文字的矢量表现艺术
用于表示语言词汇的符号的表达能力在语言学领域引起了极大的兴趣。实践中的语言都有语义歧义。
约翰吻了他的妻子,萨姆也吻了。
萨姆吻了约翰的妻子还是自己的妻子?为了以真实的形式表示信息,必须处理这些歧义。
那么,我们如何开发一个机器级别的语言建模任务的理解。经典的基于计数或基于相似性参数的方法在计算机科学中已经存在了相当长的时间。
但是,现在随着像 RNNs 这样的深度学习模型的出现,语言模型的这种表达能力对于创建有效的系统来存储信息和发现词汇术语之间的关系是非常有意义的。这将作为编码器-解码器模型(如序列到序列模型)中的基本块。
在这篇文章中,我们将探索不同的单词表示系统及其表达能力,从经典的 NLP 到现代的神经网络方法。最后,我们将以动手做编码练习和解释来结束。
对于读者来说,保持你的标记在 &上标记重要的点。这是一个相当长的阅读与一些小的数学涉及概念解释从零开始。
The fundamental understanding of language will be different for machines.
机器更善于理解实际文本作为标记传递的数字。这个将文本转换成数字的过程被称为矢量化。向量然后组合形成向量空间,向量空间本质上是连续的,是一个代数模型,其中应用了向量加法和相似性度量的规则。存在不同的矢量化方法,让我们从最原始的到最先进的。
本文将讨论的表示模型有:
1.一键表达
2.分布式表示
3.奇异值分解
4.连续词袋模型
5.跳格模型
6.手套表示
一个热门话题
为了定义一个系统的表征能力,我们首先要研究不同表征系统的工作方式。这些系统以向量的形式表示词汇表中的每个单词,并创建一个有限的向量空间。
让我们来看一个 一键式 表示单词的例子。每个单词用大小为|V|的大向量表示,即给定语料库的词汇大小。
The representation of the i-th word will have a 1 in the i-th position and a 0 in the remaining |V | − 1 positions.
这是一种非常简单的表示形式,很容易实现。但是,即使从这样的小例子中,许多错误也会变得很明显。比如存储和处理这些向量需要巨大的内存。由于这些向量的稀疏性。比如|V|的大小就像 Google 1T 语料库的 3M 一样非常大。这种符号在由该系统的表示能力引起的计算开销方面将会失败。
此外,没有相似性的概念被捕获。余弦相似度 b/w 唯一字为零,欧几里德距离总是 sqrt(2)。意思是,没有语义信息被这个表达系统表达出来。
现在,很明显,我们应该转向一种既能节省空间又能保留一些语义能力来表达单词间关系的表示法。让我们看一个基于相似性的表示。
从一个人交的朋友,你就可以知道这个人说的话
—弗斯,J.R
单词的分布式表示
其思想是量化语料库中术语的共现。这种共现是用词周围的窗口大小“k”来测量的,这表示上下文以该窗口大小分布。考虑到这种方法,创建了一个 术语×术语的共现矩阵,该矩阵捕获一个术语在另一个术语的上下文中出现的次数。此外,删除停用词也是一个很好的做法,因为这些是高频词,提供的有意义的信息最少。同样,我们可以为单词的 t 设置一个上限。
现在,考虑以下语料库:
计算机应用的人机界面
用户对计算机系统响应时间的看法
用户界面管理系统
改进响应时间的系统工程
Co-occurrence Matrix with window of size k=2. Each row[column] of the co-occurrence matrix gives a vectorial representation of the corresponding word’s context.
这里,在上述情况下,如果停用词处理不当,它们将产生相对高频率的问题。因此,将使用被称为正逐点互信息的新数量,该数量考虑了相对和个体出现以及词汇的大小。
New transformed table with PPMI values
通过这种方法,我们能够对上下文有所了解,但这仍然不是一种理想的方法。考虑语料库中的示例“猫”和“狗”,但是它们不在窗口间隙内。很明显,猫和狗是有关系的,就像它们都是宠物和哺乳动物一样。这种方法不能提供任何关于它们之间关系的信息。
在上述情况下,{系统,机器}和{人,用户}之间的共现是不可见的。但是,它们在上述语料库的上下文中是相互关联的。
此外,随着词汇量的增加,高维度、矩阵的稀疏性和冗余性(作为对称矩阵)仍然存在。
奇异值分解
高维问题通过 PCA 或其广义形式 SVD 来解决。奇异值分解是将半正定正规矩阵的特征分解推广到任何矩阵,是对极分解的扩展。它给出了原始数据的最佳 k 阶近似。假设原始数据 X 的尺寸为 m x n. 奇异值分解将把它分解成最佳等级近似,从最相关到最不相关的信息中捕捉信息。
SVD theorem tells us that u1 ,v 1 and σ1 store the most important information in X. Subsequent terms stores less and less important information.
与此类似,颜色用 8 位表示。这些 8 位将为我们提供更高的分辨率。但是,现在我们只想将其压缩为 4 位。我们应该保留哪些位,低位的还是高位的?
当比特减少时,最重要的信息是识别颜色,而不是不同颜色的阴影。类似的分辨率将存在于不同的颜色,如红色、蓝色、黄色等。
就像只获取不同色调的信息一样,颜色没有任何意义,因为所有与颜色相关的信息都丢失了。因此,低位是最重要的。在这种情况下,SVD 会捕捉到这些低位。
有了 SVD,{系统、机器}和{人、用户}之间的潜在共现将变得可见。我们取 X 和 X *t、*的矩阵乘积,其第 I 项是单词 i (X[i :])的表示和单词 j (X[j :]) 的表示之间的点积。第 ij 个条目 X ,Xtt大致捕捉了单词 I,单词 j 之间的余弦相似度。
From product of [XXt] matrix a low rank matrix capturing important features is constructed. the latent co-occurrence between {system, machine} and {human, user} has become visible. See, the red and blue parts in given figure.
我们希望单词(I,j) 的表示具有更小的维度,但是仍然具有与 X hat 的对应行相同的相似性(点积)。因此,我们必须继续寻找更有力的表述。
另外,请注意矩阵wt22】字=uσ的行之间的点积与 X ̂ 帽子的行之间的点积相同。
Wword = UΣ ∈ R m×k is taken as the representation of the m words in the vocabulary and Wcontext = V is taken as the representation of the context words.
连续的单词袋
我们看到的方法是基于计数的模型,如 SVD,因为它使用同现计数,该计数使用基于 NLP 原理的经典统计。现在,我们将转移到直接学习单词表示基于预测的模型。考虑一个任务,给定前一个 (n-1) 字,预测第 n 个字。对于训练数据,可以使用训练语料库中的所有 n 词窗口,并且可以从任意网页抓取获得语料库。
现在,如何对预测第 n 个字的任务建模呢?这项任务和学习单词表征有什么联系?为了模拟这个问题,我们将使用如下所示的前馈神经网络。
One-hot representation as input. |V| words possible as output classes.
我们的目标是预测这些|V|类的概率分布,作为一个多类分类问题。但是这看起来非常复杂,神经网络有非常多的参数。这是一种更简单的方法吗?
为此,我们需要稍微看看这个神经网络背后发生的向量乘法背后的数学。乘积 W 上下文 ***** x** 假设 x 是一个热向量。
Is simply, the i-th column of Wcontext . A ont-to-one mapping exists b/w words & Wcontext’s columns.
我们可以把 W context 的第 I 列作为 contextI .For P(on | sat)与 W context 的第 j 列和withWword 的* 列之间的点积成正比。* P (word = i|sat) 因此取决于与
列的 W 字。我们因此将WW单词的第列视为单词 i. 的表示。这清楚地显示了在神经网络架构中权重参数被表示为单词向量表示。
理解了参数背后的简单解释后,我们现在的目标是学习这些参数。对于多类分类问题,使用 softmax 作为输出激活函数,使用交叉熵作为损失函数。
uc is the column of Wcontext corresponding
to context word c and vwis the column of
Wword corresponding to the word w.
让我们看看我们能从上面的损失函数的更新规则中解释什么。将 yhat 的值放入损失函数中,并对其进行微分,以导出梯度更新规则。
When yhat is 1, already corrected word predicted. Hence, no update. & when it is 0, vw gets updated by fraction of uc added**.**
这增加了 vw 和 uc 之间的余弦相似度。因为,训练目标确保单词 (vw) 和上下文单词 (uc) 之间的余弦相似度最大化。因此,相似性度量也由这种表示来捕获。此外,神经网络有助于学习更简单和抽象的单词矢量表示。
实际上,在窗口大小中使用了一个以上的词,通常根据使用情况使用“d”窗口大小。这将简单地意味着我们必须在底层堆叠 Wcontext 的副本,因为两个单热棒位将为高。
[W context , W context ] just means that we are
stacking 2 copies of W context matrix
这里,softmax 的计算瓶颈仍然存在,分母项涉及整个词汇表的求和。我们必须探索一些其他模式来缓解这一瓶颈。
跳格模型
该模型预测关于给定输入单词的上下文单词。上下文和单词的作用已经变成了几乎相反的意义。现在,给定输入单词作为一种热门表示,我们目标是预测与之相关上下文单词。这种相反的关系 b/w CBOW 模型& Skip-Gram 模型将在下面变得更加清楚。
给定一个语料库,该模型循环每个句子的单词,或者试图使用当前单词 of 来预测其邻居*(其上下文)*,在这种情况下,该模型被称为“Skip-Gram”,或者它使用这些上下文中的每一个来预测当前单词,在这种情况下,该模型被称为“连续单词包”(CBOW)。
‘on’ as input word, probabilities of context words related to it are predicted by this network.
训练一个简单的具有单一隐藏层的神经网络来执行某项任务,但是我们实际上并不打算将该神经网络用于我们每次训练它的任务,而是用于建模的新任务!相反,我们的目标实际上只是学习隐藏层的权重,这将是上一节中数学描述的单词向量。
在只有一个上下文单词的简单情况下,我们将对
得出与之前对大众相同的对 uc 的更新规则。如果我们有多个上下文单词,损失函数将只是许多交叉熵误差的总和。
与 CBOW 同样的问题,softmax 的计算开销也存在于该模型中。
可以使用三种策略,即负采样、对比估计和分层 softmax 来消除对整个词汇求和的 softmax 问题。
- **负采样:**我们对每个正(w,c)上下文对采样 k 个没有上下文的负(w,r)对。因此,D 破折号的大小是 D 的 k 倍。在我们的神经网络中,我们将定义损失函数,并在这两个集合上进行训练。这些损坏的词对是从一个特别设计的分布中抽取的,这个分布有利于不太频繁的词被更频繁地抽取。
Summation over entire vocabulary get reduces as two different sets get created.
- **对比估计:**基本思想是将多项分类问题(因为是预测下一个单词的问题)转化为二元分类问题。不是使用 softmax 来估计输出单词的真实概率分布,而是使用二元逻辑回归(二元分类),即优化的分类器简单地预测一对单词是好还是坏。对于每个训练样本,增强的(优化的)分类器被馈送一个真对(一个中心单词和在其上下文中出现的另一个单词)和多个 k 个随机损坏的对(包括中心单词和从词汇表中随机选择的单词)。通过学习区分真实对和损坏对,分类器将最终学习单词向量。
maximize max(0, s − (s r + m))
- 在这种技术中,构建二叉树,使得有|V|个叶节点,每个对应于词汇表中的一个单词。从根节点到叶节点存在唯一的路径。实际上,任务被公式化为预测单词的概率与预测从根节点到该单词的正确唯一路径的概率相同。上述模型确保如果 u i 出现在路径上并且路径在uI处向左(右)分支,则上下文单词 v c 的表示将与节点 u i 的表示具有高(低)相似性。
p(w|vc ) can now be computed using |π(w)| computations instead of |V| required by softmax. Also, random arrangement of the words on leaf nodes does well in practice
手套表示
基于计数的方法(SVD)依靠来自
语料库的全局共现计数来计算单词表示。基于预测的方法使用共现信息学习单词表示。为什么不结合两个算和学机构?
让我们用数学的方式表达这个想法,然后发展一种直觉。设 X ij 编码关于 i 和j之间共现的重要全局信息
我们的目标是学习符合整个语料库的计算概率的词向量。本质上,我们说我们希望字向量
vt36】I 和vt40】j 使得vt44】I^tvt48】j 忠实于全局计算的 P (j|i)。
Similar equation for Xj will be there. Also, Xij = Xji.
分别为XI 和Xj 添加两个方程。此外,log( X i )和 log( X j )仅依赖于单词 i & j ,我们可以将它们视为将要学习的单词特定偏差。用下面的方式表述这个问题。
现在,问题是所有同现的权重是相等的。权重应该以这样一种方式来定义,即不常用或常用的单词都不会被过度加权。
单词由密集向量表示,其中向量表示单词到连续向量空间的投影。这是对传统的单词袋模型编码方案的改进,在传统的单词袋模型编码方案中,使用大的稀疏向量来表示每个单词。这些表示是稀疏的,因为词汇表非常庞大,给定的单词或文档将由主要由零值组成的大向量来表示。
结论:选择什么?
考虑到最近流行的研究论文。 *Boroni 等人【2014】*表明,预测模型在所有任务中始终优于计数模型。 *Levy 等人【2015】*通过分析(IMO)做了更多的工作,并表明
的旧奇异值分解在相似性任务上比基于预测的模型做得更好,但在类比任务上没有
。Levy 表明 word2vec 也隐含地进行矩阵分解。事实证明,我们也可以证明
word2vec factorizes a matrix M which is related to the PMI based co-occurrence matrix. Very similar to what SVD does.
好的老 SVD 会做得很好。但是,目前在大型语料库上使用预训练的手套嵌入会产生更好的结果,并且一旦被训练,可以再次被重用。像 Keras、Gensim 这样的库确实提供了嵌入层,可以轻松地用于建模任务。此外,对于大量的 NLP 任务,使用Stanford 的手套向量表示数据集要好得多。让我们来看看这些表现模型的几个实例。
代码入门
让我们看看如何将字符编码为整数。这意味着每个唯一的字符将被赋予一个唯一的整数值,并且每个字符序列将被编码为这些唯一整数的序列。按照下面提到的脚本做上面提到的事情。
作为预处理步骤,首先创建一个包含所有序列的文件,并将其存储在一个新文件中。这个新文件将包含等长的字符序列。关于这个预处理步骤,请参考下面的 python 脚本。你也可以参考库链接直接复制完整的项目并在你的机器上运行。
# load doc into memory
def load_docx(filename):
# open the file as read only
file = open(filename, 'r')
# read all text
text = file.read()
# close the file
file.close()
return text# save tokens to file, one dialog per line
def save_docx(lines, filename):
data = '\n'.join(lines)
file = open(filename, 'w')
file.write(data)
file.close()# load text data in your current directory
raw_text = load_docx('The-Road-Not-Taken.txt')
print(raw_text)# clean the text
tokens = raw_text.split()
raw_text = ' '.join(tokens)# organize into sequences of characters
length = 16
sequences = list()
for i in range(length, len(raw_text)):
# select sequence of tokens
seq = raw_text[i-length:i+1]
# store
sequences.append(seq)
print('Total Sequences: %d' % len(sequences))# save sequences to file
out_filename = 'char_sequences.txt'
save_docx(sequences, out_filename)
为了对这些序列进行编码,我们将在给定原始输入数据中的一组唯一字符的情况下创建映射。映射将是一个从字符值到整数值的字典。
char = sorted(list(set(raw_text)))
map = dict((c, i) for i, c in enumerate(char))
接下来,我们一次处理一个字符序列,并使用字典映射来查找每个字符的整数值。结果是以整数格式表示字符序列的整数列表。
sequences = list()
for line in lines:
# integer encoding line
encoded_seq = [mapping[char] for char in line]
# store in list of sequences
sequences.append(encoded_seq)
接下来,步骤是将每个词汇大小的一个热向量编码到中。将输入和输出列分成不同的字符序列。
sequences = array(sequences)
X, Y = sequences[:,:-1], sequences[:,-1] # X containing all chars except at last position, Y containing only the last char# *to_categorical()* function in the Keras API to one hot encode the input and output sequences.sequences = [to_categorical(x, num_classes=vocab_size) for x in X]
X = array(sequences)
Y = to_categorical(y, num_classes=vocab_size)
经过预处理后,您可以将数据输入到模型中以学习参数。
简单易行:嵌入 Keras
单词嵌入提供了单词的密集表示,并随之传递一些语义信息。嵌入也可以和我们特定于数据集的模型一起学习。
单词在学习向量空间中的位置被称为其嵌入。
keras 提供的嵌入层需要对输入进行整数编码,它使用随机权重进行初始化,并将学习训练数据集中所有单词的嵌入。
e = Embedding(200, 32, input_length=50)
200: specifies the vocabulary size
32: specifies the output vector dimensions
input_length=50: length of input sequences in the document
嵌入层的输出是 2D 向量,对于单词输入序列中的每个单词有一个嵌入。
Keras 嵌入层也可以使用从其他地方学到的单词嵌入,如从斯坦福大学的预训练手套向量。将手套向量加载到内存的一个嵌入数组中。
# load the whole embedding into memory
embeddings_index = dict()
f = open('glove.6B.100d.txt')
for line in f:
values = line.split()
word = values[0]
coefs = asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
print('Loaded %s word vectors.' % len(embeddings_index))
# for loading again it is better to store this as pickle object.
然后创建可以传递到 Keras 嵌入层的合成权重矩阵。最后,我们不希望在这个模型中更新所学习的单词权重,因此我们将为该模型设置可训练属性为假。
# Here, we are using 100 dim vectors version from downloaded file# create a weight matrix for words in training docs
embedding_matrix = zeros((vocab_size, 100))
for word, i in t.word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vectore = Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=4, trainable=False)
根据所用模型的复杂性,上面的代码片段确实给出了开始矢量化任务的思路。对于复杂模型,一个热向量表示最不复杂,一个手套向量表示良好性能。
参考文献和致谢
感谢 Mitesh M. Khapra 教授及其助教精彩的深度学习课程( CS7015 )。另外,来自 machinelearningmastery.com 的 Jason 提供了有用的代码片段和少量的堆栈溢出线程。
巧妙的压缩:如何教神经网络画 70 年代的电视
到目前为止,我已经完成了我那份深度学习 MOOCs 最近是吴恩达在 Coursera 的优秀系列。
但很少有面向有艺术倾向的人的。这就是 TensorFlow 与深度学习的创造性应用的区别。
这是帕拉格·米塔尔正在进行的卡丹泽课程。他通过大量精心制作的视频和 TensorFlow iPython 笔记本,涵盖了深度学习技术的所有领域。你可以随心所欲地调整后者。在这个过程中,您将了解卷积神经网络、自动编码器(我今天的主题)、风格转换和各种生成模型。
但总是着眼于创造具有高度视觉冲击力的作品。
他关于可变自动编码器的课启发我尝试训练一个网络,它可以为人类提供一项重要服务:生成新颖但看起来真实的 70 年代电视图片。
什么是可变自动编码器?
这个人的帖子比我更好地回答了这个问题,但是你可以把它看作是一个巧妙压缩和重构的工具。在许多例子的训练下,它学会了将它们编码成所谓的潜在向量。对于每个训练步骤,它通过将当前潜在向量解码成图像来检查其进度。换句话说,它从潜在向量中的一系列简洁的数字中重建输入图像。
损失函数衡量这些输出与输入的匹配程度。
最酷的部分是,一旦网络被训练,你可以给它的解码部分输入一系列数字(潜在向量的一种变体),然后就会弹出一个它被训练过的图像的新颖表示。
数据输入
帕拉格鼓励学生寻找有趣的数据集。我创建了自己的 groovy 数据集,大约有 100 张 70 年代电视的图片,是从这个网站上搜来的。它的粉丝扫描并上传整个目录(西尔斯、JCPenney 等。从几十年前开始。)(是的,有人将此作为一种爱好,为此,我很感激他们。)
Part of my 70s TVs dataset.
那些 70 年代的电视机很漂亮。但问题是,正如我们将要看到的,这个数据集太小了。
培养
有了这些数据,我调整了帕拉格的笔记本,用我 70 年代的电视数据集进行训练。您可以在下面观看训练的进展。我认为,看着它让我有了写这篇文章的灵感,真是太酷了。是本帖的钱拍!
A variational autoencoder learns to make 70s TVs (hit reload if you’re not see an animation).
问题
可悲的是,虽然我从来没有得到一个训练有素的网络。很可能数据集太小,即使使用像图像翻转这样的增强技术。如果我超过动画 gif 中显示的时代数,进程最终会停止。误差率将上升,并且输出图像将开始偏离输入图像。
确切的原因将不得不保持神秘,因为这对我来说只是一个有趣的玩具项目(但我欢迎任何改善评论结果的建议)。(下一步将是扩大数据集,看看生成式对抗网络是否能做得更好。)
尽管如此,如下所示,半训练的网络仍然能够产生一些有趣的,如果不完美的结果。事实上,正是它们缺乏完美的保真度,才给了它们一种很好的绘画品质。
Some 70s TVs generated by my variational autoencoder.
这些神经网络很有趣。
如果你想要数据集的副本,请联系我。它很小,但需要大量的体力劳动,这对任何人都没有用。
机器学习与人工智能导论
Photo by Jens Johnsson on Unsplash
放射科医生的机器学习介绍— 10 部分系列
第三部
编辑: 迈克尔博士
自从可编程计算机开发以来,人工智能(AI)一直是一个长期讨论的话题。学者和哲学家质疑人和机器之间的差异。我们能把人脑及其所有的复杂性编入计算机吗?到那时,计算机能够思考吗?
迄今为止,我们仍然没有回答这些有趣的、令人麻木的问题,但我们已经离让计算机更智能更近了一步。然而,有些人可能会说,即使是最聪明的计算机也不如蟑螂聪明。稍微考虑一下。
最聪明的电脑还是不能同时做一堆任务。相反,他们非常擅长做他们被编程去做的一件事。
在我们进一步挖掘之前,让我们定义一些关键术语。我们从网上提供的众多定义中选择了一个。
前三种是分等级的;人工智能是最大、最重要的类别。机器学习(ML)是 AI 的子集,深度学习(DL)是 ML 的子集。
人工智能 —能够执行通常需要人类智能的任务的计算机系统,例如视觉感知、语音识别、决策和语言之间的翻译。
机器学习——亚瑟·塞缪尔说“机器学习是一种无需明确编程就能学习的能力。”
*深度学习——来自麻省理工学院新闻:*神经网络松散地模仿人脑,由成千上万甚至数百万个密集互连的简单处理节点组成。这类似于轴突和树突的突触连接。
图像识别——使用机器和深度学习技术来识别图像中的内容。
架构 —用于预测结果的算法模型的脚手架和蓝图。
这些单词在接下来的几篇文章中也会派上用场!当我们在下一篇文章中介绍常见的机器学习算法时,请对它们进行一些 google 搜索并留意它们。
为什么是现在?
如前所述,机器学习和人工概念并不新鲜。事实上,他们已经几十年了。然而,最近几个因素发生了变化,现已大大有助于这些领域的进展。记住这些很重要,因为这标志着历史上一个独特的时刻。
首先,技术的计算速度正在快速进步。名为GPU*(图形处理单元)的硬件已经允许计算并行化。也就是说,更多的计算可以同时一起完成,而不是一个接一个。这可以大幅提高效率。我们可以感谢视频游戏行业的这些进步。*
第二,算法有了重大进展。深度学习框架或架构已经从谷歌、脸书、研究社区和开源社区中的新兴个人等方面得到了改善。例如,今天广泛使用的一类算法属于神经网络。这些算法大致上是模仿大脑的,在大脑中,信息通过网络在神经元的不同层之间传递。随着时间的推移,算法变得更加复杂,从几层到几十层,甚至可能是几百层。这种增加的复杂性使得我们可能认为重要或不重要的变量之间产生了有趣的相互作用。
最后,但同样重要的是,工业、网络和商业中可用的数据呈指数级增长。这个地区已经发展了多年,并将继续发展。无论是社交数据的涌入,互联网上的图像数量,还是你在亚马逊上的购买,数据都是无处不在的,并将继续作为许多机器学习算法的起点。
所有这些听起来可能让人不知所措,而且范围肯定是巨大的。当然,这些促成机器学习和人工智能出现的变量中的每一个都可以进一步详细梳理出来。然而,重要的是要理解这些片段是采用算法通过数据寻找故事的成分。
我们通过这个系列谈论的故事是机器学习如何改变放射科医生工作方式的故事。但是,这种改变需要时间,需要理解,需要沟通。
有了这些行话,人们很容易气馁。别担心。我们都在这个旅程中,以了解更多关于技术和放射学(和其他领域)的现状将如何变化。
我们建议将这些定义通读几遍,也许做一些外部研究,并且在我们深入研究这些概念时一定要坚持下去。总之:深度学习是 ML 的子集。ML 是 AI 的子集。
一个很好的资源是这个词汇表,它来自一家对 ML 略知一二的公司:
关键机器学习和张量流术语的汇编,带有初学者友好的定义。
developers.google.com](https://developers.google.com/machine-learning/glossary/#s)*
#1 —人工智能:简介
(目的是围绕人工智能,特别是人工智能的投资主题,建立和分享见解。我在伦敦商学院的任期开启了人工智能投资的世界,这一系列涂鸦是我跟上这个话题的方式,当然也是相互学习的方式。希望在某个地方,这些将开始创造价值。在那之前,请继续阅读!)
人工智能简介
人工智能不再是一个影响无处不在的术语。在某种程度上,包括我自己在内的许多人都对自动化和模拟接管世界的整个概念漠不关心。现实是它将会发生,更令人担忧的是,就在我们说话的时候,它正在发生。
有预测和理论表明,到 2050 年,发达国家大约 50%的人类工作将被机器人取代。技术奇点被定义为人工智能超越人类智能的时刻,它将真正发生,我们这一代人将真正看到技术是如何扰乱我们周围的世界的。
但除了对人工智能的普遍兴奋之外,理解它的实际含义也很重要。人工智能就是机器为你执行事情。作为机器,这些不一定是物理机器人,而是类似人脑运作方式的计算代码。类似于我们的大脑:
收到比如热对冷,近对远
记得你的生日或当月的购物清单
回归寻找逃避与伴侣打架或把足球踢向正确方向的最佳方式
通过分析交易对手的行动来回应
一个计算机程序可以完成这一切。因为我们的大脑在计算能力上有局限性,而且因为今天我们有如此多的带标签的数据来校准和验证这些程序,所以人工智能和机器学习(让计算机学习的行话)的概念正变得真实而同样重要。让我们暂停一下,理解 AI 和 ML 这两个词的真正含义。
人工智能是一个广义的术语,用来描述人类可以做的由计算机做的任何事情。首先,数据存储(软盘、存储总线等)是人工智能的最初版本之一。我拿科学来类比:算法= AI:机器学习。机器学习是实现人工智能的一种方法。机器学习与计算机能够解析数据、从中学习和预测洞察力有关。这些术语在人工智能的世界里可以互换使用,但是我们总是用人工智能这个词来描述计算机智能的一般主题。
现在,在机器学习的广泛类别中,最热门和最具趋势的人工智能领域是深度学习。深度学习特别关注通过各种算法来模拟大脑,这些算法包括人工神经网络、遗传算法*(以及一系列其他算法,我打算在下面的文章中详细理解和阐述)*以将其塑造成人类大脑的行为方式。深度学习通过数据处理、计算机编程和逻辑领域的启示推动了人工智能的发展。
Source: Nvidia corporate blog
定义人工智能市场——横向与纵向人工智能
从广义上讲,人工智能公司可以分为垂直人工智能和水平人工智能。横向 AI 专注于解决更大的问题陈述,而纵向 AI 专注于小众。例如,苹果的 Siri 或亚马逊的 Alexa 就是横向人工智能应用的例子。只要需求和资源存在,横向人工智能可以在内部开发人工智能技术。当他们不能且问题陈述过于小众时,一般从市场上的垂直 AI 玩家那里获得。因此,横向人工智能侧重于更实用的方法,以迎合终端用户可能需要的广泛主题。例如,语音识别已经成为当今主流的人工智能,大多数大型科技公司都配备了这项技术。然而,基于对客户数据的深度学习洞察,为仓库提供最后一公里物流服务的自动驾驶卡车显然是一个横向人工智能。因此,这个游戏很简单,在某个时候,将会有一个由现有者(我们称之为传统市场)主导的行业,依靠利基技术来完成自身。因此,水平人工智能将与垂直人工智能相结合并实现垂直人工智能。
在人工智能的世界里,这些在职者通常被归类为黑手党,由 M 微软、 A mazon、 F acebook、 I BM 和 A lphabet 组成。其他包括苹果推特、英特尔、百度、阿里巴巴(https://TechCrunch . com/2017/01/27/Apple-joins-Amazon-Facebook-Google-IBM-and-Microsoft-in-ai-initiative/)
我将通过横向玩家在以下作品中触及价值、倍数、数量和主题来关注人工智能中的 M&A
人工智能风险投资的主要宏观趋势
1.增长:从根本上推动人工智能增长的是强大的计算和处理器芯片的可用性。计算速度和芯片制造的指数级发展实际上解除了计算限制,使人工智能得以发展
2.相关性:在所有公司的活动记录中(> 70%的公司使用与人工智能相关的关键词)。人工智能不仅仅局限于移动和互联网,还被用于医疗保健、诊断、药物研发、移动性等领域,直到最近,甚至被用于政治活动
3.人才:“获取”在人工智能投资领域非常普遍。在许多情况下,收购风险企业主要是为了团队中的人才。这些企业通常还没有单一产品,但市场上人才的严重短缺推动了并购。毫不奇怪,在某些情况下,风险企业的估值相对高于电动汽车/博士,以此来衡量价值
4.态度转变(拥有比必须拥有更好)——今天几乎所有的应用都有人工智能元素,但仅限于基本的用户需求,如预测分析。人工智能现在被视为使能者,而不是破坏者。人工智能不仅仅是一个就业杀手,从经济意义上来说,它被理解为创造价值
5.**生态系统:**存在一个支持性的生态系统,主要利益相关者之间的协调日益加强,包括专注于人工智能的企业家、大学、加速器和结构化风险投资基金,特别是在美国(硅谷)、英国(剑桥、伦敦)、中国等。其他国家很快也会效仿
6。 风险企业的战略重点:不考虑目标行业,专注于利基市场的初创企业都有非常成功的退出。几乎所有这些都是现任者在寻找人才和某些产品时收购的。但因为人工智能的范围是无限的,所以很难给大多数风险投资定价。因此,大多数企业在退出时都获得了疯狂的早期倍数。就行业而言,移动、广告技术、制造、医疗诊断和金融是一些领先的人工智能用户。然而,农业、药物研发甚至创意媒体都是一些未充分渗透的领域。(我接下来的一篇文章将关注人工智能渗透率的行业分类)
7.时间表:人工智能革命已经开始,预计未来 3 年人工智能投资和增长将大幅增长。从今天到未来 20 年,我们所说的变化可能会重现我们从后工业革命到今天的移动和互联网世界所看到的情况。轴不再是线性的而是指数的!
人工智能:一个更美好世界的催化剂…伴随着美妙的音乐
“我对此有很强烈的意见。我很乐观。我认为那些唱反调并试图鼓吹这些世界末日情景的人——我只是,我不明白。这真的是消极的,在某些方面,我实际上认为这是非常不负责任的。”——马克·扎克伯格(Mark Zuckerberg)在被问及对人工智能的看法以及它将如何影响世界时的回应。
你认为人工智能将会极大地改善我们的社会,还是你认为这项技术在未来会带来极大的危险?
科技巨头埃隆·马斯克(Elon Musk)和马克·扎克伯格(Mark Zuckerberg)最近一直在公开辩论这个问题,马斯克声称扎克伯格关于人工智能的知识“有限”。这位特斯拉首席执行官和直言不讳的创新者一直在推动对人工智能的积极监管,因为他认为该技术是“人类文明的根本生存风险”。另一方面,扎克伯格谴责了马斯克的警告,称他的声明“非常不负责任”。
尽管许多学者,如密歇根大学研究机器学习的教授佩德罗·多明戈斯(Pedro Domingos),认为马斯克的噩梦场景最终可能会发生,但他的观点完全错误。总体而言,专家们似乎同意,最聪明的方法是关注当前的人工智能挑战,这将导致开发必要的监管架构,以防止未来出现不可预测和破坏性的人工智能场景。
人工智能有可能在短期内极大地改善我们的世界,从大量减少道路上的致命事故到以多种令人难以置信的方式扩大媒体和娱乐的艺术可能性范围。可以说,当科技亿万富翁们正在辩论他们关于人工智能对人类的威胁的存在差异时,我们其他人正在为该行业研究更谦逊的现实生活用途,以改善当前和未来的世界。
音乐产业已经在考虑人工智能的奇妙应用,例如计算机可以学习为电影、电视和游戏产业制作音乐。此外,尽管有人担心这对人类作曲家的影响,但人工智能最终可以用来补充这些作曲家的工作,让他们专注于更大的画面,而计算机则创建基本的音乐结构。一个很好的例子是受欢迎的 YouTube 艺术家塔瑞安·扫森,她与 Amper Music 和其他几个人工智能音乐服务合作,发布了她的专辑的第一首歌《Break Free》。当艺术家/作曲家创作歌词和旋律时,人工智能开发了和声、和弦和序列。Southern 并没有感到来自她新的作曲伙伴的威胁,她解释说,她仍然拥有自己的愿景,而 AI“使她比以往任何时候都更有创造力。”
这只是一系列激动人心的进展之一。音乐行业成功整合人工智能的另一个优秀例子来自谷歌研究人员道格拉斯·埃克(Douglas Eck),他正与他的团队合作,通过分析数百个音符来教授神经网络学习乐器的音乐特征。一旦机器随后创建了特定乐器的数学表示,用户就可以简单地在屏幕上移动按钮来组合声音,从而创建一个全新的虚拟乐器,例如 74%是长号,26%是吉他。或者,仪器的任何其他组合。可能性真的是无穷无尽的,值得在人工智能的世界中强调这些令人兴奋且无威胁的创新。
随着越来越多的企业竞相将自己的软件升级,这一领域正在迅速扩大。这些公司包括英国的 Jukedeck 和 Amper Music ,三藩市的 Humtap ,柏林的 Melodrive , Groov。AI 在加州山景城,索尼的计算机科学实验室(CSL)在巴黎进行一个名为 Flow Machines 的项目。
人工智能在音乐生态系统中的应用不仅仅是翻唱、声音生成和歌曲创作。除了人工智能在创造性努力中日益增长的重要性,它还是在客户体验和与音乐粉丝的联系方面取得成功的主要关键之一。
人工智能已经被用于音乐行业,以改善消费者体验,例如根据情绪创建播放列表。虽然 Gracenote 多年来一直按照这一标准对音乐进行分类,但其员工并没有听完公司数据库中 1 亿首歌曲中的每一首来实现这一目标。相反,机器学习和人工智能已经被用来成功地教会计算机如何胜任地检测音乐中的情感,从而节省了大量的时间和人力资源。
从人工智能聊天机器人和智能语音界面到有效利用大数据,并通过有针对性的广告和高度个性化的歌曲推荐服务创造额外的收入流,人工智能在音乐行业的合作潜力巨大,仍有待实现。
人工智能的发展应该着眼于增强人类的能力,把我们从许多任务中解放出来,而不是完全取代人。与其试图通过辩论世界末日的长期可能性来减缓进步,不如用人工智能来解决当前的问题,让创新者在机器学习的帮助下推动信封走向更美好的世界,同时专注于为我们所有人创造最有成就、最强大和最安全的社会。
人工智能,2018 年及以后的人工智能
或者机器学习是如何进化成人工智能的
这些是我对深度神经网络和机器学习在更大的人工智能领域的发展方向的看法,以及我们如何才能获得越来越多的复杂机器来帮助我们的日常生活。
请注意,这些不是预测的预测,而是对这些领域的轨迹、趋势和我们实现有用的人工智能的技术需求的详细分析。
并非所有的机器学习都是针对人工智能的,也有一些唾手可得的成果,我们也将在这里进行研究。
目标
该领域的目标是在日常生活中帮助我们的机器中实现人类和超人的能力。自动驾驶汽车、智能家居、人工助手、安全摄像头是首要目标。家庭烹饪和清洁机器人是第二个目标,此外还有无人驾驶飞机和机器人。另一个是移动设备上的助手或永远在线的助手。另一个是全职伴侣助手,可以听到和看到我们在生活中经历的事情。一个最终目标是一个完全自主的合成实体,在日常任务中可以达到或超过人类水平的表现。
软件
软件在这里被定义为用优化算法训练来解决特定任务的神经网络架构。
今天,神经网络是学习解决任务的事实上的工具,这些任务涉及在监督下从大型数据集进行分类。
但这不是人工智能,它需要在现实世界中行动,经常在没有监督的情况下学习,从以前从未见过的经验中学习,经常在完全不同的情况下结合以前的知识来解决当前的挑战。
我们如何从目前的神经网络转向人工智能?
神经网络架构 —几年前,当该领域蓬勃发展时,我们经常说它具有从数据中自动学习算法参数的优势,因此优于手工制作的功能。但是我们很方便地忘记提到一个小细节…作为解决特定任务的训练基础的神经网络架构不是从数据中学习的!事实上,它仍然是手工设计的。根据经验手工制作,这是目前该领域的主要限制之一。有这方面的研究:这里和这里(例如),但需要更多。神经网络结构是学习算法的基本核心。即使我们的学习算法能够掌握一项新任务,如果神经网络不正确,它们也将无法掌握。从数据中学习神经网络架构的问题是,目前在大型数据集上试验多种架构需要太长时间。人们必须从头开始尝试训练多种架构,看看哪一种工作得最好。这正是我们今天使用的耗时的试错程序!我们应该克服这个局限,在这个非常重要的问题上多动脑筋。
无监督学习——我们不能总是在我们的神经网络旁边,在它们生命的每一站和每一次经历中指导它们。我们不能每次都纠正他们,并对他们的表现提供反馈。我们有自己的生活要过!但这正是我们今天对监督神经网络所做的:我们在每一个实例中提供帮助,使它们正确地执行。相反,人类只从少数几个例子中学习,并且可以不断地自我修正和学习更复杂的数据。我们在这里广泛讨论了无监督学习。
预测神经网络— 当前神经网络的一个主要限制是,它们不具备人脑最重要的特征之一:预测能力。关于人脑如何工作的一个主要理论是通过不断进行预测:预测编码。你想想,我们每天都在经历。当你举起一个你认为很轻但结果很重的物体时。它让你感到惊讶,因为当你走近去捡它的时候,你已经预测到它会如何影响你和你的身体,或者你的整体环境。
预测不仅能让我们了解这个世界,还能让我们知道什么时候不了解,什么时候应该了解。事实上,我们保存了我们不知道的事情的信息,并给我们带来惊喜,所以下次它们不会了!认知能力显然与我们大脑中的注意力机制有关:我们放弃 99.9%感官输入的先天能力,只专注于对我们生存非常重要的数据——哪里有威胁,我们跑到哪里去躲避它。或者,在现代社会,当我们匆忙出门时,我的手机在哪里?
建立预测神经网络是与现实世界互动的核心,也是在复杂环境中行动的核心。因此,这是任何强化学习工作的核心网络。见下文。
我们广泛讨论了预测神经网络的主题,并且是研究和创建预测神经网络的先驱团体之一。有关预测神经网络的更多细节,请参见此处的,此处的,此处的。
当前神经网络的局限性 —我们之前已经讨论过当前神经网络的局限性。无法预测,无法根据内容进行推理,并且具有时间不稳定性——我们需要一种新型的神经网络你可以在这里阅读。
神经网络胶囊是解决当前神经网络局限性的一种方法。我们在这里回顾了它们。我们认为胶囊必须扩展一些额外的特性:
- 对视频帧的操作:这很简单,因为我们需要做的就是让胶囊路由查看最近的多个数据点。这相当于对最近重要数据点的联想记忆。注意这些不是最近帧的最近表示,而是它们是顶部最近的不同的表示。具有不同内容的不同表示可以例如通过仅保存差异超过预定值的表示来获得。这个重要的细节允许只保存最近历史的相关信息,而不是一系列无用的相关数据点。
- 预测神经网络能力:这已经是动态路由的一部分,它迫使各层预测下一层的表现。这是一种非常强大的自我学习技术,在我们看来,它击败了我们迄今为止作为一个社区开发的所有其他类型的无监督表示学习。胶囊现在需要能够预测长期的时空关系,而这目前还没有实现。
持续学习 —这很重要,因为神经网络在其生命周期中需要不断学习新的数据点。当前的神经网络不能够学习新数据,除非在每个实例中从头开始重新训练。神经网络需要能够自我评估新训练的需求以及它们确实知道一些东西的事实。这在现实生活和强化学习任务中也是需要的,我们希望教会机器在不忘记旧任务的情况下完成新任务。
更多细节,请看Vincenzo lo Monaco的这篇优秀博文。
转移学习——或者说,我们如何让这些算法通过观看视频自行学习,就像我们想要学习如何烹饪新东西时所做的那样?这是一种需要我们上面列出的所有要素的能力,对于强化学习也很重要。现在你真的可以训练你的机器做你想做的事情,只需给出一个例子,就像我们人类做的一样!
强化学习— 这是深度神经网络研究的圣杯:教会机器如何在一个环境中学习行动,真实的世界!这需要自我学习、持续学习、预测能力,以及更多我们不知道的东西。在强化学习领域有很多工作,但对作者来说,这只是触及了问题的表面,离它还有数百万英里远。我们已经在这里讨论过这个。
强化学习通常被称为“蛋糕上的樱桃”,这意味着它只是在塑料合成大脑上的次要训练。但是我们怎样才能得到一个“通用的”大脑,从而轻松解决所有问题呢?这是个先有鸡还是先有蛋的问题!今天,为了一个接一个地解决强化学习问题,我们使用标准的神经网络:
- 一种深度神经网络,它接受大量数据输入,如视频或音频,并将其压缩成表示形式
- 学习任务的序列学习神经网络,如 RNN
这两个组件都是问题的明显解决方案,目前显然是错误的,但这是每个人都在使用的,因为它们是一些可用的构建模块。这样的结果并不令人印象深刻:是的,我们可以从头开始学习玩视频游戏,并掌握完全可观察的游戏,如国际象棋和围棋,但我不需要告诉你,与解决复杂世界中的问题相比,这算不了什么。想象一个能比人类玩得更好的人工智能…我想看看!
但这是我们想要的。能像我们一样操作的机器。
此处详细介绍了我们关于强化学习工作的建议。它使用一个可以连续运行的预测神经网络和一个关联存储器来存储最近的经验。
不再有递归神经网络 —递归神经网络(RNN)的日子屈指可数。RNN 特别不擅长并行化训练,即使在特殊的定制机器上也很慢,因为它们的内存带宽使用率非常高——因此它们是内存带宽受限的,而不是计算受限的,更多细节请参见这里的。基于注意力的神经网络训练和部署更高效、更快速,并且它们在训练和部署中受可扩展性的影响更小。神经网络中的注意力有可能真正彻底改变许多架构,但它还没有得到应有的认可。联想记忆和注意力的结合是下一波神经网络发展的核心。
注意力已经显示出能够学习序列以及 rnn,并且计算量减少了 100 倍!谁能忽视这一点?
我们认识到,基于注意力的神经网络将慢慢取代基于 RNN 的语音识别,并在强化学习架构和人工智能中找到它们的方法。
分类神经网络中的信息定位 —我们已经广泛讨论了如何定位和检测图像和视频中的关键点这里。这实际上是一个已解决的问题,将被嵌入未来的神经网络架构。
五金器具
深度学习的硬件是进步的核心。现在让我们忘记深度学习在 2008-2012 年以及最近几年的快速扩张主要是由于硬件:
- 每部手机中的廉价图像传感器都可以收集大量的数据集——是的,社交媒体对此有所帮助,但只是在一定程度上
- 允许 GPU 加速深度神经网络的训练
而在之前我们已经广泛的谈过硬件。但是我们需要给你一个最近的更新!过去 1-2 年见证了机器学习硬件领域的繁荣,特别是针对深度神经网络的机器学习硬件。我们在这方面有显著的经验,我们是FWD NXT,雪花的制作者:深度神经网络加速器。
有几家公司在这个领域工作:英伟达(显然)、英特尔、Nervana、Movidius、比特大陆、Cambricon、Cerebras、DeePhi、谷歌、Graphcore、Groq、华为、ARM、Wave Computing。所有这些公司都在开发定制的高性能微芯片,这些芯片将能够训练和运行深度神经网络。
关键是在计算最近有用的神经网络运算时,提供最低的功耗和最高的测量性能,而不是像许多人声称的那样,每秒进行原始的理论运算。
但该领域很少有人了解硬件如何真正改变机器学习、神经网络和人工智能。很少有人了解微芯片的重要性以及如何开发它们。
以下是我们的列表:
- 训练还是推断?——很多公司都在创造可以提供神经网络训练的微芯片。这是为了获得 NVIDIA 的一部分市场,这是迄今为止事实上的训练硬件。但是训练只是故事和深度神经网络应用的一小部分。对于每个训练步骤,实际应用中都有一百万次部署。例如,你现在可以在云上使用的一个对象检测神经网络:它曾经被训练过一次,是的,在许多图像上,但是一旦训练过,它可以被数百万台计算机用于数十亿数据。我们在这里想说的是:与你使用的次数相比,训练硬件和你训练的次数一样无关紧要。而制作用于训练的芯片组需要额外的硬件和额外的技巧。这意味着同样的性能需要更高的功率,因此对于当前的部署来说可能不是最好的。训练硬件是重要的,并且是推理硬件的简单修改,但是它并不像许多人认为的那样重要。
- 应用 —能够以更快的速度和更低的功耗提供培训的硬件在该领域非常重要,因为它将允许更快地创建和测试新模型和应用。但是真正有意义的进步将会是应用程序的硬件,主要是推理。今天有许多应用是不可能的或不切实际的,因为缺少的是硬件,而不是软件,或者效率低下。例如,我们的手机可以是基于语音的助手,但目前并不理想,因为它们不能一直运行。甚至我们的家庭助理也与电源相连,除非我们在周围撒上多个麦克风或设备,否则无法跟随我们在房子里四处走动。但也许最大的应用是将手机屏幕从我们的生活中移除,并将其嵌入我们的视觉系统。如果没有超高效的硬件,所有这些以及更多的应用(小型机器人)都不可能实现。
- 赢家和输家 —在硬件方面,赢家将是那些能够以尽可能低的单位性能功耗运行,并快速进入市场的公司。想象一下取代手机中的 SoC。每年都会发生。现在想象将神经网络加速器嵌入到存储器中。这可能会更快地占领大部分市场,并具有显著的渗透力。这就是我们所说的胜利者。
关于神经形态神经网络硬件,请看这里。
应用程序
我们在上面的目标部分简单地讨论了应用程序,但是我们真的需要在这里深入细节。AI 和神经网络将如何进入我们的日常生活?
以下是我们的列表:
- 对图像和视频进行分类——已经在许多云服务中使用。接下来的步骤是在智能摄像机源中做同样的事情——今天也是由许多提供商提供。神经网络硬件将允许移除云,并在本地处理越来越多的数据:隐私和节省互联网带宽的赢家。
- 基于语音的助手正在成为我们生活的一部分,因为它们在我们的“智能”家庭中播放音乐和控制基本设备。但是对话是如此基本的人类活动,我们常常认为它是理所当然的。你可以与之交谈的小设备是一场正在发生的革命。基于语音的助手越来越好地为我们服务。但是它们仍然和电网相连。我们真正想要的助手会和我们一起走。我们的手机呢?硬件再次胜出,因为它将使这成为可能。Alexa 和 Cortana 和 Siri 将永远在线,永远与你同在。你的手机将很快成为你的智能家居。这是智能手机的又一次胜利。但是我们也希望它在我们的车里,当我们在镇上走动时。我们需要本地语音处理,越来越少的云。更多的隐私和更少的带宽成本。同样,硬件将在 1-2 年内为我们提供所有这些。
- 真正的人工助手 —语音很棒,但我们真正想要的是也能看到我们所看到的东西的东西。当我们四处走动时,分析我们的环境。参见示例这里,最终这里。这才是我们能爱上的真正的 AI 助手。神经网络硬件将再次满足你的愿望,因为分析视频馈送在计算上非常昂贵,并且目前处于当前硅硬件的理论极限。换句话说,这比语音助手要难做得多。但这并不是不可能的,许多聪明的初创公司,如 AiPoly 已经有了所有的软件,但缺乏在手机上运行的强大硬件。还要注意的是,用一个类似眼镜的可穿戴设备来代替手机屏幕,将真正让我们的助手成为我们的一部分!
- 烹饪机器人——下一个最大的电器将是烹饪和清洁机器人。在这方面,我们可能很快就有了硬件,但我们显然缺乏软件。我们需要迁移学习、持续学习和强化学习。一切都运转良好。因为你看:每个食谱都不一样,每个烹饪原料看起来都不一样。我们不能硬编码所有这些选项。我们真的需要一个能够很好地学习和归纳的合成实体来做这件事。我们离它很远,但没有那么远。按照目前的发展速度,只需要几年的时间。我一定会像过去几年一样努力~
这篇博文将会发展,就像我们的算法和我们的机器一样。请尽快再次检查。
**PS。😗*点击了解更多关于性能、屋顶图和带宽的信息。
关于作者
我在硬件和软件方面都有将近 20 年的神经网络经验(一个罕见的组合)。在这里看关于我:媒介、网页、学者、 LinkedIn 等等…
更多参考
关于有趣的附加阅读,请参见:
[## 建造像人一样学习和思考的机器|行为和脑科学|剑桥核心
建造像人一样学习和思考的机器。
www.cambridge.org](https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/building-machines-that-learn-and-think-like-people/A9535B1D745A0377E16C590E14B94993) [## [1612.03969]使用循环实体网络跟踪世界状态
文摘:介绍了一种新的模型——递归实体网络。它配备了一个动态的长期…
arxiv.org](https://arxiv.org/abs/1612.03969) [## 2017 年人工智能和深度学习-回顾的一年
一年就要结束了。我写的没有我计划的那么多。但我希望接下来能改变这一点…
www.wildml.com](http://www.wildml.com/2017/12/ai-and-deep-learning-in-2017-a-year-in-review/) [## 我过时的预测
随着所有新技术的出现,人们可以预测它对人类有多好,或者有多坏。一个普通的…
rodneybrooks.com](http://rodneybrooks.com/my-dated-predictions/)
人工智能帮助医学研究人员发现严重哮喘的基因特征
一个欧洲医学研究联盟使用一种人工智能形式发现了一个 1693 年的基因签名,以有意义地区分严重哮喘和非哮喘以及轻中度哮喘。通过对哮喘人群进行细分,研究人员希望为对治疗有反应的患者开发有针对性的治疗方法。这种疗法在治疗只涉及少量基因的疾病方面一直很有效。开发针对哮喘等涉及成百上千个基因的疾病的靶向药物更具挑战性。
这项研究发表在《美国呼吸重症监护医学杂志》上,包括 11 个欧洲国家 16 个地点的 610 名患者。这项研究由 U-BIOPRED(呼吸疾病结果预测中的无偏生物标志物)进行,这是一个研究项目,使用来自成人和儿童的信息和样本来了解更多关于不同类型哮喘的信息,以确保每个人都能获得更好的诊断和治疗。
哮喘影响着全球 1 . 5 亿至 3 亿人,其发病率还在上升。根据 T2 疾病控制中心的数据,每五个家庭中就有一个人患有哮喘。在美国,哮喘影响近 1900 万人,每年花费超过 600 亿美元,每个哮喘患者的医疗费用超过 3000 美元。
哮喘是一种慢性气道疾病的集体临床定义,其中炎症是潜在的病理生物学过程,但该过程的全部复杂性在分子水平上定义不清。还认识到哮喘不是单一疾病,而是包含几种表型的疾病。在过去的几年里,Ayasdi 与 U-BIOPRED 和南安普顿大学的研究人员合作,将机器智能应用于从 3 项大型研究中收集的数据,这些研究涉及哮喘患者和匹配的控制对象。从参与者处收集了几种生物流体,并应用多种研究方法来描述肺部和体循环内的复杂病理生物学。这些数据与用于定义疾病严重程度的标准临床结果相结合。
“成功开发针对哮喘等异质性疾病的有效精确治疗将需要新的强大统计模型,使研究人员能够过滤噪音,专注于患者群体之间有意义的差异。Ayasdi 实现了一种无偏见的方法来识别哮喘中复杂疾病的表型特征,此外,还为我们提供了一种无与伦比的能力来识别与这些表型相关的特征,从而为进一步探索创造了新的科学问题"英国南安普顿大学医学院医学教授兼 NIHR 呼吸生物医学研究中心主任 Ratko Djukanovic 博士说。“Ayasdi 是拼凑这种基因特征的无价工具,”Paul Skipp博士,这项研究的另一位首席研究员。
U-BIOPRED 的研究使用 Ayasdi 机器智能平台,结合传统的统计方法,在疾病的整个基因组上直观地绘制出患者群,并发现 1693 个基因的表达在严重哮喘患者和没有哮喘的患者之间存在明显差异。非哮喘患者和轻至中度哮喘患者之间的差异较小。这项研究为严重哮喘患者血液中的差异基因表达提供了令人信服的证据。
此前,南安普顿大学的研究人员使用 Ayasdi 进行无偏见的患者分层,从而改善了患者分类和预测模型。南安普顿利用 Ayasdi 的工作已经持续了几年,从合作中产生的见解将被用于造福科学、医学和患者。
哮喘中存在相当多的疾病异质性,这仍然是当前研究的热点。然而,许多试图定义内型的研究受到复制队列中缺乏可靠的统计学验证的限制,或者产生了其身份主要由临床参数支配的聚类,而没有给出对潜在病理生理学的重要见解。在之前发表在过敏杂志&临床免疫学 (JACI)的两项研究之一中,在两个不同的队列(194 名哮喘受试者和 21 名对照组)中,Ayasdi 确定了六个疾病群,这些疾病群由血液和诱导痰中的临床测量和病理学测量共同定义。Ayasdi 发现了临床测量和潜在炎症测量之间的脱节。
“这清楚地展示了我们作为临床医生在我们的严重哮喘诊所看到的不同哮喘组,并将有助于为未来的临床试验确定亚组,”Timothy Hinks 博士说Timothy Hinks,他是墨尔本大学多尔蒂研究所的惠康信托博士后研究员,是一名医生,也是南安普顿大学前两项研究的第一作者。这项研究由医学研究委员会和 Wellcome Trust 资助,利用了在以前的研究中试行的新方法和分析方法,但通过使用更大的样本量和使用地理上不同的推导和验证队列来扩展观察结果,以实现稳健的统计验证。此外,目前的研究证实了以前工作中确定的群集的性质,同时提供了对潜在病理生物学的额外见解。
在 JACI 发表的另一项先前研究(60 名患者和 24 名对照)中,Ayasdi 被成功用于确定六个对哮喘靶向治疗发展至关重要的患者亚群体,其中两个是重度哮喘患者,尽管他们在是否存在对常见空气过敏原(如屋尘螨)的过敏反应方面存在临床差异,但在肥大细胞活化方面相似。这表明肥大细胞在各种形式的严重哮喘中起着重要作用,这是以前没有意识到的,这对于开发可以靶向这种共同机制的新药具有重要意义。
Timothy Hinks 博士说:“由于哮喘是一种病理学差异很大的疾病,并且仍然没有得到很好的理解,因此使用 Ayasdi 平台驱动无人监管的多维查询的能力对于加快我们的研究是不可或缺的。“这一进展使得我们的团队在生成关于数据的假设时不那么有偏见。这有助于我们专注于推动数据驱动的假设,从而节省时间,并使我们的工作适用于所有治疗哮喘和类似病理多样疾病的医护人员。使用 Ayasdi,以适当的分辨率生成一个网络,只需几个小时就能获得重要的见解。统计分析可以通过内置函数从 Ayasdi 中快速提取出来。因此,Ayasdi 既可用于快速浏览数据,也可如本文所述,用作决定性的分析框架。”
“几年前,我们开始与 Ayasdi 合作,结果非常显著。事实上,Ayasdi 非常易于使用,并允许以灵活的方式分析大型和非常复杂的数据,这使它成为我们的理想选择。现在,Ayasdi 已经可供联盟的主要成员使用,我期待着更多的突破,对欧洲和其他地区的严重哮喘患者产生直接和积极的影响。”Ratko Djukanovic 博士,南安普敦大学医学院医学教授,联合王国南安普敦 NIHR 呼吸生物医学研究所所长
这三项研究结合在一起,帮助研究人员开始建立严重哮喘患者的临床和基因组图谱。未来的研究可能有助于确定治疗这种复杂疾病的实验药物靶点。
要成为合作者,请发电子邮件给我们,姓名为collaborations@ayasdi.com。
人工智能和不良数据
脸书、谷歌和推特的律师向国会作证,说明他们如何错过了俄罗斯的影响力运动。尽管这些广告是在充斥着分析引擎的平台上用俄罗斯货币购买的,但影响力运动的问题本质并未被发现。“卢布+美国政治”并没有引发警报,因为现成的深度学习的本质是,它只寻找它知道要寻找的东西,从更深的层面来说,它是在从真正杂乱(非结构化)或损坏和有偏见的数据中学习。对公共数据(混合私有数据)的非结构化本质的理解每天都在突飞猛进。这是我工作的主要内容之一。让我们转而关注数据质量问题。
Data can be wrong. Image taken from this post.
以下是一些常见的数据质量问题:
- **数据稀疏性:**我们对很多事情都有一点了解,但对大多数事情却没有清晰的了解。
- **数据损坏:**将 PDF 转换为文本并打印。是啊。除了正文之外,还有许多垃圾。
- **大量不相关的数据:**在一个象棋游戏中,我们可以剪枝整节的树搜索,更普遍的是,在一张猫的图片中,大部分像素并没有告诉我们这只猫有多可爱。在完全随机的数据中,我们人类(和人工智能)可以看到实际上不存在的模式。
- **从不良标签中学习:**标签系统的偏差,可能是由于人为偏差。
- **缺失意想不到的模式:**黑天鹅、政权更迭、阶层失衡等。
- **学习错误的模式:**不是真正因果关系的相关性可以被训练到 AI 中,然后它错误地假设相关性是因果关系。
- 我可以继续。
Bad data is hard to analyze with off-the-shelf systems. Yep. AI is one tough business. Credit: Robert Taylor
我们知道,基本上任何问题都很难得到有标签的数据,甚至有标签的数据也可能充满偏差。我周五拜访了一个潜在客户,他有一个很棒的数据团队,但由于所有权和知识产权问题,没有能力从现实世界中收集他们需要的数据。这个“卢布+美国政治”的好数据被 AI 遗漏的例子,对专家来说并不奇怪。为什么?嗯,人工智能需要知道要寻找什么,社交媒体巨头正在寻找更具侵略性的攻击类型,如根据他们的 facebook 个人资料监控士兵的行动。事实上,我们错过好数据信号的原因是像 twitter 这样的真实系统中有大量的坏数据。这是一个信噪比问题。如果警报太多,警报系统会被忽略。太少,系统会错过关键警报。不仅仅是像俄罗斯这样的对手试图获得影响力。好人,公司和品牌,做同样的事情。滴运动和游击营销是一种在鞋类销售中传播影响力的策略,就像政治干预选举一样。所以,我们错过好数据信号的真正原因是坏数据。利用简单的谓词逻辑,我们知道假假设可以隐含任何东西 ( 也此)。因此,从我们知道错误百出的数据中学习会带来一些真正的负担。
Let’s just agree that the data is wrong. Credit: (not original author)
坏数据的一个例子是发现你的人工智能模型是在错误类型的数据上训练的。来自聊天对话的文本不像来自报纸的文本。两者都是由文字组成,但内容却大不相同。在维基百科数据集或谷歌新闻文章上训练的人工智能不会正确理解(即“模拟”)我们人类在聊天应用程序中用来交流的自由格式文本。这里有一个稍微好一点的数据集,也许还有来自黑客新闻数据集的评论。通常,我们需要针对正确的问题使用正确的预训练模型或现成的数据集,然后进行一些迁移学习,以从基线进行改进。然而,这是假设我们可以使用这些数据。许多公共数据集甚至有更大的坏数据问题,导致模型完全失败。有时使用一个字段,有时留空(稀疏),有时非数字数据悄悄进入数字列(“1”对 1)。我在一个大型私人房地产数据集中发现了一个异常值,一百万个条目中有一个是由人类输入的巨大数字,被称为粗手指错误。
像围棋( AlphaGo zero )这种游戏的问题,没有不好的数据可以分析。相反,人工智能评估更相关和不太相关的数据。游戏是一个很好的约束问题集,但是在大多数真实世界的数据中,存在偏差。很多。助推和其他技术也会有帮助。事实是,机器学习的某些方面仍然是开放的问题,令人震惊的改进一直在发生。例子:胶囊网击败 CNN 。
重要的是要知道错误何时是由数据中的坏东西引起的,而不是由数据拟合不当引起的。像人类一样,在运行时学习的活系统特别容易从坏数据中学习错误信息。这有点像辛普森悖论,因为数据通常是正确的,所以拟合数据是一件好事,但有时拟合数据会产生悖论,因为方法本身(拟合数据)是基于一个糟糕的假设,即所有数据都是基本事实数据。参见这段视频,了解更多关于辛普森悖论的乐趣。这是另一个链接,链接到 Autodesk 的 datasaurus ,我很喜欢它。它完全值得完整阅读。
These images are all RANDOM data. I want to drive home the point that “trends” can be found in lots of places, and the law of big numbers is not always there to come to the rescue. IN the bar graph it looks like something special happens at 7. It’s just random. In the pie chart with 3 colors it looks like 1 is more prevalent than 2 and 3. Nope. Random. The pie chart with lots of slices is a case where we start to see the numbers averaging out, but that’s the point. Sometimes your dataset has all sorts of garbage in it that you don’t know about.
我们谈到了这样一个事实,即大多数真实世界的数据充满了腐败和偏见。这有点糟糕,但并不是所有的都失去了。有各种各样的技术可以应对糟糕的数据质量,其中最重要的是收集更多的数据,并清理数据。更高级的技术,如 NLP 集成、知识图表和商业级分析,并不容易得到。在以后的文章中会有更多关于这个的内容。
如果你喜欢这篇关于坏数据和人工智能的文章,那么请尝试一下 clap 工具。轻点那个。跟着我们走。在脸书和推特上分享。去吧。我也很高兴在评论中听到你的反馈。你怎么想呢?
编码快乐!
-丹尼尔
丹尼尔@lemay.ai ←打个招呼。
LEMAY . AI
1(855)LEMAY-AI
您可能喜欢的其他文章:
人工智能和数据科学正在改变犯罪调查和预防
由 Omkar Sabnis 和Sukant khu Rana
Photo by Simon Wijers on Unsplash
随着技术的进步,世界上的犯罪也在增加。我们都看了新闻,犯罪随着技术和时间而发展。它已经从抢劫银行发展到入侵银行把钱转到另一个账户。因此,我们可以说,随着犯罪的发展,方法也必须发展。犯罪的形式多种多样,千变万化。打击犯罪就像打击一个多头怪物……因为当我们砍掉一个头时,还会有两个长出来——它们比前一个更聪明、更凶猛。
因此,在打击犯罪时,我们需要有灵活性和创造性。在我们日益自动化的未来,我们认为人工智能——当与数据科学和分析相结合时,将赋予我们处理犯罪的能力和灵活性——无论是预防还是调查。
人类是有创造力的动物,但勤奋是我们缺乏的品质。重复做同样的工作并保证质量是我们不擅长的。我们也被情感所束缚。情绪会根据情景改变我们的决定。
我们来看看人工智能能做什么。在新闻领域,现在有一些机器可以为你写任何你想写的主题的文章。像雅虎这样的公司!现在正在使用人工智能来准备关于体育赛事和选举的简单文档。人工智能将访问互联网,找到必要的和相关的信息,并将其组织成一份报告。在电子商务领域,人工智能正被用于为客户个性化网站——向他们展示他们想要的东西,并向他们推荐产品。自动驾驶汽车很快就会被部署。埃隆·马斯克最近在推特上写道,人们很快就会召唤他们的汽车,而不是走向他们的汽车。随着数据量的增加,人工智能现在被用于分析股票市场和进行预测,而不是人类。我们可以看到,无论我们喜欢与否,人工智能将无处不在。
犯罪领域的人工智能将是一个巨大的红利。美国政府已经花费了 800 多亿美元将人工智能引入州、地方和联邦各级部门。犯罪是由人类犯下的,我们作为有逻辑的人遵循一种模式——无论我们试图变得多么随机。人工智能的优势在于它可以检测我们的行为模式——它将能够预测人将如何行动,这就是人工智能的优势。
让我们举一个实时的例子。十二宫杀手是 20 世纪 70 年代的连环杀手。记录显示他杀了 5 人,但据称他杀了 37 人。他给警方写了 4 个密码来证明他的身份,这些密码对大多数专家来说都是无法破解的。四个密码中只有一个被解开了。现在,一台名为卡梅尔的计算机已经被调整为像十二宫杀手一样思考。密码解密有以下步骤:我们首先尝试解释密码,然后使用合适的密钥或设计一个新的密钥来适应密码。因此,卡梅尔正在通过互联网获取数十亿的密钥,以便尝试和解释十二宫杀手的密码。这是人类自己做不到的。
人工智能还有更多应用,如枪击检测,改善安全摄像机镜头分析,预测未来的犯罪点和预测未来谁会犯罪。然而,预测并不是我们可以马上做的事情。它需要数据。否则这只是猜测。这就是数据科学和分析发挥作用的地方。
让我们看看当前的例子——pred pol。他们是一家公司,声称通过利用过去犯罪,他们可以预测未来犯罪的可能性以及何时何地会发生犯罪。这可以通过分析过去的罪行,找到相似之处,然后提出预测分析来实现。他们的算法可以帮助警察在预测区域保持警惕。
总之,人工智能可以帮助我们以一种全新的方式打击犯罪。随着我们对人工智能的使用增加,我们将有更少的犯罪,因为预测分析将防止犯罪,并且随着它开始证明其价值,将开始阻止潜在的犯罪分子,这就是我认为我们可以打击这个怪物并获得优势的方式。
— -
关于:
—
关于:
Omkar Sabnis 先生是一名研究人员,与 Sukant Khurana 博士合作研究人工智能和大数据在打击犯罪中的应用。
T2 博士苏肯特·库拉纳经营着一个学术研究实验室和几家科技公司。他也是著名的艺术家、作家和演说家。你可以在 www.brainnart.com 的或 www.dataisnotjustdata.com 的或了解更多关于 Sukant 的信息,如果你希望从事生物医学研究、神经科学、可持续发展、人工智能或数据科学项目,为公众谋福利,你可以在 skgroup.iiserk@gmail.com 联系他,或者通过 linkedin 的https://www.linkedin.com/in/sukant-khurana-755a2343/联系他。
这里有两个关于 Sukant 的小纪录片和一个关于他的公民科学努力的 TEDx 视频。
[## Sukant khu Rana(@ Sukant _ khu Rana)|推特
Sukant Khurana 的最新推文(@Sukant_Khurana)。创始人:https://t.co/WINhSDEuW0 和 3 家生物技术创业公司…
twitter.com](https://twitter.com/Sukant_Khurana)
人工智能和经济不平等的加剧
几个世纪以来,技术在美国劳动力市场中发挥了关键作用,使工人能够以更高效的方式完成日常任务。在技术进步的帮助下,生产率的提高使美国成为世界上最强大的经济体之一,定期创造成千上万的就业机会,并保持该国大量人口的就业。然而,技术进步也导致许多工人失业,因为组织机构试图通过增加使用自动化来取代低技能工作(即需要手工劳动并且可以容易地被机器取代的工作)来降低雇佣成本。
例如,1870 年,农业雇佣了几乎 50%的美国雇员。然而,根据劳工统计局的报告,截至 2015 年,农业行业使用的劳动力不到全国的 2%。尽管这个农业工人的小堡垒现在为更多的美国人甚至全球人口生产食物,但他们在美国劳动力中所占的份额已经显著下降,这说明了“技术转移所能产生的巨大影响。”【2】
农业并不是唯一的行业。许多更先进的技术形式在美国劳动力中发挥了作用,自动化了更多的劳动密集型工作,并打破了低技能工作(如收银员、总机接线员和银行出纳员)的自动化。最近,一种新的技术形式开始在市场上站稳脚跟:人工智能。顾名思义,这些计算机程序能够模仿人类思维,并执行几乎不可能以逐步方式处理的任务。这些任务包括图像识别、趋势分析、检测医疗状况等等。如果给予足够的输入和预期的输出,这种新形式的技术基本上可以做人类可以做的事情(类似于一个人如何学习一种特定的技能,即通过在一定数量的例子中反复试验)。
人工智能(AI)给劳动力中持续受到威胁的部分,即低技能和未受教育的工人带来了更紧迫的问题。目前,关于人工智能对美国劳动力的影响的许多文献在很大程度上仍然是猜测性的,因为公司才刚刚开始在日常运营中推出这种新技术的形式(因此不可能观察人工智能对劳动力的长期影响)。然而,根据历史趋势和人工智能的当前能力,人工智能的崛起完全有可能导致入门级和低技能工作(即不需要大量培训或教育的工作)的取代,在现代社会中造成专业化和非专业化工人之间更大的二分法。为了探索这个问题的所有方面,这篇文章将专注于三个主要部分,即定义什么是人工智能及其当前的能力,回顾技术进步对美国劳动力的先前影响,最后推断人工智能对美国劳动力和社会的潜在未来影响。
定义人工智能及其当前能力
在深入研究人工智能之前,重要的是在人工智能开发之前建立对编程和自动化状态的理解。计算机擅长执行一组指令,而程序员是那些经常以程序的形式将这些指令编码的人。这些程序在计算机上运行时,能出色地完成它们被告知要做的事情。例如,许多计算机科学学生编写的标准程序是生成前 n 个斐波那契数(0,1,1,2,3,5,8,13,21 …),其中每个连续的数是它前面两个数的和(在 0 和 1 之后)。程序员可以编写一个简单的 6 行版本的程序,它可以在 10 秒内产生前 30,662 个斐波那契数。
但是如果有一个更复杂的任务,比如一个涉及物体检测和模式识别的任务,一个简单的顺序程序是不够的。
例如,考虑检测图像是否包含鸟的问题。对人类来说,这很容易;在我们的生活中,我们已经看到了足够多的鸟,所以我们知道,如果一个东西有嘴、有珠子般的眼睛、羽毛和翅膀,它很可能就是一只鸟。
然而,对于计算机来说,这是困难的,因为计算机只能逐个像素地“看到”图像,并且通常不能绘制像素之间的连接来形成一般对象的定义。从程序员的角度来看,用如何识别鸟的知识给计算机编程是一项艰巨的任务。也许这种方法会告诉计算机寻找图像中具有特定颜色的部分,这些部分符合鸟类身体的一般形状,具有另一种颜色的三角形喙,眼睛有两个黑色圆圈。但是这些标准并不包括所有不同类型的鸟类。此外,如果鸟的图像的任何部分被遮挡,计算机将无法完成任务。
这一点就是 AI 的用武之地。人工智能(具体来说是一个称为神经网络的子集)可以通过基于其接收的训练数据的统计分析和优化,以类似于人类的方式“学习”。如果开发人员可以创建一个人工智能(由接受输入并产生训练输出的人工神经元组成),这个程序就可以使用数以千计包含和不包含鸟类的图像来训练自己。从这一点出发,经过训练的网络可以创建一个模型,该模型可以准确预测一只鸟是否出现在图像中,即使它以前没有见过这张照片。事实上,Flickr 的开发人员做了几乎相同的任务,并取得了惊人的准确率。【3】【4】
但是人工智能可以做的不仅仅是检测照片中是否有鸟。它们还可以从安装在路上汽车上的摄像头中识别物体,并指示汽车相应地移动,以避开障碍物并遵守街道标志,这为自动驾驶汽车奠定了基础。广受欢迎的拼车初创公司优步(Alibaba)等公司更进一步,开始部署自动驾驶汽车,只需要工程师监控车辆,而不是让普通司机驾驶。
此外,人工智能可以在医疗领域的生命关键应用中提供帮助,帮助放射科医生在诊断肿瘤的过程中,在它们明显表现出来之前,有时甚至在医生看到变化之前,通过 MRI 扫描捕捉它们。
被称为长短期记忆循环神经网络的人工智能变体甚至可以完成更多创造性任务,例如以一位或多位艺术家的风格创作音乐。【5】这种相同形式的人工智能也被用来为公司培训 24/7 的虚拟客户服务代表。这些在线助手从不疲倦,并从客户以前面临的数百万次对话、问题和议题的集体经验中学习。
简而言之,人工智能已经开始完成仅被认为仅对人类可行的任务,在某些情况下,如果给定足够的训练数据,人工智能可以在这些任务上击败人。虽然创造一个人工智能的过程是非常资源密集型的,但硬件价格的下降和更好算法的发展使得即使是普通的笔记本电脑所有者也可以在短短半小时内在他们的计算机上创造一个人工智能。很明显,官员们需要在未来解决人工智能在劳动力中的影响。研究人员已经证明了它的能力,这项技术终于赶上来,允许普通消费者以很少甚至没有成本的方式创造和使用人工智能。
劳动力中以前的技术进步
从历史上看,新技术在劳动力中的整合最初会取代几种形式的工作,但也会为其他领域的新型工作开辟道路。
这种模式的经典例子是 19 世纪勒德分子对新纺织技术的抗议。1811 年,一群英国织工和纺织工人领导了一场抗议活动,反对纺织厂最近发明和实施自动化织布机和针织机。这些人,现在被称为卢德分子,首先聚集在诺丁汉,摧毁了剥夺他们工匠和专门劳动者工作的机器。卢德运动蔓延到诺丁汉周围的地区,人们继续举行这些打破机器的抗议活动,直到 1816 年,直到英国政府被迫镇压该团体的任何进一步的反抗。
现在,人们用“卢德分子”这个词来描述一个反对工业化、自动化或任何形式的新技术的人。我们知道,卢德分子在抵制一场变革,这场变革将为工业革命和工厂制度的诞生奠定基础,工厂制度将雇佣数百万个人,并避免对体力劳动的极度专业化劳动的需求。但是,随着新技术的进步,如何知道是否会有替代工作来帮助那些被技术本身取代的人呢?要回答这个问题,唯一的方法是先看看以前的趋势,然后从那里进行推断。
19 世纪的技术变革降低了对专业和高技能工人的需求,就像卢德分子的情况一样,导致了偏向低技能的技术变革。这种技术趋势在 20 世纪末随着消费者可以使用的计算能力和互联网的出现而转变。这种变化导致了有技能的个人的生产力和福利,导致了以技能为导向的技术变革。
White House report on AI
白宫关于人工智能、自动化和经济的报告通过几个例子说明了这种变化是如何体现的,指出制造业就业岗位的减少导致对受教育程度较低的工人的劳动力需求疲软。然而,随着技术不断融入工作场所,“从事抽象思维、创造能力和解决问题技能的人”的机会越来越多。【6】
在制造工作的计算自动化的情况下,当公司可以关闭那些工厂并搬迁到更大的集中设施时,它们就越来越没有动力将更偏远地区的小工厂纳入人力员工。在一个特殊的例子中,研究人员确定了几个选择用机器代替体力劳动者的工业设施。在跟踪这些被解雇工人的就业模式十年后,他们发现这些工人的收入相对于他们以前的工资仍然低 11%。【7】这一发现表明,许多失业工人的能力下降,无法将他们现有的技能与新的、受欢迎的工作相匹配,或者接受再培训。然而,即使工人可以在其他工作中保持就业,这些流离失所者是否有工作仍存在很大疑问。
纵观历史,许多发达经济体都曾追随“创造性破坏”的潮流,这一术语是由 20 世纪经济学家约瑟夫·熊彼特提出的,用来描述“新的生产单位取代过时的生产单位”的现象研究人员已经多次证明了这种趋势的存在,最重要的是由 Davis,Haltiwanger 和 Schuh (DHS)发现,在 1972-1988 年的某一年中,10%的工作岗位被取消,但都被新的工作岗位所取代。【9】Foster、Haltiwanger 和 Krizan 在 2001 年进行了这项研究,并有证据表明,这些就业机会的破坏和创造周期最直接地归因于技术(在他们对 DHS 的数据进行了行业细分之后)。 [10] 然而,兰德尔·柯林斯指出,那些倾向于采用熊彼特式的观点来看待新技术对劳动力的影响的经济学家们“仅仅依靠对过去趋势的推断来论证新产品创造的就业机会将会弥补旧市场被破坏而失去的就业机会。”迄今为止,以前的经济数据确实支持熊彼特的理论,但是熊彼特自己提出了“创造性破坏”的概念,而当时还没有计算机这个概念。直到最近,劳动力的大量计算机化才真正威胁到专业人员的完全替代。
柯林斯还详细阐述了他的观点,指出工作场所自动化集成创造的新工作需要更多的专业化和正规教育。这些工作包括 IT 服务、网站开发和咨询服务。柯林斯解释了他之前的观点,即未受过教育的人无法获得新的工作,并指出最近对职业再培训计划的需求增加,以培训非专业工人掌握新技能。然而,有一个绝对的极限,在这个极限上,许多人不再可能专攻某一特定技能。例如,软件工程,一个随着编程语言的发明才出现的工作,需要在正规大学接受至少四年的培训。实际上,在一个变得越来越自动化的社会里,熊彼特的观点不能被认为是真实的,因为以前的趋势与未来将发生的事情没有关系。人工智能可能会创造新的行业,但这些行业是否能为流离失所者提供可行的工作前景还有待观察。
人工智能在劳动力中的预测
人工智能对经济的现状构成了很大的威胁;然而,将这种新形式的技术引入市场的大部分后果尚不清楚。争论的主要问题是,在公司选择将人工智能融入劳动力的范围内,以技能为导向的技术变革是否会继续。
牛津大学的卡尔·弗雷和迈克尔·奥斯本认为人工智能技术可以取代近 47%的美国工作。【12】此外,经济合作与发展组织强调了最有可能在短期内得到自动化显著帮助的各类员工的目标领域风险,指出在未来十年中,40%的高中或以下学历的工人将因技术进步而面临某种形式的失业。这种工作岗位的转移可能会给这些人留下很少的专业选择。然而,在试图教育和培训相当一部分美国劳动力使他们在各个领域专业化,以便他们在未来有良好的就业前景方面,存在着多种问题。
虽然在过去,一部分人完全有可能从一份低技能工作转向另一份只接受了最低限度培训的工作(正如大萧条时期的工作教育项目所见),但让 47%的人口接受进一步的大学教育多少有些不合理。实现这一目标的唯一途径是获得大量政府资金的帮助。柯林斯指出,随着“与计算机工作相比,人类创造的就业机会数量稳步下降”,政府将有必要支持大量失业人口。【13】美国在 20 世纪上半叶通过实施凯恩斯福利国家来解决大量失业问题,以维护资本主义制度,尽管这一制度受到政府的支持和控制。在政策方面,政府可以向公司征税,以雇佣人工智能实施人员,尽管这一措施将是暂时的,因为人工智能的成本会随着时间的推移而下降。
在大规模失业的情况下,实施普遍基本收入可能是缓解社会问题的一个解决办法。然而,根据柯林斯的说法,这种方法甚至让发达国家面临“国家财政危机和富人与依靠政府维持基本生活的人之间的分裂”社会中的这种二分法很可能“比当前资本主义市场中的任何东西都要大”,尤其是当依赖的人口无法维持就业的时候。此外,这一体系剥夺了依赖个人的购买力,“同时削弱了消费者市场,使资本主义不可持续。”【15】
柯林斯非常清楚地表明,如果人工智能的使用导致大量失业,就不可能有今天在美国所知的资本主义经济形式。普遍基本收入虽然是为全社会人民建立生活体系的一种极好的手段,但却无法维持当前的经济体系,甚至进一步扩大了社会两个阶层之间的工资差距,即那些尚未被人工智能取代工作的人和那些已经被人工智能取代工作的人。这种推断的证据可以从美国福利制度的现状中看出。对于长期失业的人来说,他们享受福利的可能性要小得多,这导致这些人的购买力下降,与他们有工作的同龄人相比,他们的经济地位也更低。【16】劳动力中人工智能导致的失业增长可能会成为失业的驱动力,并导致对政府援助计划的依赖。这种依赖可能会加剧失业者和那些工作过于专业化而人工智能无法取代的人之间的经济不平等。
然而,人工智能将导致大规模失业的观点并不是唯一的潜在观点。David Autor 认为,在人工智能集成之后,可能会有两个群体的个人在经济繁荣中增长:拥有公司并从事专业劳动的人,以及每天与人类互动的工人(例如护士)。他的信念是,“即使人工智能能够处理复杂的模式,分析比人类更准确的数据,它也缺乏与其他人交流和解释其决策过程的能力。”对人工智能在工作场所中的角色的这种观点,将允许合理程度的向上流动,并允许维持现有的中产阶级和资本主义社会的可能性。
当然,柯林斯和奥托尔对人工智能在工作场所中的作用的看法将因有关技术在劳动力中的作用的几个因素而异,但要解决的一个关键点是,面对人工智能,如何保持美国当前存在的阶级结构的一些表象。
结论
如果你能从这篇论文中总结出什么,那就是:人工智能对当今已知的劳动力结构构成了威胁。然而,许多人只能将这种危险的影响理论化。在柯林斯关于人工智能的观点中,人工智能取代工作的威胁可能导致失业工人和那些工作过于专业化而无法取代的工人之间的灾难性分化,最终导致基本收入的建立和政府在维持福利国家中的更大作用。奥托尔的理论同意人工智能将取代低技能劳动者的工作这一事实,但预测依赖于重要人类互动的工作将反而上升,为那些被人工智能取代的人提供再培训的机会。根据历史趋势,很明显,新的工作行业可以由技术创造,作为新的工作来源来取代被技术本身取代的工作。然而,对于人工智能是工作竞争对手的市场来说,这些工作对失业工人的可获得性是首要关注的问题。过去的历史趋势和人工智能的现状相结合,表明有必要为低技能工人创造新的、可获得的行业,以避免今天看到的经济和社会结构的广泛变化。
总体而言,人工智能在短期内可能会成为一种威胁,但完全有可能的是,人工智能的集成可以通过新的行业创造无数的就业机会。为了遏制人工智能对经济和社会的潜在影响,官员们有必要制定政策,教育那些工作可能受到人工智能威胁的个人,并限制人工智能在易受影响行业的整合。这项技术可以在人类水平上完成惊人的壮举,避免在现代世界进一步探索它的能力是错误的。然而,必须负责任地整合人工智能,以避免在不久的将来出现经济不平等。如果以正确的速度引入,这种新形式的技术可以以独特的方式帮助人类,并从技术、经济和科学的角度引领人类的进一步发展。
参考书目:
【1】主要行业部门就业情况。(未注明)。检索于 2017 年 4 月 26 日,发自 http://www.bls.gov/emp/ep_table_201.htm
柯林斯,R. (2014)。中产阶级工作的终结:不再逃避。在资本主义有未来吗?(第 39–51 页)。纽约州纽约市:牛津大学出版社。
【3】介绍公园或鸟。(2014 年 10 月 20 日)。检索于 2017 年 4 月 26 日,来自http://code . Flickr . net/2014/10/20/introducing-Flickr-park-or-bird/
【4】医学博士泽勒&弗格斯,R. (2014)。可视化和理解卷积网络。*计算机视觉——ECCV 2014 年计算机科学讲座笔记,*818–833。doi:10.1007/978–3–319–10590–1 _ 53
【5】约翰逊博士(2015 年 08 月 02 日)。用递归神经网络作曲。检索于 2017 年 4 月 26 日,来自http://www . hehedria . com/2015/08/03/composing-music-with-recurrent-neural-networks/
【6】人工智能、自动化和经济(第 8-26 页,Rep .)。(2016).华盛顿特区:总统行政办公室。
【7】戴维斯,s . j .&沃希特,T. V. (2011)。衰退和失业成本。布鲁金斯经济活动论文,2011 年 (2),1–72 页。doi:10.1353/eca
【8】什么是创造性破坏和颠覆性创新?(未注明)。创造性破坏和共享经济。doi:10.4337/9781786434335
【9】戴维斯,S. J .,哈尔蒂旺热,j .,&舒赫,S. (1993)。小企业和创造就业机会:剖析神话和重新评估事实。*美国国家经济研究局工作文件系列,*1–49。
哈尔滕,C. R .,迪恩,e . r .&哈珀,M. J. (2001)。生产率分析的新发展。芝加哥:芝加哥大学出版社。
【11】柯林斯 40
【12】弗雷,c . b .&奥斯本,文学硕士(未注明)。就业的未来:工作对计算机化有多敏感?检索自http://www . Oxford Martin . ox . AC . uk/downloads/academic/The _ Future _ of _ employment . pdf
【科林斯 13】41
柯林斯 50
【15】柯林斯 51
【16】梅尔科森,m .&萨雷拉,J. (2004 年)。失业者的福利参与和福利依赖。人口经济学杂志,17 (3),409–431 页。从 http://www.jstor.org/stable/20007919取回
【17】奥特尔博士(2014)。波兰尼悖论与就业增长的形态。马萨诸塞州剑桥:美国国家经济研究局。
人工智能应用:数据科学与采购
采购职能是组织中最重要的职能之一,但往往不被人们所重视。不知何故,它很少拥有与营销、金融或科技等更时髦的同行相关的浮华和魅力。可能出于同样的原因,与其他集团相比,它在采用尖端技术方面经常落后。虽然创收战略和计划最引人注目,但重要的是要认识到成本节约可以对底线和利润产生完全相同的影响。
对于外行来说,采购职能处理的是购买运营一家公司所需的每一件物品的端到端流程,从回形针到重型机械,从办公室小吃到运输提供商,从计算机硬件到大型数据中心设备。换句话说,除了人员成本(即薪水和工资)之外,公司 P&L 中与“经营成本”相关的所有成本都属于采购组织的权限范围。
采购的角色有几个组成部分——它不仅需要采购所有这些大大小小的东西,还必须以最有效的方式完成。这包括为每件商品寻找最佳质量和最佳价格、通过多个参数评估供应商、在商品层面估计需求、优化库存管理、规划物流以及跟踪更广泛的市场动态。
想想当你需要做出一个重要的购买决定时会发生什么,比如买一台新电视。大多数人会花大量的时间进行研究,比较功能,获取多个报价,与不同的卖家交谈,与朋友比较笔记。想象一下,对大量的商品都这样做!
现在让我们回到采购中技术采用的话题,尤其是数据相关技术。迁就我一下,试着回答我以下的问题:
- 在过去的一个月里,你在外出就餐或外卖上花了多少钱?
- 这个数额是大于还是小于你上个月的饮食花费?差多少?
- 你花了多少小费和税?
- 在此期间,您在咖啡或甜点上花费更多吗?多了多少?
- 你从哪里得到的每毫升咖啡的最佳价格?
- 你花了多少现金和信用卡?
这些都是非常简单直接的问题,不是吗?但是准确回答这些问题会有多难呢?我的猜测是,相当困难!你需要收集上个月和上个月发生的所有费用的记录。它们可能在不同的地方——收据、信用卡账单、银行对账单,甚至你的记忆。它们肯定是不同的格式。你可能需要在收据和报表之间做一些三角测量。可能有不同的名称,例如,所有的馅饼、蛋糕、冰淇淋等等。在“甜点”下,等等。
现在,将这一比例扩大到数以万计的商品(这通常是一家中大型公司购买的独特商品的数量)。跨越城市、国家、大陆;跨越成千上万的供应商;跨越数百万行个人交易;跨越不同的语言;跨越不同的术语和标准,跨越数亿或数十亿美元!
这就是采购职能部门要处理的事情。这就是数据如此重要的原因。这就是为什么利用人工智能或数据科学是绝对的,明确的关键。不幸的是,这最后一块是大多数采购组织仍在追赶的地方。
我们都知道 ERP(企业资源规划)系统——大型的、通常是单体的系统,使组织能够管理其核心业务流程,如采购、库存、销售、会计、人力资源等。它们已经存在了近三十年,在帮助公司获取数据方面发挥了关键作用。过去,采购职能处于采用传统 ERP 系统的最前沿,但随着技术的发展,他们一直在努力实现下一次飞跃。
虽然采购从业者可以访问大量数据,但挑战在于这些数据是众所周知的脏数据。它来自具有不同结构、术语和粒度的系统(不同的 ERP 平台、遗留系统、甚至 excel 表)的混合体。即使在源系统已经简化的情况下,ERP 数据也充满了问题——信息缺失、信息不正确、人工输入错误等。随着业务的发展,这些错误会成倍增加,并迅速扩大,以至于对数据进行的任何分析最终都变成了“垃圾进—垃圾出”的情况。
因此,最终发生的情况是,采购经理最终需要花费大量的时间来处理这些数据,试图弥补一些他们可以用来改善事情的洞察力。他们几乎没有时间去真正进入市场,抓住潜在的利益。
进入人工智能,等式完全变了!在采购中利用人工智能的深思熟虑的策略可以为采购职能带来巨大的投资回报。他们可以通过复杂的机器学习算法来解决数据争论。他们可以利用自然语言处理(NLP)技术来获取隐藏在数据捕获系统的自由文本字段中的珍贵信息,这简直是一座金矿!他们可以日复一日地获得关于节省成本和其他机会的见解,这样他们就可以专注于追求这些目标,并实现底线、硬美元的影响。
在下一篇文章中,我将关注人工智能可以帮助采购从业者实现的特定价值驱动因素。采购之所以成为人工智能的一个非常有趣的领域,是因为它是如此普遍相关——所有公司,无论规模、行业、地理位置如何,都需要不断优化他们花钱的方式和地点!
人工智能像魔术一样
创新或者死亡。成长或枯萎。这就是我今天在人工智能领域的感受。2008 年的衰退性失业在 2010 年达到顶峰,现在已经基本结束。现在这个世界充满了增长。
Source: advisor perspectives and inspired by an article on automation
过去一年,我们的咨询业务一直在从事许多简短的人工智能咨询业务,以帮助公司将最好和最新的东西纳入他们的产品和服务。我们不能永远做同样的表演。与普遍的看法相反,我认为在某个时候,人工智能解决方案架构会变得更容易。在这种情况下,人工智能领域的人才将会增加,这是一件好事。但对我们来说,这意味着我们做的高端咨询利润会更低。由于像 keras 这样的库,创建多模型人工智能的过程也将变得更容易,这将允许从预训练的模型中进行转移学习,以及自动部署最常见类型的神经网络模型(见此)。作为一家 AI 公司,我们要么创新,要么死亡。
那么我们一直在做什么来赚钱呢?以下是到目前为止我们咨询收入来源的高层次细分,按行业划分。似乎我们主要做电子和云人工智能的东西。没有许可费,没有经常性收入。我们第一年的大多数项目都在 1.5 万到 3 万美元之间。
Our consulting revenue by sector, since 2016–07–13. I got this from our CRM, not the accounting software, and so there may be some errors in this summary because of small stuff, like taxes in Europe, or whatever. Sue me.
我们转向产品和更大合同的步伐非常缓慢,但我们最终还是做到了。我们对转向的犹豫是合理的。我们对写没有任何进展的 RFP 不感兴趣。相反,我们非常开心,专注于为客户创造价值,飞到凉爽的地方,壮大我们的团队。我们通常对从引进到签订合同之间有很长时间的项目不感兴趣。我们是一群受过高等教育的书呆子,来自医疗设备背景,创新进展缓慢,所以我们想抓住今天。我们创造了一个漏斗,用项目填满它,然后勇往直前。在之前的文章中,我写了更多关于我们如何在到达这里的内容。
我们在建立这个企业的过程中度过了美好的时光,但每个人都必须成长。
“成年人只是变老的孩子”
我们不能只是继续在咨询仓鼠轮中奔跑,尽管这可能很有趣。我们决定了我们转向产品和更大规模服务的特点。
从现在开始我们不会做的事情:
- **基础科学:**没有应用的牛逼科技。我们是高级工程师。我们制造东西。我们想赚 100 美元,而不是拿诺贝尔奖.
- **基础编码:**平凡的技术,却有着令人敬畏的应用。没有竞争壁垒。如果我要做“愚蠢”的代码,为什么我有 ML 的博士学位?我们接受了太多的教育,无法修补前端的东西。即使我们过去做 GUI,我们已经采取了前端工作外包的立场,无论是对我们内部还是对客户,我们不认为我们通过编写 GUI 代码增加了价值。快速推荐:马可迪鲁卡。我们不这样标记设计工作。我们只是把它传给我们喜欢的人。我最好的 GUI 没有 Marco 最丑的好。
- 约会超级名模有两个步骤。第一步:找超模。第二步:和超模约会。问题是细节。我们不想花很多时间做一些最终成为证明 P=NP 的特例的事情。所以,我们把自己限制在我们相信自己能够制造的东西的范围内。不是说我们不接受大的挑战。我们只是不冒愚蠢的风险。
从现在开始我们要做什么:
- 简单的用户体验(UX): 我们正在为令人敬畏的人工智能构建简单的界面。当事情像那样运作时,它看起来就像魔术一样。我觉得所有的 AI 都应该感觉像魔术。你应该把系统设计成以一种用户理解但没想到可能的方式工作。
- **深度学习神经网络:**我们的利基市场是深度学习神经网络。这就是我们的价值所在。如果我们构建通用软件,我们还不如在软件工厂工作。所以,我们专注于疯狂的高端产品。
- 经常性 B2B 收入:企业乐于为深度学习付费,他们持有最有趣的数据集。他们也比消费者有更多的钱可以花。我们正在开发API、基于订阅的服务,以及产生许可费的软件库。这三条新的途径为我们拓展了一些很酷的可能性。
- **大数据和云:**我们在数据中心的物理机箱和物理硬件组件(电路板、电路、外壳、焊接)上做了太多工作。我们的 digikey 账户比人工智能咨询公司活跃得多。所以,我们专注于我们的云游戏。特别是云端的深度学习。这是我们希望向客户交付许多数据科学团队无法实现的结果的地方。
- 手机:我们不做手机应用,但我们与做手机应用的开发者合作。这个功能是一个很好的特性。我们都使用智能手机,因此具备移动功能非常重要。我会不假思索地推荐under labs . ca他们的 CTO 是我大学时的好友,他们的口号说明了一切:“我们开发酷 sh * t”
这不是某种宣言。我们实际上正在做这些事情,在我写这些文字的时候,我们正在做这些事情。本周我们将参加多伦多机器学习峰会。除了我们通常的咨询工作之外,下面是我们一直在做的一些事情:
- SageTea 软件合伙 ( 正文转软件深度学习)。我们的第一笔软件许可销售已经是囊中之物了。后续的销售兴趣相当大。
- 另一个合作伙伴在讨论 ( 【审查】Kit 深度学习?)正在等待法律签字同意。
- Genrush.com 进展顺利。我们这个项目的目标是通过向销售团队提供线索来产生经常性收入。整个方法使用机器学习来解决问题。这仍然是一项正在进行的工作,但它肯定会朝着赚第一个美元的方向发展。
所以,我们越来越不是一家初创企业。我们在成长,在做长远的思考和规划。我们正在创造奇迹。激动人心的时刻!
在我离开之前,本周有几件事引起了我的注意。AWS 中新的 p3 实例已经发布,树莓 Pi 4 将通过谷歌的插件支持更快的深度学习。一切都在移动。
如果你喜欢这篇关于我们如何重新聚焦人工智能咨询的文章,那么请尝试一下 clap 工具。轻点那个。跟着我们走。在脸书和推特上分享。去吧。我也很高兴在评论中听到你的反馈。你怎么想呢?
编码快乐!
-丹尼尔
丹尼尔@lemay.ai ←打个招呼。
LEMAY . AI
1(855)LEMAY-AI
您可能喜欢的其他文章:
人工智能:后果
AI 要改变世界。
像自由市场一样,人工智能是一个无情的优化器。然而,就像市场看不见的手一样,AI 也会犯错。市场制造泡沫,泡沫破裂,崩盘修正为理性估值。我们知道自由市场是一个不完美的优化器,但它是迄今为止 T2 最好的优化器。一般来说,当你缩小视野看大图时,市场前进的方向是向上向上。
Global output through human history. Raw data from here. Click for interactive chart. Both axes are on a log scale.
AI 和市场经济学是两个优化器。它们在股票和货币交易机器人中相交。如果我们想保持全球指数增长趋势,我们需要像人工智能这样的颠覆性创新。然而,进步不是零和游戏。相反,你知道的事情越多,你不知道的事情的周长就越大。在之前的文章中,我提到了成长型投资和人工智能之间的联系:恐惧。对人工智能能力的恐惧导致了对它的贪婪。但正如自由市场在一些任务上不太擅长,比如创新(政府拨款和军事研究给了我们互联网,甚至是 AI 本身,所以我们也可以看到,AI 并不擅长所有问题,至少现在不擅长。像自由市场一样,人工智能也有一套可预测的失败模式,包括过度拟合、不良的精度-召回权衡、从错误的数据中学习,例如偏差、针对错误的目标进行优化等。
然而,当处理正确的问题时,人工智能是非常有效的。机器学习回归或分类是一回事。这是那种令人讨厌的计算机东西,就像摩尔定律一样,我们期望变得更好,不管人工智能如何。但是我们能用 AI 做些什么才是真正意想不到的呢?嗯,有很多例子,包括风格转移,思路对比,从文章正文生成标题(摘要),机器翻译。我们有时会忘记,简单地识别图像中的对象曾经是科幻风格的人工智能,现在它只是卷积神经网络,通常经过预先训练,位于 API 后面。一旦你知道某件事情解决了,它似乎会在人类的头脑中很快从魔法变成逻辑。
人工智能揭示了新的可能性,这些可能性没有预料到会这么快出现。这是一场知识和自动化的淘金热。这一切都意味着我们人类将面临很多破坏,而且并不是所有的破坏都是好的。
我们人类在大脑中模拟机器将做什么,这个过程将变得很奇怪。
以一台坏掉的自动售货机为例。想象一下,走向自动售货机,放入你的信用卡,按下苏打水选择按钮,然后意识到自动售货机没有分发饮料。在这种情况下,你的大脑会思考自动售货机是如何工作的,它会对可能出现的问题进行建模。你按按钮的力度够大吗?也许只是机械故障按下了开关。读卡器工作了吗?也许机器和互联网之间的通讯中断了。也许你的信用卡交易被拒绝了。你可以问这些问题,因为你在直观和物理层面上了解了自动售货机的部件是做什么的。
然而,当我们把简单的自动售货机换成聊天机器人自动售货机时,它会把你的订单作为语音命令,并分发饮料——或者在这种情况下,它无法分发饮料,更多的部件开始发挥作用。在这个人工智能自动售货机的场景中,你有一整套可能出错的新东西。机器听到你的请求了吗?它是否正确地将你所有的话语转换成文本( STT )?文本被转换成你想要的动作了吗( NLU )?人工智能明白你付钱了吗?除了你头脑中的机械和电子模型之外,还有一层全新的可能出错的东西。现在,你的大脑将不得不模拟人工智能内部产品如何“工作”。
AI 会创造更差更烦人的用户体验。然而,它也开启了新的更好的用户体验。很简单,创建一个聊天机器人,在汽车餐厅询问快餐订单。蒂姆·霍顿订单收集系统有人吗?
由于许多工作都需要自动化,人类将需要掌握更多的计算机交互技能。如果我们的新工作是机器人霸主,让我们确保我们能够撼动这一角色,并继续增加我们共享经济的总价值。
我最近在 LinkedIn 的一个帖子上讨论了所有人都需要学习如何进行基础编程。如果我们想对人工智能保持乐观,那么我们需要人类拥有更强的技术技能。我们不能指望永远保持我们的自动化友好型工作。T2 在 1899 年存在的工作现在已经很少了。那么,AI 会来接替你的工作吗?如果你的工作很容易通过人工智能实现自动化,那么**是的,会的。**新技术会带来后果。但是你会,就像我们在整个人类历史上一样,超越自我。
学习编程。去w3schools.com免费上课。或者试试 udacity 。
如果你喜欢这篇关于人工智能的一些含义的文章,那么请尝试一下 clap 工具。轻点那个。跟着我们走。去吧。我也很高兴在评论中听到你的反馈。你怎么想呢?
编码快乐!
-丹尼尔
丹尼尔@lemay.ai ←打个招呼。
LEMAY . AI
1(855)LEMAY-AI
您可能喜欢的其他文章:
人工智能——去神秘化
人工智能(AI)可以说是我们这个时代最热门的技术话题。人工智能的文章、纪录片和讨论充斥着每一种媒体:大众的、技术的、社会的和政治的。它吸引了所有人的想象力、幻想和情感。尽管有如此多的信息,还是有必要澄清人工智能的名称和基本概念。这可能是由于媒体炒作,不同的定义,技术术语和科幻小说中关于人工智能的图像。本文试图为非技术读者澄清围绕人工智能的迷雾。
什么是人工智能(AI)?
我喜欢维基百科对人工智能最简单的定义:
人工智能(AI)是机器展现出来的智能。
AI 由两个词组成:人工和智能。“智力”一词描述了人类(和动物)的认知功能,即意识到各种情况,从中学习,并运用所学知识做出决策和解决新问题。它包括一个人的逻辑、理解、自我意识、学习、情感知识、计划、创造力和解决问题的能力。一个非常聪明的人能够快速地完成所有这些工作,并应对各种各样的情况和问题。智力通常被认为是人类(和其他生物)的。人工智能通常被称为其他名称,如机器智能、机器认知或增强智能。它们的意思都一样。
术语“人造的”指的是机器——或者非人类和非生物的。通俗地说,“人工智能”一词是指机器模仿人类与其他人类思维相关的“认知”功能,如“学习”和“解决问题”。
我们的大脑有超过 1000 亿个神经元,每个神经元都与数千个其他神经元相连,是已知宇宙中最复杂的物体。认知是它最复杂、最高级的技能之一。认知是通过思想、经验和感觉获得知识和理解的心理活动或过程。它包括决策和解决问题。Linda Gottfredson 教授(德勒威尔大学)说得很好:“认知是从经验中学习和借鉴、抽象思维、领悟复杂思想、推理、计划和解决问题的能力。”
你的个人电脑是智能的吗?
许多家用电器,如洗衣机、洗碗机、空调,甚至个人电脑,在自动执行复杂的逻辑任务的意义上,似乎是智能的。他们聪明吗?有些人说不。我们也可以说,是的。然而,这种智能是“编程智能”——因为智能不是源于机器内部,而是人类开发人员将其编程到机器中。人类已经创造了允许这些机器展示智能的算法(逻辑和步骤序列)。许多机器人在工厂执行复杂的任务,如焊接和组装,也是根据人类编程的算法运行的。
算法——智能的关键
算法的执行在展示智能方面起着重要的作用。然而,与人类在机器中的编程智能相比,人工智能(AI)能够通过“机器学习”的过程来创建自己的算法。当我们决定购买谷歌股票还是微软股票,或者去马略卡岛度假还是巴哈马群岛度假时,我们人类也会在大脑中执行算法。每个人都通过他们的主观学习和生活经验发展出他们独特的处理生活的算法——这就是为什么我们在面对类似的选择时经常会做出不同的决定。人工智能能够学习和开发自己的算法,并根据自主开发的算法做出决定——就像人类一样。学习和开发自己的算法是人工智能的独特之处。
人工智能自动化决策
从功能上来说,人工智能是一个针对特定专业领域的自动化决策系统,如医疗、税收、投资、翻译、语音识别或人脸检测。人工智能在其专业知识范围内为任何给定的新情况找出最佳答案或决策(成功概率最高)。做出更好的决定是商业和私人生活成功的关键。人工智能正在迅速降低各行各业做出更好决策的成本和时间。
参见:人工智能促进更好的决策。
人工智能和机器人
人们经常混淆机器人和人工智能。两者截然不同,但又相互关联。机器人是一种有时模仿人类形式进行某些活动的机器,但 AI 本身是机器人内部的算法逻辑。AI 是大脑,机器人是它的身体。机器人面临两个挑战:物理和逻辑。身体:使身体按照预期活动的要求行动和移动。逻辑上:人工智能部分(机器人大脑)必须自动计算并决定做什么,以应对新的输入和情况。
人工智能不需要一个肉体来表达自己。人工智能可以被视为一个信息处理黑匣子,其中包含了学习到的认知(专业化)。输入是表示新情况或查询的数据流。输出是用于决策支持和期望行动的信息。为了说明人工智能本质上是一种不需要身体的信息服务,下面是一些人工智能如何嵌入具体服务的例子:
Structure of current AI applications
AI 的进化
自上世纪中期艾伦·图灵(Alan Turing)时代以来,我们一直在探索人工智能的话题。他在 1950 年开发了著名的“图灵测试”,以测试机器表现出与人类同等或不可区分的智能行为的能力。自那以后,人工智能的概念没有太大变化,但实现它的方法却变了。由于机器学习和深度神经网络的进步,过去 5-10 年取得了重大进展,导致了我们今天都可以体验的一系列服务(如上所示)。像任何其他技术一样,人工智能将从解决简单的任务,如理解我们的讲话,发展到更加复杂的问题。进化分三个阶段进行描述。我们目前正处于第一阶段的开始。
1 人工狭义智能(ANI) :在这个阶段,人工智能专注于一个特定的领域,如翻译、人脸识别、下棋、诊断癌症、解读放射图像、股票投资等。在这里,人工智能已经被训练在一个,而且仅仅是一个领域中发展决策。图像识别人工智能对一盘棋毫无头绪。可以把 ANI 比作雇佣一个顶尖的专家来做一件比其他任何人都好的工作。目前,人工智能的所有应用都处于 ANI 阶段。在未来 3-5 年内,许多新产品和服务将集成 ANI 功能,提供独特的客户价值,这是一个巨大的差异化商机。
2 人工通用智能(AGI) :下一阶段是 AGI,这里的系统拥有一般水平的智能。AI 系统在所有方面都像人类一样聪明,可以执行人类可以执行的任何智力任务。一个成年人获得了丰富的知识和各种各样的技能,并且能够以多种方式组合使用这些技能。匹配这一点比在一件事情上获得专业知识要困难得多。还没有人创造出 AGI。人工智能专家对实现 AGI 的平均预测是在本世纪中叶左右。更乐观的预测是到 2030 年。
3 人工超级智能(ASI) :人工智能专家尼克·博斯特罗姆(Nick Bostrom)将超级智能定义为“*在几乎每个领域都比最优秀的人类大脑聪明得多的智力,包括科学创造力、普遍智慧和社交技能。”*好得多可能意味着 10 倍、1000 倍或 1000000 倍。人类无法想象这对我们的生活和社会的影响。专家预测实现 ASI 是在本世纪下半叶。当智能机器自己开始设计它们的下一代版本时,进展可能会非常快,呈指数级增长。这是目前科幻小说的素材。
与艾同居
在过去的二十年里,互联网和智能手机已经越来越多地融入到我们的生活中——几乎不为人知地悄悄进入,带来了巨大的好处。只有当我们回顾和反思时,我们才意识到他们所带来的巨大变化。同样,人工智能将悄悄进入我们的生活,以我们无法想象的方式改变我们的业务和生活方式。AI 不是人类的替代品,而是一个技能互补的优秀队友。
Complementing AI and human skills
艾是我们的队友
总之,人工智能本质上是一台能够非常有效地执行理性技能的机器,如学习、决策和解决问题,这些技能传统上只与人类相关联。它们对我们生活中复杂决策的自动化大有裨益。重要的是要记住,人工智能不是人类的替代品,而是一种帮助我们的工具。人类和人工智能将学会作为队友合作——每个人都带来自己独特的技能,创造一个胜利的组合。
关于人工智能的更多信息:人工智能&将人工智能转化为商业
https://www.amazon.com/AI-Translating-Artificial-Intelligence-Business/dp/1521717206/
联系人 : 沙拉德·甘地,克里斯蒂安·埃赫尔,www.ai-u.org
阅读我们的其他文章:
人工智能解释第 1 部分
我想写一些帖子,为像我一样不是数学或编程天才的人解释人工智能背后的“魔力”。
这是系列文章的第一篇,假设你对人工智能一无所知。
什么是人工智能或 A.I?
谷歌对人工智能有一个很好的定义:
能够执行通常需要人类智能的任务的计算机系统的理论和发展,例如视觉感知、语音识别、决策和语言之间的翻译。
然而,人们经常有一种误解,认为所有的人工智能都是人工智能。
人工通用智能
什么是人工通用智能?再说一次,谷歌有一个非常明确的定义:
人工通用智能(AGI)是机器的智能,它可以成功地完成人类可以完成的任何智力任务。
从本质上说,AGI 是你在电影中看到的人工智能,也就是通常对人类怀有敌意的完全有感情的生物🔫 🔪 🔥。
不管是好是坏,AGI 根本不存在😱。从写这篇文章的时候起,就不存在人工智能这种东西,它在与人类相似的意义上是有知觉的。
但近年来有所超越的是弱 AI 或窄 AI ,顾名思义,弱而窄(到一定程度)。
弱 AI /窄 AI
我喜欢将狭义人工智能(相对于弱人工智能,我更喜欢这个术语)定义为能够执行一项单一(或狭义)任务的人工智能,例如识别猫和狗图像之间的差异,或将声音转换为文本。
与 AGI 不同,狭义人工智能是今天的现实。iPhone 上的 Siri 是多个狭义人工智能组合的一个例子,例如语音到文本等,它连接到云中的数据库。然而,Siri 根本不知道她的周围环境,也没有任何感官或感觉。像 Siri 这样狭隘的 AI 往往容易被骗。
狭义人工智能的更多示例包括:
许多狭义的人工智能都属于机器学习的范畴,我们将在这篇文章的剩余部分探讨这一点。
机器学习
机器学习是人工智能的一个子集,可以广义地定义为机器(或计算机)学习分析特定的数据集。解释机器学习做什么的最好方式就是举个例子。
假设一个房屋拍卖数据集包含每次销售的以下信息:
- 房子的售价
- 整个房产的大小
在这种情况下,机器学习可以用于开发一种算法,可以根据房产的大小预测房屋的销售价格。但是直觉上这是如何工作的呢?我们可以通过首先可视化数据集来找出答案。
因为我们的数据集包含每笔房屋销售的两个变量,所以我们可以通过在图上绘制来可视化信息。
在高中,你可能学过线性回归,或者简单地说,一条最佳拟合线。仅仅看这个数据,就可以看出它遵循了一个趋势,房价(在一定程度上)与房产面积成正比,或者换句话说,房产面积越大,房子的成本越高。
直观上,机器学习算法所做的是试图在给定的数据集中找到最佳拟合线,然后使用最佳拟合线进行预测。
因此,我们的算法将首先努力找到最佳拟合线:
然后,如果我们给它 0.55 英亩的输入,机器学习算法将从 x 轴上的输入值 0.55 开始绘制一条线,直到它与最佳拟合的线相交,然后它将跟踪一条线,直到它与 y 轴相交,以产生对 0.55 英亩财产大小的1350 万美元的预测。:
请注意,一旦算法找到了最佳拟合线,它就可以对任何英亩大小进行预测。
这实质上是机器学习算法如何学习进行预测。直觉上,这似乎很简单,对吗?🎉
除了一些警告…
机器学习挑战
虽然前面的例子看起来很简单,但机器学习面临以下挑战:
- 数据集大小
- 维度问题
- 非线性
- 计算能力
让我们逐一剖析它们😎
数据集大小
正如我们在前面的例子中看到的,在机器学习算法可以做出预测之前,它需要一条最佳拟合线(或某种关系)。不幸的是,找到最合适的路线可能是一个相当大的挑战。
我们将讨论如何在机器学习中精确地计算最佳拟合线,但一般来说,要找到可以使用的最佳拟合线需要大量数据。 谷歌开发的一种算法使用了包含大约 120 万张图像的数据集。
当然,并不是每个机器学习算法都需要那么大的数据集,但是,根据情况,如果可用的数据有限,就不可能创建一个像样的模型。
维度问题
在我看来,维度问题是机器学习最具挑战性的方面之一。我能想到的最简单的解释是这样的:
每当我们在图表上绘制数据时,想象每个轴是一个维度。回想一下,在我们之前的例子中,我们有一个 x 轴和一个 y 轴,因此,我们之前的例子可以被认为是二维的。
然而,如果我们要在之前的数据集中添加另一个变量,我们就不能再使用二维图表来绘制数据了。
如果您还记得的话,我们的数据集包含每笔房屋销售的以下信息:
- 房子的售价
- 整个房产的大小
现在,如果我们添加另一个变量,在这种情况下,每栋房子的房间数量,那么我们的数据集中每栋房子的销售额将有三个变量:
- 房子的售价
- 整个房产的大小
- 房子里房间的数量
因为我们在一个轴上表示每个变量,我们有三个变量,如果我们要在一个图上绘制数据,我们自然会有三个轴(x,y & z)。
我们绘制在图表上的数据集如下所示:
突然,我们的机器学习算法不再处理二维图形,而是处理三维图形。我相信你会同意,仅仅通过看这个图表,数据之间没有清晰、容易看出的关系。
本质上,这是维度问题。通常在机器学习中,我们会处理多个变量,维度的数量不会停留在三个。我们可以很容易地拥有四个、五个、六个甚至二十个变量,这导致了许多难以想象的维度。
所以总的来说,维度越多,就越难在数据中找到关系,也就需要更多的计算能力。机器学习可以变得复杂、快速😳。
非线性
在前面的例子中,我展示了数据中的关系是如何成为最佳拟合线的。机器学习的另一个挑战是数据之间的关系并不总是线性的。
这意味着我们数据中的关系将开始像这样:
是啊,到处都是奇怪的线条。
如果我们把非线性关系和多维度结合起来,我们会得到这样的结果:
很疯狂吧?机器学习如此神奇的原因之一是,它可以在海量数据之间发现惊人的关系,而这些关系对我们人类来说不一定显而易见。
计算能力
我现在想指出的最后一个挑战是对计算能力的永恒关注。
我将在另一篇文章中讨论机器学习算法如何找到数据中的关系,然而,我想强调的是机器学习算法很少能找到数据中的完美关系。
因为我们的数据集可能会变得非常复杂,具有多维度和非线性关系,所以我们的算法在物理上不可能执行蛮力计算来计算每一种可能的关系,以找到数据的最佳拟合。
原因是执行这种计算的时间很容易需要 100 年才能完成,我没有夸大其词。
机器学习算法使用特殊的技术,如梯度下降(我们将在另一篇文章中讨论),由于这些技术,算法通常只能找到数据中关系的粗略版本。
一个算法很少能找到完美的关系,老实说,完美的关系不值得花时间去寻找。
计算机在数据中寻找关系所需的时间取决于机器的计算能力。给你一个想法,计算机通常需要几个小时到几天的时间在给定的数据集中找到一个合适的关系,才能做出准确的预测。
结论
机器学习本身是一个巨大的主题,包含许多服务于不同任务的不同模型。计算机视觉机器学习模型看起来与学习下棋的模型不同。
我希望这篇文章能帮助你快速了解人工智能和机器学习背后的基本直觉。
在下一篇文章中,我计划解决不同类型的机器学习模型和人工神经网络。
感谢阅读🙏🏼
阿拉伯语的人工智能
谷歌的 DialogFlow 没有对构建聊天机器人的阿拉伯语支持,标准的自然语言机器学习框架如 spaCy 也不包含阿拉伯语支持。微软的阿拉伯语工具包将于本月(2018 年 7 月)停产。此外,直到最近,即使是使用 gloVe 和 word2vec 的研究模型也不容易获得。那不是很有帮助。通常缺乏现成的高质量模型来用人工智能解释阿拉伯语。
谷歌仍然为人工智能功能提供优秀的 API,如神经机器翻译,但不是用来做翻译的向量(人工智能的东西)。这些语言模型在执行常见的非翻译文本处理任务时非常重要,例如情感分析、垃圾邮件过滤、剽窃检测等等。此外,这些模型对于将需要自然语言理解的企业任务自动化至关重要,这些任务是工作流的一部分,例如人力资源(HR)中的简历处理、政府报告中的文档聚类以及金融服务中的文档优先级排序。对阿拉伯语人工智能模型的需求相当强烈。
AraVec (2017)是一个非常好的阿拉伯语单词嵌入模型的起点,该模型由埃及吉萨尼罗河大学信息科学中心的 Abu Bakr Soliman 及其同事创建。以下链接指向他们的文章和相关代码。
aravec - AraVec 是一个预先训练的分布式单词表示(单词嵌入)开源项目,旨在…
github.com](https://github.com/bakrianoo/aravec) [## AraVec:一组用于阿拉伯语自然语言处理的阿拉伯语单词嵌入模型
神经网络的进步带动了计算机视觉、语音识别和自然语言处理等领域的发展
www.sciencedirect.com](https://www.sciencedirect.com/science/article/pii/S1877050917321749)
在过去一年左右的时间里,一些关于这一主题的文章已经在高质量的期刊和会议上发表。以下是一些最相关的例子:
[## 用于阿拉伯情感分析的单词嵌入- IEEE 会议出版物
手动特征提取是一项具有挑战性且耗时的任务,尤其是在形态丰富的语言中(MRL)…
ieeexplore.ieee.org](https://ieeexplore.ieee.org/document/7841054/) [## 阿拉伯语情感分类的单词嵌入和卷积神经网络
ACL 资料版权 1963-2018 ACL;其他材料的版权归其各自的版权所有者所有…
ACL 选集. info](https://aclanthology.info/papers/C16-1228/c16-1228)
中东和北非地区对人工智能解决方案惊人的强劲需求让我们思考为什么市场上存在这种差距。我们的解决方案是填补这一空白。我们成立了一家名为 Stallion.ai 的合资公司,为 MENA 地区的企业客户提供 B2B 人工智能解决方案。
面对这个问题,我们决定从头开始设计一个阿拉伯语单词嵌入模型。我们从公共领域搜集维基百科的页面和书籍。那是 14 GB 的文本。我们一直在用其他大型文本来源扩充这个数据集,以获得额外的语言环境和多样性。与其钻研我们一直在从事的工作的技术细节,不如考虑一下想要一个理解阿拉伯文本的人工智能系统的实际商业原因。
NOOR 编程语言是一个有趣的项目,它强调了对更多阿拉伯语言支持的需求。
有一句古老的法律谚语,“谁起草,谁就赢。”我找不到它的出处,引用它的书也找不到。这句老话的意思是,起草合同让起草者有能力设定合同条款,他们会按照自己的意愿行事。类似地,对一个用阿拉伯语经营的企业来说,将人工智能技术应用于他们的原始文档,而不是这些文档的机器翻译,是至关重要的。在从另一种语言借来的上下文上操作,并不像在同一种语言的文本上使用真正的嵌入模型那样有效。
在科幻小说和出版界,人工智能就像一个万能翻译机。甚至在像编译器(例如 GCC)这样的工程系统中,几种高级语言(例如 Java、C、C++)可以在被发射到用于几个处理器目标之一的汇编中之前被编译成一种通用中间语言(GIMPLE)。其结构如下所示:
How GCC understands (compiles) many language frontends into a single common representation and then emits code for a target architecture.
拥有一个像 GIMPLE 这样的语言的通用表示是非常好的,因为我们可以对这种语言的中间(通用)表示应用常见的有用优化。实际上,通用语言让我们能够理解意义,而不是仅仅考虑一种语言的特质。不幸的是,机器学习不像编译器那样表示语言。计算机代码是基于对正式语言理论的严格假设,而我们不会在自然语言如合同和文本信息中假设。自然语言充满了歧义。例如,同义词在不同的语言中并不相同。另一方面,代码基本上没有含糊不清的地方。更糟糕的是,阿拉伯语中的模糊性与英语中的不一样。这种思路告诉我们,专用的每种语言模型将优于借用的跨语言模型,这些模型不是在我们关心的语言上训练的。然而,情况更糟,我们很快就会看到。
我们刚刚讨论了为什么我们想专门理解阿拉伯语,而不是跨语言学习**。现在考虑到阿拉伯文本中的有一些变化,我们需要单独考虑。**
首先,有方言问题和俚语,包括表情符号,但让我们跳过这一点,进入第二个问题:风格的异质性。众所周知,不同类型的文本日志包含不同的语义信息。例如,来自报纸《生活报》的所有文本的语料库没有给我们足够的信息来理解南希·阿吉莱姆的推文。为什么?因为正式文本和非正式文本不是一回事。机器学习在对与它将评估的文本非常相似的文本进行训练时效果最好。
甚至还有第三个语境问题。像 Aravec 这样的单词嵌入模型是支持阿拉伯语的第一步。下一步必须是将特定于上下文的业务术语和短语编码到这些模型中。这些通常是现成模型没有训练过的字典外术语,或者是意思不同的现有单词。有时这些单词是英语或在阿拉伯语文档中使用的命名实体(例如,“كابل RS232 إلى واجهة RJ45”)。在字典中,单词通常仍然需要调整。例如,单词 collision 对道路工程师来说意味着路上的事故,但对数据库工程师来说却是数据库关键问题。这些上下文需要用来调整人工智能解决方案,并且在调整发生之前,所涉及的单词甚至不在人工智能模型中。在逐个项目的基础上,这些定制的修改是使用我们的 word 嵌入增强技术来实现的。
总结一下我们在 Stallion.ai 上解决的问题:处理阿拉伯语文档的企业需要定制的人工智能解决方案,而市场已经忽视了太长时间。我们已经看到,随着其他项目的关闭,新的项目出现了。我们已经确定了市场中的差距,包括现有模型中的以下缺点:方言支持,理解俚语,理解技术上下文和字典外的单词,以及理解各种类型的文本。我们正在探索研究和应用这项技术的工业和学术机会。
你在中东北非地区寻找人工智能帮助吗?向 evan@stallion.ai 问好,或通过 daniel@stallion.ai 联系我
丹尼尔
daniel@lemay.ai ←打个招呼。
LEMAY . AI
1(855)LEMAY-AI
您可能喜欢的其他文章:
用于营销的人工智能
这篇文章是我们如何将人工智能和数据科学应用于公司营销的一个演示。
我开始写关于 medium.com 和数据科学的文章已经整整一年了。我已经成为“人工智能”标签的顶级作家,拥有 50 篇文章,拥有近 2000 名粉丝,读者人数不断增加。
I have become a top writer on medium for the tag “Artificial Intelligence”
这篇文章如何适用于你?在这篇文章中,我是试验品。你会看到一些不错的数据,关于一个中型作家如何发展观众,并透过幕后了解什么可行,什么不可行。你可以想象我在这篇文章中的营销材料分析方法是如何帮助你成为一个更好的媒体作家的。
为什么我要写在介质上?嗯,不仅仅是营销。这是信息。当我们讨论解决方案架构时,我将内容推向公共领域,并让客户参考这些帖子。这也有助于我们加快公司定期对我们公司进行的尽职调查。因为我们是如此紧密地被 NDAs 所束缚,我抓住每一个我能找到的机会与你们分享我们正在做的事情的非秘密部分,我亲爱的读者们。
看看我的文章标题,我倾向于使用“人工智能”这个关键词,而不是深度学习或机器学习。这种方法有助于大多数人从远处理解这个话题,并吸引首席执行官们的参与,他们是我的 B2B 咨询( lemay.ai )和 B2B 产品(【genrush.com】、【audit map . ai】的目标市场。
让我们来看看我的 50 个中型帖子的数据集(见下文)和我在 medium.com 的流量统计
这些列的含义如下:
- id: 跟踪数据库中的行
- 我认为这篇文章是关于三个主题中的哪一个
- **标题:**文章的标题
- url: 链接到文章
- word_count: 文章字数。有时这也包括代码或链接之类的非单词。我没意见
- views_medium: 来自 medium stats 的文章浏览量
- reads_medium: 来自 medium stats 的文章阅读计数。阅读用户参与度较高,而浏览用户参与度较低
- fans_accts_medium: 为文章鼓掌的账号数量(谢谢)
- claps_medium: 读者给文章加的赞数
- 文章发表的日期
- days_since_post: 我获取统计数据和文章发表日期之间的天数(date_medium)。
- **Twitter _ medium:**Twitter 上文章的引用数量
- **正文:**文章的明文——去掉标签和嵌入的多媒体
以下是我如何在脑海中对我的帖子进行分类的(cluster_daniel 专栏):
- 机器学习演示和操作指南
- B2B 解决方案架构
- 启动场景和意见标签
让我们看看我基于经验的聚类是否符合一些数学事实。我使用 spacy(英语中等数据集)将每篇文章的文本转换成矢量形式,然后应用 t-SNE 降维。让我们来看看我一直使用的 3 个标签的文章数据是如何聚类的:
Results of t-SNE dimensionality reduction shown in tensorboard. Blue dots are the cluster “Machine Learning Demos and How-To Stuff” while the yellow dots are artilces from the cluster “B2B Solution Architecture”, and the red dots are articles from the cluster “Startup Scene and Opinion Blag”. Black dots are just overlapping colors.
结果相当令人鼓舞。在上图中,我们可以看到,类似博客的文章的红点(侧重于业务术语)和技术文章的蓝点(侧重于技术术语)被代表混合了业务和技术术语的 B2B 文章的黄点分开。它告诉我,我的标签是由内容数据本身支持的。
查看嵌入空间中哪些特定的文章彼此相邻可能会很有趣:
Looking at articles by cluster and title to see what specific articles are very semantically similar.
在我们继续看更多的数据之前,快速声明:这是一个非常简单的分析,没有频率/趋势分析或任何花哨的东西,没有图像计数,链接计数,链接网页等。
现在,让我们看看数据中各列之间的关系。
两秒钟的熊猫数据帧和 seaborn 的工作让我们有了以下的出发点:
The diagonal shows the general shape of the data, while the top right half shows the pearson correlation value (how linearly correlated is stuff with other stuff) and the bottom left half shows the raw data.
上图的问题是:没有显示聚类,文本太小,相关性很难看到。
This plot shows the correlation (red) and anit-correlation (blue) between columns.
上面的这个新数字是一个很好的进步,但是我们失去了底层集群数据的意义。我们总体上看到了相关性,但仍然看不到这些相关性的聚类来源。我们现在可以更清楚地看到,许多东西是相互关联的。例如,字数与浏览量、点击量、阅读量等相关。这很有道理。id 的反相关性只是告诉我们,较低的聚类数比较高的聚类数有更多的粉丝/阅读/喜欢等。但是,我们可以看到较旧的帖子在后面的集群中。随着时间的推移,我越来越关注 B2B 和技术文章,而不是观点文章(第三组)。days_since_post 行告诉我们,最近的文章比以前的文章做得更好。
现在,这是没有聚类着色的相关数据。对角线上的数据被转换成频率区间,比之前的线性近似更容易分析。现在,每个相关框都有一条使用回归创建的最佳拟合线和一个不确定圆锥(圆锥越大=越不确定)。
我们已经可以从这些数据中得出一些合乎逻辑的结论。第 4 行第 3 列(reads v.s. views)告诉我们,读取与视图紧密相关,这显然是正确的。类似的还有拍手和粉丝账号。
现在,让我们更深入一层,按群集查看数据。整个想法是为了验证我的假设,读者(你)希望看到更多的技术和 B2B 文章,而不是观点文章。最后,这是为每个分类添加了颜色的相同数据:
文本仍然很小,但是您可以放大来查看列名。
既然我们可以按集群查看数据,那么很明显,在集群内部,数据在许多指标上表现出许多规律性。在第一行和第一列中,集群按 id 排序,因为我选择了 id 按集群升序排序。作为一种见解,这并不有趣。深入到图中,最后一行(twitter)与字数(列 2)相关,但与红点(启动场景)无关。这告诉我们 twitter 更喜欢其他集群。看右下方的条形图,大部分文章没有 twitter 推荐,小部分文章获得了大部分 twitter 流量。倒数第二行显示我写的文章越来越少,最近也没有关于创业的文章(红点)。我们还看到,最近的文章有更多的阅读量和浏览量,但最近的文章总体上较少。
作为未来的工作,从单词嵌入模型预测聚类 id(主题模型)和点击/观看将会很有趣。然而,在这一点上,我只是不认为我有足够的行数和列数的数据来做出可靠的预测。
感谢阅读!下面是对 50 个数据点(文章)的更深入的分类:
机器学习演示和操作材料:
我正在为一个客户做一个视频分析人工智能项目,我想和你分享一个超级有趣的想法,它突然出现在…
towardsdatascience.com](/artificial-intelligence-for-music-videos-c5ad14e643db) [## 用深度学习画动漫少女
这篇文章是关于玛丽·凯特·麦克弗森的一个兼职项目。我们喜欢做一些辅助项目,比如音乐视频的人工智能,还有…
towardsdatascience.com](/drawing-anime-girls-with-deep-learning-4fa6523eb4d4) [## 人工智能中的肘聚类
聚类是将一堆未分类的东西(你的数据集)分成几堆(即聚类)的过程…
towardsdatascience.com](/elbow-clustering-for-artificial-intelligence-be9c641d9cf8) [## 人工智能的图像数据集
在人工智能领域,数据就是力量。
towardsdatascience.com](/image-datasets-for-artificial-intelligence-bbb12615edd7) [## kegra:基于 Keras 的知识图深度学习
你好。我在以前的文章中提到过,我正在深入研究企业数据集的认知计算。这个…
towardsdatascience.com](/kegra-deep-learning-on-knowledge-graphs-with-keras-98e340488b93) [## AWS SageMaker:人工智能的下一个游戏规则改变者
今天 AWS SageMaker 发布了,太牛逼了。我在以前的文章中提到过,我们主要做 AWS…
towardsdatascience.com](/aws-sagemaker-ais-next-game-changer-480d79e252a8) [## 数字海洋堆栈上的深度学习?还没有
所以你想要一个更便宜的解决方案来运行你的深度学习代码。AWS 每月给你大约 1000 英镑的账单…
towardsdatascience.com](/deep-learning-on-the-digitalocean-stack-not-quite-yet-5c408e7d1a41) [## 用数字海洋进行深度学习:Redux
这篇文章会和我平时的商务类文章有点不一样。在最近的一篇文章中,我给出了…
towardsdatascience.com](/deep-learning-with-digitalocean-redux-e6f447e64c75) [## 艾:看我的邮件
电子邮件是我们数字社会不可或缺的一部分。像小唐纳德的勾结,希拉里的服务器,波德斯塔的…
medium.com](https://medium.com/@lemaysolutions/ai-read-my-email-e69a833dd0f1) [## 十几个对数据爱好者有用的命令
在使用大数据的机器学习中,有许多组织工作要做。我们用于数据管理的名称各不相同:
medium.com](https://medium.com/@lemaysolutions/a-dozen-helpful-commands-for-data-nerds-9619bc43c5c6) [## 人工智能起源:字面意思。
没错。真实的圣经人工智能。让我们看看我们可以看到一些自然语言处理(NLP)和英语语言…
medium.com](https://medium.com/@lemaysolutions/artificial-intelligence-genesis-literally-947c1935752d) [## 丑闻!被泄露的电子邮件地址会怎么样?
2015 年 7 月 Ashley Madison 泄漏事件上周又回到了我的脑海中,当时一名 RNC 承包商的巨大泄漏袭击了…
medium.com](https://medium.com/@lemaysolutions/scandal-what-happens-to-a-leaked-email-address-ee90fe765af9) [## 医学中的机器学习:演示时间!
来说一个很酷的想法。人工智能用于伤口检测战斗机器人!
medium.com](https://medium.com/@lemaysolutions/machine-learning-in-medicine-demo-time-ffd17ed8a72a) [## 艾:复制这个模式
简单说一下我现在正在做的事情:我正在研究递归神经网络(RNNs)。这种类型的…
medium.com](https://medium.com/@lemaysolutions/ai-copy-this-pattern-5ac4e9ccf6a9) [## 给我做这个模型。以我为例:一次生成一个字符的文本。
安德烈·卡帕西最近进入了特斯拉的 ML 高层。我想给你看一些他早期的作品…
medium.com](https://medium.com/@lemaysolutions/model-me-this-model-me-that-generate-text-one-character-at-a-time-46a232db92e7) [## 秘密验证电子邮件地址
如何辨别哪些电子邮件地址是真实的?我不是说什么地址在语法上是有效的,比如…
medium.com](https://medium.com/@lemaysolutions/secretly-validate-email-addresses-86bd6dc980f8) [## 1.1TB 数据泄露。只是,哇
大家好,
medium.com](https://medium.com/@lemaysolutions/1-1tb-data-leak-just-wow-8ee38322d57d)
B2B 解决方案架构:
客户多次要求我为大型机器学习(ML)项目提供固定的价格估计。这个…
towardsdatascience.com](/how-to-price-an-ai-project-f7270cb630a4) [## 如何聘请人工智能顾问
所以,你知道你需要一些机器学习/人工智能开发。为什么不自己做呢?嗯,简短的回答是…
towardsdatascience.com](/why-hire-an-ai-consultant-50e155e17b39) [## 艾:跟踪我
我的手机收集的数据量令人震惊。让我们看看我的谷歌历史,看看我们能看到什么。这个…
towardsdatascience.com](/ai-track-me-325833522043) [## DREAM.ac:利用人工智能建立团队
人工智能正在被部署来解决许多人类问题,最近谷歌的 Duplex 可以使…
towardsdatascience.com](/dream-ac-build-teams-using-artificial-intelligence-c4f1fdd7ee66) [## 深度学习魔法:小企业类型
企业情报很难,NAICS 密码很糟糕。一些公司按行业购买公司名单,以保存…
towardsdatascience.com](/deep-learning-magic-small-business-type-8ac484d8c3bf) [## 人工智能和不良数据
脸书、谷歌和推特的律师向国会作证,说明他们如何错过了俄罗斯的影响力运动…
towardsdatascience.com](/artificial-intelligence-and-bad-data-fbf2564c541a) [## 用人工智能理解事件
我们遇到了很多客户需求,归结起来就是使用人工智能来理解事件。一些系统需要…
towardsdatascience.com](/understanding-events-with-artificial-intelligence-12e1ec3c5c9) [## 无标签数据的人工智能
先说无监督深度学习 AI,转移学习。
towardsdatascience.com](/artificial-intelligence-without-labeled-data-54cdbfbdaad2) [## 加速深度神经网络
神经网络“慢”有很多原因,包括加载/存储延迟,将数据移入和移出 GPU…
towardsdatascience.com](/accelerating-deep-neural-networks-1231273c48aa) [## 人工智能:让你的用户给你的数据贴标签
我想把这篇文章叫做“人工智能训练数据的寄生标签”,但显然这太复杂了。我……
towardsdatascience.com](/artificial-intelligence-get-your-users-to-label-your-data-b5fa7c0c9e00) [## 艾:这是黄片吗?
色情推动了格式战争。一代人以来都是如此。网络上充斥着色情内容。
medium.com](https://medium.com/@lemaysolutions/ai-is-this-porn-2695c5e6fa47) [## 销售团队的人工智能
先说现状。所以,你想卖一个产品或服务。假设你卖火险…
medium.com](https://medium.com/@lemaysolutions/ai-for-sales-teams-7b9ab014417d) [## 大数据和机器学习:一个豆荚里的两颗豌豆
退一步想想大数据和机器学习的联系。要真正利用大数据,您需要…
medium.com](https://medium.com/@lemaysolutions/big-data-and-machine-learning-two-peas-in-a-pod-e3a04d627784) [## 锁在盒子里:没有云和 API 的机器学习
API 很棒。机器学习 API 更牛逼。从 api.ai 到 Google 这样的 Google 云平台 APIs
medium.com](https://medium.com/@lemaysolutions/locked-in-a-box-machine-learning-without-cloud-or-apis-76cc54e391c8) [## 考试的时候来个狂看 AI
有很多例子显示了人工智能如何识别视频中的数据。比如情绪识别…
medium.com](https://medium.com/toronto-machine-learning/exam-time-for-a-binge-watching-ai-e9477e901e3e)
启动场景和意见标签:
即使我们最终都会被宇宙的热寂所杀死(10^100 年后),还有更多…
towardsdatascience.com](/artificial-intelligence-is-probably-safe-ce67f0abd759) [## 机器学习:使用小词
我喜欢异端这个词。这是一种很酷的说法“跳出框框思考,反对主流”。它…
towardsdatascience.com](/machine-learning-use-small-words-5cc8f34a5964) [## 人工智能像魔术一样
创新或者死亡。成长或枯萎。这就是我今天在人工智能领域的感受。从 2008 年开始的衰退性失业…
towardsdatascience.com](/artificial-intelligence-as-magic-e8ba4b3165ea) [## 人工智能:后果
人工智能将改变世界。
towardsdatascience.com](/artificial-intelligence-consequences-bd4dc4d537da) [## 人工智能:超参数
深度学习神经网络模型有许多参数(例如,权重和偏差),也有相当多的…
towardsdatascience.com](/artificial-intelligence-hyperparameters-48fa29daa516) [## 人工智能工具像爆米花一样爆开
我想暂停谈生意,谈一谈正在深入展开的技术故事…
medium.com](https://medium.com/@lemaysolutions/ai-tools-are-popping-like-popcorn-3baa6793271f) [## 发展和招聘
一位渥太华人工智能初创公司的创始人在 LinkedIn 上的状态是“增长和招聘”我喜欢这样。多好的……
medium.com](https://medium.com/@lemaysolutions/growing-and-hiring-25540db9cecc) [## 我们的人工智能创业公司
你好。我给你讲讲我们 AI 创业的故事吧。一路上我们犯了一些错误,我想你可能会学到…
towardsdatascience.com](/our-artificial-intelligence-startup-c7daf4c140a1) [## 为什么要自举你的人工智能创业公司呢?
关于命名法的一个快速补充…它应该是谷歌实验所说的人工智能,维基百科所说的人工智能,还是人工智能…
towardsdatascience.com](/why-bother-to-bootstrap-your-ai-startup-d94fd62de009) [## 人工智能咨询&逆向棉花糖实验
我在过去写过关于人工智能人才的高需求,以及高素质人才的低供给…
towardsdatascience.com](/ai-consulting-the-reverse-marshmallow-experiment-18d466737d3f) [## 怎样才能写出更好的 AI 文章?
我很清楚,我在媒体上的写作让我获得了有趣的联系,这些联系可以转化为…
towardsdatascience.com](/how-can-i-write-better-articles-on-ai-6b37e1baad5a) [## 低预算和高期望:机器学习初创公司
在以前关于如何雇用人工智能顾问,以及如何为人工智能项目定价的文章中,我试图给你一种…
towardsdatascience.com](/low-budgets-and-high-expectations-machine-learning-startups-c428f3f82569) [## 人工智能不是魔法
一点数据科学和一桶血、汗、泪,你就知道了:你的模型是过度拟合的…废话…
medium.com](https://medium.com/@lemaysolutions/a-i-is-not-magic-9fb19239fcaf) [## 它还活着!构建通用人工智能是未来
我的朋友们一次又一次地听到我这样说。人工智能正在走向一种认知的“生活”,超越…
towardsdatascience.com](/its-alive-building-general-ai-is-the-future-ddd8f75d09dc) [## 教育视频:人工智能、深度学习、机器学习等。
来分享一些书签吧。作为我们开发人员入职流程的一部分,我将 YouTube 视频分成了 3 个部分。
medium.com](https://medium.com/toronto-machine-learning/educational-videos-artificial-intelligence-deep-learning-machine-learning-etc-3fadb6050eb5) [## 我应该怎么称呼我的创业公司?
当我们得到一个有新想法的客户时,他们通常没有域名,甚至没有公司名称。这是一个干净的石板…
medium.com](https://medium.com/@lemaysolutions/what-should-i-call-my-startup-ef9aea077271) [## 涌现属性
我们有消息了!我们的中型岗位现在是辛迪加对数据科学!
medium.com](https://medium.com/@lemaysolutions/emergent-properties-e69c0f72d64d) [## 机器学习时代的恐惧
这是我关于人工智能和大数据系列的第三篇文章。最近完成了关于…的博士学位
towardsdatascience.com](/fear-in-the-age-of-machine-learning-87ee33b5b264)
——丹尼尔
丹尼尔@lemay.ai ←打个招呼。
LEMAY . AI
1(855)LEMAY-AI
您可能喜欢的其他文章:
音乐视频的人工智能
我正在为一个客户做一个视频分析人工智能项目,我想和你分享一个超级有趣的想法,这个想法是我今晚在等待渲染的时候突然想到的。我真的没有时间写这个,但我觉得我必须写。有些想法太棒了,以至于不能熬夜编程。让我们用人工智能系统来勾勒音乐视频中的人物。
已经有一些关于数据科学的很棒的对象检测文章,所以我不想重复那些很酷的东西。让我们用 COCO 和 Mask_RCNN 在对象周围画线,而不是检测对象的位置和标签。在音乐录影带上做这件事真是太酷了。
我们来搞乱 Jain 的 Makeba 视频。我去掉了音轨,只保留了前 2000 个视频帧,只是为了更加清楚地表明,这篇文章是为了教育目的而合理使用艺术家的作品。点击这里欣赏她在 YouTube 上的音乐视频。
这是我们对视频的人工智能分析结果:
我有点喜欢它如何在广告牌和背景中找到人。真的很微妙。我还喜欢黑人和白人女孩的脸融合得如此平滑,以至于人工智能假装它实际上是一个人。下面是我认为值得注意的一些很酷的视频片段。尽情享受吧!
It sees the finger!
It recognizes people from behind.
Lots of people? rCNN says no problemo!
紧急方按钮
这个帖子我还得再加一个好玩的项目。
数据科学是一项艰苦的工作。当我们都坐在办公室里,我们的模型总是过拟合,或者不编译,我们需要一些方法回到成功的心态。我们的办公室文化相当古怪,所以当数据科学让我们失望时,或者当我们获得意外的胜利时,我们会关闭紧急派对按钮。类似的产品已经上市,但是我们想从头开始制造自己的产品。不是作为一个产品。只是为了好玩。
我们 3D 打印了零件,马特将继电器、树莓派和其他零件组装在一起,并连接起来。
下面是我们的 紧急聚会按钮 演示:
我们(主要是 T4 的马修·勒梅)已经在业余时间为这个项目工作了两年。就是不会死的副业。马特添加了歌曲随机发生器、继电器、扬声器,以及你能想象到的所有酷酷的铃声和哨声。按下那个按钮,启动灯光和音乐,感觉真的很棒。
所以,总之,人工智能可以用来分析视频,提取大量信息。当一切都太多的时候,按下紧急聚会按钮!
如果你喜欢这篇关于人工智能应用于音乐视频的文章,请点击“关注”按钮,看看我过去读过最多的文章,比如“如何为人工智能项目定价”和“如何聘请人工智能顾问”
编码快乐!
-丹尼尔
丹尼尔@lemay.ai ←打个招呼。
LEMAY . AI
1(855)LEMAY-AI
您可能喜欢的其他文章:
人工智能框架:机器学习和人工智能的可视化介绍
对于你的下一次人工智能或机器学习电梯推介,你需要知道的一切
Photo: a-image/Shutterstock
人工智能在商业和我们社会中的变革性质是显而易见的。像互联网和智能手机一样,人工智能是一种使能技术,将对我们生活的各个领域产生深远的影响。
为了更好地理解底层概念,我想与您分享一张图片,这是我在解释机器学习/深度学习的更广泛背景以及它与人工智能的关系时通常使用的图片。
你会在 medium 或其他地方找到很多很棒的文章,它们对 AI 做了很好的介绍(我在本文末尾链接了一些)。然而,到目前为止我还没有看到一个易于视觉消化的人工智能概述。如果你知道一些我可以用的东西,请在下面的评论区告诉我。但是在那之前,让我分享我现在使用的观想。在本文中,我还将简要介绍该图的关键组件。
“AI and machine learning high level overview” by Nils Ackermann is licensed under Creative Commons CC BY-ND 4.0
首先什么是人工智能?
简而言之,人工智能是计算机科学的一个分支,它研究如何创造具有类似人类智能能力的机器。人工智能有不同的成熟水平,我将在接下来的章节中简要介绍:超级智能、通用人工智能和狭义人工智能。
人工智能对于数字化认知能力非常有用,在这种情况下,要遵循的确切规则很难解释。一个很好的人工智能用例是人脸识别。试图使用手工知识来编码人脸识别的所有相关规则,这种方法有时被称为第一波人工智能(来源)。但是随着机器学习和深度学习等成熟技术的出现,这并不是我们稍后将看到的首选方法。
人工智能的关键驱动力是什么?
在我们深入了解细节之前,让我们快速了解一下推动人工智能最新进展的关键因素:
- **计算能力:**计算能力的性价比按照摩尔定律呈指数增长。指数意味着计算速度翻倍和/或价格同比下降一半。近年来,机器学习作为 AI 进步的关键驱动力之一,极大地受益于 GPU(图形处理单元)。GPU 非常适合进行所有机器学习计算所需的矢量数值运算。谷歌的 TPU(张量处理单元)是(共)处理器针对机器学习问题进行优化的另一个例子。随着量子计算的巨大进步,这一趋势很可能会继续并加速。
- **数据可用性:**随着移动技术和社交媒体使用的增加,数据的生成和可用性都在加速。仅在过去的两年中,令人印象深刻的是,世界上 90%的数据都是由计算机生成的(来源)。大量的数据是训练神经网络的关键成功因素(更多信息将在下文详述),从而实现对未知事件的高准确度预测。
- **算法:**AI 研究社区非常活跃,新的进展频繁发表。最大的关注点是机器学习,或者更具体地说是深度神经网络。此外,谷歌(Google)、脸书(PyTorch)或微软(Microsoft)等公司也开发了各种工具和框架供公众使用。
超级智能
一些研究人员预测并相信,在未来的某一时刻,机器会比人类更聪明。这可能发生在 2050 年到 2100 年之间。很少有研究认为这种状态永远不会达到。但是对于大多数熟悉这一课题的研究人员来说,超级智能是否能达到并不重要,重要的是什么时候能达到。
超智能是机器的认知能力超过人类的状态。正如尼克·博斯特罗姆所说,这是一种“在几乎所有感兴趣的领域,智力大大超过人类认知能力”的生物。
超级智能的出现是基于这样一个假设,即进化学习环境中的进步速率是呈指数级进化的(雷·库兹韦尔的加速回报定律)。这很难理解,因为大多数人的思维都是线性的,并且试图根据我们已经知道的和过去经历过的来预测未来。这当然会导致一个错误的轨迹。蒂姆·厄本(Tim Urban)有一篇很棒也很有趣的文章解释了这段旅程(文末有链接)。它比我更好地解释了超智能及其所有的含义。如果你有心情,我强烈推荐你看他的帖子。
“AI broader context and roadmap” by Nils Ackermann is licensed under Creative Commons CC BY-ND 4.0
在最好的情况下,超智能将导致一个富足和公平的未来(奇点)。在最糟糕的情况下,它将导致人类的灭绝,不是因为超级智能是邪恶的,而是因为人类正在实现其目标(这些目标我们可能再也无法理解,因为它们超出了我们的认知能力)。
通用人工智能
在达到超智能之前,通用 AI 意味着机器将拥有和人类一样的认知能力。再次,研究人员争论我们将达到一般人工智能的时间点。可能在 2045 年左右。由于加速回报定律,普通人工智能阶段将很快过渡到超智能时代。
智力与生物体有效适应环境变化的能力密切相关。适应也意味着不仅要改变自己,还要改变环境。以下是一般人工(和人类)智能的关键特征(来源:这里和这里):
- **学习:**根据过去的经验改变自己行为的能力,例如当遇到新的和未知的情况时。
- **记忆:**对过去经历的编码、存储和检索。
- **推理和抽象:**根据样本数据得出逻辑结论,具有归纳/推导规则的能力。
- **解决问题:**系统地提出可能的解决方案并得出问题最佳答案的能力。
- **发散思维:**对一个给定的问题产生多种解决方案的能力。
- **聚合思维:**缩小多个选项的列表,以便得出可能的最佳答案。
- **情商:**识别并解读人类的情绪。
- **速度:**上述所有特征必须在合理的时间框架内/接近实时地发生。此外,它们不能依赖大量数据,例如重新训练神经网络。在某些情况下,学习可以只基于一个单一的例子。
通用人工智能将无法通过当前的方法和工具(如神经网络)实现。为了达到真正的智能,认知系统可能是一个解决方案。
狭义人工智能
由于研究在实现一般人工智能方面没有取得很大进展,焦点自然首先转向了狭义人工智能。狭义人工智能专注于非常具体的用例。这意味着人工智能(目前主要使用深度神经网络)是为非常特定的目的而训练的。因此,人工智能只能处理它被训练过的事件。
如果一个聊天机器人被训练成用英语回答公司 A 的客户服务请求,它将不能对它将 A)接收到的不同公司的任何请求或 b)以不同语言陈述的任何请求或 c)被问及不相关的话题,如“我今天需要带伞去工作吗?”。
与一般人工智能相比,狭义人工智能的学习能力非常有限。它可以在特定用例的边界内学习,例如,用于语音识别的狭义人工智能可能能够提高理解同一种语言的新方言的速度。为了学习另一种语言,它需要人类的输入,例如,通过为要学习的新语言提供大量标记数据集。狭义人工智能无法通过提出替代解决方案来动态适应新情况,而替代解决方案是通用人工智能的一个关键特征(见上一章)。
一些典型的狭义人工智能用例:
- 自然语言识别和处理
- 自动驾驶
- 视觉图像识别和解释
- 网络安全中的入侵检测
- 人类活动识别
机器学习
机器学习是一门人工智能学科,也是近年来狭义人工智能进步背后的关键驱动力。它是工具和方法的集合,允许计算机从观察、数据和例子中学习,以提高它们的性能。它不需要明确的一步一步地解释如何执行一项任务,而传统编程则需要这样做。
“Machine learning workflow (supervised)” by Nils Ackermann is licensed under Creative Commons CC BY-ND 4.0
本质上,机器学习是基于统计模型来进行预测的。在学习过程中,统计模型的参数根据所提供的训练数据进行优化调整。可以说,系统通过经验学习。基于给定的训练数据,系统然后能够对看不见的事件/数据进行预测。为了使模型能够很好地概括那些看不见的事件,定义一个很好地适合问题陈述的模型,并且具有必要数量和质量的可用训练数据是很重要的。
监督机器学习
有监督的机器学习简单来说就是我们提供一个带有全标签训练数据的算法。带标签的培训数据意味着每个培训记录都有相关的答案。因此,我们已经为算法如何解释数据提供了明确的指导。然后,该算法将构建一个模型,并根据给定的标签进行测试。对于每次迭代,如果模型得出的预测与标签一致,误差函数将验证。然后,该模型将随着每次迭代而略微调整,直到该模型在训练数据上表现良好。
“Supervised machine learning” by Nils Ackermann is licensed under Creative Commons CC BY-ND 4.0
有两种不同类型的监督学习。要记住的关键是:分类分离数据,回归拟合数据。
- **分类:**预测给定观察/输入的分类响应值的算法。它将预测一个离散值。先决条件是我们能够将响应值分成不同的类。一个典型的例子是手写字母和数字的分类,例如由邮局用来解释写在信上的地址。
- **回归:**预测给定观察/输入的数值连续响应值的算法。它将预测一个连续值。一个典型的例子是根据位置、大小、年龄等预测房价。
无监督机器学习
在获得足够的标记训练数据很困难或太昂贵的情况下,无监督方法变得相关。对于无监督学习,我们不为算法提供带标签的训练数据。相反,我们希望算法自己找到一种方法来分类/分离数据。存在以下主要类别:
- **聚类:**试图创建相似数据点的聚类的算法。例如,人们可以想象,当算法只接收数百万辆汽车的前视图时,机器肯定能够自己对车辆进行分类。与福特或奥迪相比,宝马看起来不同,因此该算法应该能够轻松地将图片分类(在这种情况下是汽车品牌)。
- **异常检测:**试图在给定数据集内发现异常值/异常的算法。一个典型的例子是识别银行交易中的欺诈行为。如果一个人在欧洲和美国之间旅行时有很多交易,而且金额相对较小,那么在这两次旅行之间从尼日利亚进行的 10,000 美元的交易可能是可疑的。
- **关联:**关联规则是一种识别数据集内关系和依赖关系的算法。一个典型的例子是网上商店的推荐引擎,其中相关的产品可以基于相似的特征被分组在一起,然后被推荐给消费者。
“Unsupervised machine learning” by Nils Ackermann is licensed under Creative Commons CC BY-ND 4.0
半监督机器学习
在标记大量训练数据过于昂贵的情况下,监督和监督机器学习之间的混合就发挥了作用。该过程从一个人标记少量数据开始(例如:由放射科专家解释和标记的 CT 扫描)。
目前,半监督学习最流行的例子是一种特殊的神经网络,称为 GAN(通用对抗网络)。它使用标记的训练数据来生成新数据(通过生成器网络),然后将这些数据发送到另一个神经网络(鉴别器),该神经网络需要识别该数据是假的还是训练数据的一部分。发生器和鉴别器网络在正反馈回路中共同改进。生成器在创建令人信服的假数据方面会变得更好,鉴别器在从训练数据中分离假数据方面会变得更好。
“General adversarial network (GAN) overview” by Nils Ackermann is licensed under Creative Commons CC BY-ND 4.0
GAN 的一个很好的用例是创建模拟真实图像的人工图像。一幅甘创作的肖像画最近在佳士得拍出了高得离谱的价格。
强化学习
强化学习是基于这样一个假设,即一个最佳的行为或行动可以通过对一个有利的行动给予积极的奖励来实现。强化学习的基本设置包括一个将与其环境交互的代理。基于代理在给定情况下从其交互中接收到的正面/负面反馈,某种行为会得到奖励,有利的行为会因此得到加强。
“Reinforcement learning overview” by Nils Ackermann is licensed under Creative Commons CC BY-ND 4.0
在许多迭代中,代理将被训练,并且其实现总体目标的动作的性能将被提高。对于每一个行动,代理人必须决定他是否想要探索他的环境(探索),以便寻找与已经被证明是成功的行动(开发)相比潜在的更高的回报(失败的风险也更高)。
神经网络和深度学习
神经网络是一种受生物学和大脑如何运作启发的机器学习方法。它们最适合用于识别非结构化数据中非常复杂的模式,例如:
- 音频和语音(例如语音识别)
- 文本(如情感分析)
- 图像和视频(例如人脸或物体识别)
- 运动/活动(例如传感器数据分析)
深度神经网络只是具有一个以上隐藏层的神经网络。网上有很多很棒的文章和视频解释了神经网络如何在所有不同的细节层中工作,因此我在这里就不解释了。我在本文末尾链接了一些资源。
有许多不同类型的神经网络可用。一些用于监督学习,另一些用于非监督学习。我最初的概观图片将一些比较流行的神经网络划分为一个类别。我最近写了一篇关于(一维)卷积神经网络的深度文章,以防你感兴趣。
在关闭
感谢您的阅读,我希望你喜欢这篇文章!虽然你可能已经熟悉了我所涉及的所有主题,但我希望这是一个轻松的阅读,将关键主题放在彼此的角度上——至少这是我的初衷。在你的作品中随意使用总览图,只要你相应地引用它。
参考文献
如果你想进行进一步的阅读,我会推荐你浏览下面的免费文章(或多或少按照我阅读的顺序)。
- 等待,但为什么蒂姆·厄本:人工智能革命
- 奇点大学:指数入门
- 从狭义到广义的人工智能
- 人工智能领域的弗劳恩霍夫趋势
- DARPA 对人工智能的看法
- YouTube 上的 3Blue1Brown 神经网络介绍
- YouTube 上的深度学习简化版系列
- 认知系统范式
- 甘的精彩介绍
- 强化学习的好入门
- PyTorch 深度学习平台
- Tensorflow 深度学习平台
- Azure 深度学习平台
- 谷歌云 TPU
放弃
本网站上的帖子是我自己的,不一定代表我的雇主的帖子、策略或观点。
人工智能起源:字面意思。
没错。真实的圣经人工智能。让我们看看我们可以用一些自然语言处理(NLP)看到什么,以及《创世纪》的英文版(包含在 nltk 语料库中)。想看英文和希伯来文的在线版本,可以看看这个网站。这篇文章是关于让计算机理解《创世纪》中的名字,而不是关于圣经代码或隐藏的信息。
我是一个宗教人士,在大量的圣经研究和分析中长大。《圣经》的原始文本附有学者的评论,如拉希、昂克勒斯、米什那和杰马拉。让我们把文本分析限制在没有注释的《创世纪》的英文版上,因为我们试图理解计算机从父系姓名中收集的一些含义。
创世纪:字面意思。
“本质上, 所有模型都是错的 ,但有些是有用的”——乔治 E. P. Box
带着这句谦卑的话,让我们看看亚当、挪亚、亚伯拉罕、以撒和雅各。它们在文中是如何联系的?我们如何使用 NLP 提取关于他们角色的数据?
请记住,这些人在圣经中有不止一个名字。亚当、诺亚、亚伯拉罕(改名前的亚伯兰)、以撒和雅各(改名后的以色列)。让我们记住雅各和亚伯拉罕这两个名字。我们也不要忽视以色列有时是雅各,有时是以色列的土地,有时是以色列的民族。
首先,我们看一下上下文、被提及的次数以及它们被提及的地方。接下来我们可以看看课文中这些名字的意思。我们在下图中看到,亚当和挪亚在《创世纪》中被一个接一个地提到,然后他们就不再被提到了。大约在第 12,000 字左右,亚伯兰改名为亚伯拉罕,然后我们不再听到亚伯拉罕,只听到亚伯拉罕。圣经经常提到“亚伯拉罕,以撒,雅各”作为我们的祖先,所以我们看到这三个名字一起出现在文本中的相同位置。当雅各改名为以色列,我们看到两个名字在一起,不像亚伯兰/亚伯拉罕,我们只看到一个,然后另一个。
每一个名字被提及的次数都有些令人惊讶:(亚当 18,诺亚 41,亚伯拉罕 129,亚伯兰 58,以撒 77,雅各 179,以色列 40)。诺亚被提到的次数比亚当还多!查看下图中的原始读数。
而雅各的 179+40=219 次被提及,比亚伯拉罕的 129+58=187 次还多。也许以色列这个词的许多用法(人、地方、部落)给了雅各一些我们不应该计算在内的额外提及。
现在,回到任务上。在这篇课文中,这些名字与什么词相似?
亚当相似: 约瑟雅各以撒亚伯兰闪他们他我亚伯拉罕挪亚他拉结你神利亚她该隐撒拉我我们
诺亚类似:
雅各他约瑟法老亚伯拉罕他以撒他们以扫我你神闪亚伯兰都 th 所多玛亚法撒拉结天堂亚伯拉罕相似: 雅各约瑟他们他以撒法老他神以扫亚伯兰拉班她挪亚他们我都你以色列罗得我
亚伯兰类似:
约瑟雅各他亚伯拉罕以撒他他们法老他们神以扫拉班你利亚我拉结她罗得我们犹大**以撒相似:**雅各约瑟他亚伯拉罕他们她亚伯兰神拉班以扫法老利亚拉结利百加撒拉犹大挪亚我以色列
**雅各相似:**雅各相似:
他约瑟亚伯拉罕他们以撒神法老亚伯拉罕以扫他拉结以色列我挪亚他们你拉班利亚犹大**以色列相似:**雅各亚伯拉罕约瑟他们他以撒神以扫撒拉亚伯兰法老一切拉麦他拉结天堂饥荒利百加埃及撒莱
上述结果中的第一个好迹象是,这些名字与其他名字相似,而不是与随机单词相似。另一个好迹象是,以色列和雅各非常相似,亚伯拉罕和亚伯兰也很相似。这让我们知道这些名字之间有某种关系。另一个好迹象是,所有这些名字都与上帝有关,如“上帝与亚伯拉罕说话”,表明这些人与创世纪文本中的上帝有关。
现在让我们对这些名字有更多的了解。到目前为止,它们只是简单的文本标签。这些名字对我们的 AI 意味着什么?嗯,使用 Synset 库,我们可以利用语义相似性在 Isaac 和 Noah 之间设计出以下有意义的关系:
noah = wn.synset('noah.n.01')
isaac = wn.synset('isaac.n.01')
print(noah.lowest_common_hypernyms(isaac))
我们得到答案**【Synset(’ patriarch . n . 03 ')】**,这告诉我们这些词之间的共同关系是它们都指族长。这是一个很酷的数据量,仅仅是摄取圣经文本。
结论
这是一个使用 NLP 的超级小功率的演示。该系统能够识别父系姓名之间的关系,并将这些姓名之间的共同想法关联起来。来自机器学习其他领域的附加技术可以使这种方法更加强大。虽然我更喜欢“更新”的单词嵌入神经方法,而不是这里展示的方法,但我继续在这些经过多年文本处理研究构建的手工文本分析工具中找到价值。
编码快乐!
——丹尼尔
丹尼尔@lemay.ai ←打个招呼。
LEMAY . AI
1(855)LEMAY-AI
您可能喜欢的其他文章:
人工智能:让你的用户给你的数据贴标签
我想把这篇文章叫做“人工智能训练数据的寄生标签”,但显然这太复杂了。我想告诉你的是机器学习中一个经常被忽视的方面:数据标注。
有深度神经网络的监督机器学习是最常见的人工智能。监督学习意味着从标记的数据中学习。但是通常你没有带标签的数据。您有个未标记的数据。更常见的是,您没有不断增长的数据。不管有没有标记,如果你输入人工智能的训练数据是固定大小的数据集,那么你的人工智能不会随着时间变得更聪明。你真正想要的是一个人工智能从野外标记的数据中学习的系统。它会在你睡觉的时候变得更聪明,而且你一分钱都不用付。
不幸的是,如今最常见的引导人工智能的机制是机械土耳其人基于人类的标签,甚至是全职数据标签公司。有时工作是注释文本语料库,在其他情况下,他们注释图像。
当你想到我们为客户部署机器学习的原因时,通常是自动化人类直觉。我们正在用软件取代以前由人执行的功能。
机器学习就是要找到一个函数 f 将输入数据 X 映射到输出数据 Y 。或者,正如我们在高中所学的:
Y=f(X)
因为我们试图近似的东西( f )是人类,所以我们需要收集关于人类做出什么决定的训练数据(【Y),以及该决定基于什么原始数据( X )。
既然我们已经讨论了我们的 AI 正在做什么,以及对带标签的数据( X 和 Y )的需求,那么让我们看看如何免费获得数据标签。我们讨论过,为了避免为数据标记付费,您需要一些神奇的数据注释解决方案。只要有可能,就让人工智能的用户来做标记。如果你做得好,他们甚至不会注意到。
在你的设计中加入一个增加训练数据的特性是非常重要的。例如,想象一下,在谷歌地图中,你对着智能手机说话,询问地址“46 de la cote-des-Neiges Rd”这导致应用程序为我糟糕的法国口音返回一个错误的地址,如下图所示。
Sorry Google, “46 de la Côte-des-Neiges Rd.” is not “46 Diller Cottage Road”
这里的神奇之处在于:当我马上按下后退键,而谷歌知道我按了后退键。这是一个暗示,从我的声音翻译地址是不正确的。按下后退按钮意味着地址转换中的错误,这可以用来提高应用程序的准确性。类似地,当我按照指示找到地址时,这是一个很好的迹象,表明模型猜对了我所说的地址就是我想要的地址。
在一个类似的例子中,我在 Google inbox 中锁定到 Inbox 的消息向 Google 表明我可能希望在将来锁定哪些未标记的消息作为重要项目。你瞧,几天前收件箱开始了一个“重点”部分,向我显示哪些邮件看起来最紧急。
当你开始收集数据时,有一种错误的方法和一种正确的方法。如果用户觉得他们的时间被浪费了(比如在你结账前,给这张图片贴上标签),那么你得到的结果就是低质量的垃圾。当 YouTube 让你填写一份调查时,结果会很糟糕。
YouTube survey ad from here.
随着时间的推移,从用户那里收集高质量的数据可以用来改善机器学习,但为了相信数据质量是高的,这必须看起来毫不费力。另一个技巧是将用户的动机与数据标注任务联系起来。例如,当人工智能出错时,用户有很高的动机按下用户流中的后退按钮,但在其他情况下,用户这样做的动机很低。有时这种数据收集方法是不可能的,但是尽最大努力让它工作起来是值得的。
最后,让你的 UX 团队加入到机器学习的对话中来。找到一些方法将数据收集功能整合到您的人工智能解决方案中,以便您获得用户生成的高质量数据的许多好处。
The Clap!
在我离开之前,非常感谢我们的在线粉丝!如果你喜欢这篇关于人工智能的文章,那么请尝试一下拍手工具。跟着我们走。去吧。我也很高兴在评论中听到你的反馈。你怎么想呢?
编码快乐!
——丹尼尔
丹尼尔@lemay.ai ←打个招呼。
LEMAY . AI
1(855)LEMAY-AI
您可能喜欢的其他文章:
人工智能:超参数
深度学习神经网络模型有很多参数(如权重和偏差),也有不少超参数。我们从高中就知道什么是参数。它们是你插入到函数中的数字。但是什么是超参数?嗯,它们基本上是用来创建包含参数的模型的选项。
学习哪个超参数设置适合哪个模型行为需要一些时间。谢天谢地,keras 的默认值是一个很好的起点。
首先,让我们从以前的文章中记住,我们的深度学习模型正在试图逼近一个函数 f ,该函数将输入特征 X 映射到输出决策 Y 。或者,换一种说法,我们在试图寻找一个误差很小,但不需要记忆训练数据的函数Y = f(X)(过拟合)。
我们的模型中的参数像权重和偏差在参数优化过程中被调整(即反向传播)以得到我们的映射函数 f 的越来越好的版本。基于超级令人兴奋的最新工作,事实证明,当神经网络学习逼近 f 时,它们实际上在做一种信息压缩。这将我们的老朋友信息论与我们的新朋友深度神经网络联系起来。
超参数 是元设置,我们可以选择(希望以某种聪明的方式)来调整模型如何形成 f 。换句话说,我们设置超参数是为了挑选我们想要的模型类型。例如, t-SNE 有超参数设置称为困惑,ε(学习率),和其他几个,像迭代次数。
想想配置和构建深度学习模型,比如点寿司:寿司是成卷的。有的卷 8 块,有的卷 6、4 块。控制味道的超参数,以及当你从菜单上要一个面包卷时,你会得到多少个面包卷,就是面包卷类型。你可以选择辣味卷、蔬菜卷、油炸卷等等。在任何情况下,你都可以吃到寿司。改变的是寿司师傅用来制作寿司的配置。每卷味道都不一样。回到机器学习领域,当我们选择超参数时,我们需要做出一些非常大的决定(例如回归器或分类器,CNN 或 LSTM 或 DNN 或甘),以及许多小决定(例如批量大小,测试/训练分割,正则化,辍学,噪声等)。在某些情况下,预训练的神经网络(如 VGG-19)或预定义的神经网络形状(如自动编码器)会比从头开始更接近解决方案。对于完全定制的神经网络配置,我们在 keras 中获得了许多超酷的超参数选项,如 L1 和 L2 的正则化、DNN 层宽度、网络形状(自动编码器、固定宽度、…)、学习速率等等。
As you go through the design space exploration, you find that many of the possible hyperparameter settings are very useless.
程序员喜欢使用配置参数,例如生产/开发设置。我们对这个使用 ConfigParser。然而,深度学习中的超参数更类似于一系列嵌套 for 循环的,在爆发之前搜索“好”的配置。该搜索必须扫描可用的机器学习模型以找到一个具有低误差的模型(或者无论目标函数是什么)。您可以将这些模型超参数视为配置。然而,将超参数选择搜索视为帕累托优化更准确,其中约束是 GPU 的大小,目标是损失/准确性、通用性(精度、召回、F 分数)和其他模型性能标准。有很多模型约束是没有问题的。真正糟糕的是,你有多个目标,有些约束是整数。当面对一个优化问题中的多个目标时,你需要或者创建这些目标的线性组合(线性模型),可能做一些疯狂的数学(参见混合整数线性规划),或者只是将此作为元级机器学习问题(研究!).因为多目标 Pareto 东西是如此丑陋和缓慢(读作 expen$ive ),所以基本上规则是尝试有意义的东西,直到你达到可接受的模型性能水平。我的硕士学位是设计空间探索,所以我直接知道在多重约束下选择一个给定的配置有多困难。
在我结束之前,我今天得到一些非常有趣的消息。 API。AI ,已经改名为 Dialogflow 。他们重定向了域名和一切。我认为在某个时候,谷歌会把它建成 dialogflow.google.com,就像他们对 AdWords 和 inbox 等其他谷歌产品所做的那样。或者,它可能会被谷歌云平台吞噬,就像亚马逊对其 AWS 云服务所做的那样。
好的。回去工作!如果你喜欢这篇关于人工智能的文章,那么请尝试一下拍手工具。轻点那个。跟着我们走。去吧。我也很高兴在评论中听到你的反馈。你怎么想呢?我是不是用了太多的括号?我应该写些什么?写了一堆业务端的文章,最近兴趣更多在技术端。不如这样:把你的数据科学用例或问题发给我,我会挑选一个条目来写一篇关于它的文章。去吧:丹尼尔@lsci.io
编码快乐!
-丹尼尔
丹尼尔@lemay.ai ←打个招呼。
LEMAY . AI
1(855)LEMAY-AI
您可能喜欢的其他文章:
2019 年的人工智能
或者机器学习如何进化成人工智能
这些是我对深度神经网络和机器学习在更大的人工智能领域的发展方向的看法,以及我们如何才能获得越来越多的复杂机器来帮助我们的日常生活。
请注意,这些不是预测的预测,而是对这些领域的轨迹、趋势和我们实现有用的人工智能的技术需求的详细分析。
我们还将研究唾手可得的成果,例如我们今天可以开发和推广的应用程序!
目标
该领域的目标是制造出具有超越人类能力的机器。自动驾驶汽车、智能家居、人工助手、安全摄像头是首要目标。家庭烹饪和清洁机器人是第二个目标,此外还有无人驾驶飞机和机器人。另一个是移动设备上的助手或永远在线的助手。另一个是全职伴侣助手,可以听到和看到我们在生活中经历的事情。一个最终目标是一个完全自主的合成实体,在日常任务中可以达到或超过人类水平的表现。
软件
软件在这里被定义为用优化算法训练来解决特定任务的神经网络架构。
今天,神经网络是事实上的学习工具,用于解决涉及学习的任务,监督从大型数据集对进行分类。
但这不是人工智能,它需要在现实世界中行动,经常在没有监督的情况下学习,从以前从未见过的经验中学习,经常在完全不同的情况下结合以前的知识来解决当前的挑战。
我们如何从目前的神经网络转向人工智能?
1-神经网络架构-几年前,当该领域蓬勃发展时,我们经常说它具有从数据中自动学习算法参数的优势,因此优于手工制作的功能。但是我们很方便地忘记提到一个小细节…作为解决特定任务的训练基础的神经网络架构不是从数据中学习的!事实上,它仍然是手工设计的。根据经验手工制作,这是目前该领域的主要限制之一。神经网络架构是学习算法的基础核心。即使我们的学习算法能够掌握一项新任务,如果神经网络不正确,它们也将无法掌握。但是在这个地区有很多活动,我们在这里回顾了一下。从数据中学习神经网络架构的问题是,目前在大型数据集上试验多种架构需要太长时间。人们必须从头开始尝试训练多种架构,看看哪一种工作得最好。这正是我们今天使用的耗时的试错程序!我们应该克服这个局限,在这个非常重要的问题上多动脑筋。
2-当前神经网络的局限性-我们之前已经讨论过目前神经网络的局限性。不能预测,不能对内容进行推理,并且具有时间不稳定性——我们需要一种新型的神经网络,你可以在这里阅读。
Encoder-Decoder neural network
连接到上一节的主题,神经网络正在演变为编码器-解码器,其中编码器是一个将数据压缩为短代码(表示)的网络,解码器则扩展该表示以生成另一个更大的表示(将这些想象为生成的图像、心理模拟、图像上作为边界框和分段遮罩的高光)。我们已经广泛讨论了如何使用这样的网络来定位和检测图像和视频中的关键点这里;另请参见此分析。这也是预测神经网络的主要成分(更多内容见下文)。
无监督学习(Unsupervised learning)——我们不能总是在我们的神经网络旁边,在它们生命的每一站和每一次经历中指导它们。我们不能每次都纠正他们,并对他们的表现提供反馈。我们有自己的生活要过!但这正是我们今天对监督神经网络所做的:我们在每一个实例中提供帮助,使它们正确地执行。相反,人类只从少数几个例子中学习,并且可以不断地自我修正和学习更复杂的数据。我们已经广泛讨论了无监督学习这里。
4-预测神经网络— 当前神经网络的一个主要限制是它们不具备人脑最重要的特征之一:预测能力。关于人脑如何工作的一个主要理论是通过不断进行预测:预测编码。你想想,我们每天都在经历。当你举起一个你认为很轻但结果很重的物体时。它让你感到惊讶,因为当你走近去捡它的时候,你已经预测到它会如何影响你和你的身体,或者你的整体环境。
预测不仅能让我们了解这个世界,还能让我们知道什么时候不了解,什么时候应该了解。事实上,我们保存了我们不知道的事情的信息,并给我们带来惊喜,所以下次它们不会了!认知能力显然与我们大脑中的注意力机制有关:我们放弃 99.9%感官输入的先天能力,只专注于对我们生存非常重要的数据——哪里有威胁,我们跑到哪里去躲避它。或者,在现代社会,当我们匆忙出门时,我的手机在哪里?
建立预测神经网络是与现实世界互动的核心,也是在复杂环境中行动的核心。因此,这是任何强化学习工作的核心网络。见下文。
我们广泛讨论了预测神经网络的主题,并且是研究和创建预测神经网络的先驱团体之一。有关预测神经网络的更多详细信息,请参见此处的,此处的,此处的。
5-持续学习-这很重要,因为神经网络在其生命周期中需要不断学习新的数据点。当前的神经网络不能够学习新数据,除非在每个实例中从头开始重新训练。神经网络需要能够自我评估新训练的需求以及它们确实知道一些东西的事实。这在现实生活和强化学习任务中也是需要的,我们希望教会机器在不忘记旧任务的情况下完成新任务。持续学习也与*转移学习、*或者我们如何通过观看视频让这些算法自己学习,就像我们想学习如何烹饪新东西一样?这是一种需要我们上面列出的所有要素的能力,对于强化学习也很重要。
更多详情,请参见我们的近期结果摘要。
6-强化学习— 这是深度神经网络研究的圣杯:教会机器如何在一个环境中学习行动,真实的世界!这需要自我学习、持续学习、预测能力,以及更多我们不知道的东西。在强化学习领域有很多工作,我们已经在这里和最近在这里讨论过这个。
强化学习通常被称为“蛋糕上的樱桃”,这意味着它只是在塑料合成大脑上的次要训练。但是我们怎样才能得到一个“通用的”大脑,从而轻松解决所有问题呢?这是个先有鸡还是先有蛋的问题!今天,为了一个接一个地解决强化学习问题,我们使用标准的神经网络:
- 一种深度神经网络,它接受大量数据输入,如视频或音频,并将其压缩成表示形式
- 学习任务的序列学习神经网络,如 RNN
这两个组件都是每个人都在使用的,因为它们是可用构建模块的一部分。尽管如此,结果并不令人印象深刻:是的,我们可以从头开始学习玩视频游戏,并掌握完全可观察的游戏,如国际象棋和围棋——今年甚至通宵训练!—但我不需要告诉你,与解决复杂世界中的问题和像我们一样运作的机器相比,这根本不算什么。
我们认为预测神经网络对于强化学习是不可或缺的。好奇心,这是今天在这个领域的说法!敬请关注更多内容!
8-不再有递归神经网络——递归神经网络(RNN)不再流行。RNN 在训练并行化方面特别糟糕,即使在特殊的定制机器上也很慢,因为它们的内存带宽使用率非常高——因此它们是内存带宽受限的,而不是计算受限的,更多细节请参见这里的。基于注意力的尤其是卷积神经网络在训练和部署时更高效、更快速,并且在训练和部署时更少受到可扩展性的影响。
我们已经看到卷积和基于注意力的神经网络将慢慢取代基于 RNN 的语音识别,并在强化学习架构和人工智能中找到它们的方式。
五金器具
深度学习的硬件是进步的核心。现在让我们忘记深度学习在 2008-2012 年以及最近几年的快速扩张主要是由于硬件:
- 每部手机中的廉价图像传感器都可以收集大量的数据集——是的,社交媒体对此有所帮助,但只是在一定程度上
- 允许 GPU 加速深度神经网络的训练
而在之前我们已经广泛的谈过硬件。但是我们需要给你一个最近的更新!在过去的两年里,机器学习硬件领域出现了蓬勃发展,特别是针对深度神经网络的领域。我们在这方面拥有丰富的经验,已经设计了 5 代深度神经网络加速器(参见最近的 FWDNXT )。
有几家公司在这个领域工作:英伟达(显然)、英特尔、Nervana、Movidius、比特大陆、Cambricon、Cerebras、DeePhi、谷歌、Graphcore、Groq、华为、ARM、Wave Computing 等。所有这些公司都在开发定制的高性能微芯片,这些芯片将能够训练和运行深度神经网络。
关键是在计算最近有用的神经网络运算时,提供最低的功耗和最高的测量性能,而不是像许多人声称的那样,每秒进行原始的理论运算。
但该领域很少有人了解硬件如何真正改变机器学习、神经网络和人工智能。很少有人了解微芯片的重要性以及如何开发它们。几个想法:
- 架构:许多人认为计算机架构只是一系列乘法器和加法器。但不是所有的架构都是一样的。有些比其他的更好,可以最小化内存带宽,并保持所有单元一直被占用。
- 编译器:许多人认为硬件不重要,神经网络编译器才是关键。但是,当你设计自己的硬件时,编译器只是在优化的机器代码中解释神经网络计算图。开源编译器(其中很多是去年才出来的!)只能帮到这么多,鉴于最困难的一步确实取决于秘密架构。虽然开源编译器可以作为前端,但在硬件架构和神经网络图的交叉点上仍然有很多秘密。
- 微芯片:一旦算法变得重要,优化性能功耗比的最佳方式就是定制微芯片或 ASIC 或 SoC。它们可以提供比 FPGAs 更快的时钟和更小的电路面积。FPGAs 现在包括深度神经网络加速器,预计将在 2019-2020 年推出,但微芯片将永远是更好的表现者。
- 进步:有几项进步将允许硅深度神经网络加速器轻松地获得 10-20 倍的性能,即使不使用微芯片缩放。在使用更少的比特数、系统级封装、高级存储器等方面寻找进步。
关于神经形态神经网络硬件,请看这里。关于模仿真实神经网络的评论是这里。
应用程序
我们在上面的目标部分简单地讨论了应用程序,但是我们真的需要在这里深入细节。AI 和神经网络将如何进入我们的日常生活?
以下是我们的列表:
- 对图像和视频进行分类——已经在许多云服务中使用。接下来的步骤是在智能摄像机源中做同样的事情——今天也是由许多提供商提供。神经网络硬件将允许移除云,并在本地处理越来越多的数据:隐私和节省互联网带宽的赢家。
- 基于语音的助手正在成为我们生活的一部分,因为它们在我们的“智能”家庭中播放音乐和控制基本设备。但是对话是如此基本的人类活动,我们常常认为它是理所当然的。你可以与之交谈的小设备是一场正在发生的革命。基于语音的助手越来越好地为我们服务。但是它们仍然和电网相连。我们真正想要的助手会和我们一起走。我们的手机呢?硬件再次胜出,因为它将使这成为可能。Alexa 和 Cortana 和 Siri 将永远在线,永远与你同在。你的手机将很快成为你的智能家居。这是智能手机的又一次胜利。但是我们也希望它在我们的车里,当我们在镇上走动时。我们需要本地语音处理,越来越少的云。更多的隐私和更少的带宽成本。同样,硬件将在 1-2 年内为我们提供所有这些。
- 真正的人工助手 —语音很棒,但我们真正想要的是也能看到我们所看到的东西的东西。当我们四处走动时,分析我们的环境。参见示例此处和最终此处。这才是我们能爱上的真正的 AI 助手。神经网络硬件将再次满足你的愿望,因为分析视频馈送在计算上非常昂贵,并且目前处于当前硅硬件的理论极限。换句话说,这比语音助手要难做得多。但这并不是不可能的,许多像 AiPoly 这样的聪明的初创公司已经拥有了所有的软件,但缺乏在手机上运行它的强大硬件。还要注意的是,用一个类似眼镜的可佩戴设备代替手机屏幕将真正让我们的助手成为我们的一部分!
- 烹饪机器人——下一个最大的电器将是烹饪和清洁机器人。在这方面,我们可能很快就有了硬件,但我们显然缺乏软件。我们需要迁移学习、持续学习和强化学习。一切都运转良好。因为你看:每个食谱都不一样,每个烹饪原料看起来都不一样。我们不能硬编码所有这些选项。我们真的需要一个能够很好地学习和归纳的合成实体来做这件事。我们离它很远,但没有那么远。按照目前的发展速度,只需要几年的时间。我一定会像过去几年一样努力~
这篇博文将会发展,就像我们的算法和我们的机器一样。请尽快再次检查。
关于作者
我在硬件和软件方面都有将近 20 年的神经网络经验(一个罕见的组合)。在这里看关于我:媒介、网页、学者、 LinkedIn 等等…
医学中的人工智能
用于诊断、药物开发、个性化治疗和基因编辑的人工智能
机器学习在制药和生物技术效率方面取得了巨大进步。这篇文章总结了今天人工智能在医学中的4 大应用:
1.诊断疾病
正确诊断疾病需要多年的医学训练。即便如此,诊断通常也是一个费力费时的过程。在许多领域,对专家的需求远远超过了现有的供给。这给医生带来压力,并经常延误挽救生命的病人诊断。
机器学习——特别是深度学习算法——最近在自动诊断疾病方面取得了巨大进展,使得诊断更便宜、更容易获得。
机器如何学习诊断
机器学习算法可以学习以类似于医生看待模式的方式来看待模式。一个关键的区别是算法需要大量的具体例子——成千上万——以便学习。而且这些例子需要整齐地数字化——机器无法读懂教科书的字里行间。
因此,在医生检查的诊断信息已经数字化的领域,机器学习尤其有用。
比如:
- 基于 CT 扫描检测肺癌或中风
- 根据心电图和心脏核磁共振图像评估心脏猝死或其他心脏疾病的风险
- 对皮肤图像中的皮肤病变进行分类
- 在眼睛图像中发现糖尿病视网膜病变的指标
Examples of AI diagnosing diseases
由于在这些案例中有大量可用的好数据,算法变得和专家一样擅长诊断。不同的是:算法可以在几分之一秒内得出结论,而且可以在全世界廉价复制。很快,每个人、每个地方都可以以较低的价格获得与放射诊断学顶级专家 T21 同等质量的服务。
更先进的人工智能诊断即将推出
机器学习在诊断中的应用才刚刚开始——更雄心勃勃的系统涉及多种数据源 (CT、MRI、基因组学和蛋白质组学、患者数据,甚至手写文件)的组合,以评估疾病或其进展。
人工智能不会很快取代医生
人工智能不太可能完全取代医生。相反,人工智能系统将用于为专家突出显示潜在的恶性病变或危险的心脏模式**——允许医生专注于这些信号的解释。**
2.更快地开发药物
众所周知,开发药物是一个昂贵的过程。药物开发中的许多分析过程可以通过机器学习变得更加有效。这有可能削减多年的工作和数亿美元的投资。
人工智能已经成功应用于所有的 4 药物开发的主要阶段:
阶段 1:确定干预目标
药物开发的第一步是了解疾病的生物学起源(途径)及其耐药机制。然后你必须确定治疗疾病的好目标(通常是蛋白质)。高通量技术的广泛应用,如短发夹 RNA (shRNA)筛选和深度测序,大大增加了发现可行靶途径的可用数据量。然而,使用传统技术,集成大量不同的数据源,然后找到相关的模式,仍然是一个挑战。
机器学习算法可以更容易地分析所有可用的数据,甚至可以学习自动识别良好的目标蛋白质。
阶段 2:发现候选药物
接下来,你需要找到一种化合物,它可以以期望的方式与识别的目标分子相互作用。这包括筛选大量——通常是数千甚至数百万——潜在化合物对靶标的影响(亲和力),更不用说它们的非靶标副作用(毒性)。这些化合物可以是天然的、合成的或生物工程的。
然而,目前的软件往往不准确,并产生许多错误的建议(假阳性),因此需要很长时间才能将范围缩小到最佳候选药物(称为线索)。
机器学习算法在这里也可以有所帮助:它们可以学习根据结构指纹和分子描述符来预测分子的适用性。然后,他们从数百万个潜在分子中筛选出最佳方案——副作用最小的方案。这最终节省了药物设计的大量时间。
第三阶段:加速临床试验
临床试验很难找到合适的候选人。如果你选择了错误的候选人,将会延长审判时间——耗费大量的时间和资源。
机器学习可以通过自动识别合适的候选人以及确保试验参与者群体的正确分布来加快临床试验的设计。算法可以帮助识别区分好的候选人和坏的候选人的模式。它们还可以作为一个早期预警系统,用于没有产生结论性结果的临床试验——允许研究人员更早地干预,并有可能挽救药物的开发。
阶段 4:寻找用于诊断疾病的生物标志物
一旦你确定了你的诊断,你就可以对病人进行治疗。有些方法非常昂贵,需要复杂的实验室设备和专业知识,比如全基因组测序。
生物标记是在体液(通常是人的血液)中发现的分子,提供了关于患者是否患有疾病的绝对确定性。他们使 T2 的疾病诊断过程变得安全而廉价。
你还可以用它们来确定疾病的发展——使医生更容易选择正确的治疗方法,并监测药物是否有效。
但是为特定疾病发现合适的生物标志物是困难的。这是另一个昂贵、耗时的过程,包括筛选成千上万的潜在分子候选物。
人工智能可以自动化很大一部分人工工作,并加快这一进程。这些算法将分子分为好的和坏的候选分子——这有助于临床医生专注于分析最佳前景。
可用于鉴定的生物标志物:
- 尽早发现疾病— 诊断生物标志物
- 患者患病的风险— 风险生物标志物
- 疾病的可能进展— 预后生物标志物
- 患者是否会对药物产生反应— 预测性生物标志物
3.个性化处理
不同的患者对药物和治疗方案的反应不同。因此,个性化治疗在延长患者寿命方面有着巨大的潜力。但是很难确定哪些因素会影响治疗的选择。
机器学习可以自动化这一复杂的统计工作,并帮助发现哪些特征表明患者将对特定治疗产生特定反应。因此,该算法可以预测患者对特定治疗的可能反应。
该系统通过交叉引用相似的患者并比较他们的治疗和结果来学习这一点。由此产生的结果预测使医生更容易设计正确的治疗方案。
4.改进基因编辑
聚集的规则间隔短回文重复序列(CRISPR),特别是用于基因编辑的 CRISPR-Cas9 系统,是我们经济高效地编辑 DNA 的能力的一大飞跃——准确地说,就像外科医生一样。
这种技术依赖于短指导 RNA(sgRNA)来靶向和编辑 DNA 上的特定位置。但是指导 RNA 可以适合多个 DNA 位置——这可能导致意想不到的副作用(脱靶效应)。仔细选择具有最小危险副作用的指导 RNA 是 CRISPR 系统应用中的一个主要瓶颈。
机器学习模型已被证明在预测给定 sgRNA 的导向-目标相互作用和脱靶效应的程度时产生最佳结果。这可以显著加快人类 DNA 每个区域的指导 RNA 的发展。
摘要
人工智能已经在帮助我们更有效地诊断疾病,开发药物,个性化治疗,甚至编辑基因。
但这只是的开始。我们越是数字化和统一我们的医疗数据,我们就越能使用人工智能来帮助我们找到有价值的模式——我们可以使用这些模式在复杂的分析过程中做出准确、经济高效的决策。
作者 我是柏林机器学习咨询公司 Data Revenue 的首席执行官。联系如果你想了解更多人工智能在医学或我们工作中的应用。
最初发表于www.datarevenue.com。
自动驾驶汽车中的人工智能—第 1 部分
不久前看似虚构的自动驾驶汽车已经成为汽车和科技行业的热门话题。像谷歌、百度、特斯拉这样的新玩家正在跳入这个领域,竞争加剧了,截至目前,几乎所有的汽车制造商都宣布了他们对自动驾驶的开发努力。
现在已经很清楚,视觉传感元件,如相机、激光雷达(就像谷歌自动驾驶汽车上的威力登激光雷达)、雷达、声纳、夜视系统、近程传感器等。是自动驾驶技术最重要的使能元素。这些传感器安装在车身上,形成周围环境的实时三维图像。然后将这些图像与现有的 3D 地图进行比较,智能算法能够采取适当的行动来驾驶汽车,而无需任何人工干预。汽车的精确定位,传感器融合以评估来自不同传感器的数据是自动驾驶技术的其他重要组成部分。
正确分析这些不同的输入,并在很短的时间内采取“正确”的行动是关键。但是,“正确”的行动很难确定,因为现实世界的驾驶场景很复杂,有许多可能性。将所有不同的可能性编码到软件中是一项不可能的任务。这就是像深度学习和神经网络这样的人工智能分支变得如此重要的原因。它包括软件,自我从不同的情境中学习,并不断改进其性能。将这种软件暴露在真实生活驾驶条件的大量数据中,可能是提高自动驾驶汽车采取“正确”行动的准确性的关键。这就是人工智能最近成为自动驾驶技术焦点领域的原因。
许多汽车公司和自动驾驶公司已经宣布了不同的举措来增强他们的人工智能能力,以便他们不会落后于谷歌这样的新时代公司,谷歌已经在该领域处于领先地位。下面的新闻故事将证实这一点。
- 福特、丰田和大众与英伟达、三星、高通和松下一起成立了 DeepDrive 联盟,专注于人工智能研究。他们每人给加州大学伯克利分校 30 万美元,资助人工智能研究。(链接
- 丰田在硅谷成立了一个新的组织——丰田研究所,专注于人工智能和自动驾驶技术。它宣布了与麻省理工学院和斯坦福大学在人工智能研究方面的实验室合作伙伴关系,以及 1B·R&D 在该领域为期五年的努力。它还计划聘请 200 名研究科学家来推进人工智能的研究。(链接
- 丰田雇佣了 Jaybridge Robotics 的所有员工,Jay bridge Robotics 是一家麻省理工学院的初创公司,专注于丰田研究所的自动驾驶汽车技术。(链接
- 丰田还收购了总部位于东京的广受好评的机器学习初创公司 Preferred Networks 的股份,以加速其在人工智能领域的努力。(链接)
丰田虽然加入自动驾驶的行列较晚,但自 2015 年底以来已经做出了重大宣布,明确了其自动驾驶的雄心。它还专注于人工智能,而不是与其他公司合作开发此类技术。尽管许多其他汽车公司正在研究自动驾驶汽车,但它们已经考虑与宝马和百度等新时代科技公司合作,或者福特和谷歌之间的谈判。汽车公司似乎也与 Mobileye 和 Nvidia 等合作伙伴合作,或与学术界进行各种合作,以发展人工智能能力。然而,丰田似乎专注于拥有这样的技术,并在人工智能研究上投入了大量资源,而不是与其他公司合作。
也有一些初创公司试图解决自动驾驶技术的各种障碍。大多数这样的创业公司都是从主要大学的研究中分离出来的。这里有几个这样的例子
( Data from Tracxn )
(第二部分重点关注实现无人驾驶汽车的不同方法以及人工智能在每种方法中的使用。)
斯德哥尔摩的人工智能
Photo credit: Online Graphic Design Course
人工智能是世界上最受关注的技术之一,它不再仅仅是科幻小说的一部分,而是用美国总统巴拉克·奥巴马的话说“已经以各种方式渗透到我们的生活中”。Gartner 将人工智能确定为 2017 年的顶级技术趋势。
它就在这里,但与《黑客帝国》或《终结者》等科幻片相比,它看起来不像是一个大的威胁。尽管人们仍在质疑它将如何改变我们的社会,但新的智能产品和服务的开发正以前所未有的速度蓬勃发展。
例如,一个人工智能机器人成为北欧科技巨头 Tieto 的官方董事会成员,并且拥有投票权!
在斯德哥尔摩,一些独角兽公司,如 Klarna 或 Spotify,将人工和扩展智能作为其产品和业务不可或缺的一部分,有时会被忽视。对其他人来说,人工智能是他们销售产品的核心。最近,Stockholm.ai 社区开始了一系列以人工智能为主题的聚会。它向想知道为什么斯德哥尔摩是经营人工智能公司的好地方的企业家、开发人员、技术人员和投资者开放。
这里是对斯德哥尔摩人工智能社区中一些最有趣的玩家以及人工智能领域中一些非常新的成员的概述。
瓦蒂
经过三年多的经营, Watty 已经是一家经验丰富的人工智能初创公司:
- Watty 成立于 2013 年,是一个市场领先的机器学习平台,为客户提供即时和在线的能源消耗测量,细分到各个家用电器。
- Watty 在多个场合获得了资金,最著名的是 2016 年 7 月完成的 300 万€回合。主要投资者包括 Cleantech Invest 和 EQT Ventures。
- 首席执行官 Hjalmar Nilsonne 在绿色技术领域有着丰富的经验,
多雷米尔
没有那么夸张,但绝对值得一听的是多雷米尔
- Doremir 通过将录制的声音和旋律转换成符号,将 Shazam 等应用程序提升到了一个新的水平。
- 由两位 Svens,ahl bck 和 Emtell 在 2008 年成立,他们都是音乐和认知领域的研究人员,他们在 2013 年发布了他们的应用程序 ScoreCloud。
- 首席执行官 Bengt Lidgard 于 2013 年加入,这一年见证了《卫报》、《连线》和《福布斯》等媒体对该产品的报道。
- 瑞典风险投资基金 Almi Invest 与瑞典和外国投资者一起支持该项目。
米玛
同样活跃在音乐产业和娱乐领域的还有年轻的初创公司 Mima
- Mima 于 2016 年 3 月正式推出,为实时了解娱乐创造了先进的平台。
- 使用人工智能和深度学习来跟踪趋势,为音乐、电视、电影和游戏的最新发展提供有价值的见解。
- 以瑞典诺贝尔奖获得者哈里·马丁森的科幻诗 Aniara 中的全知电脑命名。
亨利
像米玛一样,来自 2016 届的同一个班级,来了一个新的孩子亨利:
- Henry 是一个虚拟辅助工具,旨在收集员工的想法和见解。
- 帮助跟踪团队和部门内的工作生活平衡和员工幸福感。
- 由弗雷德·亚伯拉罕森、汤米·恩斯特伦和维德兰·伊斯梅利创立。
- 成立于 2016 年 1 月,位于 SUP46。
专注于人工智能的初创公司正在快速发展,有些仍然处于隐形模式。去年出现了一批有趣的引人注目的公司,比如以下四家初创公司:
夹铁
与垫片交谈。
- Shim 是聪明又善解人意的朋友,是 100%人工的。
- 该公司网站称,通过与 Shim 交谈,用户可以更好地了解自己,并与所爱的人建立更牢固的关系。
- Hoa Ly 拥有心理学博士学位,除了在一个由心理学家、研究人员、作家、工程师和设计师组成的团体中担任 Shim 的联合创始人之外,还是一名 DJ。
- Shim 成立于 2015 年 5 月,目前仍处于测试阶段,但可以在他们的网站上进行测试。
健康习惯
- Healthi Habits 利用人工智能、机器学习和行为经济学的结合,发现健康的习惯,帮助人们进行可持续的行为改变。
- H2 健康中心坐落在斯托克霍姆新的电子健康中心,与多家初创公司一起,如虚拟现实公司 Mimerse 和获奖公司 Qinematic 。
- 他们成立于 2015 年 12 月,最初专注于糖尿病患者,但正在寻求扩展到其他用户群体
2015 年还出现了两家新公司,Dooer 和 Qvitoo,它们都计划挑战和颠覆成熟且耗时的会计行业。
杜尔
- Dooer 利用人工智能软件解决方案开发现代簿记系统,无需会计人员即可自动处理所有发票信息。
- 由连续创业家 Sam Nurmi 创建,据 breakit.se 报道,他通过出售之前的公司 Pingdom 赚了近 5 亿 SEK。据同一媒体报道,该公司在 2016 年夏天获得了 4000 万 SEK,其中大部分来自萨姆·努尔米本人。
- 临近它的第一个生日,公司已经有 30 多名员工。
Qvitoo
- Qvitoo 只需拍张照片,就能帮助创始人和企业家追踪发票和收据——剩下的事情由软件和人工智能来完成。
- 除了为专业人士提供服务之外,Qvitoo 还专注于那些可以轻松跟踪和记录自己支出的消费者。
- 他们的服务集成了市场上最常见的会计软件。
- 由拥有 10 年软件顾问经验的 Henrik Feldt 和 Mikko Lappalainen 于 2015 年创立。
在先进计算机的扩展智能的帮助下,难怪许多公司都关注大数据和人工智能。这三家公司有非常不同的产品,但都在这两个领域工作。
加瓦盖
- Gavagai 由数据科学家马格努斯·萨尔格伦和尤西·高本汉于 2008 年创立,Gavagai 专门从事大型文本样本的实时数据分析。
- 2015 年秋季,该公司在第二轮种子融资中筹集了 1000 万 SEK,估值为 6200 万 SEK。
- 他们的 Explorer 工具经过优化,可用于分析问卷中开放式答案的文本数据,这一过程通常是手动完成的,非常耗时。
Vionlabs
- 由 Arash Pendari 于 2010 年创立的 Vionlabs 一直致力于开发一种分析工具,帮助电影制片人、流媒体网站和网络运营商了解他们客户的娱乐习惯。
- Vionlabs 之前专注于 B2C 解决方案,现在专注于 B2B。
- 投资者中有风投 Northzone、另一家瑞典初创公司的董事会主席、 Truecaller 、斯特凡·伦哈默和瑞典著名演员迈克尔·恩奎斯特。
- 同样的投资者在 2015 年第一轮投资中选择了 2500 万 SEK。较小的一轮于 2016 年 1 月结束。
哈特兰
- SaaS 初创公司,提供对公司目标受众更深入的理解和洞察。
- 使用大数据和机器学习作为主要工具,并在 2016 年初与投资者和顾问 Mattias ost mar 一起更加关注人工智能的发展。
- 由 Niklas Lohmann、Sriram Elango 和 Stefan Krafft 于 2014 年创立。
- Propel Capital 在 2015 年的早期种子轮投资了 30 万美元
艾制造
- 【人工智能制造的 是一家人工智能初创公司,它使用深度学习和生成模型来为物理对象生成独特的设计。
- 顾客可以买到世界上第一条由人工智能设计的项链。
- 人工智能背后的团队对人工智能的创造性应用有着浓厚的兴趣。
随着专注于人工智能的初创公司数量的增长以及行业、政策和投资者的兴趣,斯德哥尔摩的人工智能很可能在未来发挥更大的作用。而且很有可能你已经在用斯德哥尔摩的一个人工智能集成产品了。
在之前一篇关于斯德哥尔摩 VR 的文章中,我写了一篇关于初创公司 Gleechi 的文章,该公司专门制作手部模拟,供游戏、医疗保健、机器人等领域的开发人员使用。他们获奖的虚拟抓握部分基于深度机器学习和人工智能。
开创性的研究也正在一个看似远离创业现场的世界中进行。在斯德哥尔摩市中心的南郊坐落着一家超过 10 年历史的咨询公司 Peltarion,专注于所有与人工智能相关的事情。一个值得注意的项目是他们与露露艺术集团的合作,其中一项成果是计算机生成舞蹈编排系统。像 Dooer、Thingmap、Norwegian Meltwater 和 Augify 这样的公司都有一个共同点,那就是他们一直在与当地的 Graph-Technologies 合作,这是一家咨询公司,开发机器学习产品和建议,指导和培训企业家和公司关于人工智能的来龙去脉。
最近,数据安全公司 EyeonID 上市,初创公司 Imago 获得了来自当地商业天使的新投资。人工智能革命已经明确袭击了斯德哥尔摩,未来几年很可能会出现新的深度学习创业公司的增加。
在 Invest Stockholm ,我们安排投资者与被选中的有前途的初创公司会面。如果你想了解更多关于 Stockholms AI 场景的可能性,不要犹豫联系。