,人们也意识到任何新的加密系统要经过 15 到 20 年才能为规模化工业应用做好准备。因此,科学界面临这一挑战,以确保我们的所有数据都得到保护。虽然在后量子时代的互联网上数据安全是一个更广泛的问题,但我们也对区块链应用有特定的安全关注。

区块链密码学

许多区块链使用公钥密码学。它们在本质上是非对称的,因为发送者和接收者各有一个公钥和一个私钥。如前所述,在非对称加密方案中,用接收者的公钥加密的消息可以用他们的私钥解密。如果没有私钥,解密消息将非常困难,因此创建了一个陷门加密机制。

区块链安全机制依赖于这一陷门数学函数的难解性。许多加密货币和区块链使用 ECC。这包括以太坊和比特币区块链,因为 256 位椭圆曲线密钥的安全性相当于 3072 位的 RSA 密钥。椭圆曲线的较小密钥更具资源效率,因为它们需要较少的存储。

我们在第一章量子计算与区块链导论中详细讨论了区块链密码学的工作原理。因此,我只会简要提及这个主题来刷新您的记忆。陷阱函数,又称为单向函数OWF),是区块链安全的基础。区块链的用户使用这些函数创建数字签名,可以通过正确的密钥轻松验证。

加密货币可以被视为一系列数字签名的链条。每个数字签名都有一个向后和一个向前的链接,即它签署了前一个区块的哈希和新区块的公钥。这可以被视为一种握手机制,因为一枚硬币的所有权是通过数字签名从一个人转移到另一个人。

例如,比特币网络上的交易历史记录以区块形式表示。每个区块可以容纳多个交易。要将区块添加到账本中,需要满足一种数学条件。整个网络不断计算以找到这种数学条件的解(根据 ECC),一旦满足条件,区块就被添加到网络中。

因此,当有人想要攻击区块链时,他们不仅需要攻击单个交易,而且需要攻击整个签名链。尝试使用暴力方法来攻击这些签名是不可行的,因为需要的资源太多。

已经尝试了各种方法来攻击区块链,有些甚至成功了。我们在第一章量子计算与区块链导论中讨论了这个问题。一些主要类型的区块链攻击如下:

  • 智能合约攻击

  • 交易验证攻击

  • 挖矿池攻击

  • 网络攻击

  • 钱包攻击

所有这些针对区块链的攻击类型都有详细记录。正在识别和理解更多类型的攻击。根据 GitHub 的数据,有超过 30 种不同类型的智能合约漏洞可以被区块链黑客利用。

Sybil 攻击和 Finney 攻击是交易验证攻击的类型。当整个网络被攻击者入侵时,就会发生 Sybil 攻击。在 Finney 攻击中,攻击者会挖掘一个区块,将硬币发送给愿意购买未确认交易以获得一些商品的人,然后再回到网络确认交易并拿回钱。

网络攻击包括标准的分布式拒绝服务DDoS),其中服务器被多个请求击倒,耗尽其资源。钱包攻击涉及利用社交工程攻击受害者的钱包。区块链黑客已经发现了几种利用框架漏洞的方法。

然而,大多数不涉及解决加密的过程,接收者接收到的交易更为容易。这就是量子计算可能对依赖 ECC 等加密技术的区块链网络造成致命打击的地方。使用量子技术破解区块链中的 ECC 可能导致保护资产的密钥破解。因此,黑客有更高的动机来攻击区块链网络,因为它们数字化存储了经济价值。

有一些区块链,如 QRL (量子抗性账本) 和 IOTA,是使用 PQC 开发的。然而,大多数区块链应用仍然使用 ECC,这不是量子安全的。就像 NIST 为互联网识别量子安全的加密技术所做的努力一样,我们需要一个全行业的区块链升级来抵御量子威胁。

现在让我们来看一些可以使区块链在后量子世界更安全的技术。区块链正在使用或探索的一些技术如下:

  • 扩展 Merkle 签名方案 (XMSS)

  • 区块链后量子签名 (BPQS)

  • 温特尼茨一次性签名 (W-OTA),由 IOTA 使用

当我解释这三种方法时,可能会显而易见它们都是相互关联的技术,并且有很多共同点。然而,每种技术都有适合它们的特定应用。

后量子世界的安全性

随着要解决的问题的困难度增加,加密方案变得更加安全。在后量子世界中,ECC 方法因为我们之前看到的原因而变得容易解决。可用于使加密量子安全的替代方案之一是使用基于哈希的签名方案。让我们来看一下使用哈希函数的 XMSS。

扩展 Merkle 签名方案 (XMSS)

XMSS 是 QRL 探索的一种基于哈希的签名方案。XMSS 具有两个关键特点,使其成为后量子加密的良好候选者。它使用了哈希函数,并且遵循一次性签名 (OTS) 系统。它还基于 Merkle 签名方案。Merkle 签名方案是由 Relph Merkle 在 1970 年代开发的,是量子抗性的。由于 Merkle 签名方案依赖于安全哈希函数,它们可以被归类为 PQC。

Merkle 签名方案中的公钥只能用于签署有限数量的消息。在 OTS 方法论中,它通常只用于签署一条消息。因此,在遵循 OTS 使用 Merkle 签名方案的区块链上,每个签名都需要生成一对公钥和私钥。XMSS 中的公钥由伪随机函数 (PRF) 生成。

下面的 Merkle 树图应该能够将其工作原理呈现出来。在 Merkle 树中,通常会生成 n 个密钥对,其中 n 是 2 的幂。顶部节点通过对其子节点应用哈希函数的连接来压缩所有公钥。

在此方案中,当发送者发送签名时,它将包含签名、树叶节点的公钥、发送的叶节点的索引和身份验证路径。此细节将证明发送的密钥对是 Merkle 树的一部分。例如,在以下树形图中,如果我们要使用具有叶节点 pk[2] 的密钥对,则发送者将发布以下内容:

  • 签名

  • 叶节点(公钥)– pk[2]

  • 已发布密钥对的索引– 2

  • 一条哈希函数的身份验证路径– 在这种情况下是 h[3]、h[8] 和 h[13]

接收者将使用此信息然后计算从 pk[2] 到 h[14] 的路径。来源:pdfs.semanticscholar.org/f38c/562c21fa1a94871e5f577669f7c4b9520632.pdf

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 2:具有 2³ 个 OTS 密钥对的 Merkle 树

OTS 方案与哈希函数相结合使得区块链更加安全。即使黑客找到了私钥,他们也无法破解区块链,因为之前的交易无法伪造。这是因为之前的交易将使用不同的密钥对。

在 XMSS 中,私钥保存一个索引,每次生成签名时更新。实际上,它保存了有关下一个未使用的 OTS 密钥对的信息。在此方案中,签名保存了 OTS 密钥对的索引和 Merkle 树上的路径。通过保存树中节点的位置,验证者可以识别根节点。从根节点,验证者然后可以计算公钥。如果公钥匹配,则签名有效。

尽管使用 OTS 结合哈希函数使得 XMSS 更安全,但它也有其缺点。密钥很大,如果树增长,对于小型设备使用这种技术可能会消耗资源。来源:eprint.iacr.org/2018/658.pdf

现在让我们来看一下 BPQS 技术,这是作为 XMSS 的替代方案正在被探索的技术。

区块链后量子签名(BPQS)

BPQS 已经专门设计为在生成密钥和签名以及执行验证时具有资源效率。这些都是 XMSS 中的痛点。BPQS 是 XMSS 的一个变体,它使用一条身份验证路径而不是树。因此,可以将其可视化为一系列哈希函数而不是树。

BPQS 可以像 OTS 方案一样工作,但也可以轻松扩展到多个签名。尽管 OTS 方案被视为安全的,但区块链的应用通常需要使用密钥对进行多个签名。例如,如果一个慈善机构发布其用于接收资金的公钥,可能希望至少保留它与一个筹款活动一样长的时间。因此,尽管 BPQS 是 XMSS 的变种,但从理论上讲它可以支持少量时间签名。

然而,BPQS 被视为 XMSS 的子集,侧重于快速签名。它仍然使用类似 XMSS 的 OTS 方法(W-OTS)。因此,与其将其视为 XMSS 中的一个成熟的默克尔树,我们可以将其视为一个由 2 个叶子的默克尔树链。以下图表有助于可视化 XMSS 树链:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 3:XMSS 树链的可视化。来源:eprint.iacr.org/2018/658.pdf

由于其性质,BPQS 方法可以用于坐落在区块链和物联网融合处的应用。现在让我们来看看 IOTA 正在使用的 W-OTS 方案。

温特纳兹一次签名(W-OTS)

我们讨论了 XMSS 使用的是 W-OTS 方案,这是 W-OTS 方案的一个变种。另一方面,BPQS 使用 W-OTS。W-OTS 正在被用于 IOTA 这一较为知名的区块链应用中。IOTA 是由 IOTA 基金会开发的分布式分类账技术,它使用 W-OTS 方法来实现抗量子攻击。

IOTA 将其相关或链接的交易捆绑在一起。捆绑哈希被归一化以创建一个私钥,并透露密钥的一部分。因此,一个密钥只能被使用一次来提取给定值。私钥经过几次操作,将其分解成几个片段,然后通过哈希函数进行处理。使用称为 kerl 哈希函数来创建签名。

另一方面,通过使用所发送的捆绑哈希和签名来验证交易的签名。签名是以相反顺序处理以获得私钥片段。然后,通过哈希函数对其进行处理以获得地址。来源:docs.iota.org/docs/getting-started/0.1/clients/signatures?q=QUantum&highlights=quantum

IOTA 声称他们的方法是抵御量子攻击的,创建签名和验证的复杂性可能反映出这一点。然而,对我来说,所有这些都突显了我们需要真正复杂的技术来应对量子威胁。

我们现在已经看到了区块链应用程序使用的三种不同类型的抗量子密码学。然而,这些是例外。typical 构建应用程序使用以太坊开发者框架的区块链开发人员实际上并不了解量子威胁。

这种情况需要改变。每个区块链开发者都需要理解量子计算机可能对他们为世界创造的价值网络产生的影响。与更多是信息网络的互联网不同,区块链可以用来持有资产和财富。如果它被黑客攻击,那么损失会更大。因此,对网络安全的理解是每个设计和开发区块链应用程序的人必须具备的基本要素。

这也表明,就像互联网一样,数据安全需要在后量子时代进行升级,我们需要区块链是抗量子的。对于像以太坊这样的生态系统来说尤其如此,它被用来在全球范围内构建区块链应用程序。

每个正在评估区块链套件以为其客户创建应用程序的组织都需要确保它们是抗量子的。所有这些努力将确保只有抗量子的区块链平台在工业目的上获得关注。这最初会造成一些流失,但快速适应的平台很快将成为修正过程的胜利者。

结论

不仅是区块链正在与量子计算产生冲突,几乎整个互联网都处于风险之中。量子计算不仅对区块链平台构成严重威胁,对使用 RSA 和 ECC 等技术的所有平台也是如此。然而,对于互联网和区块链行业都存在抗量子密码学的解决方案。采用这些技术将需要仔细考虑这些技术将被部署的应用程序和上下文。

我必须承认,这一章节相当技术性。但我已经尽可能简化了围绕密码学的叙述。我已经涵盖了关键的加密技术 RSA 和 ECC,以及它们在互联网和区块链解决方案中的应用。

然后我提及了他们为什么在量子计算机普及后会受到威胁。目前对于那时将会发生这一事件还存在很多炒作。有人说是 2027 年,有人争论可能是 2031 年。Google、IBM 和微软都对量子优势可能何时发生有自己的看法。据说 Google 也在为量子时代做准备,正在他们的 Chrome 浏览器中尝试 LBC。

我已经讨论了包括 LBC 和 CBC 在内的各种技术,它们可以为互联网提供抗量子保护。重要的是,不应轻视 NIST 挑战的结果,并且应该有一个自上而下的全球性倡议,以转向抗量子的互联网。

我们讨论了区块链在后量子世界中的脆弱性,以及为何区块链应用程序必须具备抗量子特性的必要性。目前,区块链行业正在经历寒冬。我认为该行业需要在重新出现并恢复相关性之前,向抗量子方向迈进。区块链平台可以利用如 XMSS 和 BPQS 等解决方案来提高安全性。

总之,尽管量子计算机的威胁,区块链行业可以并且应该采取解决方案以保持相关性。尽管两项技术可能存在冲突的可能性,但它们也有真正的共存机会。区块链行业需要适应后量子时代以保持相关。

在本章中,我们深入探讨了信息和价值网络如何需要适应后量子时代的细节。在下一章中,我们将探讨各国是如何定位自己以利用量子技术可能给他们带来的信息优势。

  • 19
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值