开发者
本节将重点关注 pandas 的下游应用。
在 Apache Parquet 格式中存储 pandas DataFrame 对象
Apache Parquet 格式在 Parquet 文件的页脚中提供文件和列级别的键值元数据:
5: optional list<KeyValue> key_value_metadata
其中 KeyValue
是
struct KeyValue {
1: required string key
2: optional string value
}
为了能够忠实地重建 pandas.DataFrame
,我们在 FileMetaData
中存储一个 pandas
元数据键,其值存储为:
{'index_columns': [<descr0>, <descr1>, ...],
'column_indexes': [<ci0>, <ci1>, ..., <ciN>],
'columns': [<c0>, <c1>, ...],
'pandas_version': $VERSION,
'creator': {
'library': $LIBRARY,
'version': $LIBRARY_VERSION
}}
'index_columns'
字段中的“描述符”值 <descr0>
是字符串(指向列)或具有如下描述的字典。
<c0>
/<ci0>
等是包含每列元数据的字典,包括索引列。这具有 JSON 形式:
{'name': column_name,
'field_name': parquet_column_name,
'pandas_type': pandas_type,
'numpy_type': numpy_type,
'metadata': metadata}
详细规范请参见下文。
索引元数据描述符
RangeIndex
只能作为元数据存储,不需要序列化。这些的描述格式如下:
index = pd.RangeIndex(0, 10, 2)
{
"kind": "range",
"name": index.name,
"start": index.start,
"stop": index.stop,
"step": index.step,
}
其他索引类型必须与其他 DataFrame 列一起序列化为数据列。这些的元数据是一个字符串,指示数据列中字段的名称,例如 '__index_level_0__'
。
如果索引具有非 None
的 name
属性,并且没有其他名称匹配该值的列,则 index.name
值可以用作描述符。否则(对于未命名索引和名称与其他列名称冲突的索引),应使用具有模式匹配 __index_level_\d+__
的消歧名。对于作为数据列的命名索引,name
属性始终存储在上述列描述符中。
列元数据
pandas_type
是列的逻辑类型之一:
-
布尔值:
'bool'
-
整数:
'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64'
-
浮点数:
'float16', 'float32', 'float64'
-
日期和时间类型:
'datetime', 'datetimetz'
,'timedelta'
-
字符串:
'unicode', 'bytes'
-
分类:
'categorical'
-
其��� Python 对象:
'object'
numpy_type
是列的物理存储类型,是保存数据的底层 NumPy 数组的 str(dtype)
的结果。因此,对于 datetimetz
,这是 datetime64[ns]
,对于分类,它可以是任何支持的整数分类类型之一。
metadata
字段为 None
,除非:
-
datetimetz
:{'timezone': zone, 'unit': 'ns'}
,例如{'timezone', 'America/New_York', 'unit': 'ns'}
。'unit'
是可选的,如果省略,则假定为纳秒。 -
categorical
:{'num_categories': K, 'ordered': is_ordered, 'type': $TYPE}
- 这里
'type'
是可选的,并且可以在此处是一个嵌套的 pandas 类型规范(但不是分类)
- 这里
-
unicode
:{'encoding': encoding}
- 编码是可选的,如果不存在,则为 UTF-8
-
object
:{'encoding': encoding}
。对象可以被序列化并存储在BYTE_ARRAY
Parquet 列中。编码可以是以下之一:'pickle'
'bson'
'json'
-
timedelta
:{'unit': 'ns'}
。'unit'
是可选的,如果省略,则默认为纳秒。这些元数据完全是可选的
对于除此之外的类型,可以省略 'metadata'
键。如果键不存在,实现可以假定为 None
。
作为完整元数据的示例:
{'index_columns': ['__index_level_0__'],
'column_indexes': [
{'name': None,
'field_name': 'None',
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': {'encoding': 'UTF-8'}}
],
'columns': [
{'name': 'c0',
'field_name': 'c0',
'pandas_type': 'int8',
'numpy_type': 'int8',
'metadata': None},
{'name': 'c1',
'field_name': 'c1',
'pandas_type': 'bytes',
'numpy_type': 'object',
'metadata': None},
{'name': 'c2',
'field_name': 'c2',
'pandas_type': 'categorical',
'numpy_type': 'int16',
'metadata': {'num_categories': 1000, 'ordered': False}},
{'name': 'c3',
'field_name': 'c3',
'pandas_type': 'datetimetz',
'numpy_type': 'datetime64[ns]',
'metadata': {'timezone': 'America/Los_Angeles'}},
{'name': 'c4',
'field_name': 'c4',
'pandas_type': 'object',
'numpy_type': 'object',
'metadata': {'encoding': 'pickle'}},
{'name': None,
'field_name': '__index_level_0__',
'pandas_type': 'int64',
'numpy_type': 'int64',
'metadata': None}
],
'pandas_version': '1.4.0',
'creator': {
'library': 'pyarrow',
'version': '0.13.0'
}}
```## 将 pandas DataFrame 对象存储为 Apache Parquet 格式
[Apache Parquet](https://github.com/apache/parquet-format) 格式在 Parquet 文件的页脚中提供了文件和列级别的键值元数据:
```py
5: optional list<KeyValue> key_value_metadata
其中 KeyValue
是
struct KeyValue {
1: required string key
2: optional string value
}
为了能够忠实地重建 pandas.DataFrame
,我们在 FileMetaData
中存储了一个 pandas
元数据键,其值存储为:
{'index_columns': [<descr0>, <descr1>, ...],
'column_indexes': [<ci0>, <ci1>, ..., <ciN>],
'columns': [<c0>, <c1>, ...],
'pandas_version': $VERSION,
'creator': {
'library': $LIBRARY,
'version': $LIBRARY_VERSION
}}
'index_columns'
字段中的“描述符”值 <descr0>
是字符串(指向列)或具有如下描述的字典。
<c0>
/<ci0>
等是包含每列元数据的字典,包括索引列。其 JSON 格式如下:
{'name': column_name,
'field_name': parquet_column_name,
'pandas_type': pandas_type,
'numpy_type': numpy_type,
'metadata': metadata}
详细规范请参见下文。
索引元数据描述符
RangeIndex
可以仅存储为元数据,无需序列化。这些的描述格式如下:
index = pd.RangeIndex(0, 10, 2)
{
"kind": "range",
"name": index.name,
"start": index.start,
"stop": index.stop,
"step": index.step,
}
其他索引类型必须与其他 DataFrame 列一起序列化为数据列。这些的元数据是指示数据列中字段名称的字符串,例如 '__index_level_0__'
。
如果索引具有非 None
的 name
属性,并且没有其他名称匹配该值的列,则 index.name
值可以用作描述符。否则(对于无名称的索引和名称与其他列名称冲突的情况),应使用具有模式匹配 __index_level_\d+__
的消歧名。对于作为数据列的命名索引,name
属性始终存储在列描述符中。
列元数据
pandas_type
是列的逻辑类型之一,包括:
-
布尔值:
'bool'
-
整数:
'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64'
-
浮点数:
'float16', 'float32', 'float64'
-
日期和时间类型:
'datetime', 'datetimetz'
,'timedelta'
-
字符串:
'unicode', 'bytes'
-
分类变量:
'categorical'
-
其他 Python 对象:
'object'
numpy_type
是列的物理存储类型,是持有数据的基础 NumPy 数组的 str(dtype)
的结果。因此对于 datetimetz
,这是 datetime64[ns]
,对于分类变量,可能是任何支持的整数分类类型之一。
metadata
字段除了以下情况外都为 None
:
-
datetimetz
:{'timezone': zone, 'unit': 'ns'}
, 例如{'timezone', 'America/New_York', 'unit': 'ns'}
。'unit'
是可选的,如果省略,则默认为纳秒。 -
categorical
:{'num_categories': K, 'ordered': is_ordered, 'type': $TYPE}
- 这里
'type'
是可选的,可以在此处是一个嵌套的 pandas 类型规范(但不是分类)
- 这里
-
unicode
:{'encoding': encoding}
- 编码是可选的,如果不存在,则为 UTF-8
-
object
:{'encoding': encoding}
。对象可以被序列化并存储在BYTE_ARRAY
Parquet 列中。编码可以是以下之一:'pickle'
'bson'
'json'
-
timedelta
:{'unit': 'ns'}
。'unit'
是可选的,如果省略,则默认为纳秒。这些元数据完全是可选的
对于除此之外的类型,可以省略'metadata'
键。如果键不存在,实现可以假定为None
。
作为完全形成的元数据示例:
{'index_columns': ['__index_level_0__'],
'column_indexes': [
{'name': None,
'field_name': 'None',
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': {'encoding': 'UTF-8'}}
],
'columns': [
{'name': 'c0',
'field_name': 'c0',
'pandas_type': 'int8',
'numpy_type': 'int8',
'metadata': None},
{'name': 'c1',
'field_name': 'c1',
'pandas_type': 'bytes',
'numpy_type': 'object',
'metadata': None},
{'name': 'c2',
'field_name': 'c2',
'pandas_type': 'categorical',
'numpy_type': 'int16',
'metadata': {'num_categories': 1000, 'ordered': False}},
{'name': 'c3',
'field_name': 'c3',
'pandas_type': 'datetimetz',
'numpy_type': 'datetime64[ns]',
'metadata': {'timezone': 'America/Los_Angeles'}},
{'name': 'c4',
'field_name': 'c4',
'pandas_type': 'object',
'numpy_type': 'object',
'metadata': {'encoding': 'pickle'}},
{'name': None,
'field_name': '__index_level_0__',
'pandas_type': 'int64',
'numpy_type': 'int64',
'metadata': None}
],
'pandas_version': '1.4.0',
'creator': {
'library': 'pyarrow',
'version': '0.13.0'
}}
索引元数据描述符
RangeIndex
可以仅存储为元数据,不需要序列化。这些的描述符格式如下:
index = pd.RangeIndex(0, 10, 2)
{
"kind": "range",
"name": index.name,
"start": index.start,
"stop": index.stop,
"step": index.step,
}
其他索引类型必须与其他 DataFrame 列一起序列化为数据列。这些的元数据是一个指示数据列中字段名称的字符串,例如'__index_level_0__'
。
如果索引具有非None
的name
属性,并且没有其他名称与该值匹配的列,则index.name
值可以用作描述符。否则(对于无名称的索引和名称与其他列名称冲突的索引),应使用具有模式匹配__index_level_\d+__
的消歧名。在数据列中具有命名索引的情况下,name
属性始终存储在上述列描述符中。
列元数据
pandas_type
是列的逻辑类型,可以是以下之一:
-
布尔型:
'bool'
-
整数:
'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64'
-
浮点数:
'float16', 'float32', 'float64'
-
日期和时间类型:
'datetime', 'datetimetz'
,'timedelta'
-
字符串:
'unicode', 'bytes'
-
分类:
'categorical'
-
其他 Python 对象:
'object'
numpy_type
是列的物理存储类型,是持有数据的底层 NumPy 数组的str(dtype)
的结果。因此,对于datetimetz
,这是datetime64[ns]
,对于分类,可能是任何支持的整数分类类型之一。
metadata
字段为None
,除了:
-
datetimetz
:{'timezone': zone, 'unit': 'ns'}
,例如{'timezone', 'America/New_York', 'unit': 'ns'}
。'unit'
是可选的,如果省略,则默认为纳秒。 -
categorical
:{'num_categories': K, 'ordered': is_ordered, 'type': $TYPE}
- 这里
'type'
是可选的,可以在此处是一个嵌套的 pandas 类型规范(但不是分类)
- 这里
-
unicode
:{'encoding': encoding}
- 编码是可选的,如果不存在,则为 UTF-8
-
object
:{'encoding': encoding}
。对象可以被序列化并存储在BYTE_ARRAY
Parquet 列中。编码可以是以下之一:'pickle'
'bson'
'json'
-
timedelta
:{'unit': 'ns'}
。'unit'
是可选的,如果省略,则默认为纳秒。这些元数据完全是可选的
对于除此之外的类型,可以省略'metadata'
键。如果该键不存在,实现可以假设为None
。
作为完整元数据的一个示例:
{'index_columns': ['__index_level_0__'],
'column_indexes': [
{'name': None,
'field_name': 'None',
'pandas_type': 'unicode',
'numpy_type': 'object',
'metadata': {'encoding': 'UTF-8'}}
],
'columns': [
{'name': 'c0',
'field_name': 'c0',
'pandas_type': 'int8',
'numpy_type': 'int8',
'metadata': None},
{'name': 'c1',
'field_name': 'c1',
'pandas_type': 'bytes',
'numpy_type': 'object',
'metadata': None},
{'name': 'c2',
'field_name': 'c2',
'pandas_type': 'categorical',
'numpy_type': 'int16',
'metadata': {'num_categories': 1000, 'ordered': False}},
{'name': 'c3',
'field_name': 'c3',
'pandas_type': 'datetimetz',
'numpy_type': 'datetime64[ns]',
'metadata': {'timezone': 'America/Los_Angeles'}},
{'name': 'c4',
'field_name': 'c4',
'pandas_type': 'object',
'numpy_type': 'object',
'metadata': {'encoding': 'pickle'}},
{'name': None,
'field_name': '__index_level_0__',
'pandas_type': 'int64',
'numpy_type': 'int64',
'metadata': None}
],
'pandas_version': '1.4.0',
'creator': {
'library': 'pyarrow',
'version': '0.13.0'
}}
政策
版本策略
pandas 使用一种宽松的语义版本控制变体(SemVer)来管理弃用、API 兼容性和版本编号。
一个 pandas 发布号由MAJOR.MINOR.PATCH
组成。
破坏 API 的更改应仅在主要发布中发生。这些更改将被记录,提供明确的指导,说明正在发生什么变化,为什么会发生变化,以及如何将现有代码迁移到新行为。
尽可能提供弃用路径,而不是直接破坏性更改。
pandas 将在次要发布中引入弃用。这些弃用将保留现有行为,同时发出警告,提供指导:
-
如果有替代方案可用,如何实现类似的行为
-
弃用将在主要发布中强制执行的 pandas 版本。
我们不会在补丁发布中引入新的弃用。
弃用仅在主要发布中强制执行。例如,如果一个行为在 pandas 1.2.0 中被弃用,它将继续工作,并发出警告,直到 1.x 系列的所有发布。该行为将在下一个主要发布(2.0.0)中更改,并删除弃用。
注意
pandas 有时会进行改变行为的错误修复,作为次要或补丁发布的一部分。一个改变是错误修复还是破坏 API 的改变是一个判断。我们会尽力而为,并邀请您参与问题跟踪器或邮件列表上的开发讨论。
这些政策不适用于文档中标记为实验性的功能。pandas 可能随时更改实验性功能的行为。
Python 支持
pandas 遵循NumPy 关于 Python 支持的指南。
安全策略
要向 pandas 报告安全漏洞,请访问pandas-dev/pandas并查看那里的说明。
版本策略
pandas 使用一种宽松的语义版本控制变体(SemVer)来管理弃用、API 兼容性和版本编号。
一个 pandas 发布号由MAJOR.MINOR.PATCH
组成。
破坏 API 的更改应仅在主要发布中发生。这些更改将被记录,提供明确的指导,说明正在发生什么变化,为什么会发生变化,以及如何将现有代码迁移到新行为。
尽可能提供弃用路径,而不是直接破坏性更改。
pandas 将在次要发布中引入弃用。这些弃用将保留现有行为,同时发出警告,提供指导:
-
如果有替代方案可用,如何实现类似的行为
-
弃用将在主要发布中强制执行的 pandas 版本。
我们不会在补丁发布中引入新的弃用。
弃用只会在主要发布版中实施。例如,如果某个行为在 pandas 1.2.0 中被弃用,它将在 1.x 系列的所有发布版中继续工作,并显示警告。该行为将在下一个主要发布版(2.0.0)中更改,并移除弃用。
注意
有时,pandas 会作为次要或补丁发布版的一部分进行改变行为的错误修复。某个更改是错误修复还是破坏 API 的更改是一种判断。我们会尽力而为,并欢迎您参与问题跟踪器或邮件列表上的开发讨论。
这些策略不适用于文档中标记为实验性的功能。pandas 可能随时更改实验性功能的行为。
Python 支持
pandas 遵循NumPy 关于 Python 支持的指南。
安全策略
要向 pandas 报告安全漏洞,请访问pandas-dev/pandas,并查看那里的说明。
贡献者社区
pandas 是一个由大量贡献者和少量维护者共同推动的开源项目。pandas 领导层承诺创建一个开放、包容和积极的社区。请阅读 pandas 的行为准则,以了解如何与他人互动,使社区蓬勃发展。
我们提供多个会议和沟通渠道,以分享知识并与 pandas 社区中的其他人联系。
社区会议
pandas 社区会议是项目维护者的定期同步会议,对社区开放。欢迎每个人参加并参与对话。
会议定于每月的第二和第四个星期三的 UTC 时间 18:00 举行。
过去会议的记录可在此 Google 文档中找到。
新贡献者会议
每月的第三个星期三,我们举行会议,欢迎和支持我们社区中的新贡献者。
👋 欢迎大家💬 每个人都可以展示(将自己添加到 hackMD 议程中)👀 任何人都可以坐下来听
参与者包括新手和经验丰富的贡献者,以及一些维护者。我们的目标是回答关于入门的问题,或在可能的情况下帮助进行中的工作,同时彼此了解并分享我们的学习和经验。
下次会议的议程和过去会议的记录可在此 HackMD中找到。
日历
这个日历显示了所有社区会议。我们的社区会议非常适合任何想要为 pandas 做贡献的人,或者只是好奇了解当前开发进展的人。
calendar.google.com/calendar/embed?src=pgbn14p6poja8a1cf2dv2jhrmg%40group.calendar.google.com
您可以通过以下链接订阅此日历:
另外,我们有时会就特定主题举行一次性会议。这些会议将在同一日历上发布。
GitHub 问题跟踪器
pandas 贡献者社区主要通过这个渠道进行交流。任何社区成员都可以提出问题:
-
报告错误,例如“我注意到某个函数的行为不正确”
-
请求功能,例如:“我希望这个错误消息更易读”。
-
请求文档改进,例如:“我发现这一部分不够清晰”。
-
提出问题,例如:“我注意到某个函数在版本之间的行为发生了变化。这是预期的吗?”。
理想情况下,你的问题应与 pandas 的工作方式相关,而不是你如何使用 pandas。StackOverflow 更适合回答使用问题,我们要求所有使用问题首先在 StackOverflow 上提出。感谢您尊重我们的时间和意愿。🙇
维护者和经常贡献者也可能提出问题,讨论项目的正在进行的开发。例如:
-
报告 CI、GitHub Actions 或 pandas 性能的问题。
-
提出与内部相关的问题。
-
开始路线图讨论,就未来版本的提案或 API 更改达成一致。
-
提出与项目的网站、标志或治理相关的问题。
开发者邮件列表
pandas 邮件列表 pandas-dev@python.org 用于长篇对话,并吸引广泛社区中可能不活跃于问题跟踪器但我们希望包括在讨论中的人。
社区 Slack
我们有一个面向贡献者、维护者和潜在贡献者的聊天平台。这不是一个用于用户问题的空间,而是用于有关贡献到 pandas 的问题的空间。slack 是一个私人空间,专门为那些不愿在大型公共邮件列表或 GitHub 上提出问题或想法的人准备的。
如果这听起来适合你,欢迎你使用此链接加入!请记住遵守我们的行为准则,并注意我们的管理员正在监控无关消息,并将移除将我们的 Slack 用于垃圾邮件、广告和与 pandas 贡献社区无关的消息的人。请记住,slack 并不意味着取代邮件列表或问题跟踪器 - 所有重要的公告和对话仍应在那里进行。
社区会议
pandas 社区会议是项目维护者的定期同步会议,对社区开放。欢迎每个人参加并为对话做出贡献。
会议每月在每月的第二个和第四个星期三的 UTC 时间 18:00 举行。
过去会议的记录可在此 Google 文档中找到。
新贡献者会议
每月的第三个星期三,我们举行会议,欢迎并支持社区中的新贡献者。
👋 欢迎大家💬 每个人都可以展示(在 hackMD 议程中添加自己)👀 任何人都可以坐下来听
参加者包括新手和经验丰富的贡献者,以及一些维护者。我们的目标是在可能的情况下回答有关入门问题,或者在进行中的工作时提供帮助,以及彼此了解并分享我们的学习和经验。
下次会议的议程和过去会议的记录可以在 这个 HackMD 中找到。
日历
此日历显示所有社区会议。我们的社区会议非常适合想要为 pandas 做贡献的人,或者只是好奇了解当前开发进展的人。
calendar.google.com/calendar/embed?src=pgbn14p6poja8a1cf2dv2jhrmg%40group.calendar.google.com
您可以使用以下链接订阅此日历:
此外,我们有时会就特定主题举行一次性会议。这些会议将发布在同一日历上。
GitHub 问题追踪器
pandas 贡献者社区主要通过此渠道进行对话。任何社区成员都可以提出问题:
-
报告错误,例如“我注意到某个函数的行为不正确”
-
请求功能,例如“我希望这个错误消息更易读”
-
请求文档改进,例如“我发现这一部分不清楚”
-
提出问题,例如“我注意到某个函数在版本之间的行为发生了变化。这是预期的吗?”
理想情况下,您的问题应与 pandas 的工作方式有关,而不是如何使用 pandas。StackOverflow 更适合回答使用问题,并且我们要求所有使用问题首先在 StackOverflow 上提出。感谢您尊重我们的时间和意愿。🙇
维护者和经常贡献者还可能提出问题,讨论项目的持续开发。例如:
-
报告与 CI、GitHub Actions 或 pandas 性能相关的问题
-
与内部相关的未解决问题
-
开始路线图讨论,以对未来发布或 API 更改的提案进行调整。
-
与项目的网站、标志或治理相关的未解决问题
开发者邮件列表
pandas 邮件列表 pandas-dev@python.org 用于长篇对话,并吸引更广泛社区中可能不活跃在问题追踪器上但我们希望参与讨论的人。
社区 Slack
我们为贡献者、维护者和潜在贡献者提供了一个聊天平台。这不是一个用户提问的空间,而是用于关于贡献到 pandas 的问题。Slack 是一个私人空间,专门为那些不愿意在大型公共邮件列表或 GitHub 上提出问题或想法的人而设。
如果这听起来适合你,欢迎使用此链接加入!请记住遵守我们的行为准则,并注意我们的管理员正在监控与 pandas 贡献社区无关的消息,将删除使用我们的 Slack 进行垃圾邮件、广告和与 pandas 贡献社区无关的消息的人。请记住,Slack 不应取代邮件列表或问题跟踪器 - 所有重要的公告和对话仍应在那里进行。
发布说明
这是 pandas 每个版本之间的更改列表。有关完整详情,请参阅提交日志。有关安装和升级说明,请参阅安装。
版本 2.2
-
2.2.2 新功能(2024 年 4 月 10 日)
-
Pandas 2.2.2 现在与 numpy 2.0 兼容
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
2.2.1 新功能(2024 年 2 月 22 日)
-
增强功能
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
2.2.0 新功能(2024 年 1 月 19 日)
-
pandas 3.0 中即将到来的更改
-
增强功能
-
显著的错误修复
-
已弃用功能
-
性能改进
-
错误修复
-
贡献者
-
版本 2.1
-
2.1.4 新功能(2023 年 12 月 8 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
2.1.3 新功能(2023 年 11 月 10 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
2.1.2 新功能(2023 年 10 月 26 日)
-
已弃用功能
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
2.1.1 新功能(2023 年 9 月 20 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
2.1.0 新功能(2023 年 8 月 30 日)
-
增强功能
-
向后不兼容的 API 更改
-
已弃用功能
-
性能改进
-
错误修复
-
贡献者
-
版本 2.0
-
2.0.3 新功能(2023 年 6 月 28 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
2.0.2 新功能(2023 年 5 月 29 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
2.0.1 中的新功能(2023 年 4 月 24 日)
-
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
2.0.0 中的新功能(2023 年 4 月 3 日)
-
增强功能
-
值得注意的错误修复
-
不兼容的 API 更改
-
已弃用功能
-
移除先前版本的弃用/更改
-
性能改进
-
错误修复
-
贡献者
-
版本 1.5
-
1.5.3 中的新功能(2023 年 1 月 18 日)
-
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
1.5.2 中的新功能(2022 年 11 月 21 日)
-
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
1.5.1 中的新功能(2022 年 10 月 19 日)
-
使用分类分组器的
groupby
行为(GH 48645) -
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
1.5.0 中的新功能(2022 年 9 月 19 日)
-
增强功能
-
值得注意的错误修复
-
不兼容的 API 更改
-
已弃用功能
-
性能改进
-
错误修复
-
贡献者
-
版本 1.4
-
1.4.4 中的新功能(2022 年 8 月 31 日)
-
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
1.4.3 中的新功能(2022 年 6 月 23 日)
-
concat
与空或全 NA DataFrame 列的行为 -
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
1.4.2 中的新功能(2022 年 4 月 2 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
1.4.1 中的新功能(2022 年 2 月 12 日)
-
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
1.4.0 中的新功能(2022 年 1 月 22 日)
-
增强功能
-
值得注意的错误修复
-
向后不兼容的 API 更改
-
已弃用项
-
性能改进
-
错误修复
-
贡献者
-
1.3 版本
-
1.3.5 版本新内容(2021 年 12 月 12 日)
-
修复的回归
-
贡献者
-
-
1.3.4 版本新内容(2021 年 10 月 17 日)
-
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
1.3.3 版本新内容(2021 年 9 月 12 日)
-
修复的回归
-
性能改进
-
错误修复
-
贡献者
-
-
1.3.2 版本新内容(2021 年 8 月 15 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
1.3.1 版本新内容(2021 年 7 月 25 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
1.3.0 版本新内容(2021 年 7 月 2 日)
-
增强
-
显著的错误修复
-
向后不兼容的 API 更改
-
已弃用项
-
性能改进
-
错误修复
-
贡献者
-
1.2 版本
-
1.2.5 版本新内容(2021 年 6 月 22 日)
-
修复的回归
-
贡献者
-
-
1.2.4 版本新内容(2021 年 4 月 12 日)
-
修复的回归
-
贡献者
-
-
1.2.3 版本新内容(2021 年 3 月 2 日)
-
修复的回归
-
贡献者
-
-
1.2.2 版本新内容(2021 年 2 月 9 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
1.2.1 版本新内容(2021 年 1 月 20 日)
-
修复的回归
-
在非对齐数据框上调用 NumPy ufuncs
-
错误修复
-
其他
-
贡献者
-
-
1.2.0 版本新内容(2020 年 12 月 26 日)
-
增强
-
显著的错误修复
-
已弃用项
-
性能改进
-
错误修复
-
贡献者
-
1.1 版本
-
1.1.5 版本新内容(2020 年 12 月 7 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
1.1.4 版本更新内容(2020 年 10 月 30 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
1.1.3 版本更新内容(2020 年 10 月 5 日)
-
增强功能
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
1.1.2 版本更新内容(2020 年 9 月 8 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
1.1.1 版本更新内容(2020 年 8 月 20 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
1.1.0 版本更新内容(2020 年 7 月 28 日)
-
增强功能
-
显著的错误修复
-
不兼容的 API 更改
-
弃用项
-
性能改进
-
错误修复
-
贡献者
-
1.0 版本
-
1.0.5 版本更新内容(2020 年 6 月 17 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
1.0.4 版本更新内容(2020 年 5 月 28 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
1.0.3 版本更新内容(2020 年 3 月 17 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
1.0.2 版本更新内容(2020 年 3 月 12 日)
-
修复的回归问题
-
使用可空布尔数组进行索引
-
错误修复
-
贡献者
-
-
1.0.1 版本更新内容(2020 年 2 月 5 日)
-
修复的回归问题
-
弃用项
-
错误修复
-
贡献者
-
-
1.0.0 版本更新内容(2020 年 1 月 29 日)
-
新的弃用政策
-
增强功能
-
实验性新功能
-
其他增强功能
-
不兼容的 API 更改
-
弃用项
-
删除之前版本的弃用/更改
-
性能改进
-
错误修复
-
贡献者
-
版本 0.25
-
0.25.3 中的新功能(2019 年 10 月 31 日)
-
错误修复
-
贡献者
-
-
0.25.2 中的新功能(2019 年 10 月 15 日)
-
错误修复
-
贡献者
-
-
0.25.1 中的新功能(2019 年 8 月 21 日)
-
IO 和 LZMA
-
错误修复
-
贡献者
-
-
0.25.0 中的新功能(2019 年 7 月 18 日)
-
增强功能
-
向后不兼容的 API 更改
-
弃用项
-
去除先前版本的弃用/更改
-
性能改进
-
错误修复
-
贡献者
-
版本 0.24
-
0.24.2 中的新功能(2019 年 3 月 12 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
0.24.1 中的新功能(2019 年 2 月 3 日)
-
API 更改
-
修复的回归
-
错误修复
-
贡献者
-
-
0.24.0 中的新功能(2019 年 1 月 25 日)
-
增强功能
-
向后不兼容的 API 更改
-
扩展类型更改
-
弃用项
-
去除先前版本的弃用/更改
-
性能改进
-
错误修复
-
贡献者
-
版本 0.23
-
0.23.4 中的新功能(2018 年 8 月 3 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
0.23.3 中的新功能(2018 年 7 月 7 日)
- 贡献者
-
0.23.2 中的新功能(2018 年 7 月 5 日)
-
整个 DataFrame 上的逻辑减少
-
修复的回归
-
构建更改
-
错误修复
-
贡献者
-
-
0.23.1 中的新功能(2018 年 6 月 12 日)
-
修复的回归
-
性能改进
-
错误修复
-
贡献者
-
-
0.23.0 中的新功能(2018 年 5 月 15 日)
-
新功能
-
向后不兼容的 API 更改
-
弃用内容
-
移除之前版本的弃用/更改
-
性能改进
-
文档更改
-
错误修复
-
贡献者
-
版本 0.22
-
版本 0.22.0 (2017 年 12 月 29 日)
-
向后不兼容的 API 更改
-
兼容性
-
贡献者
-
版本 0.21
-
版本 0.21.1 (2017 年 12 月 12 日)
-
恢复 Matplotlib 日期时间转换器注册
-
新特性
-
弃用内容
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.21.0 (2017 年 10 月 27 日)
-
新特性
-
向后不兼容的 API 更改
-
弃用内容
-
移除之前版本的弃用/更改
-
性能改进
-
文档更改
-
错误修复
-
贡献者
-
版本 0.20
-
版本 0.20.3 (2017 年 7 月 7 日)
-
错误修复
-
贡献者
-
-
版本 0.20.2 (2017 年 6 月 4 日)
-
增强功能
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.20.1 (2017 年 5 月 5 日)
-
新特性
-
向后不兼容的 API 更改
-
库的重新组织:隐私更改
-
弃用内容
-
移除之前版本的弃用/更改
-
性能改进
-
错误修复
-
贡献者
-
版本 0.19
-
版本 0.19.2 (2016 年 12 月 24 日)
-
增强功能
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.19.1 (2016 年 11 月 3 日)
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.19.0(2016 年 10 月 2 日)
-
新特性
-
API 更改
-
弃用
-
删除先前版本的弃用/更改
-
性能改进
-
Bug 修复
-
贡献者
-
版本 0.18
-
版本 0.18.1(2016 年 5 月 3 日)
-
新特性
-
稀疏更改
-
API 更改
-
性能改进
-
Bug 修复
-
贡献者
-
-
版本 0.18.0(2016 年 3 月 13 日)
-
新特性
-
向后不兼容的 API 更改
-
性能改进
-
Bug 修复
-
贡献者
-
版本 0.17
-
版本 0.17.1(2015 年 11 月 21 日)
-
新特性
-
增强功能
-
API 更改
-
性能改进
-
Bug 修复
-
贡献者
-
-
版本 0.17.0(2015 年 10 月 9 日)
-
新特性
-
向后不兼容的 API 更改
-
性能改进
-
Bug 修复
-
贡献者
-
版本 0.16
-
版本 0.16.2(2015 年 6 月 12 日)
-
新特性
-
API 更改
-
性能改进
-
Bug 修复
-
贡献者
-
-
版本 0.16.1(2015 年 5 月 11 日)
-
增强功能
-
API 更改
-
索引表示
-
性能改进
-
Bug 修复
-
贡献者
-
-
版本 0.16.0(2015 年 3 月 22 日)
-
新特性
-
向后不兼容的 API 更改
-
性能改进
-
Bug 修复
-
贡献者
-
版本 0.15
-
版本 0.15.2(2014 年 12 月 12 日)
-
API 更改
-
增强功能
-
性能
-
Bug 修复
-
贡献者
-
-
版本 0.15.1 (2014 年 11 月 9 日)
-
API 更改
-
增强功能
-
错误修复
-
贡献者
-
-
版本 0.15.0 (2014 年 10 月 18 日)
-
新功能
-
不兼容的后向 API 更改
-
增强功能
-
性能
-
错误修复
-
贡献者
-
版本 0.14
-
版本 0.14.1 (2014 年 7 月 11 日)
-
API 更改
-
增强功能
-
性能
-
实验性的
-
错误修复
-
贡献者
-
-
版本 0.14.0 (2014 年 5 月 31 日)
-
API 更改
-
显示更改
-
文本解析 API 更改
-
GroupBy API 更改
-
SQL
-
使用切片器进行多重索引
-
绘图
-
先前版本的弃用/更改
-
弃用
-
已知问题
-
增强功能
-
性能
-
实验性的
-
错误修复
-
贡献者
-
版本 0.13
-
版本 0.13.1 (2014 年 2 月 3 日)
-
输出格式增强
-
API 更改
-
先前版本的弃用/更改
-
弃用
-
增强功能
-
性能
-
实验性的
-
错误修复
-
贡献者
-
-
版本 0.13.0 (2014 年 1 月 3 日)
-
API 更改
-
先前版本的弃用/更改
-
弃用
-
索引 API 更改
-
Float64Index API 更改
-
HDFStore API 更改
-
DataFrame 表示更改
-
增强功能
-
实验性的
-
内部重构
-
错误修复
-
贡献者
-
版本 0.12
-
版本 0.12.0 (2013 年 7 月 24 日)
-
API 更改
-
IO 增强
-
其他增强功能
-
实验性特性
-
错误修复
-
贡献者
-
版本 0.11
-
版本 0.11.0(2013 年 4 月 22 日)
-
选择选择
-
选择废弃
-
数据类型
-
数据类型转换
-
数据类型陷阱
-
日期时间转换
-
API 变更
-
增强功能
-
贡献者
-
版本 0.10
-
版本 0.10.1(2013 年 1 月 22 日)
-
API 变更
-
新特性
-
HDFStore
-
贡献者
-
-
版本 0.10.0(2012 年 12 月 17 日)
-
文件解析新特性
-
API 变更
-
新特性
-
宽 DataFrame 打印
-
更新的 PyTables 支持
-
N 维面板(实验性)
-
贡献者
-
版本 0.9
-
版本 0.9.1(2012 年 11 月 14 日)
-
新特性
-
API 变更
-
贡献者
-
-
版本 0.9.0(2012 年 10 月 7 日)
-
新特性
-
API 变更
-
贡献者
-
版本 0.8
-
版本 0.8.1(2012 年 7 月 22 日)
-
新特性
-
性能改进
-
贡献者
-
-
版本 0.8.0(2012 年 6 月 29 日)
-
支持非唯一索引
-
NumPy datetime64 数据类型和 1.6 依赖
-
时间序列更改和改进
-
其他新特性
-
新绘图方法
-
其他 API 变更
-
针对 pandas <= 0.7.3 用户的潜在迁移问题
-
贡献者
-
版本 0.7
-
版本 0.7.3(2012 年 4 月 12 日)
-
新特性
-
NA 布尔比较 API 更改
-
其他 API 变更
-
贡献者
-
-
版本 0.7.2(2012 年 3 月 16 日)
-
新特性
-
性能改进
-
贡献者
-
-
2.2.2 版本更新 (2012 年 2 月 29 日)
-
新功能
-
性能改进
-
贡献者
-
-
2.2.1 版本更新 (2012 年 2 月 9 日)
-
新功能
-
针对整数索引的 API 变更
-
基于标签切片的 API 调整
-
其他 API 变更
-
性能改进
-
贡献者
-
版本 0.6
-
2011 年 12 月 13 日的 0.6.1 版本更新
-
新功能
-
性能改进
-
贡献者
-
-
2011 年 11 月 25 日的 0.6.0 版本更新
-
新功能
-
性能增强
-
贡献者
-
版本 0.5
-
0.5.0 版本更新 (2011 年 10 月 24 日)
-
新功能
-
性能增强
-
贡献者
-
版本 0.4
-
版本 0.4.1 至 0.4.3(2011 年 9 月 25 日 - 10 月 9 日)
-
新功能
-
性能增强
-
贡献者
-
版本 2.2
-
2024 年 4 月 10 日的 2.2.2 版本更新
-
Pandas 2.2.2 现在与 numpy 2.0 兼容
-
修复的回归
-
Bug 修复
-
其他
-
贡献者
-
-
2024 年 2 月 22 日的 2.2.1 版本更新
-
增强功能
-
修复的回归
-
Bug 修复
-
其他
-
贡献者
-
-
2024 年 1 月 19 日的 2.2.0 版本更新
-
即将到来的 pandas 3.0 变更
-
增强功能
-
显著的 bug 修复
-
弃用
-
性能改进
-
Bug 修复
-
贡献者
-
版本 2.1
-
2023 年 12 月 8 日的 2.1.4 版本更新
-
修复的回归
-
Bug 修复
-
贡献者
-
-
2023 年 11 月 10 日的 2.1.3 版本更新
-
修复的回归
-
Bug 修复
-
贡献者
-
-
2023 年 10 月 26 日的 2.1.2 版本更新
-
弃用
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
2.1.1 版本更新内容(2023 年 9 月 20 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
2.1.0 版本更新内容(2023 年 8 月 30 日)
-
增强功能
-
不兼容的 API 更改
-
弃用功能
-
性能改进
-
错误修复
-
贡献者
-
版本 2.0
-
2.0.3 版本更新内容(2023 年 6 月 28 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
2.0.2 版本更新内容(2023 年 5 月 29 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
2.0.1 版本更新内容(2023 年 4 月 24 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
2.0.0 版本更新内容(2023 年 4 月 3 日)
-
增强功能
-
值得注意的错误修复
-
不兼容的 API 更改
-
弃用功能
-
移除之前版本的弃用/更改
-
性能改进
-
错误修复
-
贡献者
-
版本 1.5
-
1.5.3 版本更新内容(2023 年 1 月 18 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
1.5.2 版本更新内容(2022 年 11 月 21 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
1.5.1 版本更新内容(2022 年 10 月 19 日)
-
groupby
在分类分组器中的行为(GH 48645) -
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
1.5.0 版本更新内容(2022 年 9 月 19 日)
-
增强功能
-
值得注意的错误修复
-
不兼容的 API 更改
-
弃用功能
-
性能改进
-
错误修复
-
贡献者
-
版本 1.4
-
1.4.4 新功能(2022 年 8 月 31 日)
-
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
1.4.3 新功能(2022 年 6 月 23 日)
-
concat
在空或全 NA DataFrame 列上的行为 -
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
1.4.2 新功能(2022 年 4 月 2 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
1.4.1 新功能(2022 年 2 月 12 日)
-
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
1.4.0 新功能(2022 年 1 月 22 日)
-
增强功能
-
值得注意的错误修复
-
向后不兼容的 API 更改
-
弃用功能
-
性能改进
-
错误修复
-
贡献者
-
版本 1.3
-
1.3.5 新功能(2021 年 12 月 12 日)
-
修复的回归
-
贡献者
-
-
1.3.4 新功能(2021 年 10 月 17 日)
-
修复的回归
-
错误修复
-
其他
-
贡献者
-
-
1.3.3 新功能(2021 年 9 月 12 日)
-
修复的回归
-
性能改进
-
错误修复
-
贡献者
-
-
1.3.2 新功能(2021 年 8 月 15 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
1.3.1 新功能(2021 年 7 月 25 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
1.3.0 新功能(2021 年 7 月 2 日)
-
增强功能
-
值得注意的错误修复
-
向后不兼容的 API 更改
-
弃用功能
-
性能改进
-
错误修复
-
贡献者
-
版本 1.2
-
1.2.5 新功能(2021 年 6 月 22 日)
-
修复的回归
-
贡献者
-
-
1.2.4 版本更新(2021 年 4 月 12 日)
-
修复的回归问题
-
贡献者
-
-
1.2.3 版本更新(2021 年 3 月 2 日)
-
修复的回归问题
-
贡献者
-
-
1.2.2 版本更新(2021 年 2 月 9 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
1.2.1 版本更新(2021 年 1 月 20 日)
-
修复的回归问题
-
在非对齐的数据框上调用 NumPy ufuncs
-
错误修复
-
其他
-
贡献者
-
-
1.2.0 版本更新(2020 年 12 月 26 日)
-
增强功能
-
显著的错误修复
-
弃用功能
-
性能改进
-
错误修复
-
贡献者
-
1.1 版本
-
1.1.5 版本更新(2020 年 12 月 7 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
1.1.4 版本更新(2020 年 10 月 30 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
1.1.3 版本更新(2020 年 10 月 5 日)
-
增强功能
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
1.1.2 版本更新(2020 年 9 月 8 日)
-
修复的回归问题
-
错误修复
-
其他
-
贡献者
-
-
1.1.1 版本更新(2020 年 8 月 20 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
1.1.0 版本更新(2020 年 7 月 28 日)
-
增强功能
-
显著的错误修复
-
不兼容的 API 更改
-
弃用功能
-
性能改进
-
错误修复
-
贡献者
-
1.0 版本
-
1.0.5 版本更新(2020 年 6 月 17 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
1.0.4 版本更新(2020 年 5 月 28 日)
-
修复的回归问题
-
错误修复
-
贡献者
-
-
1.0.3 版本更新(2020 年 3 月 17 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
1.0.2 中的新功能(2020 年 3 月 12 日)
-
修复的回归
-
使用可空布尔数组进行索引
-
错误修复
-
贡献者
-
-
1.0.1 中的新功能(2020 年 2 月 5 日)
-
修复的回归
-
弃用
-
错误修复
-
贡献者
-
-
1.0.0 中的新功能(2020 年 1 月 29 日)
-
新的弃用政策
-
增强功能
-
实验性新功能
-
其他增强功能
-
不兼容的后向 API 更改
-
弃用
-
删除之前版本的弃用/更改
-
性能改进
-
错误修复
-
贡献者
-
版本 0.25
-
0.25.3 中的新功能(2019 年 10 月 31 日)
-
错误修复
-
贡献者
-
-
0.25.2 中的新功能(2019 年 10 月 15 日)
-
错误修复
-
贡献者
-
-
0.25.1 中的新功能(2019 年 8 月 21 日)
-
IO 和 LZMA
-
错误修复
-
贡献者
-
-
0.25.0 中的新功能(2019 年 7 月 18 日)
-
增强功能
-
不兼容的后向 API 更改
-
弃用
-
删除之前版本的弃用/更改
-
性能改进
-
错误修复
-
贡献者
-
版本 0.24
-
0.24.2 中的新功能(2019 年 3 月 12 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
0.24.1 中的新功能(2019 年 2 月 3 日)
-
API 更改
-
修复的回归
-
错误修复
-
贡献者
-
-
0.24.0 中的新功能(2019 年 1 月 25 日)
-
增强功能
-
不兼容的后向 API 更改
-
扩展类型更改
-
弃用
-
删除先前版本的弃用/更改
-
性能改进
-
错误修复
-
贡献者
-
版本 0.23
-
0.23.4 中的新功能(2018 年 8 月 3 日)
-
修复的回归
-
错误修复
-
贡献者
-
-
0.23.3 中的新功能(2018 年 7 月 7 日)
- 贡献者
-
0.23.2 中的新功能(2018 年 7 月 5 日)
-
整个 DataFrame 上的逻辑缩减
-
修复的回归
-
构建更改
-
错误修复
-
贡献者
-
-
0.23.1 中的新功能(2018 年 6 月 12 日)
-
修复的回归
-
性能改进
-
错误修复
-
贡献者
-
-
0.23.0 中的新功能(2018 年 5 月 15 日)
-
新功能
-
向后不兼容的 API 更改
-
弃用
-
删除先前版本的弃用/更改
-
性能改进
-
文档更改
-
错误修复
-
贡献者
-
版本 0.22
-
版本 0.22.0(2017 年 12 月 29 日)
-
向后不兼容的 API 更改
-
兼容性
-
贡献者
-
版本 0.21
-
版本 0.21.1(2017 年 12 月 12 日)
-
恢复 Matplotlib 日期时间转换器注册
-
新功能
-
弃用
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.21.0(2017 年 10 月 27 日)
-
新功能
-
向后不兼容的 API 更改
-
弃用
-
删除先前版本的弃用/更改
-
性能改进
-
文档更改
-
错误修复
-
贡献者
-
版本 0.20
-
版本 0.20.3(2017 年 7 月 7 日)
-
错误修复
-
贡献者
-
-
版本 0.20.2 (2017 年 6 月 4 日)
-
增强功能
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.20.1 (2017 年 5 月 5 日)
-
新特性
-
向后不兼容的 API 更改
-
库的重新组织:隐私更改
-
废弃功能
-
移除之前版本的废弃功能/更改
-
性能改进
-
错误修复
-
贡献者
-
版本 0.19
-
版本 0.19.2 (2016 年 12 月 24 日)
-
增强功能
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.19.1 (2016 年 11 月 3 日)
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.19.0 (2016 年 10 月 2 日)
-
新特性
-
API 更改
-
废弃功能
-
移除之前版本的废弃功能/更改
-
性能改进
-
错误修复
-
贡献者
-
版本 0.18
-
版本 0.18.1 (2016 年 5 月 3 日)
-
新特性
-
稀疏更改
-
API 更改
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.18.0 (2016 年 3 月 13 日)
-
新特性
-
向后不兼容的 API 更改
-
性能改进
-
错误修复
-
贡献者
-
版本 0.17
-
版本 0.17.1 (2015 年 11 月 21 日)
-
新特性
-
增强功能
-
API 更改
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.17.0 (2015 年 10 月 9 日)
-
新特性
-
向后不兼容的 API 更改
-
性能改进
-
错误修复
-
贡献者
-
版本 0.16
-
版本 0.16.2 (2015 年 6 月 12 日)
-
新功能
-
API 变更
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.16.1 (2015 年 5 月 11 日)
-
增强功能
-
API 变更
-
索引表示
-
性能改进
-
错误修复
-
贡献者
-
-
版本 0.16.0 (2015 年 3 月 22 日)
-
新功能
-
不兼容的 API 变更
-
性能改进
-
错误修复
-
贡献者
-
版本 0.15
-
版本 0.15.2 (2014 年 12 月 12 日)
-
API 变更
-
增强功能
-
性能优化
-
错误修复
-
贡献者
-
-
版本 0.15.1 (2014 年 11 月 9 日)
-
API 变更
-
增强功能
-
错误修复
-
贡献者
-
-
版本 0.15.0 (2014 年 10 月 18 日)
-
新功能
-
不兼容的 API 变更
-
增强功能
-
性能优化
-
错误修复
-
贡献者
-
版本 0.14
-
版本 0.14.1 (2014 年 7 月 11 日)
-
API 变更
-
增强功能
-
性能优化
-
实验性内容
-
错误修复
-
贡献者
-
-
版本 0.14.0 (2014 年 5 月 31 日)
-
API 变更
-
显示变更
-
文本解析 API 变更
-
GroupBy API 变更
-
SQL
-
使用切片器进行多索引
-
绘图
-
先前版本的弃用/变更
-
弃用内容
-
已知问题
-
增强功能
-
性能优化
-
实验性内容
-
错误修复
-
贡献者
-
版本 0.13
-
版本 0.13.1 (2014 年 2 月 3 日)
-
输出格式增强
-
API 变更
-
先前版本的弃用/更改
-
弃用
-
增强功能
-
性能
-
实验性功能
-
错误修复
-
贡献者
-
-
版本 0.13.0(2014 年 1 月 3 日)
-
API 更改
-
先前版本的弃用/更改
-
弃用
-
索引 API 更改
-
Float64Index API 更改
-
HDFStore API 更改
-
DataFrame repr 更改
-
增强功能
-
实验性功能
-
内部重构
-
错误修复
-
贡献者
-
版本 0.12
-
版本 0.12.0(2013 年 7 月 24 日)
-
API 更改
-
IO 增强功能
-
其他增强功能
-
实验性功能
-
错误修复
-
贡献者
-
版本 0.11
-
版本 0.11.0(2013 年 4 月 22 日)
-
选择项
-
选择弃用
-
数据类型
-
数据类型转换
-
数据类型注意事项
-
日期时间转换
-
API 更改
-
增强功能
-
贡献者
-
版本 0.10
-
版本 0.10.1(2013 年 1 月 22 日)
-
API 更改
-
新功能
-
HDFStore
-
贡献者
-
-
版本 0.10.0(2012 年 12 月 17 日)
-
文件解析新功能
-
API 更改
-
新功能
-
宽 DataFrame 打印
-
更新的 PyTables 支持
-
N 维面板(实验性)
-
贡献者
-
版本 0.9
-
版本 0.9.1(2012 年 11 月 14 日)
-
新功能
-
API 更改
-
贡献者
-
-
版本 0.9.0(2012 年 10 月 7 日)
-
新功能
-
API 更改
-
贡献者
-
版本 0.8
-
版本 0.8.1(2012 年 7 月 22 日)
-
新功能
-
性能改进
-
贡献者
-
-
版本 0.8.0(2012 年 6 月 29 日)
-
支持非唯一索引
-
NumPy datetime64 类型和 1.6 依赖性
-
时间序列变更和改进
-
其他新特性
-
新绘图方法
-
其他 API 变更
-
Pandas <= 0.7.3 用户的潜在移植问题
-
贡献者
-
版本 0.7
-
版本 0.7.3(2012 年 4 月 12 日)
-
新特性
-
NA 布尔比较 API 更改
-
其他 API 变更
-
贡献者
-
-
版本 0.7.2(2012 年 3 月 16 日)
-
新特性
-
性能改进
-
贡献者
-
-
版本 0.7.1(2012 年 2 月 29 日)
-
新特性
-
性能改进
-
贡献者
-
-
版本 0.7.0(2012 年 2 月 9 日)
-
新特性
-
整数索引的 API 更改
-
关于基于标签的切片的 API 调整
-
其他 API 变更
-
性能改进
-
贡献者
-
版本 0.6
-
版本 0.6.1(2011 年 12 月 13 日)
-
新特性
-
性能改进
-
贡献者
-
-
版本 0.6.0(2011 年 11 月 25 日)
-
新特性
-
性能增强
-
贡献者
-
版本 0.5
-
版本 0.5.0(2011 年 10 月 24 日)
-
新特性
-
性能增强
-
贡献者
-
版本 0.4
-
版本 0.4.1 到 0.4.3(2011 年 9 月 25 日 - 10 月 9 日)
-
新特性
-
性能增强
-
贡献者
-
增强功能
-
性能优化
-
错误修复
-
贡献者
-
版本 0.14
-
版本 0.14.1 (2014 年 7 月 11 日)
-
API 变更
-
增强功能
-
性能优化
-
实验性内容
-
错误修复
-
贡献者
-
-
版本 0.14.0 (2014 年 5 月 31 日)
-
API 变更
-
显示变更
-
文本解析 API 变更
-
GroupBy API 变更
-
SQL
-
使用切片器进行多索引
-
绘图
-
先前版本的弃用/变更
-
弃用内容
-
已知问题
-
增强功能
-
性能优化
-
实验性内容
-
错误修复
-
贡献者
-
版本 0.13
-
版本 0.13.1 (2014 年 2 月 3 日)
-
输出格式增强
-
API 变更
-
先前版本的弃用/更改
-
弃用
-
增强功能
-
性能
-
实验性功能
-
错误修复
-
贡献者
-
-
版本 0.13.0(2014 年 1 月 3 日)
-
API 更改
-
先前版本的弃用/更改
-
弃用
-
索引 API 更改
-
Float64Index API 更改
-
HDFStore API 更改
-
DataFrame repr 更改
-
增强功能
-
实验性功能
-
内部重构
-
错误修复
-
贡献者
-
版本 0.12
-
版本 0.12.0(2013 年 7 月 24 日)
-
API 更改
-
IO 增强功能
-
其他增强功能
-
实验性功能
-
错误修复
-
贡献者
-
版本 0.11
-
版本 0.11.0(2013 年 4 月 22 日)
-
选择项
-
选择弃用
-
数据类型
-
数据类型转换
-
数据类型注意事项
-
日期时间转换
-
API 更改
-
增强功能
-
贡献者
-
版本 0.10
-
版本 0.10.1(2013 年 1 月 22 日)
-
API 更改
-
新功能
-
HDFStore
-
贡献者
-
-
版本 0.10.0(2012 年 12 月 17 日)
-
文件解析新功能
-
API 更改
-
新功能
-
宽 DataFrame 打印
-
更新的 PyTables 支持
-
N 维面板(实验性)
-
贡献者
-
版本 0.9
-
版本 0.9.1(2012 年 11 月 14 日)
-
新功能
-
API 更改
-
贡献者
-
-
版本 0.9.0(2012 年 10 月 7 日)
-
新功能
-
API 更改
-
贡献者
-
版本 0.8
-
版本 0.8.1(2012 年 7 月 22 日)
-
新功能
-
性能改进
-
贡献者
-
-
版本 0.8.0(2012 年 6 月 29 日)
-
支持非唯一索引
-
NumPy datetime64 类型和 1.6 依赖性
-
时间序列变更和改进
-
其他新特性
-
新绘图方法
-
其他 API 变更
-
Pandas <= 0.7.3 用户的潜在移植问题
-
贡献者
-
版本 0.7
-
版本 0.7.3(2012 年 4 月 12 日)
-
新特性
-
NA 布尔比较 API 更改
-
其他 API 变更
-
贡献者
-
-
版本 0.7.2(2012 年 3 月 16 日)
-
新特性
-
性能改进
-
贡献者
-
-
版本 0.7.1(2012 年 2 月 29 日)
-
新特性
-
性能改进
-
贡献者
-
-
版本 0.7.0(2012 年 2 月 9 日)
-
新特性
-
整数索引的 API 更改
-
关于基于标签的切片的 API 调整
-
其他 API 变更
-
性能改进
-
贡献者
-
版本 0.6
-
版本 0.6.1(2011 年 12 月 13 日)
-
新特性
-
性能改进
-
贡献者
-
-
版本 0.6.0(2011 年 11 月 25 日)
-
新特性
-
性能增强
-
贡献者
-
版本 0.5
-
版本 0.5.0(2011 年 10 月 24 日)
-
新特性
-
性能增强
-
贡献者
-
版本 0.4
-
版本 0.4.1 到 0.4.3(2011 年 9 月 25 日 - 10 月 9 日)
-
新特性
-
性能增强
-
贡献者
-