GAMES102:几何建模与处理 - P2:数据拟合 - GAMES-Webinar - BV1NA411E7Yr
嗯好各位线上的啊,学友们晚上好,那么今天开始我们啊gm是102这个课程的啊,第二次课好,我们这次课程呢呃继续把数据里和这一块来讲完啊。
那么上周讲的数据你也可以后呢,我们看一下啊,啊上周啊也许各半小时啊,回顾了一下学生学的基本内容啊,解释了函数饮食变换在不同的场景是正常,就是一个一个同一个东西给一个x那么输出一个y。
当然我们现在是限制在函数的x和y都是实数的情况下,现在把这个一些里面的门道搞清楚,那未来可能那x呢可能是那个向量,甚至是一个矩阵,甚至是张亮y也一样啊,那么那个呃如果是一个图片。
它就可以看成是一个矩阵啊,这样的话呢就这个影射函数这个啊可以推广到高维都是没问题的,所以同学们先不要着急啊,什么要要先下子搞明白张量向量,还有含那个那个多多维的这样一个函数,要把它搞明白好。
大家也清楚了,我们给了一些x y x y都是实数啊,这样一些对子怎么去找一个函数去拟合它,那么呃有三个步骤是吧,是什么叫做好的函数,你找哪个啊,那么你告诉我一个池子,一个结合一个函数空间啊。
我到那里去找是吧,就把一个函数变成一些实数,把这个系数的去去去那个找,那么怎么找,那么我就是要去求这个目标函数的梯度啊,就是它的重点对吧好,有些同学可能第一次接触啊,在哪个尝试啊,有些在那思考。
有些哎这个结果很很怪异,很困惑啊,很很很激烈,挺好好,那么大家有了这样一个知识以后呢,再来接我,今天再来给大家啊,这个这个过一遍呢会理解的更好一点,另外的话为了答疑解惑呢,在主页上啊可以看到啊。
我就在大家同学们可以到主页上去把这个下载啊,这个不是放在电视那个网站,杂志放在那个课程主页上好,大家可以去看一下,以便于有些同学可以在自己跟着去去推一下啊,好那么我们很快回顾一下啊,就是啊。
那么我们还是在假定我们现在这个函数的一个一个一个一个啊形式啊,就是x和y都都是现在啊这个实数空间,也就是我们初中学的函数,因为初中高中都没有学过啊,你能够学会向量,所以我们现在还是从这个入门啊。
初中的这个这个呃形式来做啊,那么我们下面啊下面这三个图呢都是非函数,是一般的曲线啊,这个曲线呢我们到下周就开始跟大家讲,你只要把函数搞明白了,曲线这个呃就很好理解啊,他只不过是高位者有多个分量的函数。
就每个分量是一个函数啊,所以这样理解的话就很容易过渡过去,所以呢我们先把函数里的拟合一些问题把它搞明白啊,故里河清理河啊,这个嗯这个函数空间优化等等啊,所以大家并不用着急啊。
如果碰到下面这一类的这种非函数型,那么我们后面会来讲,那么函数很容易,那就是给一个x那么就有一个v的y啊,给给它规定对吧,所以所以啊每一条竖的线呢与这个曲线只有一个交点,这个叫函数形好。
那么我们的函数拟合我们在很快过一下啊,那为什么要给的一些观察点,就是我可能这个函数很复杂的函数去表示规律,但是我呢不知道它是表达形式,但是呢我只能观察一些采样点啊,叫离散点,那也叫做数据点好。
那么我要你和一个函数呢有什么好处呢,加上这个函数啊,就就什么就你扣了就叫什么,就是说假设这个嗯有有100万的数据,但是我函数可能只用了啊这个这个这个1000个系数就存储起来了。
是不是达到一个压缩存储的这个效果,所以你不用去不用去存那100万数据,你只要存1000个数,这个这个这个系数就可以了,所以那个是压缩,第二个呢是用来预测预测,就是你有没有函数以后呢,是那些终结者呢。
你把它带进去就可以知道啊,它所对应的东西是吧,所以说他也用预测啊,只不过呢他们的那个语言叫他们说叫叫编码,把他这个数据信息编到这个这个一个函数里面啊,当然他那个领域他们叫网络啊等等,我今天会把它解啊。
那么另外一个就预测哎我有个新现象x,那么那么比如说这里的x求出来了,那我要预测这个值是多多多少是吧,好所以它这是它的背景,大家好,那个我给了一些点,这个这个你看还有多少个好。
你要多少个就多少个无穷多个是吧,当然有些函数的好一点,有些函数不好好,我们来看一下,那么一个拟合函数,什么叫好和坏啊,这个有很多的这个不同应用对他的要求啊,比如说我最简单,哎,我反正我最暴力。
我就呃把这些点相互连起来,假设知道它的顺序的话,那这个不就是也是个函数吗,确实是个函数,这个函数每一段都是直线啊,我们把它叫做线性函数对吧,它是只不过是一个分段线性函数,它的误差全是零啊。
因为它经过了所有的这个形式点啊,那没有任何误差啊,这个但是这个函数好不好呢是吧,大家一看哎可能不好吗,为什么它不够光滑啊,就是在这些点上都是c0 的c d的位置呢,这两个函数只能在这里大牢了啊。
甚至连c一这个导数都没有,为什么,因为在左边左导数是这个方向,右边右导数是这个方向的,左导数和右导数是不一样的,所以它这个是c0 ,所以呢这个函数性质不够好啊。
所以大家一般在在这个实际应用中不会用这个函数是吧,这只有在一些非常对这个这个精度不高,不是很高的鞋啊,这个时候会用到啊,因为它只有c0 啊,并且它不可求导啊。
不可求导的话就带来后面很多一些对他的利用了一些啊,这个这个难度啊,所以啊当然你说我就这个函数我要做数字计算啊,用差分来做也可以改,当然也可以做那个呢就属于离散啊,所以我们后面的啊后半部分的这个网格处理。
实际上就是在研究这种对象,好,我不是光滑,我是分片线形,曲面来说是分片三角形状啊,就是就是最通用的或者叫最简单的表达好,那么这种曲面会叫曲线,它的一些限制什么球。
那么这就涉及到一些数值积分里面那些计算了好数字微分,数值积分怎么去求这个点的导数是吧,这个导数是不是可以用周围的这两两个点的导数,那个那个数值来估计呢是吧,这个我们放在后面去,当然从我们今天的课上来讲。
这个函数也是可以算出一个女孩子,但是呢他不够好,那我们就追求一种非常光滑的一个函数对吧,那么我们就要提高这个函数的性质啊,那么这种函数叫光滑差值,这个大上周大家也能理解了啊,那么这种这种这个求求解呢。
哎差值函数呢有一个问题啊,就是说你如果数据啊还有一些噪声,就是这个噪声英文叫noise啊,就是还带一些噪声,或者叫一些alliar alderly,什么呢,是叫叫优劣点,就说可能由于一个随机的一个现呃。
现象这个这个这个点呢并不是出现在这个我们要的那个函数上面,它是个随机的一个啊,由于由于这个这个外外界的这个误差,或者是仪器的误差,或者是一个什么会出现一些奥特莱尔这个数据呢,实际上是非常不可靠。
不应该成为我的数据集,但是呢我不清楚我只是拿了很多数据回来,100万数据里面到底哪些是噪声的,哪些是奥特莱尔,我更不知道,所以呢我我都什么啊,这个全州最终数据负负负责啊,那么去你和他这样的话呢。
就可能被他什么啊,这个这个这个虽然你和他了误差是零,但是呢这个值很不可靠,你在这里做的预测就极其不准确是吧,就本来应该是这样过来的,但是呢他虽然是在预测方这个函数,所以呢这个是是有问题的。
你去啊完全要尊重原始数据去插值,也不是个非常好的想法,除非你可以保证这个采样点是非常精确的,而是由女人保证的,或者是这个仪器足够的可靠好,所以呢我们更多的希望是用用,毕竟就说我允许一切误差不为零。
但只要小一点,这样的话呢就对一些奥特莱尔还有一些噪声呢,就能够会部分的抵抵抗啊,就就人口部分抵抗这样一些啊,这个这个这个呃呃性性质好,这里就是这三个函数啊,就是一个是啊,这个黑色的是啊,分片啊。
分放线形,绿色的是差值的,那么这个红色的是拟合的,你可以看到这三个函数呢,就这个数据集来讲,毕竟都还可以啊,误差有大有小啊,光滑性有好有坏啊,所以这个呢你说啊这哪个是绝对好的,都说不上,就看你这个应用。
这个东西这个是非常痛苦的过程,因为你根本不知道这个数据是是什么样子是吧,那除非你有先验啊,你知道这个数据是什么什么样的性质分布好,所以求你和函数啊,绝对没有唯一的方法啊,它是个根据你的这个这个应用。
你的你的意是什么,你的背景是什么,所以我们在求拟合函数的时候呢,一定要什么,要有领域背景啊,我们把它叫叫,就是你对这个这个这个问题本身的领域啊,这个能不能了解啊,比如说我们后面会讲到曲线曲面的意思。
但我知道它是一个二维平面的曲线,我知道它是个三维空间的一个曲面诶,那么这个曲面和曲线的这个性质呢,我就知道它的维是多少,这样的话我可以设计好这函数就有个他。
但如果是你对这个这个数据的性质意义一点都不清楚啊,假设是一个100万维的一个数据啊,这个数据到底是多少维,到底是从什么样的分布状态,你两眼你可以不知道,那这个事情做起来很难啊,这些人那怎么办。
那只能试啊啊,我又不正常的为数,那我只能是啊这个这个不断去调啊,这就是所谓的调参啊,就是就是说这个是蛮痛苦的过程,后面我会再展开好,那么这样局面就算三部曲啊,大家那就全清楚了。
找一个函数结合我在哪找什么叫最好的啊,然后呢去去去去求解它啊,求解它的话基本上都是啊这个梯度下降啊,因为如果他的这个有两阶的导数,那么可以用一些更高阶的方法,牛顿法啊,甚至这个其他方法啊。
好那么后面的话我们就会再继续展开好,那么顺理的方法论很简单啊,所以我就把它总结一下啊,那上节课呢,因为有些同学第一次接触可能啊还不一定基础,现在我再讲一遍呢,反正就非常清楚了啊,后面我会越讲越快啊。
就是因为照顾到一些啊,这这个可能背景不一定是非常啊这个相关的一些一些一些学员,所以我还是今天再过一遍好,首先你要你要找一个规律函数啊,那么你首先要告诉我在哪找,在哪找函数,有这个这个这个千千万是吧。
那么你总得限定我我一个范围,或者叫我一个形式啊,一般呢我们就会把一个函数就变成了一些系数的求解,这系统什么呢,是一些基函数所章程的一个线性空间,那么这样的话我对这个系数求到了这个函数就求到了啊。
当然这个函数这些函数好不好,你造成的空间好不好,这是另外一个问题啊,这个大家也要也要考虑,假设说诶我这个空间啊,我只有呃线性函数的表达,那么你这个空间是不是很小,你根本没法表达非常复杂的函数。
也就是说它啊这个这个这个函数结合啊,只是我所有的函数可能性的一分就一点点的这个这个这个几集,那么你这个空间就不够大,就不能去做非常复杂的现象或者规律的求解是吧,所以人们也会仔细想。
我这个战略空间这个能不能尽可能大啊,那个因为你你就大概率能找到我,我要的或者数据集所表现的这个规律,否则的话呢你就概率很小,甚至是一个非常差的一个函数啊,所以这里面这个g函数组怎么选择。
今天我们要把它搞明白好,第二个就怎么找啊,就是不是找哪个他哪个就是你要定一个目标函数是吧,这诺贝函数是最小零点买是一个啊,这个目标函数很多,变函数呢第一个项叫误差项。
就是它离我的这个xi yi这个点的靠近程度,你必须要保证,因为这个函数这个点是我从这个这个采样过来的,所以这个叫误差项,这个也叫data tern啊,就是叫误啊,数据误差项,那么往往呢我们上节课也讲了。
就是往往这个还不够,为什么呢,因为因为如果碰到一些欠拟合的现象,这个无邪有无穷多,那怎么办呢,我们还要对这个这个系数往往是对对这个系数啊,实际上对系数加加约束,就相当于对函数加一加约束是吧。
那么对系数啊,这个比如说那个啊,那你回归对它的按摩加居处那个吸收优化,对它的这个临摹加约束,当然你说我对f本身加约束行不行,可以啊,比如说我我希望f的这个两阶导数的平方五啊,这个也不能太大。
你就把它当做正直项放上去也是ok的,那个什么呢,因为你含数的2000导数的平方,你的一个积分在这个区域积分数量的这个函数的一个光滑性,它的两阶导数什么是取率,就是它它不会发生很大的震荡。
不会像蛇一样的游刃,有游刃有趣啊,这也是可以经常作为一个政策下,还有啊我可以把f这这这个弧长啊,这这个弧长啊作为一个啊这这个限制,我希望它这个弧长尽量的紧啊,弧长解什么呢,就是它的7度的积分啊。
尽量的小啊,这注意经常看到这个lv模型啊,这个这个也叫做拖拽感选tv啊,当然你说我我能不能提出一些统计的规划的一些模型去描述,f当然也可以了啊,所以这里面就有很多很多东西啊。
一大部分研究工作者在这里面去去去定义这个model啊,好那么有了以后的话,很多函数呢如果是一个呃呃平方的这种形式,那非常的好解,一求导马上就线性方程就好了,就是有没有第一个作业所获的。
但是往往那个那个那个那个屋面函数非常复杂,飞出非线性,那就这个优化就比较难,所以在我们这里呢我们用的形式都比较简单,和平方的误差,正则项呢这个也也是平方的,所以呢一求导就变成一个方方程组,方程组。
如果那个你是确定的啊,你要去加加约束,因为因为如果你不加约束的话呢,这个这个解释可能随机的,或者是这个无穷多个解是吧,我们学过现在估计知道如果变量数小于方程啊,大于方程组织做出它的那个解空间就是无穷。
并且它的这个这个这个无无穷,这个尾数是等于这个啊,总之n减去这个这个啊西部矩阵的秩是劣质,那这样的话呢就就可以调整它为数,那我们就在这个无穷空间里面再去找一个,这时候呢你就要命了。
用到这些政策下去限制住,在里面找一个最稀疏的解,这里面找一个按摩最小的解等等,这样的话你就可以让你的这个这个这个系统啊,能够得到一个合理的解啊,所以这是整整个过程啊。
那个上这就是上周我们讲了一个大致的东西好,那下面我们就把一些细节把它再重重新重新理一遍啊,那么好,我假设要有有一些这样点啊,就是a b c i和yi这样点,那么我要去用n次多项式去拟合。
怎么样把这个把把这个条件带带进去,然后就这样得到了,欢迎技术的啊,这个n加一乘n加一,这样有cd一个一个一个系统,那么那么这个系统这个系统矩阵是呃能够证明啊,在这个问题里面能够证明它是会退化的。
放过取证,在我们大一的时候,很多功课的,并且行列值啊,这方程式方程组有一点,那么你这个g函数不一样,法律只不只不过这个系数不一样啊,这个系数不一样,但是呢都不能证明它是行业次数为非零啊。
这个单元我们就学过了好,那么在数学上还有一个技巧,就是说量冲的比较比较麻烦,每次都要去求解方程组比较麻烦,他们呢能不能就会想到诶,如果你x0 y0 我我能不能有一种方法。
我是预先求出一些这样子这样的所谓的啊那个函数,这样的话呢我只要y来了,y变了啊,这些变了,那么我能不能预先求出来,这样的话呢,你y在变的时候呢,我的函数一下子就这样就这样表达出来了。
就不用去再去求解方程组啊,这个是可能的啊,因为这些这些性质你可以看到每个l0 x是在什么,是在这当前点等于一啊,我自己画一下啊,假设x0 x1 x2 ,那么那么这个这个l0 x呢只在这1。
40在在别的别的点呢,就啊这是一在别的点是零,那么这个函数在这个点是一,在别的点全是零,那同同理,这样的呢,这个函数就这些所谓的所谓的预先求解出的函数就有个性质,只在这一点为一,其他为零。
他们在这一点为一,加为零,这样的话呢一组合就刚好就满足差值性质,那么那么这些函数的求解呢又化成了刚才这个限制用什么,这函数在x0 等于一,你去求解的方程组就行了,所以这些呢是可以预先求解出来,放到这里。
然后呢我数据来了,我就可以不断一组合就出来了啊,这是为这是一些小的技巧好啊,当然这这个这个这个这些系这个函数怎么求啊,求解这就是我们大一学的那个拉格朗日差值啊,这个拉的话我就我就哎把它写在这里啊。
这个好,那么还有一两个技巧呢,就是比较比较比较这个啊需要偷懒哦,就是我不需要每次都去求解方程组,怎么好,那我想你既然是求一个做相似,那当时去你和我的数据是吧,那么如果我能得到一个互相识跟你要的多相似。
在零阶一阶二阶导数不一样,基本上就可以证明他们两个样子是一样的,所以就用这种插上方法去去定定啊,这是n阶叉叉k线商,这是一阶差商,然后呢用用这种擦伤跟对这些器具组为版就出来了啊。
这就是我们这个这个数字分析里面学的叫牛顿插值多项式,这些呢都是人文啊,我不需要每次都去求那个范德蒙啊,因为如果你把它当一个问题,就是这个换换什么行列式,每次都要去求解这样这样一个啊这个这个这个方程组啊。
那这样的话呢我可以预算看这个是预算出l0 到l m用的时候呢,就主为把这里我也预预算出这个这个这些差分,那么他们有了以后,然后我就直接带进去就可以得到这样一个函数,不需要去求方程组。
但是呢他天下肯定是天下是没有免费的午餐,你肯定是要前面啊做一些预预算,预计算预存储啊,这个用起来更快,所以啊这个是算法,大家做做做计算机的做清楚啊,在计算机里面算盘和空间啊,时间和空间永远是矛盾是吧。
你如果存的多,你到到时候算的时候就快啊,或者是你你存的少,你没存什么东西线算,那你算的时间要开下来就大,你算的慢啊,这个东西呢就是就是拿空间来换时间啊,如果有空间赚不多,这是还是合理的,好好在这是差值。
有什么问题啊,我再过一遍,这个这个算是所有的一个问题都有这个问题啊,所以这是通用的啊,不是不想只差值存在的问题,你也可以把这个理解成上存在问题,到一就学,这是稠密的啊,刚才那个范什么行列式是从立的。
他没有它,它处处元素都非ing啊,不像有些矩阵啊,虽然很大,但是呢它非零元素很少,大部分证明那个叫西初学制好,吸收取证的方程求求解是有非常好的迭代方法啊,这个呃很快啊,这个i跟库里面有好多这种啊。
这是一个非常有名的数学库,我建议大家都要去去学会用它啊,里面有解方程组啊,你接下来用就行了啊,没必要自己写,因为自己写的话还写不过这些这些库,因为这库经过大量的验证啊,里面的效率啊,好我们回来好。
那么这个参数就是矩阵处理就怎么就慢,因为新取证求解会有很好的抵达方,数量很快,第二个呢它可能是病态啊,那什么叫病态病态就是他求你不好求,我,这里举个例子啊,就是说这是一个非常简单的一个2x2的。
有两两个变量啊,就这个系数这样啊,你可以求出它的它的解为一和一带进去,大家验证出来好,但是我把这个一稍微做个脑洞,假设你由于呃计算精度或者采样之后,这个值啊就一点点就是在-3次方的误差。
你看这两个方程方程组是一样的对吧,好微不差,然后呢你求解出来的话,减呢完全变了,跟跟跟这个一和111是完全不一样的对吧,所以一点也不差,脑洞就带来数数字的那个解的非常大的一个艺术变动好。
那我如果我对系数做一个片片跟啊,这些都都都没有变,只有这个便利一下啊,从0。333变到0。334,那么我们看一下这个点又变成一样,也就是说我对无论是对这个系数矩阵。
还是对右右边这个这个项去做一些小脑洞对解啊,对影响是非常大,就是本来你说这个这个这个是个连续的一个系统,你你你这个系数老兵一点点应该对解,也是应该要要老公一点点是吧,但是呢这个这个这个变化为什么放大呢。
说明这个呢说明这个系统啊在在在这个地方的导数非常大,它上升的很快,所以你一点点脑洞呢它变很大,那么这种矩阵呢这种性质呢就叫做病态啊,变态数据上是用什么来刻画呢,就是用用一个这个这个这个条件数来刻画。
就是这个矩阵呢这两个他真的值啊啊这个相差非常非常大啊,这个这个全身大就表示什么呢,就表示呃呃上次用那个这个矩阵的啊棋子来描述可能会更好一点,其实就相当于这个矩阵它的一个各个方向的比例。
如果他嗯呃最大智能值跟最小性能值比较大的,表示什么,它有个位数就丢丢掉了,它什么它是有好多相关性,就是线性相关性相关,是不是这个系统就变成了啊,这个有无穷多个解,因为它的这个这个解的可能性很大。
所以说你点脑洞,它可能就跳到另外一个这个这个空间的减去了啊,所以在数值分析里面,我们要控制住这个啊这个啊汽车举重的条件是他如果一般大,这个系统就不稳定哦,你你你你如果不去关心的话。
傻乎乎的去去去去去去求,把这个解当成你现在的解,往往这个可能会造成很大的问题啊,所以呢在做一些求解的时候呢,上这些东西都是非常重要啊,不能够啊,这个这个啥也不管,就是做好好。
那么这个多元子差值为一个变态,为什么呢,就算是这里有个原因,我解释一下,可以证明啊,我记得不不是数学课,所以我就证明这个饭怎么行,行列式的条件数啊,随着这个个数增长,它是指数型增长。
那从小指数就是长这个样子非常快,就是这个点就是差值点越多,就是差值点越多,意味着什么,意味着这个多项式的系数越大,那么如果这个这个越大,它就越容易这个从这个指数型就这个条件数越差。
这就是为什么指数如果你分开始的这个指数用的很高,你去做差值的话,就容易变态变态怎么体现出来,就是混合啊,你跟就得到多少个去,他他很他很他那个很熟悉的一种现象啊,好这就是它的原因。
所以你们出现在昨天过程中,我也看到你的报告里面也写了啊,这个这里面都都体现了一些这个啊反映了一些问题啊,这个我听一天稍微这样比较定性的描述啊,如果要定量描述的话,你们要去数学书去看一看啊。
里面有严格的推导和证明啊,我们只讲原理啊,照顾到更大多数的学员好好,那么我们再看看这个幂函数为什么不好啊,因为因为你们这个经济作业里面发现这个次数一高就容易过于和,那一对吧,这个是一啊,这是x这是x吗。
你看它怎么它这个这个这个这个这个内涵差别啊,这个随着次数而减少,但是呢增长非常快,你看如果是x的一个十次方,它的系统上升非常快的一个函数啊,所以这个函数呢上升数值是不好的啊,然后那么呃一般的话。
那这个呢我就讲一讲经验啊,这个我们就不去展开,就说这个函数啊啊要什么,要要要有有有正有负去抵消,那么这样的话呢,这个函数加起来呢就不会,总之总之是增长总值大化,这个总总的函数就全全是很大的值。
就就很容易抵消掉,那大家如果在初中应该高中嘛,就就知道怎么去求一个多项式是最好的,比如说你去求一个a0 x啊,a i x i西格玛啊,那么如果x很小的话,而一旦次数很高。
这个这个数值在现实里面基本就就被被丢掉了对吧,因为这个次数一高,如果很小的值是0。1,这个i s 10基本上就是啊这个-10次方,在计算机里面可能就连基数都没有了是吧。
所以我们在初中应该我记得是我在初中竞赛的时候学过对吧,不是求这个求职要用什么,要用请求招法对吧,我们是a0 加上a一啊,怎么a2 加上怎么这造就一加x那就这样先先这个层,然后再乘系数,再乘x。
然后再乘系数,再这样就把它这样,至少可以把一些这个精度给它控制住啊,所以所以多项式幂函数实际上是不好的方法,那么那怎么办呢,我们这学上有好多要有正交对象式电话呢,你看这个是这个蓝色的,就一阵一副啊。
就是就这样站一个金子是吧,那么那么这个浅蓝的有有有有两个震荡啊,其他的有三个震荡啊,那么这样的话呢一正交正确的话表示这些函数的内积啊,这个这个是等于零,为什么它们相乘相加就能够相互抵消啊。
那么就可以用那些啊,这个这个这个就这样性质就比较好,那么那么我们在大一,我记得大一学过啊,这是怎么一个多项式机或者是一般的一个基,怎么去获得它的正交基啊,这个大家提一提啊,大家回忆一下。
我觉得你就是大一里面学的那种题都是有用的啊,就是就是就是我也比较着急,就但是那些那些老师没有讲出这个这些这些为什么要去做这些话啊,它的原理是什么啊,就是如果能带着这个应用的问题去学大。
我相信很多同学大一的这个这个对数学的炒面没有那么厉害啊,甚至可能会热爱啊,所以这里面呢就是呃我们这里讲的所有东西都是新的,都是原来的东西啊,我们只不过啊这个这个呃我也不是知识创造者啊。
我只是支持的方运工,然后把那些大一的知识把它翻过来,用到实际问题中,告诉大家怎么去去求解,好好那么这个差值呢大家就就就就这个现象也看到了啊,这个就这个叫如何现象,就是不稳定的这个这个现象啊。
这个你可以看到这里面同学们在左眼中也有好多这样类似的图啊,你可以看到这个啊,我看看啊,在这里面这些人就是次数红的,你看绿的,蓝色的还好,绿色的就抖动了,红的就抖得更厉害是吧,所以次数越高。
这个一些数据九个九个数据啊,这虽然是误差等于零,这个函数是不好的啊,那么这个误差在这误差看起来也不大,但是呢这个这个抖动非常非常大啊,那么结论啊,这个多项式插值不稳定啊,因为这个这个速度高。
因为这个这个基函数不好,这个呃在数据上只要是多项式空间都能够拟合所有函数是吧,开始展开持续函数就用wechini保证了,但是呢这种函数中间的g函数不是很好求,它不稳定,而且这个导致这种混合现象啊。
那么有没有更好的基函数呢是吧,所以人们也会去想那个如果我也不想使,我仍然不用这种技术天函数,大家看到的都是这种增长的是吧,越增长越快,那有没有可能啊,这个这个稍微有抖动的这个基函数构成。
也同样能够表达这个多项水平空间呢有啊,就是这种温室暖机函数,好像那模式想介绍中呢,我们这个我先卖关子啊,都放到后面去讲,那么差值讲完了做笔记啊,这个内差距有那个问题是吧,差值虽然无法等于在数据呢啊。
如果有噪声或者来了就不好是吧,并且这个容易产生如何现象,那么怎么样,我我就退一步,我呢只要去逼着你这个函数啊,这次呢我不是有点就经过,那为什么这些点可能会有噪声,你看到这些点看起来是像线性关系。
虽然他还是离这个直线是有一定距离的对吧,所以啊做法是一样的啊,我找一个找一个函数结合奇函数啊,去去在这个章程的这个建筑空间去找一个函数去最佳的距离啊。
这个逼近毕竟的话一般都用这个啊这个函数所需函数的这个带进去,跟我目标值的一个平安符,因为这是平方和这个这个这个这个函数,注意啊,那么这个函数是谁的变量,就是那些那些210和兰姆达n的变量。
就是那个n的系数变量,就是那个g函数系数变量,所以这个问题就变成了表达的是l是一是这些变量啊,那么你要对它求极小值,是不是对它求那个那个e求拉姆达e的偏导,等于是吧,每个每个变量都等于零。
那么这样的话呢就化成了南大营造南打人的一个方方的组,你进行记录好,那么这里就把它展展开来啊,那么具体我就不去自己写,稍微有一点点线性方在座的变压器知识就知道了,这个这个式子一求导就变成差了啊。
就呃就可以把它提成一个矩阵形式,那么这个这个系数呢就是反映了这个怎么去求兰达的一个呃,这个血精啊,防守吸毒矩阵好,那么这个求解大家一吹捧为推啊,所以这个这个目标函数变成一个二次型,也变成一个线性方程。
这方面这里也涉及到一个a的一个幂的求解,所以也同样存在着这样一些这个稳定性问题啊等等,好,那么呃这个毕竟我就我就回忆一下啊,好那我们再进一步把上周出现的或者你们昨夜中出现的一些问题。
我们在一步步探讨一下,分解化好,都是我刚那个上节课也讲一讲,就说是为什么说诶还可以,大家喜欢用公钥匙,因为有一个非常强的一个定义叫wegame啊,就是说你无论你给我一个什么样的函数,这个函数是未知的。
我总能找到一个n次n次多项式函数,对你啊靠得足够近,一个数值内一小啊,这那小的一个误差就是九-6-8-6啊,你给我一个n p,你要多小,我就可以总之找到一个p n,只不过这个n次数可能很高。
你存在一个n啊啊这就是数学的思维,就是我告诉你存在啊,没有存在对吧,然后呢呃怎么找,我不管,反正它存在存在一个多小时,毕竟他那么这个东西呢用对线的语言来讲什么意思啊,就是可以很容易相当于是函数空间。
这个这个这个这个这个非常非常多,但是呢我里面不认识封面在这里面啊,处处都在,你问fx在哪里,我总有附近有一个多项式存在,电影是靠的比较近好我们举个例子,比如说实数组x是吧啊,属于实时数,无论你给我。
你给我一个什么系数啊,这个实数我是不是总存在一个有理数靠在b一进,对吧好,那表示什么呢,表示有理数啊,在这实数上面处处都有啊,你你不管这个这个实数在哪里,无理数在哪里,它总存在一个有理数。
要多近就多近是吧,这就叫做重秘啊,也叫完备性,好重秘,那么它处处都有同样公式函数在整个函数空间它是错误的,它无处不在啊,只不过呢就是次数可能很高而已,当然我这里是限定的一个一个区间了。
一般我们讨论问题都会把它规划到零一啊,这个a b和零一就差一个系数好,他就说这样子空间,为什么大家还是觉得还不错,因为他表达能力很强,因为什么呢,你无论x在哪里,我总能有存在一个不是那么靠靠近一。
那么只要我这个n足够大,用这个这个这个空间去找一个函数呢,还可以,因为他他能至少能够有概率表达到我要的东西是吧,只不过这n子多大,我不知道,那么怎么就变成实际过程中呢,要要自己去找。
要去调n是100不够啊,1000 1000不够1万是吧,但是呢不可能这样搞,因为这样这样搞的话就就就贵一点啊,就是因为次数太高,好证明不讲啊,这个我只只是告诉大家那个那个那个叫做博士坦的人啊。
你和李大数学家啊,这个这个又通过各种性证明什么呢,就是那个一个函数,这不知道,但是我可以构造出一个温暖中式,然后呢告诉你这个在上在这个任务记录下面呢,就可以避免它那么多次呢,最开始长的是啥样呢。
长的这个这个样子啊,就是啊这里都是01啊,01好是x减一减x n减减a就是这个这个次数啊,这里呢截从零到n有n加一个计算值,这个呢是一个二次项,就是那个啊就是叫着数啊。
就是cn j我们已经叫这个符号是c n j那现在是变成了这种形式,就是那个元素里面拿杰克的组合数啊,好这样我们可以看到这是一些简单的啊,这是一次的,是这样,有黑的,绿的,黄的跟红的,这是这是30。
这是二次三次,这样那四次是你可以看到它是最函数啊,这个阶函数同样是四次,这这个应该是这是50多项式啊,这一个一个积空间跟那个x1 x的平方,x1 x方x5 方这个图画的不一样。
但它仍然是一个这个线性无关,并且是啊这个组成负相纸机空间,安全机空间的一个内阻机啊,后面我们啊可能会花更多时间来讲啊,我这里一再而过啊,这是什么呢,就是同样一个函数空间,我可以用不同的机。
那么结合肌之间的变换就是矩阵,所以所以举证的本质是在不同的基函数之间做变化啊,呃呃我不是特别赞成,然后里面这个东西叫矩阵,然后呢举证了很多性质啊,搞搞半天不知道他他有啥用,那举证实上非常有用的。
举证就是什么,表示信息中间不同基函数的线性变换的,一个一个一个一个变换的一个描述啊,要用这样一个理解好,我后面有时间我再展开一点啊,反正我就扯扯到这里,我就讲一下好,那么用用上专项式去做ppt。
为什么好,事实上在我们这个啊,我们这个学科啊,就像句子,我们这个课啊啊有一门课叫做计算基础和几何设计,这些地图啊专门在讲这个多项式的性质啊,那么这个性质呢我稍微稍微介绍一下啊。
这个展开一下这个这个这个g函数啊,你可以看到刚才这个图啊,它呢呃有正信正信什么,就每个价值大一点啊,这没问题,还是权限全体的权限就是这个基函数1n一直看的是j n哈。
x始终等于如果固定的x属于0~1的任何一点,所以奇函数的累加都是一,我们这个图哪里啊啊这里固定颜色是一个奇函数,我这里弄了一个值,那么这些函数在正常值啊,这些点就值加起来等于一,好又大于零。
又等于这是什么,这就是全啊,就是加起来的全是吧,如果n个数加加起来等于一,又不大于零,这是不是一个线性组合,就是七个全,所以它具有作为权的性质,应该有权利限制这种基函数非常好,那么它就有突破性。
它的计算就很稳定,有猪八戒又有非常缩缩减又可以递归啊,还有细分,就是后面我们要讲的那个北热曲线的一个所属性的多,它这里都有啊,因为他是关心海这样一个一个表达好,所以这个基函数呢就很很很好的性质。
并且你可以可以看到这里用了500接的这个多项式,这个都没有发生融合现象啊,因为它这个基函数呢相互抵消啊,正负可以看这个图,这才是五次呃,呃这个这个这个这个词时20次都是这样啊。
这个键盘的整体它是长长长长长成这个样子啊,我跟这个样子类似,这个是是这样的,这是一啊这个那么第二个呢就这样翘一下啊,你慢慢慢慢翘啊,就像在一个波一样的,到到到到最后一个函数是这样啊。
无论多少次他都是这样战争的形状,并且是左右对称啊,这是但是它们是一个另外一组基函数啊,当然在我们这个学科里面,我们还还还还有不同的学者构造了不同的很多种减速啊,啊还有这个都是一些人民的好国产西北人啊。
所以呃在呃期间就是专门研究这东西的,所以对他非常熟啊,就是各种各样的函数,我觉得只要你觉得这个函数作为一个函数,它有一些性质啊,你要把它证出来,并且它有一些的一些曲线设计或者函数的一些特征啊。
这个性质那你就可以有可能是一个在建函数,那你可以画个论文好,早年的很多文章都有这样一个特质,好那个关于函数呢,我这里也稍微讲一下,这个有两个观点,这个观点呢嗯从不同观点去考虑啊。
你最后面得知道曲线怎么看好,各位不一样啊,那么这个观点呢我这里稍微讲一讲啊,好那么这些蓝色点是从一个采样点出来的啊,假设是一个函数上采样的,你把这个蓝色点一次,这样线性连连起来,就是这个蓝色蓝色。
不然这个就不能行对吧好,那么那么以他们这个这个值呢,假设这个是我在这个di点,这个坐标是m仔好,那么这个函数在上面取值就是这个点,如果我用这个这个奔海机去组合,它就得到一个函数。
就是个红色的啊啊就就这个红色的这个这个这个曲线好,那么这个叫做不反对项式,什么意思呢,我给这个函数这个不断就这样组合,然后你就得到一个曲线好,这个可以被证明当n足够大,如果在一个函数上面采样就足够幂。
那你构成这个红色函数的是什么,当n组到时p n fx一致收敛到f x收敛啊,一直是表示处处都差不多的情况啊,就一次收敛好,那么缩减到这个f x这个红色会越来越靠近函数。
所以呢你用这个函数呢就有保证a你是毕竟你要的东西啊啊,那么这里呢就两个观点,一个是这是一个函数值,表示这个点的y y值对吧,这y字号,那么这个可以把它看似是一系列的点啊,y f n i c k集合好。
我用这个系数去做了,这个就是一个代数观点,哎我这里给给那些函数值,我用b n x,因为它具有权限加起来等于一大于零,主要它是对它的一个加权,也就得到其中的一个点啊,这是概括观点什么呢,结构是什么。
我我把这个解这个函数及函数看成是一些函数,从这个系数去组合这些这些函数,那就变成另外一个新的函数了啊,那么这两个观点呢在后面做设计的时候去控制顶点,比如我我我这个点调一调调到这里来。
那么这个函数呢就就就会变变成这个样子啊,这样的话就可以用一些交互手段去做一些这种曲线的设计啊,这就是这个建模中啊,这种交互的这个对指导曲线的一些这个啊来源啊,这讲到这里。
我们再把这个呃呃上周也有同学关心的叫rbf阿b f呢,实际上是是在高维中教育比较多一点,那么在低位中,在一维中我们把它叫做高斯函数啊,高大家都很熟啊,小孩子就是就这样一个东西啊,这是ax一个函数。
这个六呢就叫方差,那不叫君子啊,就是市场的期望值,那个西格玛呢是叫方差,这个函数呢涨涨起来啊,我们一般啊这个比较容易记的话,把它叫做帽子函数,像一个帽子一样是吧,处处都不为零,在很远的地方。
那如果对很远地方我们考虑这个函数g0 逗号1x,这这就是一个规划了啊,就是均值在在这个零啊,咱们这样一个沿着坐标轴对称的一个函数啊,这就是t0 ,如果这个六和七孔嘛不会零,那个不为零,为数不为一的话。
他就什么就就是六不为零的话,西格玛不为一呢,就是这个胖瘦,所以一个是决定它的位置,一定是决定它的宽度,就是胖瘦是宽还是错,你可以看到这里几个值蓝色的话是6=0,表示这个y轴是在这。
那么西格玛等于零二比较小,那么西格玛等于一就变成了红色,就变得比较胖,你们看到啊,如果这里有个系数呢,他把他规划了,这里还少了一个星马,星马就是为了规划啊,所以为什么他有高原低。
这是这是让他下这个面积积分等于零啊,这等于一就是变成一个概率函数啊,先不先管这个啊,你不要去管概率好,这样一个函数呢啊一个new他在哪里,你看这个绿色的内容呢就等于-2了,就相当于往左偏了,变成0。5。
它稍微胖一点点,但没有这个红字的胖啊,因为红字是一啊,所以说这样一个函数有两个参数,这这这这两个参数一个表示它快,它在哪,就是没有表示君子,还有一个呢,他不胖啊,会多送很瘦呢。
哎你这个就就就有如果姓马很小,等于0。01,这个函数涨起来就像脉冲一样的,很尖很尖锐的啊,因为这个西西格玛很小对吧,所以西格玛不能太小,尽管射程0。01啊,就是脉冲量的这个就就一个值凸出来了啊,很高啊。
那么好,那么这你这里无人性啊和没有,你就没有取什么值构造的这个函数,就是这里出现的四个函数都是线性无关,自然是线性无关,是不是就可以装成一个空间组合,语法也可以表达很多函数对吧。
所以呢这个所谓的rbf差值就是这个道理,好实施实施者怎么做呢啊,有不同做法,我这里讲一个比较通用的做法,就是说我给给了一些点,我就在这里面放放放一个呃这个基函数,这里放个基函数,在这里放一个基函数。
在这里放个基函数啊,那么把这个阶函数的主谓吧,就是变变成将就是把这些现象中的左一把定义为我的fx,既然这样的话呢,你再对它求导,所以x这个系数b0 在放这里只是让它有上下移动啊。
那么这样的话就组合出一个所谓的这个这个高速线性函数啊,啊在有些地方也叫gmm,就高斯混合模型里面也有这个东西,好好,那么你去求解的话,同样求解的方法跟刚才一样,求那个球,然后你就可以得到bi的一个方程。
这时候有的时候呢b b0 会有个多余的,那这时候呢你b0 可以给他一些鲜艳,有些地方在这里加一个二次的占占这个项啊,比如说对系数加起来挺低啊,约束啊,只是为了让他规划好,那么rbf拟核就是这样。
如果在高维中啊,你这些点啊也可以接就放,你就不是这个函数是一个二维函数,就是一个草帽一样的话,就是把这个呀这个函数进行一个旋转,就变成一个二维的啊,三维一样好,这里是同学们作业中出现的东西啊。
这里就因为在上一周我们还没讲这个东西,大家都大家都出现这个情况,大家不知道是什么原因对吧,现在原因就清楚了嘛是吧,因为你这个很小,每个g函数都都都是都是尖锐的对吧,虽然它经它差值了,但是这个函数不够好。
因为每个基函数都很瘦啊,用用这些数字来,毕竟这些也只能长成这个样子是吧,这个这个还不够丰满好,尽管等于十来胖一点,但是这个好一点是吧,所以可以看到变化,这些现象呢大家都是可以这个这个这个现在动了哈啊。
唉这可是另外一同学的,也也是可能周三还是周一啊的时候,我们把他找来,就是这次做的看起来做对了,这个这个这个西格玛啊,这个设子不够好,太小了啊,好了,这里就有一个困惑,哎这起码都去多少只跑啊。
也是频频经验对吧,就是你你如果希望这个函数稍微胖一点,那么尽管取大一点是吧,那怎么办,有没有可能让这个西格玛和滤网也变成一个,就是这时候呢就就很智能了嘛是吧。
因为又和西格玛呢也做了一个变量好我这里写成这个样子,这两个变变成参数变量还是x这个函数如何,西格玛在变,这个函数在变,如果我能把任何方差,把任何西格玛也能这懂得去求出来,那那太好了。
那那就我就不用不用什么i去试,因为在这些方法里面没有核系统嘛,被射死了,我们又放在哪里,就是在数数据点上,方差怎么样,我我方差,当然你说哪个取的不一样,那个你怎么知道去去哪些不一样呢。
所以没办法去预先知道,如果你能够去有个方法优化出没有,那这些函数啊不一定放这有可能发这更更好对,那么是不是有有更好的这样一个解呢,啊这个回答是好。
那么我们把这个把这个问题来这个这个formulate把它来示范好好,那我们来看一下,那就是我们从另外一个角度来看这个引号函数好,我们来看一下啊,好现在呢我们想诶我米号函数啊。
这个把六核西格玛把它限制住了,挺不好的,你们怎么呢,那你你什么理由说新冠等于实好,我说我姓马等于1号是吧,这个这个不同的数据都有不同的特写,但是我的数据是啥类型。
你能够很智能的很自动的告诉我这个新号码是什么,是最好,这样的话就非常正常是吧,所以我们这样我们来做个变形啊,那我把这个西格玛呢把它放进去就变成这个形式,这个形式呢那么这个形式是表达成了一个1t01 。
就是那个标准的高斯是吧,然后里面只有过变量呢是一个a加b的形式,这个a呢是在这里,是这里写,写错了,仔细1%是负的,七个6%,是不是这些词汇,也就是说你任何一个这个一般的函数都是由我这样一个g函数。
通过一个变量的一个这样的变换给它生成的啊,就是让它沿着x轴是平移,a呢是一个伸缩,伸缩因子,就是性能分之一,也就是说我通过我一个函数不同的变换变胖变瘦,左移右移,是不是可以产生出一系列的这个新的函数。
这些函数也可以通过它去组合,然后就组合出我要的一个目标函数啊,我这里讲慢一点啊,这里很重要,因为这个东西明写好了以后嗯,现在这10年大家很很很赶潮的一个东西,就就离就离也好了,好我以前是写成这个样子。
这个量词是直接把这个s没有写在这里是吧,我现在把它当做一个变量,为什么我这里面的变量呢跟西格玛,啊啊这个应该就叫交叉啊,无所谓哈,好那么变量的ai和bi就就是就是跟这个666。
跟这个吊塔这个这个这个相机那个相关的好,我通过一个一个函数对吧,通过左移右移变胖变瘦,但是这个a i b i啊,我都不知道我要有这种球好,我让他走,这线有关就可以装成一个空间,相信很多函数是吧。
那我就讲讲这个函数长的这个样子啊,这个函数就我要求的好,既然你定义好了这样一个空间,这个函数形式,你再去用刚才说的拟合也好,差值也好去求就行了,这样就是把这个ai bi也就西格玛和啊。
这个调查并没有就做成变量,这样的话呢我就可以同时去优化这个六跟这个这个这个点卡的方差好,这里就一个思想啊,你看那个最后一个函数,通过它的一个平移跟升缩变换就可以找到好的好的程度,什么意思呢。
我通过一个一个函数,就只不过这里是用高斯函数,是标准高斯,那么通过佛教规范化高三人数,通过它的平移啊变换啊,这个伸缩呀就可以装成很多函数,通过它组合也有很大的表达能力啊,至上啊可以告诉大家啊。
理论上数学上可以证明这个a和b足够多,这种形式的函数做个大a和b足够多,随机啊,它所产生的函数空间同样可以逼近只有函数什么什么电影,刚才说的不要强制定义定理,只是说关键是足够大,就足够次数高,它也可以。
毕竟所有数据函数没有这个性质啊,只要这个a i b i足够多,好像像素足够大啊,你可以看看,就相当于你这个函数无论长成啥样,我总可以在上面布局一些这种帽子函数为组合来啊。
这个这个这个这个逼近名字只是足够进的理解吗,所以说拿bf在计算数学里面是一个很大的领域,就是这个研究了很长时间的,因为它本身也有这样一个稠密性的,这样保证好嗯嗯,我们停一停啊,大家不知道诶。
我看不到您的表情啊,是是痛苦还是迷惑,还是在那微微笑啊,那个这个你嗯直播间里面很多同学还是听懂了啊啊妙啊啊啊,这个香不香啊,但是很香好,那大家继续,我们再把这个函数形式在再变一下,诶。
这个这个怎么怎么变成变成这个样子。
是不是。
我这里不知道是发生什么问题,好没有关系好,我们倒过来了,修建一下,我就还在继续啊,我可能也不,这个地方是ai,这是di,这个地方就是这个g01 ,这里都是g01 ,这是w e w w n w i。
这是w0 ,好,这样中国的一些变换组合就得到我的r b函数据和我有关系,由于它们就当成一个空间,我用这样一个函数形式去拟合,我好,那你可以我的数据啊,这个形式啊看成这样一个图,这个图大家应该都见过了啊。
就是网络网络什么呢,每个地方都是用同样的东西,都是一个机灵摇啊,基于零幺,就是那个那个那个高高三函数是吧,我把它看成一个二维,实际上就是一个极坐标概念,就是咱们这个认为还有个平移是吧。
同学里面文法平移也变成一维,就变成矩阵相乘啊,这就一个非常大的技巧,叫就叫叫叫叫提示坐标啊,啊你也可以把它叫做平移号x去乘上一个,再加上一乘上一个这个这个这个这个这个这个b一是不是a一加b好。
就把这个值呢把它带进去啊,这这两个呢就是这个这个和a1 b一跟这个x一将是点成一乘,以x加b一乘一就在这里,所以这里每根线上面有一个全a1 b e好,对这个这个dd来讲,就是a i b i是吧。
就是a i b i a i乘x加b i啊,就是这里把它带到这个好,同样a n b n好,这里加完以后呢,在同在一起做一个组合啊,这个这个我的目标函数y f x就出来了。
那么这里还有一个还有一个五零百零是什么,就是它的一个平移,没关系,因为到到这位说的时候,你再把它变成骑士来来看,你就变成这样一个形式试图啊,虽然这个这个里面字符有点乱啊,这没关系,我刚才已经讲清楚了。
你可以看到我把这些系数a i d i,我们改这个网络里面的这些线上的一些权,我这个函数刚才讲的,我用一个单独的函数经过平移,组合起来就等价于中间同样的一个函数。
只不过呢这a1 b1 a2 b2 都是什么,都是对这个做了一个线性的变化,这个变化呢你可以把它看作是个仿制变化啊,就做什么就是啊成线性加平移现象给你嘛,这个这个再再做做一个提示坐标。
就就变成一个这个这个这个这个矩阵乘法啊,好我这个函数实际上就是这样一个网络,这个网络呢哎这里就对上了,经网络的增添这些图片呢呃美其名曰叫激活函数啊,规范函数就叫做计划函数。
a一乘x加b一乘一下就把他纸给激活了,上激活就把它带进去啊,只不过它的语言角激活,实际上这里也没法激活,就是就是就是带进去再琢磨出来啊,这就这个把这个函数看着适合网络形式啊,大家就诶好慢慢慢来啊。
等一下我们大家看啊,那么这里叫借款函数,那么那么这些全啊,这里面每一个线上的全呢就叫做这个网络的啊,这个全系数也叫网络参数,好我们回忆一下,我们听讲到这里啊,从从上节课讲到现在,每天就两个小时好。
那么这个函数我们以前碰到什么困难,这个n不知道有多少是吧,这里就对应了这里的节点个数,一来到你这里多少个,我也不知道是不是要调这个网络的节点数啊,当然调了文化的变量是什么呢,就是这些网络参数啊。
所以这就是一个神经网络啊,只不过这个网络呢比较特殊,我用的激活函数呢是一个高斯函数而已啊,所以这个网络也叫做rbf网络,也是这个数学里面一个比较经典的网络,大家好,理解这个以后的话。
你再去理解神经网络是非常简单的哦,那么这个这些这些直播的怎么了,就是好,这个神经元叫什么,我一个输入,当然我这里输入全是一维的啊,就是一个实数,没关系,以后呢这里高一点点点可以嘛,只不过多出来嘛。
这不管它好好,一尾跟40数一个一,这里有两个圈啊,那除了这个激活这个激活函数,那出来就得到一个啊,这个这个y y这边如果有11元,两个三个给它组合,这里这里面也是一个对接上来就形成一个盘式。
所以一个神经网络是什么,就是一个函数,只不过你这计划函数我这里是用高斯用一个扣三次,你你用别的函数可不可以啊,只要你这个函数平移加上伸缩天线无关,都可以造成含空间啊。
只不你这个空间是不是能够处理在整个函数中间处理,那是这个函数的性质,所以我们去找那些函数啊,所以净化函数好,高配函数的话就叫rbf啊,我们这里是啊,上次是一种特殊的bp方式,就是指优化过程中。
因为这个优化呢不是很难啊,不是很容易啊,为什么呢,你想想啊,你要这个这个这个误差项要对ai di去做做导数,a i b i是不是出现在在在这个指数里面,它的导数就变成一个高度非线性飞出。
大家都知道数数学这么多年发展,大家觉得他很很厉害啊,不厉害啊,一旦碰到飞出线性的函数,我们数据上没辙,他是最好的值啊啊这个大家都清楚哈,我这里稍微补补一补这个知识啊啊我我画到这里。
那个函数我还我还挺意外的,因为那个来看啊,这个函数很复杂啊,我我你这个函数待会它就在那里,但是但是导致我我也能求,但是你要求他的权利极小值,结果就这个玛雅这个这个是很难求的啊,没办法,因为它是凸的。
什么叫凸的,这函数长长成这个样子啊,或者是这个样子to的,这个当然好找了,我我一个点一求导下下降下降下降走人是吧,出什么表示它稳定,就是就是另外一个初值,你你你直接带总能试问到这是吧,那这个就不不定了。
好如果游戏不好,只找到了这跌跌跌跌跌在只能找到找到这样一个极小极小的这个解,所以呢现在数学上也只能去保证找到到局部抵消减全局最优解,没任何办法能保证啊,除非你运气太好,或者说你这个问题太特殊。
知道你这个初值就在这里附附近,允许好就找到一个很好解啊,但是往往啊你力气啊那么好啊,所以说为什么这个全局极小,这个这个问题是很难做,只能做到局部极小,这个技巧大家也很清楚啊,你要注意啊。
也不是什么初值啊,一定要根据你的问题经验,初次选取极其重要啊,一般问题里面找到权益技巧确实很难,但是你找到一个不那么差的技巧还是有可能的,之后你要对这个问题要分析,要用很好的初值。
你不能了解一抹黑什么什么变量全变成呃,全用初始值为零去去做是吧,你这个字根本就就就就就是在那在那随机的去去找出资,找找他那个绩效值,这是不对的,一定要找这个问题本身的意义,有物理意义。
早没有物理意义所对应的数值,那是最好的啊,因为至少至少有道理啊,好吧好唉,这里我想一个,所以说这个rp我网络我用这个rbf这个函数解释什么叫神经网络好,同样神经网络也清吗,没有什么呃。
这个这个难它就是一个函数,只不过是用一个啊这个激活函数去章程,当然一个函数通过一些构造作用一个函数空间是吧,你可以看到这个函数我就我就不念了啊,这个这个软路是这几年用的比较多的啊,我这里稍微解释一下啊。
数学本质是在去做做运合,只不过他们在呃把它解释成什么类似于神经什么的抽象,我觉得那个是很不严谨的,哈,扎去去去吧,我有空间好,那么都是递增的,递增的话你可以看到它什么它一平米那个平民啊,伸缩啊。
它就消费抵消了,因为你大的地方我可能小,我小的地方很大啊,就有这样一个性质,所以他呢就就能够完备了啊,这就是啊这个叫万能啊,这个这个毕业证啊,就是我定义我定义的一个推广围墙。
只是证明了这个波散啊这个真实空间能,所以函数,那么这个这个这个这个这个这个定义呢,能证明他这个这种函数能够毕竟所有哈,所以说你网络只要节点中国多。
你网只要只要只要呃这个这个这个啊技术主要说我我就有很强的,毕竟能力是吧,你给我数据,我就可以来逼近你啊,当然我这里先提一下,知道后面还会可以再再展开是吧,如果是一个高位的。
就刚才我说的就是刚才有个图还画了一下,在这里出现了好多x x一到x m好,那那那那怎么组合呢,那组合也也挺简单,就是每个分量成型,这个是做这个是x1 x n跟一跟这个这个全函数b做点击是吧。
就这个层它这个存款加起来就做这样做一个反复变换,诶,我一个多,那那个周围的一个一个点,也可以通过一个这样单变量的函数去装成一个函数,因为呃我这里还是讲函数函数形式是吧,好,我一定要问。
如果y也多个怎么办,y多可不是这y1 y2 y3 ,每个y都是同样的结构吗,对对我们后面下课就会讲啊,对就作为跟这个这个这个这个这个叫什么向量值啊,这个理解非常简单好,你们不要去觉得很是吧。
只不过就是你要把它分解,那为什么我现在还是强调在讲函数,把函数搞明白了,都为只不过是变量多了,这个这个呃就是多变量啊,那么那么下量词只不过这个弯呢是变成y1 y2 y3 ,每个y呢都是一样的东西。
怎么做,y2 t怎么做是吧,然后呢y一和y2 怎么办呢,哎这个网络共享基函数共享全职回去啊,性质就可以一样了,你只要研究一维就行了嘛,所以没什么难的哈,没必要你自己操作麻烦。
万一你用多项式机y你用什么什么什么什么什么打蝙蝠机,你不制造麻烦吗,这什么共享一下来激发激发能量,技术不一样而已是吧,所以很容易啊,所以大家不要慌啊,不要着急啊,我们先把函数形式把它讲明白。
好好这个多元我就稍微稍微啊这个多变量比较多元啊,那它值不值很多维的话叫叫向量值,就是只有很多维数啊,啊这个下周我会把它再把它剖析啊,那个如果你那个那个那个那个那个这方面你没理解。
那个后面理解起来怎么一上矩阵张量就蒙了是吧,矩阵和张量就是那些东西的一个表达方式去做,就是用来表达的啊,它它不是贫富产生的一个什么n乘n的一个东西,每个东西叫叫元素啊,里面有什么什么什么什么什么裂变换。
糖变换啊,这样讲应该应该从轻情变化来角度上讲,好吧好那么等等,那么你不变量的话就是函数是表达这个样子啊,你这这也是函数哦,啊只不过是这里有很多变量啊,那么我这里提一下那个呃,下节课可能还会展开好。
那么不成啥意思,不成就是生嘛是吧,生好这个这个组合组合成一层,这是不是最最层我就可以给它给它变成一个积极形式,就可以给他接,这时候他就是一个新的维数的一个细心的这个这个词嘛,那我也可以接啊。
那么这个又是网络,可能又可以网络键啊,网络你这里接100l就是对100 100分的网络,那么从我本质上来讲,这就是一个啊,这就是个函数,这个函数只不过函数怎么相互的符合了吗。
复合你没有把它表达成这个样子,就表达了矩阵,所以它整个整个过过程已经基本上全是一个线性变换啊,就是啊就是那个呃这个这个这个现金这个啊这个相乘啊,所以这个函数啊也可以自己去选啊,基函数你每一层选的不一样。
可不可以呀,当然可以的,但不利于你去优化呀对吧,所以一般人们就所有就是用一个啊,然后呢这个这个这个有些为了减少这个规模,因为规模就是这些啊,这这这些网络中的这个权啊,这你想想这个圈这里有100个。
这有100个111交叉乘100x100就1万个变量了,就是指一层的这个节点个数啊,这个呃就这个变量一下的膨胀,变量膨胀什么意思呢,它的就不告诉你以后能力就比较强,所以说用用那个深的就会比这个宽的啊。
是要来的好一点好好,它本上你把它理解成一个你把函数的这些东西去理解,他的一些这个这个这个这个方式就很容易理解啊,那么为什么要要要那个去调参,就是调这些函数空间啊,结构就是空间啊。
那里面的这个参数个数就是它的自由度啊,那么为了减少自由度,要对这些这些这些参数进行什么共享啊。
啊这样就会减少这个变量好,甚至本身的函数,那么里面有大量的参数参数,就是这这里面的全我给了一些变量啊,他给了一些采样点,你要联系求这个西西塔,这个说起来以后,你这个网络就出来了,玩出来了就函数出来了。
就你和函毕竟目标函数是不是跟我们一样。
三部曲,那么那个那个为什么他work啊,就是我刚才讲了是吧,你只要只要足够深好不就足够多,就是这个足够多,然后呢这个变量值啊也也也这个足够多以后,那么这个可以毕竟所有函数跟那个west x电源一样的好。
那么我就讲一讲好,这样我们这节课多来,请问你会碰到什么问题啊,啊这个数怎么选不好选吧啊误误误差怎么定啊,这个这个也靠经验嘛是吧,并没句话怎么办,也没靠自己啊,这个这个去去建模啊,如果是非线性的话。
就不好优化,你你老老实实啊,要有一些这种方法去去搞啊,所以同样问题,这个就在这里啊,挑战啊,听明白了吗,所以所以所以呢哎哎呀这个反正这个本质量也好,以后你去再协调。
你就知道感觉了啊啊那么呃大家也不也不用去自己去实现这种优化器,像神经网络啊,这基本基本learning市场很乱,就在说句话,只不优化了,没办法,就是bp叫什么叫梯度下降法。
只不过呢他把多层的这个优化变成一层一层的减啊,就就减少规模啊,好程序方法,我们再一起来回顾一下啊,是什么,首先问题是有些问题呢,你可能端到端挺难搞什么,我中间搞一些啊,我先做影射再做影射,再做影射。
这个影射叫叫吉连对吧,有些呢哎我这个影子不够,我这里在隐射过来,再隐身过来,是你先怎么搞些花招好,要把每个镜头都变成一个网络,为什么它统一了所有的函数表达,就一个函数就表达所有东西嘛。
哦我们在以前的话要去想到底有多项式还是用高斯,还是还是用三角函数,这这是这是这是根据人的感觉经验相关和位置相关,它这里呢就什么啊,这个很暴力啊,就用一个函数全全考,所以你里面你想要反思啊。
原来这个就像我希望周边给给他,给他给他平均一把好,那么这个颜色呢就是一个特殊隐私,叫卷积啊,我那这个像像素呢跟周边是平均,那就先抹掉一些噪声好,那么这卷积完以后呢,我再去搞,这个是想降维是吧。
我觉得大家是变成562,所以说所有的不管不管他怎么变换声音也好,是什么什么呃,这个不同的网络也好,都是在我眼里,就在我们眼里面都是函数,只不过函数变换它有一些地方是有意义的啊。
就你的任务就是怎么去设计啊,倒是有网网络函数是吧,网络加一个片片很很大,如果容易造成过核啊,那么网络简化是吧,什么什么什么减脂啊,找找哪个就是损失函数加各种各样的惩罚,加按正直下啊,那么你这里面哪一个。
如果中间呢有一些所谓的特征,你知道它的几何意义,那么他又给他加一个惩罚项,或者或者叫做正则项,那么最后的误差肯定正常下对吧,所以你可以看到任何一篇文章拿来都在做这个事情啊,网络就是呃就是调嘛道理的啊。
真的说不出道理,就是你只有些事,你这个这个采样样本足够多,我就去你和你这个这个这个现象是吧,好不靠运气好,你是不是只是吃的好不好,你看右边这张图,同样是那个那个那个求解最小值,你看看不同的颜色。
不同方法,有些人很快,有些人在上面在,再再再那再让这个这个这个这个这个这个摆一摆才才才下来是吧,所以你你去调这个这个参数要有耐心,当然也要有直觉,你有直觉跟没知觉,调到这个是不一样的,好。
那么下下周呢我想这个呃呃,我们会进一步展开,有这些时间已经呃这个这个这个快快到了啊,然后呃下周呢我们会进一步讲这些东西好,那么我们再花个十分钟讲一讲这些主要情况。
加德兰是今天早上啊,上次昨天晚上是吧,因为这里面用的是标准时间,我们是北京是东八区,所以他是早上八点啊,这就这个没关系,反正我们发了以后才才才才来改啊,这是我们经过三个三个助教啊,这个这个经过一天啊。
唉这个经过一天,用肝来把大家作业给给批改完了,好那个也谢谢大家,应该把这个作业做完了哈,好像是这作业比我预期的多啊,我以为只有三四份额,这个这个这个只是只是那个交流有56分啊。
当然很多同学可能有些有些经验啊,做的挺好啊,那么有些同学可能一次做啊,这个也竟然能够接近啊,在同学们的学术学历呢,群里的发挥下做完了哈,我们要求我的呃,这个很明确啊,你可以看到嗯。
嗯如果在我们科大上课呢,我可能会统一来教大家用一个框架,这样我也好感,但是在网络上这种a tv,你看因为我们也很不好的人学会了我们的这个这个啊叫无忌框架是吧,唉有些呃少部分是我们科大的同学啊。
还有很多同学用matlab写好,拍照一些啊,拍拍on也挺好,还有一个用太极可能是201课程的啊,这个学院啊来过来啊,就非常好,还有一些用其他环境,我觉得都都很好,没有没问题,大家本身就是那个多样化。
因为你擅长啥你就用啥啊,就像武林高手啊,这个这个也不要什么都都会,什么都不精啊,这个这高手一定是精通一门武器是吧,这个这个少林寺和尚用棍用用了极致啊,这个武当用剑啊都可以,只要你抓住抓住一个语言。
把它精通就可以了啊,不要啥啥都啊,上个学就是啊,就像天龙八部里面王语嫣啥都懂,就啥啥都不会是吧,对这个好那个呃坚持用,就是你们觉得哪个做能做好就用哪个啊,所以我们都能改好,这作业呢。
这个总体上达到了要求啊,这个这个还有同学说能不能再教,没问题,我后面会再开放出来,好那个呃已经有同学看到没有,已经有同学把这个系统啊当作当作参数去去调了,因为他发现尽量靠经验取不好取嘛,是吧。
一啊这个0。1这个这个这个太瘦脸吃太胖啊,这个所以他把它当做当做那个去去调参挺好,他他也做了个ui啊啊那么这些呃就现象我就不解释了。
那么那么现在再来看这些现象啊,学这个同学们啊,你们上周的那些困惑,那些迷惑啊,那些不安啊,这个今天你们基本看都能找到答案了啊。
为什么出现这种现象啊,为什么是这样啊。
然后现款选一,为什么这样,尽管选5。5。039啊,十点一零二二十是吧,哎为什么这样啊,我已经讲明白了好那么只不过你现在是调的嘛是吧。
然后六个点好好,这里面呃这个同学这个这个时刻点就是公式的是吧,已经出现了融合现象是吧,为什么我刚才解释了,因为不想死,他那个换什么行列式是吧,这个次数有的次数高,它的这个啊这个叫条件数急剧上上升啊。
导致人物形象,所以非常适不适合,内积不是个好的技术,你要用国产机比较稳定,有同学用了你你也做了,你回归是吧,呃当然呃这个大家也没有必要自己去写个画,你可以调mac mac的零化器。
你谁家也可以去去叫lp对吧,所以这个大家来这个只要能解决问题啊,就这个这个就是好啊,工具啊,这规定啥都要写是吧,因为有一个就是呃观点也是,我也是不知大家就是有这你要用就把它用起来啊,不要重复造轮子啊。
我们要解决我们的问题啊,兰大等0。010。1啊,这些可以看到就是这个这个越来越小啊,然后呢我这里还有想想给大家演示一个比较好的一份这个报告。
他没有用真名啊,叫lt lx t有点像方程组嘛,l x就是一个矩阵乘以一个变量等于等于t啊,那我不知道他是名字缩写还是啥啊。
好来看一下它的一个video,就他的一个作业的啊。
这这个同学写得非常好,可以看到他点一个点就能够马上算出那个插值函数,它现在是用的是pomial fin啊,左上角好改成高斯啊,高斯发现呢全西格玛不对啊。
他只调到28 36啊,调调的可以可以不断调是吧。
然后发现这个特性调到40。
将这个号大概试一下pom,你也看看这个这个spam,即便自己mac参数,这这是又用了你回归哦,这次调的那个拉达啊,他做了一个非常好的ui啊,这个界面。
然后来看各种函数的性质是吧,然后可以诶可以把所有方法都放在一块儿啊。
来来来看看这些这性能好,也可以在实时的增加一些交互点啊,然后所有函数性质,你看这函数最有道理,但是也好有坏是吧,好那我们这样调有什么好处呢,我能看到结果啊,有没有想有没有看到我在看到结果。
如果你是个100为1万为100万的数据,再来调啥呀,你能看到的就是那个lost function的词,这个图里面有绿色的跟或者红色跟蓝色的这个风险差不多,但是显然绿色显然这个蓝色的比红色要好。
两眼一抹黑,啥也不到是吧,那你就继续去调,有些可能你调个一个礼拜你都不调,不调不出来,为什么你如果它它的本质或者这个函数向量的方向啊。
这些问题你就可以调出来啊,还有一些这个报告也挺好,嗯,这个同学报告,那他把这个拟合的专业差值啊,都还差值啊,比我写的要详细,都把它推导出来了啊,然后他按这个编程去做了啊。
我觉得这个后面我可以用他的这个东西来放到我ppt里面去啊,挺好啊,谢谢嗯嗯并且他也付了这个源码好,所以这些呃我分别分别选了那个。
选了那个三份同学啊。
这个叫做优秀代码啊,还有优秀报告啊,我会挂在我们的网站上,大家去下载啊,相互参考啊,那么最终就是这个这个学校过的人,我也呃呃也也不清楚,没关系啊,那我想games也是一个开源社区。
开源的文化也相当于是相互帮助好吧,也谢谢这几个同学愿意分享啊,他们的报告跟代码代码c加加也有,好像python也有,所以呢呃也这个呃适合于不同的这样一些学生啊,这个一些背景好吧。
所以等下可能呃等下课结束之后,我会整理一下这些报告哈,代码啊也非常到给大家。
大家如果有些兴趣可以去继续下好,可以去参考。
但是如果你们要补交作业啊。
这个作业啊,这这个做作业,因为我可以继续,我们会看那建议啊,如果只是抄啊,这个反正我眼内对里面有非常强的约束是吧,这个这个嗯抄作业只是自欺欺人是吧,自己不断提高啊,这个我也希望通过这些啊这个设计啊。
我们专业设计我还是经过一些考虑的啊,那个能够帮助大家爬到上面去,我们一步一步爬好,没关系,每一步都不难啊,为什么上次我就敢不止这个东西,因为做作业就是垃圾的东西啊。
只不过很多人啊这个呃被留在了深深的记忆里面啊,我就把你捞回来是吧,然后呢捞回来以后呢,慢慢的知道这样降一些这个这个原理啊,有利于后面做人的工作,好好今天第二次作业来了,这个作业呢也没多少啊。
这个也是上次作业的一个延伸,这作业呢让大家觉得练一练啊,这个叫做神经网络啊,ibf c g网络呢因为是非线性,所以呢他也记到一个优化优化,如果自己能写一些简单的优文化啊,这个可以自己写好吧。
还是因为主好吧,别先先别搞中周围好,他就是个这个方法,我们前面也也做了一个方法,你再做个笔比较看看啊,就是要让那个六根,让六跟那个比啊,这个这个这个是这个西格玛要变啊啊就是这个啊。
那么这个网络啊好另外一个呢就是你可以用这个c这个mod啊,这种传统的就是啊这神经网络诶,你把它变成因为你去用城市服务的优化去去去去去拟合,你不要去搞,没有问题啊,就右尾啊。
然后你也把它当当这个方法去跟我们的文化做比较好吧,就是啊所以1。1呢走得快的同学呢可以再往前走一点啊,把这个网络的一些工具,像每个太阳的这种殖民网络框架,它都是一个非常好的优化器啊,因为把它设计好了。
里面给他,他就帮你优化,还有当然你要设好那个lost function,lost这个函数,这个这个啊要定义好吧,然后然后呢,当然我们推荐你还是同学们咬咬牙还是学一学这个框架。
因为这个框架呢是为了后面这个网络来来那个啊设计啊更方便,虽然它有些局限windows啊,v2019 啊,还有要求啊,这个大家如果能学学,如果不如果实在是机器或者是这个这个这个这个硬伤啊,或者是不匹配。
你能用其他的框架也没问题好吧,但是现阶段啊可以尝试用一下啊,时间仍然是礼拜六晚上好吧,礼拜六晚上,那么要不要还是维持东八区啊,还是说变成美国,那变成那个啊历时期就是12点结束了啊,那么看到东八区嘛。
反正还有晚上八小时,可能有些同学愿意晚上再再再再再再再努力吧,好吧好,如果没有跟上的同学,还还还在第一个啊作业的同学或者第一个第步的同学啊,你们可以再继续教我们,这个还是会继续开放好吧。
如果你们需要我们的助教再帮你看一下,也是帮你看看,这也不也不用再看了,为什么呢,你我们都有这些参考代码,我没有参考代码,也就是参考文档啊,你们可以去朝着这些目标去去逼近,好不好,最后剩下一分钟。
我看一看平台上有没有固体啊,问题有几个啊,我看看50天我就回答一下,有同学说分数怎么判定关注关注我们有三个两个维度和一个代码,一个是报告好吧,因为我们就是两位作,所以大家就在你教的同学呢。
在大家在那个什么你都能看到你的分数啊,我们都改完了啊,那我们三个助教也很也很辛苦啊,呃那个你随便问样条样条啊,别着急啊,那个就来了,好亮条,你想想啊,我我就给我启启发。
我们这里所有函数都是全局函数对吧对吧,动一点他就要动来看这个这个这个容易把它变成举动了,我那个对方我这个点的地方呢,这个啊这个数据摆一摆,有别的地方不影响啊,这样是不是会更好一点是吧。
这就是我们在做这个样条,我发一样条的这个初衷,好好好,很多同学说终于明白神经网络在干嘛,从网上就在做这个事情啊,只不过只不过那个领域的人把神经网络变成了一个一个,我老是为了一个抽象,然后从那个角度上看。
我个人觉得他是非常不严谨的,数据上他就是个好地说,只不过这空间你说能力非常大而已啊,他好像今天天呃比较比较问题比较少,好的,如果还有问题的话,你可以在我们有有很多方式可以可以来提问的话,bbs啊。
qq啊,甚至在vk群,你甚至可以去我们去叫是吧,对这个这个单独给他们啊,这个交流都可以。
GAMES102:几何建模与处理 - P3:参数曲线拟合 - GAMES-Webinar - BV1NA411E7Yr
好那个同学们晚上好,今天开始我们这个games 102的课程啊,那么今天要进一步讲这个曲线啊,主要是参数曲线在前面两次呢。
呃我们回顾一下前面两次主要是讲单变量啊,就是一元函数,就是啊定义域是实数,那个词语也是实数的这种函数呃,大家只要把它理解好了啊,这个函数形式,那么后面呢呃在理解这个高维的话呢,就不是特别难啊,那。
么理解这个这个一元函数呃,因为高原函数的话,高多元或者是高原函数就是它的一些这个推广,所以后面的掌握起来会比较容易一点好,那么我们回忆一下这两次作业啊,就是同学们应该是非常能够理解这个函数拟合。
也就是这么简单的一个函数去拟合啊,那个一个一些点云而不点列啊,那么有这么三个事情你要搞明白是吧,你是啊,到哪找这个函数啊,就是我们说的是函数集合,就像你想啊这个钓鱼你总得知道是哪个池子里啊。
限定这个池子,那你去钓啊,那么这个池子呢如果有这个集合呢,如果有一些好的结构啊,有一些好的结构,比如说线性结构,那么就表达起来啊,就就就比较比较那个容易就把这个函数变成n个n个n个实数。
就是一个向量是吧,并且呢这个池子呢也要足够广,这个也要也要足够多啊,就是叫啊表达能力强是吧,比如说所有的多项式啊,这些呃所有的多项式的可能就表达力很强,因为根据无钥匙圈的定理就知道。
那么一个函数我在里面总存在一个多项式,我能毕竟是吧,就说明这个池子呢足够广,这个叫表达力,就表达能力啊,函数表达能力强嘛,就就可能有可能找不到,你要容许好,第二个就是找哪个当哪个嘛。
就是度量你这个什么叫好的啊,这个这个函数,那么就是由这个损失函数一般来看就是定一个损失函数来度量一下啊,跟误数据误差这逼近程度啊,就是诶至少要你要逼近我的数据啊。
另外一个呢可能对这个函数呢还有一些描述啊,光滑性啊,或者是他的一些这个这个啊系数的系数性啊,或者或者系数的模小一点的,就叫正则下是吧,正向有好多,好,在在这个历史上有非常多的这种政策下。
不同的问题政策向是不一样的啊,这函数性质描述是不一样的,有些函数我还故意要求它不连续,那么正正项呢是可能是例外的形式好,另外找把这两个定义好了以后呢,好那么就怎么找的问题了,怎么找的问题。
基本上就是一个优化求解的问题啊,那么如果你这个问题是个能量是一个平方啊,关于变量四个平方,实际变量就是系数嘛,就是内积函数的系数,那么这个就变成一个解方程组的问题啊,这个第一个作业给大家体体会过了。
那么如果是这个变量啊,是是一个非常复杂的一个非线性,并且是非凸,那么这个就比较难了啊,那么凸的话有理论保证能找到全局绩效结,但是非出问题的话,基本上没法保证,现在数学还保证不了啊。
能够找到一个非to非线性函数的全局最小解,那怎么办,那只能数据求解,数值求解啊,你根据一个初值啊,根据一些方法啊,一般都是p图下降法,总是朝着这个函数下降方向去找是吧。
反正我就迭代迭代总能叠加到一个局部极小值再来稳定,那么就得到一个解,实际上这里是是比较难的,就是呃优化里面有好多好多这种方法啊,不同的函数,不同的性质有不同的方法是比较有效的。
那么最近又有什么a d m的方法呀,这个一些这种高级方法,当然在优化优化里面,近代还发生了很多呃,这个产生了很多其他的一些全局,所谓的全局法啊,就是我随机去撒种子,然后呢让这个种子呢不断的去演化是吧啊。
就是演化方法啊,人气算法呢就是啊有点像靠运气啊,让这种子呢不断的去啊,这个继承好好的种子就继承下来啊,在其中通过交叉,再通过变异啊,就是产生新种子,也有可能去找到你。
就大概率找到你这个全局技巧的这个地方,当然那些方法也不保证啊,因为你这个根据这个函数形式也有关系啊,好了我这也不展开,所以说实际上是即使你for formulate了一个好的问题。
但是如果这个问题很复杂啊,是个非洲非线性的话,你也不一定保证能得到好的解,因为如果你处处不好,或者你这个函数极其复杂或者极其不稳定啊,那么你有可能找到解呢也不是很理想啊,那么这个具体问题具体分析好吧。
就是同学们在在做你实际问题中呢,也基本上这个所有的这个优化问题或者是函数拟合问题,基本上都是最有资啊,这么几个问题好,那么加固一下啊,那么今天呢我们要开始讲多元函数作为函数呢。
实际上是就是比刚才那个呢一个r一这里变成一个r n i什么意思呢,就是从有n个变量是吧,那么n个变量呢啊映射到一一个值5y所以这次还是r一啊,以前是单变量,现在多多变成多变量啊,大家可以看看,想象一下。
这样在这个函数z等于f x y x x y是属于一个区域,比如说是01好,那你x从01,y x是从从从从0~1啊啊那么呃那么这个这个呃每一个xy啊,这里一个点就唯一上面就对于这样点啊。
给定一个点就就可以定定一个值是吧,然后同样啊,我们怎么来看看看看这个曲线呢啊看这个函数呢是x y这两个点,再把f x y看成第三个维度是吧,就是那个有x y y就有f x y啊,就这样吧。
是对函数类的这种曲面就可以这样看啊,就跟列维一样,我们把它称为来看啊,这就是看函数的这样一个可视化啊,就是这个轴我们人为的产生一个新轴啊,那么这个函轴呢表达这个f x y。
所以双变量x y这种曲面还能看,如果是一个三变量啊,比如说是g啊,等于啊f x y z啊,那么这种函数就看不了了,因为它是四维,这一点你要分为到四位,一个值,那个四位值我们都看不到是吧,我不可想象好。
所以呢我们一般都研究二维的双变量函数比较多一点啊,三变量呢反正你不可视化,但是你可以去研究它的性质,偏导啊,梯度等等好,那么这个变量呢往往在实际过程中,这个这个这个变量的个数啊很多很多啊。
这个n可能非常非常非常大,好像同学们如果做过一些图像处理的啊,这个用经济学去做,那么这个尾数可能是几百几百枚,几万维啊,甚至上千万位都有可能啊,所以这时候呢直接问题就把那些点在哪里,你其实你根本不好看。
如果有好多点的话,你就要要通过一些数学方法来去去去推测出它的性质,它的分布啊不就不容易,那么直观去看到它的这个结果好,那么二元函数同样也存在这个问题,我有一个这样的函数。
你要告诉我这个函数怎么去定义是吧,那么同样也要去在记忆空间去定义是吧,你你你告诉我这个函数值是在哪里好,那么因为在这个g函数啊,前两个作业大家都体会过,我可以选好多好多基函数是吧,多项子机啊。
博士生产基,还有那个高司机是吧啊,甚至呃上主页里面大家还尝试过用用那个sigma的这种啊,这种神经网络的基函数来拟合一个或者描述一个函数集合,那么对二元函数的外化啊。
实际上在数学上面我们用的最多的是叫张量级,张艺兴什么意思呢,我觉得我一个唯唯独是x,我另外一个微微都是y好,然后我们把它们两两相乘,是不是构构造了很多这种双变量的啊,这个这个一些函数形式啊。
就是1y y y平方好,那么我就取里面最高次数为二的那些项目拿来,就作为这个所谓的二次多项式函数啊,只不过这是二元而已是吧,那么二次转折函数,那么它的基函数构造很容易就是把这个单变量的函数。
通过这样一个矩阵或者是叫叫直接方式啊,实际上就是张量积啊,一个一个上乘1x1=1,一乘x等于x是吧,还有这个x乘y,这是x y x平方乘y平方是吧,好那么这里面最高次数有哪些呢,同学们一看啊。
应该是这些是最高次数不高于二的是吧,也就是这个三角形里面的好,我把这些东西拿来,就这样就造成了,就这样这些所有这些组合就长成了一个二次的啊,多项式函数空间好,那么你你这里面123456有六六项。
那么这里面有六个系数就决定了一个二次二元的多项式函数啊,那么同样去做拟合啊,真正都是啊一模一样的做啊,只不过变量变成了这个这个两两个两两个变量,但是它的系数是不是仍然是这六个g函数的系数啊。
a0 到到a5 是吧,这层好吧,大家都很很熟悉,好我们一步一步来好,下面可以看到哎,如果你说要要要三次的是吧,三次就是也这样乘,那么基本上也是这个对角线哦,这里这里应该发过来,就这些数是不高于三次的。
这个这个g函数我可能可能画画的歪了,你看看这样对好,不高于高于不高于三次的这个阶函数啊,这样构造好,你我们这里是拿幂函数,幂幂函数就是1u u平方这种提示啊,那么如果是这里面换成任何一种啊。
这个这个别的形式的基函数啊,b1 b2 b300 分之四是关于单变量u的一个基数,这这这we呢b1 b2 b3 也是,那么这样的话就两两相乘,就这样就构成了这个up双变量的这样一些基函数啊。
就是这这种道理啊,非常简单,就叫张量级啊,那么这里就重新问问诶,我u方向是b1 b2 b3 b 10,我v方向也用b1 b2 b是这个两个啊变量或者两个维度,这个用的这个计算式是一样。
是不是就是你们经常看的这种形式是吧,你说我这里偏要用另外一些函数,我这个au用b1 b2 b3 ,我这里呢用d1 d2 d3 ,选另外一种体积函数啊,举例啊。
这个u方向我选面面积第一方向呢我选三角函数积可不可以啊,当然可以啊,就算如如果你发现一个方向是呈一个啊周期,另外一个方向呢啊这个这个没有规律,那么你你你另外一个周期方向呢就就用三角函数就可以是吧。
但这样我们一般呢啊如果不是特殊问题,我们不会自己给自己找麻烦啊,我们还是希望g函数是一样啊,这个是叫做各个变量叫共享g函数,什么呢,我u方向v方向无论多少变量,我还是用同一量接函数去表达啊。
如果那个阶函数空间足够,表达能力强,我省事儿是吧啊,你说我呃就像说你偏向一个方向,跟密码方向用的计算数不一样,可不可以,没问题啊,这个多重样做,但是比较少见,好好我们再来看这个幂函数。
幂函数是这个三次的,那么如果你看单独的一个函数啊,充分一个函数,那么它就是一个二维的是吧,就这样这样一个帽子一样的是吧,因为它是就是这个是右方向,这个是位方向乘一下就是变成两个变量啊,这是u啊。
这这是v啊,你就可以看到它的它的一个函数拿来就是个帽子啊,这是个可视化的形象的那个表达好,这个没问题好,那么多元函数张量积定义啊,这个好处是什么呢,哎好处你只要单变量的基函数能够定义好啊。
这个是这是密集,两座密集是吧,那么它的发量机就可以构造出它的那个啊g函数形式对吧,因为它只要用单变量g函数就可以定义张量积的这个多变量的基函数,但是这样做的有一个不足,大家有没有发现它的维数增加。
你看这就是两个变量是不是呈平方解的,虽然是个三角形,这样是只有一半,它至少是一个大o他们二分之n平方在一个数量级啊,就是什么n是二次啊,这就是这么多哈,如果n很大。
这个这个平方平方数量级的这个个数啊是非常恐怖的啊,你们知道平方函数实际上是这个这个这个非常陡峭的,所以呢如果你的尾数是三啊,九个了是吧,如果是100,100x100就是1万个。
所以它会导致切函数个数急剧增加,非常不好是吧,就不好用啊,就是就是这个规模就很大,就就就不好用是吧,所以在中多元函数的时候呢,我们二二维的2月二元的呢还能够去啊,这个这个这个接受。
因为因为这个反正啊还能啊这个求解范围或者求解规模还能接受,如果三个四个甚至什么呃,这个这个100万维的或者100维的这样一个一个维数呢,这样构造就不好弄,所以传统的拟合里面。
我们对这种多变量的这个这个拟合呀,基本上其实还是比较难处理啊,这空间不够,就是内存空间不够,因为为数一高就不不大好做是吧,这就是到为什么就是以前做这种比较复杂数据啊,啊数据上面确实没有好办法。
因为什么你的基函数定义呃,我不太好定义,你用发动机定义为数一个这个这个变变量一多,就以这个这个高原函数变量越多,我现函数构造就极其膨胀啊,这样使得我的规模非常大啊,我根本搞不动是吧,机器搞不动。
你看刚才不是说了吗,100位的这样一个小规模的一呃100位的数据,你这个用这种单人机定义就要有1万个奇函数,所以呢是不现实的啊,当然那么最近呢哎最近呢这个神经网络这种方式诶。
这个解巧妙的避开了这个问题啊,那么上节课大家听了那个啊理解了这个神经网络的一个是函数以后,你就知道诶我这里是多变量,没关系,我这里呢用同样一个所谓所谓的激活函数啊,我这里应该全改成这里忘了改哈。
就这里面全是这个啊西格玛x啊,就是同样是同样一个g啊,只用一个单变量积函数什么呢,我通过他的那个变换啊,这个这个这个事实上就是他的那个房子变换啊,就是这个变量乘这个系数,加上这个变量乘乘这个系数啊。
就变成这个样子啊,然后然后然后再加加上一个偏移是吧,bi所以我这里面应该少了一个啊,应该bi啊,这这这里就这些是线性组合这个变量,然后再加上一个偏字啊,再再加上偏移西格玛,就这就定义了一个新的阶函数。
然后最后呢组合一把w一乘西格玛w啊,就这样,那么再加再加上个偏移的w0 啊,这样的话呢就构成一个函数,这函数什么呢,它有就一个西格玛这样函数形式,但是呢我通过了很多这种变量的一些组合啊。
主要是线性组合啊,加上一个偏移,就是防止防止变换是吧,哎我这个m呢这个数m个数就是这里的节点个数啊,你可以自己控制啊,你你你你比如说100 100为按照刚才大量机,你要你要1万位啊。
你要1万个g函数才能觉得是靠谱的啊,因为你少一个,你总觉得这个少了一些奇函数嘛是吧,在这里呢这个这个位数呢,就靠这个这个这个中间这一层的节点数量来决定啊,你你可以不用设1万啊,你可以设设个设个500啊。
可能可能就能就能以后的很好,因为为什么呢,因为这里面它通过这个函数的偏移呃,左边偏一下,右边偏一下,然后通过系数变胖变瘦,它所上升的空间长啊,这个有可能能够找到你要的东西是吧,所以通过这样一个方法啊。
就是高于高维的这个数据,也就也是有多元函数,这个这个拟合问题就巧妙地解决掉了,并且它的优化啊,这个有统一的这样一些啊,提出下降方法去求解,而且现在有好多这种这种tend flow啊。
拍拖鞋这种框架你就可以拿来用,所以呢神经网络这个对这个拟合的贡献还什么,哎我对高维函数就这样拟合问题啊,当然这里面同样有问题啊,你这个m就是你这个数m啊,少了你就欠拟合是吧。
太多了就过拟合对吧啊就是啊就是大家就能看懂啊,这个节点取多少合适是吧,接着合适就是你这个节点多嘛,表达的是确实很强,因为积函数多嘛是吧,少了就就就就欠拟合,所以中间这些基函数调多少。
你这个m是这里面m个到底是多少,我不知道,你也去调,把它调到让这个误差函数小啊,就就就是这个样子是吧,所以所以呢那个那个结局叫调参是吧,因为这里面的变量这些这些变量系数都是啊这个这个变量啊。
所以你去求求找的话就变成一个系统啊,大家呃如果如果想深入了解的话,去看一看这个相关的这个神经网络的这个这个优化的一个b p啊,就这个这个啊方法啊实际上很很简单。
就这个啊梯度下降加上一个链式法则这个原理哦,哦这这个我还我还没讲深度啊,深度一样的,就是就是你这里变换过来以后,你中间再加一层神经元啊,然后然后然后把这个的呃输出作为这一层的输入啊,到底原理是一模一样。
你看你在这引申的时候,你还要加加个一吗,你如果你把把这个当成一个变量,是不是跟这里一模一样的结构是吧,所以相当于什么呢,相当于是这个这个网络相当相当于是一个函函数变换一。
那么中间第二个网络相当于函数变化二啊,如果你多层的话,就相当于多个函数啊,f一啊,就是f2 符合f1 ,再符合f3 啊,就这样是吧,所以他是个他是个复合函数,如果深度的话。
就是复合函数就比较比较比较那个呃复杂的一个函数,但是它的原理就是什么,把这个函数是从这个n维空间的一个点变到了一个m v空间的点,在变到另外一个位数的空间点,再变成另外空间的点啊。
那么这里在变化过程中呢,就让这个点啊在不同位数它的顶的分布啊,就有可能散开啊,它的性质拟合这个这个方法呢就可有可能找得到你要的那个函数对吧,对它所以深度越深,它的变换呃。
能让数据在分过来变得越来越那个啊啊散啊,或者是怎么样好好,那我这个我们课主要讲深度神经网络,我只是让大家去理解神经网络本质,数学上本质就是你和函数啊,并不是啊,有些啊有些人讲的什么,他这个是一个抽象。
抽象出这个特征,当然中间你设计一些巧妙的一些运算啊,先这里再加个运算,再再再出来这个这个运算呢,你把这个这个点跟他周围的点做一个平均啊,就所有所谓的卷积啊,这里加一层啊,就是鲜果座位处理,先卷积一下。
然后再再再再带到这里来啊,就是就是就是所谓的卷积神经网络啊,这这么卷积完以后,你还要让他这个维度下降,就做一个ping啊,就是磁化啊,对网络这个东西虽然它就是网络。
只不过中间加了一些特殊的操作操作呢卷积呢有一定意义,所以啊都是很容易理解啊,这个网络是吧,那那么只不过在做图像处理的时候呢,这个卷积就是在这个像素跟周围像素再做个平均,能够把一些这个这个造成模糊掉是吧。
而且降维pin打的很好,降维啊,就四个点里面拿一个最大值或者平均啊,也能够能够让这个信信息能够更加抽象,好吧,我们就不展开啊,大家就是能理解有多元函数呢,以前单位进行式确实有它的问题。
来这个位数增高就不好弄是吧,现在呢能够啊这个这个用户网络就可以很很方便表达好好,那么这个多元大家能理解哈,这个有同学这个可能是估计数学出身,我还是稍微解释的多一点啊,对数学的学生呢应该是很容易理解好。
那我们下面就再往另外一个维度去去好,现在这个维度呢是什么变量,是一个一个一个实数啊,但是它的值啊是一个高位子,什么意思呢,我这个一个点啊,我一个实数变成了m个实数啊,实际上是这个东西很容易理解。
怎么你这里你用到m时数是不是相当于是个m v空间的一个点啊,这时假设是rm就这一点是吧,那么你把它看什么,就是一个实数映照了一个m v空间的一个点啊,因为高位分的一个点。
那么这个点上有m个分量是mm乘一,你只要把它看成了每一个分量,y一是关于x的函数,y2 也是关于x一函数,ym也是关于x函数啊,只不过这个函数是不一样的啊,我这里少少少写了一个下标好。
就是y一是x一函数,可能是一个好y2 y m也是一个函数啊,你就这样理解,就是说你对这个这个这个所谓的多个因变量啊,我们叫做向量值函数是吧,因为它的值是一个高维的点,是个向量,所以叫向量值函数啊。
大家在微积分里面应该碰到过这个名词啊,啊很好理解,就是说只不过它是一个高位点是吧,高位点怎么理解,把它理解成每一个维度就是一个单独的函数,并且它们之间没有关系,所以这个问题是不是变成了我对这个东西。
用你前面你学的知识去做这个东西,每一位我都单独去做就行了呀,他们毫不相关,当然有些特殊函数它们会向相关相关,这个以后再说是吧,而且呢表达这些函数呢跟刚才一样的诶,我基本上也会用共用阶函数啊,共享阶函数。
这个是这样的话呢,我如果共性函数的话,我这个系统求解方法可以原封不动的用在第二位,第三位dmv,为什么这个只是这个系数不一样,所以它的方法是一样的,就就让我们审视就是这个m无论多大,我我只要这个方法呃。
优化我求出来了,用mm变就行了,因为每一个维度单独去做,所以理解这种向量值函数很简单,就是把这个看成单独的某个相互无关的一个函数,好大家能理解啊。
好理解这一点就后面就是基本上所有case里面都能理解理解了是吧好,那么我们来来来来看一个特例啊,或或或者来看看它的解释啊,几何解释大家一定要学学东西,要要要要用这个几何去去想啊。
去或者是理解好这样一个函数是一个实数,变成一个mv中的一个点是吧,好你可以看到你当你这个时数0x从01的范围啊,01啊,一般我们叫a和a到b规划就变成0~1是吧,我取一个x的值就印到了一个点。
取x值就遇到一个点,并且可以想象,如果这个函数没有特殊的一些性质啊,它比较比较连续,好光滑,这个美丽的弧线是吧,那么这个弧线就是曲线,所以呢如果变量是一维是实数。
它就对应的空间中的i m空中一个一条曲线,啊所以曲线曲曲线曲线无论这个曲线是在平面上表达还是在空间,你可以拉个绳子啊,这个这个你用起来就是空间曲线是在四维空间,五维空间我不管啊。
只要他这个是跟我是是由一个单变量来来这个对应关系的话,这个曲线本质维度就是一,所以你无论那个曲线放在哪里,二维三维是吧,你这个曲线的维维度是以这个叫本真维度啊,也叫本本质维度啊。
这这个就是你曲线上的点可能在三维中,每个点都是三维坐标,但是呢这个三维坐标叫什么,叫叫嵌入空间,是我在那个空间看的,但他的这个本质维度就是一,因为它是曲线啊。
所以所以对这种函数本质的维度是取决于这个维度啊,是一维的啊,因为意味着中期就是曲线好,那么我把这个围住,再把它死啊,这个身高啊,哎呀我这个图可能画错了,这这是这是2v2 维的话,这应该是是个平面曲线啊。
跟刚才有点啊小号,那么就是呃这个t是在这变,那么那么这个曲线就在这里变,这样的话,这个曲线是不是就不限于我们以前面两节课所变成的那个啊,所限制的那个函数型啊。
他就可以什么在平面上可以表达非常复杂的这个曲线,甚至可以可以这种曲线,为什么你这个只要你这个函数形式能够啊,巧妙地设置这种曲线就能表达,所以呢这种平面的参数曲线表达能力非常非常非常强啊。
可以表达很多函数啊,就是非函数形式曲线就是任意曲线啊,这个图错了啊,我后后面会把它改掉好,那么这个呢我们这时候呢我们再去看看这个几何意义啊,这个这个单变量是t,我们xy是平面上的点是吧。
因为一个t就对应取取曲线上的一个点好,那么这个t呢在这走的时候呢,你想象一下一个一个汽车沿着这个曲线走,你是不是这个这个走的速度跟这个时时间讲的这个时时间流逝,这其实就是沿着时间走。
所以t呢我们很像一种时间,我实际在流逝,汽车就在这个区间上沿着路径走是吧,哎有些时候走快,有时候走慢是吧,当然当然有一种特殊的这种函数诶,我走的是匀速的。
也就是说我这里有多少比例跟这里走多少比例是一样的啊,那么那个就叫弧长参数化啊,这这种参数化就这种参数是非常非常好的,也非常特殊啊,那事实上是任何一种曲线,你你才给我,我都可以把它变成弧长三的话是吧。
这个这个数据上有保证的啊,是可以有办法证的啊,好我这个以后碰到我再来解释,我这里提一下啊,有些概念呢你们可能碰到过好好这个叫单参数曲线啊,所以很多书上有些有些书上就直接就就把这个形式扔出来啊。
就讲后面的故事啊,我我这里前面铺垫了两节课啊,你们现在就就就容易理解了,好我们再看哦,这图在这里,我刚好这两个图换掉了,好没关系好,那么对于这里三维空间,那么是空空间中的一条曲线是吧。
所以呃是一个实属t变成了x y z3 个分量,它是不是就是就就应该对这这张图啊,我我这两张图放错了啊,抱歉好,就是空间中一条条曲线是吧,然后你设置的好的话呢。
你可以可以可以可以设置很很漂亮的一些这个这个曲线出来啊,所以啊也一样,这个是t时间在变化,这个这个这个这个汽车呢就沿着空间这条曲线路径是在在变是吧,所以也可以描述非常呃呃任意函数曲线好。
这个能理解没问题,那么全面也一样很好理解了,那曲面就没问题了,全面什么曲面是一个二维中的一个区域的点,应到三维中的一些点是吧,注意它是叫双参数,有uv啊。
这uv呢跟啊如果做游戏的这个朋友们知道uv就是叫uv图啊,这是个uv啊,我这里可以映射到这里一个点,这个点呢是x y z是吧啊,就是指二维啊,u v这x y z啊,那么你可以看到我第一张取这一个点。
uv变成x y z,所以呢它也叫做参数曲面啊,叫双参数曲面是在欧式空间啊,三维中能看到的,这样的话呢你可以看到这种学员就很复杂了,我可以表达一个球面是吧,哎大家我考考大家求球面参数。
大家能不能写出来是吧啊,这个这个如果如果出的话呢,应该是啊r是吧,cos theta,sin fi y等于r cos theta啊,cos in fine是吧。
就是用用用用用用这222个角来参数化z等一啊,sr sin sin theta,这样的话呢就可以表达一个球面了,好那么那么这个这个这个呃这个曲面呢就是被这两个参数给定义了。
好同样大家有没有发现跟刚才的曲线是一样的道理,好,所以说这个曲面啊虽然在空间中看起来是个每个点数是三维坐标啊,如果不给你看这张图,是给你看一堆数据都是三维的,你可能误认为它它是个空间中的一坨啊。
确实就是相当于是一个地方体里面很多点,不是它只是位于这样一个薄薄的一层啊,这薄薄一层呢有个名词叫流行,啊就是它是它是个很低位的一个结构啊,这这个结构呢实际上你可以看到它本质上是一个二维的啊。
所以u v两个维度是它的一个本质维度,所以它不是很复杂,虽然站在三维中呈现出来好,那你可以想象,如果把三维分成四维,我在视频中看到好多好多好多点啊,每个点都有四个四个维度,如果你你是你。
你视频以上你是看不到的对吧,所以你只能通过一些方法去推推到它,但是这里如果三维中你能看到你画,原来这是遇上曲面嘛,那么它本质上就是个二维的曲面,所以三维中的曲面流行曲面本质上是二维,这个叫本真维度。
只不过你在三维中呈现出来了,啊啊就是好,那么这个什么什么叫流行呢,流行意思说我认为一个点它的无穷小的区域好,等下一个平面的一个圆盘,为什么,当然你在无穷小区域用它能展开,是不是就等于一个平面,就是是吧。
就是它不会出出出现,就这种结构是吧,我这里又长了一个面出来啊,就是这这这个面,然后中间就长了面,因为它的无穷小区域就不可能等加一个圆盘,这个就叫非洲行啊,那么后面这种非流形我们还会展开啊,今天不涨啊。
不讲提一下,所以呢你一句句点一些高为点,它到底是解围的,你是不知道的啊,只不过在我们做啊这个设计的时候呢,我们是在3年中来考虑这个问题,就是能看到它的尾数能想象出来啊,很高维,高维的话就不想降好。
那么所以这里参数曲面呢,什么是本身维度是二维好,那么当然还有一些别的,我就我就讲的快一点啊,平面到曲面区域上,就是这个这两个变量啊,两个参数啊,实际是就可以,你把你也可以把它看成是个特殊曲面。
为什么z直接使用等于零是吧,我把它扩展一下,这定理是吧,就就用三维刚才来来理解也没问题是吧,好那么在这种局面,大家这种映射大家经常看得到吧,就图像我品变形是吧,我我我一个人脸啊。
把它拉到这个这个这个变变成另外形状,像像就是这种这种景色好,到这里为止,应该同学们全部都理解隐私了哈,我就快了,那么三个形式就是提到体的是吧,这个这个就是体型变啊,底仓的话呀,你要去做有限元啊。
如果同学们以后去串游戏园,基本上就是描述一个这样的体,还有一个微元,就是一个一个一个有限元单元啊,它的芯芯片能量是怎么样啊,这个就如果能描述出这个影射。
那么它的梯度啊以及其中的一个形式就描述了它的它的一个变性人,变性人就是这个这个这个啊啊一些一些物理参数所所定义的啊,我就不展开好,这里大家都能理解这个这些隐私啊是怎么表达,好好。
那么还有一种刚才都是低位到高位映射,当然如果说我前面是高维,后面是地位是吧,那如果我们就先拿一个容易理解的是这样一个曲面,把它拍平,拍到r中是吧,像这个呢就叫地位影射,也要低位投影,因为如果数据在这里。
这一点数据从你你有办法把它拖到这里来是吧,当然你投的时候呢,你当然你你最注意那个最简单就往一个平面上投,你网页平面上投的时候,就有可能很多点是重合在一个点上,这时候就一定会有信息丢失。
所以姜维的时候呢一般都有信息,就是啊除非你非常好的平面,所以一般作为基因就是当然对于这种流行,我有好的办法,你看这张这张曲面是一个这样的流行结构,把它把它映射到二维差,你只要方法上面是能够中西结构。
它知道吗,我我再回来有没有可能回来呀,有可能回来我再定义用一记,就是我们刚才讲的参数参数表达是吧,所以呢哎我先降为再升维,回来能不能回来,有可能回来,只要你这个函数,你这个点的分布就这个曲面足够好。
但是如果把分布不好,你这个影射过的不好,把很多点印到同一点了,他根本就回不来了,大家能理解吧啊因为你看这些点分布在这个曲面上面,刚好这个结构很好是吧,是是个流行结构,运过来啊,再回来回来。
我可以定义另外一个函数,就上面函数啊,好那么这个就是诶大家有没有诶我画这个图,这是个这个位置的变量,把它把它把它把它做了好多映射啊,中间有好几个映射或者一个映射过来是吧,然后你要把它再把它运回来啊。
是吧哦那那么那么那这个跟这个误差去比比较是吧,那么那么这个这个这就是a一叫auto encoder,叫自自编码器是吧,我把一个高维的,把它变成低位的啊,把它再展开啊,再过来是吧。
所以这自编码器呢不是适合所有的数据的数据,如果是像这种这种定位流行,所以所以这个位数如果你这个为为数低于你这个本质为数,你这回来肯定回不来好我这里再讲慢一点,如果你这个映射这个所谓的特征。
这位数低于你这个实际的本质维度,你怎么弄都回不来好举例,我这个这些点分布在这个曲面上是三维的,那你见到二维还有可能回来,为什么它本质上是二维,它是它是二维图形嘛,对吧好,如果你再把它印到一条一维。
就是一和线段上面去,现在很多点都都都印到了存活的一些点,你要构造一个曲面,构造一个函数,即像这个重建出原来这些点可能吗,想想就不可能,为什么他说你这个函数g本质为主是一维。
意味着东西怎么可能表达二维二维的曲面是吧,所以这个是很难的啊,所以你们在做这个构造这个网络的时候啊,这个这个这个值啊,首先你你去你去调仓的时候,这个这个值不能太低,泰迪一旦低于它的本质为主。
就进行九死了,你这里回来就回不来,你这个loss就很大啊,所以这个到时候呢是不同数据呢,你这一层这个啊,当然现在很多方法反正比比较比较比较暴力啊,有102451512啊,这个是真到了2128644是吧。
那么这个就就可能产生呃,就可能产生一些这种这种这种问题啊,好那个从同学有呃,呃b站有问流行的不同xy组合不能生成相同的值,z流行的不同xy组合,哦这个直线足够长,不能返回到高位吗。
啊这个问题一这样就你你如果直线足够长,那么相当于是用用曲线去去去去便利这个这个曲面,对吧啊,就是在数据上要叫皮安诺曲线啊,这这个是有可能的,当然你如果是个离散点,那么也是有可能的,但概率很小啊。
因为为什么在它这个它这条曲线啊,但是你是若干个点有限点,那么呃也是有可能的,这就看你这个数据的这个这个分布好,那么这个刚才的高位高位到低位理解好了以后,那我们一起来看这个。
一般也是你们已经就就是全部理解了啊,我这个n和m可以任意是吧,如果n小于m是定位到到到到高位表示什么,我是低位的一个结构的数据,到高维中呈现高维,这个叫叫叫那个啊嵌入空间啊。
这个定位的这个n呢是本本质空间维度啊,因为他要用n维的这个数据就能表达它啊,如果n大于m,这是个降维问题是吧,那降维的时候呢就一般会有损失,会有特殊特殊结构啊,就是刚好位于一个mv的一个流行上面。
那么信息可能就会无损,如果你这个函数又构造很好啊,就可以被恢复的,如果你你是小于m呢,就可能这个信息被破坏了,你想回来啊,这个这个误差可能很大是吧,这个唉刚才我以二维三维这个比较直观的例子。
大家就能理解这个原理,所以你们在做调仓时候,证明是这个网络这个这个这个这个为数不能太啊这个太低,影像做人脸,人脸呢有人推测它的维数是本质为数,是是是是100位是吧,所以基本上设设成64~128。
基本上能做出很好的结果,也就是思维啊,这个结果就很差啊,好那个我们啊就不展开啊,因为呃你理理解这些东西之后,你去看那些网络,这个所谓的网络啊,都都是在在在调这个把数据就用了另外一个维度啊。
只不过用了统一的一个基函数是吧,这样去理解这个神经网络的本质啊,啊就就就可以很好的去去去去那个应用它去做你的问题好,那么这一张表是吧,这个表就是把我刚才解释的那些题全部都过了一遍,好意味着1a是函数。
二维啊,这个是平面曲线,意味着三啊,这个这个意味着三维就是空间曲线为二维,到二维就是平面的这个这个这个变换是吧,做图像的变形啊,这些都要用到这个这个啊,那么23就是设备是33就是体这边变体是吧。
所以我们说的参数曲线曲面就是指这个红色部分,只不过是参数曲线的二维的曲线,三维曲线,三维曲面在我们这个这个课的时候,主要是讨论这三个红色部分的一些设计,因为什么是比较直观。
因为我们生活在我们一个三维欧式空间,我们的呃不管什么东西表面基本上都是阿里流行是吧,汽车表面很光滑,是个二维流形,所以我们有有一些特殊方法可以做得很好是吧,但是呢这个因为不可见,所以就不直观是吧。
好好那我们就在继续啊,清明那么现在呢我们就能回答这个,当时第一节课同学有人问是吧,诶这种函数是怎么拟合啊,这个非非函数嘛啊就这种曲线,你看它它这里有个x对了两个点是吧,对它不是函数啊,它是非函数型。
那么现在非常流行怎么办呢,我给了一些点啊,p x就是x y y y i给了给了这么多点,那么我怎么去拟合呢,哎这个用函数形,你们你们一节课讲的那个函数型就可能做不到嘛,因为它有两个变量嘛,xy嘛怎么办。
哎x y刚才我解释了呀,把它单独看作是222个函数嘛,哦原来我用x就你和,用另外一个函数,所以不怕啊,千万别怕啊,很简单啊,只不过呢你们你们你们大一的老师把你们的数学讲话了啊,是他们的责任啊。
不是你们责任对吧,所以呢对于这种东西怎么办,你就用两次嘛,你你你本质还是在做你我第一个作业嘛,对不对,你只不过apply两次而已,有什么怕的嘛对吧,y虚拟和y系列啊,嗯这样就理解了。
当然我稍后再把它写成向量诶,就就让你们困惑了啊,等下我们再说啊,至少你现在能理解对吧好那么这里就有问题了,哎x对xx i y去拟合yi是吧,这里还是不差一个什么东西对吧,是不是你这个t还没有啊是吧。
这里是不是还少了什么东西,比如说我想决定这个这个这个啊,这个这个这个一个点啊啊即使为你表达成x是f t,这里应该变成g因为要两两个函数啊,所以我这里稍微刚才备课的时候写的快了啊,就是x是一个。
但我们一般写的可能会更显得这x等于x t,y等于y t想去拟合一些点啊,怎么办好,那我这个这个点就是把它转换成什么什么样的问题呢,但是这个好像又不是我们刚才的问题啊,不是我们呃你看跟跟这个t没关系啊。
就是还少了脏东西是吧,诶应该什么应该是b跟x是没关系的,这个变量是吧,所以是不是还要一个t i x i,我这个用xt去拟合才行啊,这才是我们前面两节课学的东西对。
所以所以所以诶我还要为这个点啊去找一个ti啊,给它配对,你这个才变成了啊,因为x来讲就是变成了这个轴了,就变成这个做了,所以x在这是吧,所以你还要还要找一个ti。
这时候呢a x t去拟合它就没问题了对吧,所以你做这种结合的时候发现不对,不能用以前的方法哎,就是还不是以前的问题,还什么还少一个这个t东西,t是什么,就是这个变量,所以这里有个时间t啊,这个叫ti好。
所以你要做这种拟拟合,你是不是要去找每个点所对应的这个维度上的,如果没有这样的东西,你这个怎么做啊,你你你你就就不是拟合问题啊,这个问题问题不可解是吧,所以这时候啊怎么做啊是吧,就大家就理解了。
要去找这个点,说对应的它的参数域,它的定义域上的那个值,你这个问题才可以做是吧,所以这个叫做参数化啊,所以呢你要去你和这些离散点,用一个这个这个这个所所谓的参数曲线去拟合。
这个你应该比写的另外一行最好啊,或者出了直接写的x y好好,那么好,那么我们现在把把这个东西呢请一个符号化向量矢量哈,好你看我这个字字母都加加粗了哈啊什么意思,我把这样一个向量啊。
我把这个st styt变成一个p拼了一个出题,看下主体就把它看成向量,那么就1p t就是x y t啊,这个这个就就这里x y t啊,我这里这个p t bug很多,好这1p好。
那么你现在如果你预先假设找到了这样一个x i y i对应的ti好,如果如果如果想要找到了好好,那么你这个你问题呢度量这个曲线与这个点的误差,是不是把t i这个函数里面是不是p p t i就得到了。
取曲面上的曲线上一个点是吧,好与这个p i p i就是这个实际的这个这个这个点,是不是我曲线上取值为ti的这个曲线上的点,这个写的是曲线上的点,实际数据点的误差,给它按按摩就按摩就距离嘛是吧。
加起来西格玛一下这个误差就定义好了是吧,数量呢点数据点令我曲线的距离诶,这个这方呢就又变成了一个优化问题是吧,这个优化问题是二次型,当然很很好解了是吧,好你p t形式实际上就是xt和yg的形式。
和t y g前面的问题一样啊,你你你你x t你和你喝啥呀,a c t你和ti x x x i c起点y t呢去你和ti 5这几点就行了呀是吧,就是每一个问题呢都变成一个一个原来的问题。
只不过呢你要你要你要把把这两个误差,因为这里面是个向量的减号是吧,是两个分量的误差的平方和开根号是吧,但我们一般不开根号,平方平方的话,就你开根号的话,你求导给自己找麻烦,所以一般把大平方啊。
所以说叫最小二乘嘛,好好这样的话呢就就顺利地把这个取曲线拟合的问题就搞明白了,搞明白了哈啊现在还剩一个什么东西啊,还剩一个怎么怎么为一个数据找这个ti,你把这个问题啊,就是要找到它的它的所谓的一个ti。
这个ti叫参数,为什么我们把低位的这个这个变量看的是高位那个点的参数,参数是它的本质,是它的本质的维度,这些点就是应该是一维的序列,那么就应该去找它的意味着这个参数啊,所以这个叫参数化啊。
所以参数化呢经常听到很多同学唱的话啊,我遇到很多同学连常态化的这个问题都不知道啊,所以常态化我来我来,我们通过这个课把它理解了好,参数化是指一个高位的点去找它的地位的本真的那个参数。
这个上本身的话就是个降维问题是吧,好刚才我讲了降维可能会丢失信息,但这里唱的话呢不会丢失,为什么,因为这个取这些点本身就是一维,我找他一尾不会丢啊,这个属于能回来好,那么早餐的话。
这这个是一个非常非常关键的问题,好怎么对一个这个点找到它的对应参数,找到对应参数以后,ti找到以后好去minimize这样一个误差啊,你就可以去求得这个最后的曲线,这个红色曲线你就出来了是吧啊。
具体呢这个xt这y t你用什么形式,是不是前面两节课你就明白了吧是吧,西格玛ai啊,一个奇函数对吧,y呢也是chick嘛,是另外另外另外一套变量嘛是吧,p2 ,那么这两套基函数基本上你你你不会。
就就就除非你这个这个这个这个有别的用,是不同阶函数,一般都用充电基函数,所以说他们两个的这个求解系数总是一模一样的啊,所以你只要调用啊,就是求解一次调用两次啊。
如果你能为他又把这个bi变成一个c i g函数,真麻烦,一般一般呢我们就用用用那个同样的基函数啊,叫共享基函数啊,就像网络里面一样的,我共享记函数共享全啊,就这样就可以把那个系统变复简单一点。
好好那个没问题啊,跟上了好,他们看不到你们的表情啊,但没关系,我相信大家应该跟上了,哎因为你把他利问题理解好了以后,你就清楚为什么要做长的话,好好唱的话,就这样好,那么这唱的话呢,呃我把这个图画一下啊。
好我还是以二维为例,这1。2。三点四点啊,这些啊我的画板,这不太好好好,你怎么找这个参数呢,那么这里有历史上的那个有有一些这种呃方法,一个最最极端的方法,最直接的方法是吧,我投一个点啊。
p0 我我就对于这个这个实数的零,对吧,p0 就零好,p n是最后一个点就对一好,我中间呢我就沿着他们的,因为他们是依次相连嘛是吧,我用a为什么我我就没一段呢,我就按这个均匀来,这里有十个点。
我就分成九份啊,所以这个叫均匀差的话啊,这种方法是非常非常简单啊,因为什么暴力嘛啊反正你十个点我就1/10,每一个参数呢啊这个这个这个这个就很好求是吧,因为因为它每个间隔是constant。
所以这个均沾的话是最简单可以求,所以这个这个叫均匀产的话好,那么更直观的我或者更加有道理,是不是我按这个弦弦长的比例来分配,如果这段长应该分配的多一点,这种短我分配的应该短一点是吧。
所以说诶我希望这个参数啊跟他们的延长啊,这个这两两个点的延长,那个啊啊等比例相等是吧,所以我把总时长先求出来,西格玛ki加一上面就pi加一了,减pi把把他们所有的这个弦长啊,然后呢再按比例分配是吧。
这个弦长比上l就是低一点的,这个呢这两段加起来比上l就是这个简单参数对吧,这个叫这个叫弦长参考法理解哈啊,所以先看看是不是比均匀叫有道理啊,为什么呢,哎有些点分布可能我这里很密。
前期如果你用均匀上升化的话,我这么密的地方都用时间是一样的啊,都都用同样时间,那你这个函数性态可能会出问题啊对吧,因为因为你这个这个这些参数没有体现出这个曲线的性质啊,所以用弦长上的话会稍微好一点好。
还有呢还有一些用的比较古怪的一些话啊,我这里把公司链列出来,我就不解释啊,大家有兴趣自己去找好吧,我们我们这个课你们理解这个思想啊,我这个具体怎么推,为什么为为什么搞得这么复杂啊,我也懂啊。
这个这个让我懂,我不讲啊,这个你们自己去搞,那么这个呢根号他们他们有有有一个名字叫中心唱的话啊,那么实际上是它有一个规划的问题啊,因为呃这个这个也是一些物理上的一些变量好,那么我们来看看例子好。
那么而且黑点呢是是是呃这个平面上的一些点是吧,那么你用刚才那个那个方法去拟合,如果用均衡的话的话,你可以看到是吧,呃这里地方有点小问题,那它取率一下子变得很大是吧,那我们再再用弦长是吧。
看的时候呢就这里就你看这段呢,就这一段就比较平滑了是吧,就不像刚才那个那么那么那么那个那个这个啊不是很好的线现象啊,这个叫中心仓的话啊,这个消消火你看更方法了啊,所以大家不妨按几个公式自己去搞搞看啊。
然后呢你作为一啊,实际上这个作业就做完了啊,你只要把三的话做着看带进去啊,x和y分别求两次over是吧,所以这个作业可能一小时就做完了啊,所以这次作业不难,但是但是你要对这个理解啊。
因为一来理解这个这个这个问题好吧好你看这是另外一个例子,好均匀上的话,平常中心唱的话是吧,你去唱的话呢,很容易这种这种扭结啊,为什么呢,因为你你这这两点很近,你也用同样的这个参数跟这么长一样的是吧。
那么那么这个呢因为汽车在那走嘛是吧,所以他这里一定要扭两下是吧,因为尽量的拉长,你才有可能这个这个时间差不多,你看这里这两点本来这样光滑过度多好呀,他这里这里凸出来了是吧,还是凸出来。
为什么用了多长时间嘛,我我就会延长道路是吧,所以它有这样一个啊这个这个这个artifact不好的地方,好像全长a9 就爆光滑一点,像这个中心哎就就就会用另外一个啊,这个效果是吧,更光滑,给看到这里哈。
具体为什么更光滑,大家啊,这个不用不用什么做,我教啊,教你继续找答案好吧,自己要去找方法,找找找找找答案啊,网上有很多解释啊,所以都有结论,参数化对可以体现你和影响很大,你要做好你的问题,一定得找好。
你唱的话是吧,好三是什么呢,参数是不是降维啊,所以你要做好你的问题,你一定得去找好你的这个这个低位的这样一个嵌入,那个神经网络auto encoder,你定位的嵌入如如果是错的,你怎么回来都回不来。
或者说你定位嵌入虽然嵌到那那个本真维度,但是它的分布差你也回来很差,这个例子是不是说明了我我把这个点牵扯到一位以后,看到这这个这样一个样子,你用你用那个那个那个函数去拟合它,就效果球啊。
这些地方就很差对吧,如果你嵌入的时候呢好一点是吧,保证你保持了一些结构,如果在这里有结构呢,就是长度而已是吧,所以现在就好一点,那么那么所以在我能做设计的时候呢,二维和三维我可视化能看到。
就这就可以去搞清楚这些方法到底好在哪,坏在哪,所以这个什么这是可解释的,对于高维的东西是什么,这个暴力人拿一个网络去调到这个函数形式是什么样对吧,变成什么样子,你不可视化啊。
你只能看到loss function,看那一条躲着走去的这个曲线是吧,你发生什么事情不知道啊,罗斯方形等于零,盈余很好,但预测很差对吧,这个现象,所以高位的不好做啊,神经网络也也就是函数嘛啊你去调啊。
这样的话呢你很多东西就看得明白啊,就是这个这个要理解这些东西,好好这东西是很多唉,只会只会调仓的一些呃,这个这个就这些东西都不懂啊,这个这个一定要学啊。
所以你们我把这个东西跟到现在通用的或者流行的网络啊,结合起来,你们也知道了,神经网络不是什么神秘东西,是是可以理解的啊,但是你要可解释也不用解释,因为怎么怎么你这个东西数据就是这个样子嘛。
你这个这个嵌入地位出问你,你回来就肯定没问题嘛是吧,所以这个这个只不过你高位中确实很难调啊,为什么你看不见你最后看见的东西是什么,最后看的东西这个值啊,这个值只是一堆数据的一些嗯无误差呀,你误差等于零。
你说明啥呀,因为你可能过拟合呀,对不对,所以说误差啊,这个当然还有很多手段去去看见他们的一些呃这个结构啊,这是另外问题,我们就讲好,同样我们刚才曲面你要去你要去你和一张曲面。
如果你想用那个呃两啊这个这个这个双双边的拟合,你对这个的每个点做求出它的一个uv坐标,没坐标以后呢,你再去做拟合,这个拟合,刚才我讲明白了是吧,你无论变量多少啊,多变量就是就是多个函数g转转机是吧。
多这个值就是维度是一样的东西,所以你无论这里这个变量是多少,你只要把刚才我所讲的那些理解的方法学会啊,不会问题很简单啊,这数学没那么难好好,那么他的话这个呃今天是剃个头啊。
实际上是后面我们会有会有很很长时间来讲他的话啊,因为他的话是一个非常重要的问题对吧,这个有一个曲面啊,或者或者是一堆点,是在空间中,这个点可能来自于一个飞机来这个轮船。
或者来自于你一个物件的表面上的点是吧,你怎么样去把这个把这个曲面给求出来是吧,要你你和他就需要它的一个参数对应啊,你然后你用函数去拟合它,就能把它拟合好,你们就没有这个参数,你就不好拟合了是吧。
好所以常态化是一个非常重要的问题啊,就是求它的一个,当然山东话什么叫好长的话呢,我们未来的未来再来讲好,这可以先留下一个伏笔,你曲线上的话,你可以看到你保持什么呀,保持悬长嘛。
保持悬长的一个一个量嘛是吧,好你这空间不讲,你们你们都会猜出来,唉呀我又要两个点,对于这两点是不是也要保持它它的边长啊是吧,那么在这里这里有三个点,这是有个小小面积啊,是不是要也要保持它的面积啊啊啊。
或者是诶这里有个角,是不是宝宝角度啊,是吧对啊,你猜对了,就是说这东西就以未来产生化保持这些东西你在看的话就是好的是吧,因为什么它保持了它的一个局部的英语的这样一个几何结构啊,它是如果它这个是可转的。
那么这个就是叫等距变换啊,那么不是客场曲面穿的话,这里面一定会有挤压,好像这里眼睛这里可能网格都很好,这里挤得很厉害是吧,没办法,因为因为这个这个这个你要应过来,这个你把它拍平,它拍不平啊是吧。
一个球面球拍不平,对不对啊啊考个大学啊,对不考了吧,就是什么叫科三曲面,科三曲面有哪哪几类啊,学过学过微分几何的同学呢就清楚了是吧,什么叫可展,就是能够没有扭曲展开平面的这种局面是吧啊平面啊。
当然平面本身就是客栈啊,因为它就是平面嘛是吧,叫圆柱是吧,因为把一方纸卷啊,这个圆柱肯定是圆锥圆锥,我们高中就学过剪开一下人圆柱也一样,就可以把它展开成一个扇形,圆展开这个矩形,所以这些都是客串曲面。
这些都是很常见的啊,还有另外一类叫切线面,也是可展,就对于这种曲面呢就展开来就没有这个呃叫几何的度量的,就是长度,边长和角度啊,面积啊全能保持好啊,就像曲线一样的,如果这曲线这个是一个弧长长的话。
它的性质也保持很好,那么我这里先先先买一个问题啊,这个未来我们再来这个这个这个后面再来分解,怎么去求这个方法,那是那是后面的网格处理的问题啊,好这个话很有用啊,为什么你把一个曲面展开是吧。
我们地球学我们古人很多年前就知道怎么把地球展开来展开来,这个实际上是这里一定会有扭曲靠近,比如说我们的地球一般是沿着一条金线啊,是这个这个经线把它剪开来展开来是吧。
有些最大的地方是在这越靠近赤道扭扭曲会会会越小啊,如果如果这里有有个小圆,基本上圆柱的保持住,如果在这里有个小圆呢,这个小圆会变成这样一个椭圆,椭圆就是把它把它拉差啊,越越靠上面的越那个。
所以呢因为球面是不可展啊,所以你们能把它展开来,一定会有扭曲啊,且你无论用什么方法,你那个扭曲啊都存在,只不过程度不一样是吧,那么呃这个这个在地理学里面有好多这种投影方法啊。
这个都是啊根据这个地球这样形状来来找的方法好,那么你可以所以可以在地球上面是测测测不准的,不知道的,但是在这里误差非常大,所以你想在基础上去测北冰洋南极洲的面积啊,误差大得不得了啊。
我我们后面再再来再来一步一步分解,另外就是纹理影射纹理是什么,我有我有我有个曲面啊,这个曲面是是一个动物的表面是吧,我要给要贴上一个纹理,贴上一个图图片啊,那么怎么我把它参数化以后呢。
再插的话跟这个图片这张图片是吧,然后呢这这个点就找找到找到一个点了嘛是吧,那这里每个点啊,找到这里必须点是吧,然后它的颜色把它附上去就变成这个啊,这个就是图形学里面学的纹理映射啊。
如果你们学过games是101啊,这个101这个作业里面都会给你一张影视图,也把你这个uv坐标都给给你了啊,这个嗯就直接贴上去啊,那么这个参数化的结果呢就叫uv值啊,啊这个平面上的这个点叫uv坐标是吧。
uv坐标就是给这个曲面复颜色用的好,那么这个呢在工业界这个叫uv图,所以uv图就是三生化啊,具体怎么做,我们后面再来那个后面有的时间来分解啊,我今天只是提出来,所以它的话就是做一个影射高位到一个地位。
只在我们这里面就是三维到二维是吧,就是我们不只不过跟一般数据做参照,做这次这个参的话或者做颜色是不一样的,就不一样,我们这里是可以看见的,是是很直观的,是可以解释的,因为我用什么阶函数。
这个不然啥我都很清楚啊,啊是吧,我不想高位数据,我我这个这个这个想根本想象不出来他们是什么样子啊,那么呃这里今天我们讲一下啊。
讲一下做做作业情况啊,我们把这个作业布置掉。
今天晚昨天晚上呃,同学昨夜啊交了35份啊,呃还还不错啊,加上多份啊,毕竟这是网络课,这个呃能跟上的同学尽量跟啊,跟不上同学慢慢改好,那么这主要是ur bf神经网络来拟合,实际上是只是让大家体验一下啊。
如果这是这个作业不做,没有关系啊,因为这个这个呃只是让你们心心心理啊,不要去认为最近网络是什么什么这个不可解释是吧,它是可以解释的,只不过呢就是确实很难调是吧,好那么呃非常不错。
有同有有五个同学还是用那个我们的无尽这个框架啊来来做哈,这个说明说明啊高手处处都在啊,行大家继续努力好,那么总体上的交流同学都还是不错的啊,这个但是有有些同学可能是不是啊做得比较晚啊。
然后没有写报告是吧,所以我们有些编译不过是吧,这也没法判断你的这个这个这个结果,所以同学们还是还是要写报告,写报告才证明你这个写报告就像写论文一样的啊,就论文嗯很多同学写过或者是准备写,或者未来要要写。
你上研究论文,就是你的思想,你的算法的一个呈现啊,你这个写报告就是在写就应论文的一个一个初级阶段是吧,你把你实现的东西用用用,用一个这个pdf或者word就把它写出来是吧。
汇报一下你的结果,汇报一下你的你的这个过程,好好这是一个呃大家我不知道直播平台能能能不能看看到这个动画啊,就是它它是一个呃呃就是用rb f g函数,你看到这这这个盾过程就是在在那个呃狩猎。
就它的优化意味着它是一个非常复复杂的一个啊,呃呃这个呃飞行优化无问题是吧。
好那么这个同学呢,这种这种选择是是在我们五五级平台,我就跳跳跳是吧。
它启动以后它可以在在这里交互很多点,点,完点以后它就是个初值,就可以做点代,啊,这个是用高斯高斯g函数,因为它这个节点的个数还是比较合适啊。
所以他那个。
那么我们看看下一个它也是一个交互界面,然后他点一些点是吧,然后就可以来训练,这里训练它也是这个同学应该也是用rb 5来来来训练是吧,唉我们看到有些同学直接用那个sigma的那个函数去训练。
但是你们也没也没问题啊,函数在很多情况下实际上是比阿b f训练的结果要稳定,大家可能还想想为什么哈,因为这个模式是一个递增函数,高等函数是有升有降,有升有降到7度啊,它回传的时候呢可能会相互抵消。
可以就让他的这个啊收敛到这个绩效节啊,会会会有点慢啊,好我们就不展开,反正就是这个作业就让大家来理解一下,它实际上是呃实行网络就在做出拟合是吧,我们通过函数型这个一个例子啊,大家如果能学会用啊。
就不怕啊,后面如果真接触到那个啊啊,你们也可以展开啊,问题问题不难。
好,这是一些优秀同学名单啊,还是不错的啊,我们会把这几个同学呃,我也不知道是哪里学校是哪里的,但是做得不错。
那么给大家参考好吧,后面后后续那个同学如果还要做的话。
你们可以参考,但是参考一定要理解,我不理解这个还是害自己啊,因为我也没给你呃,什么一定要你让你做啊,如果你想想学的话呢,就可以自觉的去按照这些流程啊去去。
今天诶哦哦昨天都忘了布置了。
我们回到刚才那张作业,好,刚才所有情况这个呃就教的东西都还不错,虽然数量没有第一次多啊,毕竟这个时候这个网络课是吧,这个呃觉得这个进度啊,可能不一样,但是如果真的想想去跟着再继续啊。
现在我们已经在接触参数去是吧,这个就就后面就接着还是要跟一根改一改啊,好吧好作业三制作也非常简单啊,就是现在你们点点点这个序列啊,可以是一个月啊,就是不一定要函数型了,可以是任任意形状啊。
甚至想这样的多卷卷,只要有有顺序啊,但是还是有序啊,这个12345678 99点啊啊取号,那么你去用一条曲线去拟合它,对吧啊,你看他的话就其中有一个参数化的一个问题,对不对,看过唱的话,唱方面听呢啊。
均匀称的话啊,反正公司都在ppt里面啊,你自己去搞啊,然后然后再看看好,所以这是作业非常简单,本质上就在球场的话,因为前面你和你们已经学会了嘛啊,所以你可以调用作业一,你作业二也有对吧,反正我做四次啊。
所以这是作业啊,一个小时就搞定了啊,你你你交互界面你也写完了嘛,对吧啊,所以交互有了啊,已经ok了,在这拟合也就有了,把三句话求出来几个几个三话求一求拟合一下方方法固定住,上次画变一下就可以做比较是吧。
你就可以感知一下好吧,所以作业不难,所以每周一个还是是人跟着算的。
那么这一周呢也在等一等后面的一些同学,因为这是这是作业比较简单嘛。
那么后面有些同学呢怎么配啊,这些啊这个在在读文的同学好。
我们继续继续看,时间已经快了啊,还十来分钟,十来分钟我就开个头吧,啊这个这个下次来做做一些铺垫啊。
好今天叫几何设计,好好我们的工业产品外形是怎么设计的,你看这个汽车这么光滑光滑是吧,这个反光度是吧,这个一看就是非常漂亮的曲面对吧,还有这种复杂的这种叫机械零件叶片。
像这个发动机的叶片这个曲面方程是极其难得到的啊,你方程不好,你局面不好啊,这么刺激这个这些曲面,这个很重要,因为这里面后面我们会讲到这里面,你像一个一个发动机叶片高速旋旋转。
它是高速的切切割空气就会怎么有主啊,也会怎么发热是吧,所以你这个形状能不能尽大可能的减少阻力是肯定有的嘛是吧,那么叶片为什么要是这个形状啊,一阻力减少,第二要给出风最大啊。
因为它可能可能可能你就比如说是飞机的发动机,它是要喷射空气啊,这个气流才能给它推力,是吧,所以你这个这个这个这个叶片随便设计一下,你肯定有问题啊,肯定不够是吧,好你看我们平时用的电风扇叶片扭一下。
那就行了是吧啊,这个呢是是比较低进度的一些东西啊,你这个啊这个随便扭一扭,可能抽枫叶,ok所以但是呢它有规律的,你们不妨去看一看啊,你们可以去推导一下叶片的形状,什么是最好啊,这个好。
那么当然这个这个这个怎么表达是数学方法,那么我们马上要讲好这个在在在70年代,80年代就是叫就是怎么去设计一些曲面啊,那么这个叫几何设计啊,也叫外形设计是吧,那么看到一般你要设计一款产品都是艺术家啊。
或者是在在笔在纸上绘图,它的它的一个草图啊,那么根据这个草图呢再去求它的数学表达,就表达有了以后呢再去做做制造和生产好好,那么像有些早年是用这种叫三视图,就是一个一个产品啊,零件也好,还是这个物品也好。
它往两个这个方向去投射啊,就是双视图啊,111个正面,侧面和顶面就是叫三视图啊,如果是这个也土木工程啊,建筑行业的这种专业的学同学就画过这张图是吧啊,就是先把二维理解,然后去想象范围是吧。
后来有计算机以后呢,就就直接是可能避开了二维,就是直接用这个三维,那么如果基于二维的这种图纸来做设计的系统啊,就是叫二维的cad,如果是直接用三维的这个系统,那么叫三维7d3 维系比二维要要复杂多了啊。
所以这个你想做一个二维的话,相对来说工作量啊这个小一点,但但也很难了啊,好那么设计好了以后,你要去做生产或者叫做制造,你要保证它的光滑性,你还是要要他的数学函数表达是吧,然后表达这个曲面啊。
比如那个啊怎么样啊,这个这个保持表表表达一定的光滑性和连续性,好好,当然在几十年前啊,这个这个设计师是怎么来做设计的啊。
大家可以看看,首先啊这个把几个视图画出来好,那么大量的人都在做这种啊这个设计啊,可能这些人分工设计的这个物件不一样对吧好,另外就是呃这个叫放样是啥意思呢,放样就是诶我设计好了以后呢。
这个是是这种艺术家在在画了一些一些一些点是吧,那么你可以看到这里有个有个有个有个小东西啊,这些这些呢像这这这是个铁块,然后这个呢是一个软软木非常细的一个木头啊,那他们叫叫就叫样条。
我也不知道为什么叫叫叫样条。
反正是啊这个啊这个那么他们沿着这个这个这个这个曲线,这个曲线是艺术家给画出来的啊,这个曲线就一个个秒点,这是啥,他也不知道描点是吧,那么瞄完点以后呢,那么这个软木呢是可以弯的啊,你可以看到他们描啊。
这是这么多人在瞄好,那么就他们他们这个设计曲线可能是因为画了画了一条是吧,他们就描了一些关键点,那么这一点呢描了以后呢,这个木条是一个非常软的啊,不塑料的,是一个是就是我们的木好像是有一种专门的木头。
反正就比较比较软,这个只要不值得很厉害,它不会断啊,浓度这个弹性,那么这个呢叫压铁,压压血的事,是个铁块很重,所以你只要木木木那个样条啊,这个木样条啊,把它固定在这个铁块是很重,它摩擦力很大。
所以它也不不动好,那么样条呢所形成的这样形状的诶,就是我想表达的这个曲线啊,这曲线呢就这样一个点一个点啊,就是描出来,并且用软木样条啊,因为就那种软妹样子是比较比较柔的是吧,变形啊。
一定范围之内变形没问题,然后你就把它再描一下,就去研究设施出来了,取出来以后再去进行加工啊,当然这是传统诶,你你这样只是把曲线给画出来了,但是呢还是不知道它的数学表达对吧,你你不用数学表达没有。
所以呢我们要去推导这个数学表达好。
那么这两个问题就在于好,我给了一些离散点,是不是你们这个问题,你们前面两节课多是吧,怎么去求以后数学函数是这个木头木头木样条所表现的曲线呢,最后有没有数学能够描述这个模样条的这个变形后的曲线呢。
有问题啊,那么在70年代,80 80年代这个这个这个样条函数,这就是是从的牧羊条来吹导出来的啊,是可以求出来的啊,那么具体怎么求,我下节课再来跟大家讲吧,那今天来不及了好,那么就是这个叫自由曲线设计好。
我们要去求一个曲线,我们往往不知道它的数学表达,但我能采样得到形式点,直到形成点以后呢,那么就什么我我我要通过我的数学啊,你和逼近差值啊等等方法,我们已经我们已经全部都理解了是吧。
把它的数学函数给描述出来,有了这些描述以后呢,诶我要对这个这个曲线进行修改的话呢,就去修改它的系数,修改它的基函数啊,就能够对这个区间进行一些编辑变变形啊,变化好,那么这袁绍先就是上我先把结论给啊。
就是啊就是分段这个这个这东西也挺有意思,为什么这个模样条啊,这个点到这个点之间啊,唉既然是个多项式,用三次方式就可以描述出来是吧,然后一段一段一段拼起来啊,这个这个叫三次并呃样条啊。
这个当然中间有有一个小的近视啊,我们下节课来推好,我下次再解释吧,好所以摸两条本身一要光滑啊,但是呢诶这个数学家经常推出来,它是个分段多项式,一段一段的多项式,这个就拼出来的啊。
x x t y t z t3 啊,这两现在是两个xy多,是多项式三次的就够了啊,所以当时要调函数嗯,我记得就开个头好吧,就就把这个背景讲讲掉,那么具体三次函数是什么推啊,我下节课把那个思路讲一讲啊。
我不会推那个,因为网络网络课的话没黑板好,黑板就不好推好了。
好吧哎,那看大家有没有什么问题,我这个怎么死机了哈,上面这个这个地方不知道怎么被关掉了,所以不知道怎么问题啊,如果大家有问题的话呢,好吧,我们稍后问题我我们会在群里面看一看有没有什么问题啊。
那么呃b站我这个这边有点小问题,所以看不到你们的问题好,那么这次作业做清楚哈,反正我们助教会这两天会把这个作业啊供不出来啊,大家这一周反正这个作业非常简单,但实际上是本质上就是在就在求这个串的话啊。
就点了三热化问题啊,所以你们只要把花花个几个小时就可以做完好,所以这作业我们稍微等一等,后面的同学好吧好,今天就到这里结束。
GAMES102:几何建模与处理 - P4:三次样条函数 - GAMES-Webinar - BV1NA411E7Yr
好那个同学们,我们今天晚上的课继续啊,今天啊这主题是三次样条函数啊。
那么在讲之前的话,我们呃讲一下昨天递交的卓越三的情况。
好,好那个卓越三的总体情况,今天呃我们已经改完了,好看一下啊,实际提交呢有40多份啊,41份,那么这是作业上相对来说比较简单啊,如果你啊第一次第二次做完了啊,那么第三次呢实际上只要把插座化实现一下对吧。
就是有序点列,那么有好好多不同仓的话,那么你把它的话这个点着它的话那个值求出来,然后对各个坐标分别求就可以了啊,那你去作业相对来说还是比较简单的,那么这是下下面的实践情况啊,用那个那我各个平台都有好。
那么总体情况呢完成了从学啊。
可能呃这个效果都还不错啊,那么这里演示几个,先演示一个demo啊,这是这是一个同学lx t啊,然后利用,应该是需要引擎还是什么啊,然后做了一个界面,然后背后的算法呢还是c加加做的。
你可以看到它可以实时的交互这个点,然后然后生成这个参数曲线,来看一下啊,它有差执行,也有b进行,那么这个不同颜色就是不同的,这个方法可以可以看到这个不同不同的这个商量化方法,它这个效果虽然都是差值。
但是这个结果还是会会不一样,啊右边是各种参数化方法嗯,它可以随时的可以啊去尝试它的结果啊,这个做的挺挺直观啊。
也挺好啊,哎后面的作业看哈。
那么这是另外一个同学啊,一个叫常清俊的同学,他给的报告里面很清晰,它这个点位是一样的,但是参数化是不一样啊,从左到右啊,弦长中心均匀啊,还有forty time的话,你可以看到这个不同商的话呢。
对这个啊拟合的结果还是有不一样的啊,这个效果因为这些点呢相对来说比较均匀,所以大家看起来好像差别也不是特别大好,那么如果对于点比较均匀的话,你想想均匀称的话跟显转差的话就差不多啊。
所以如果点列相对来说间隔比较均匀啊,你无论采用什么参的话呢,都结果做还是可以的好,那我们看下一个例子,三个例子呢就是如果这个点分布很不均匀,就像我上节课ppt里面所绣的,大家有没有看到这里啊。
有两个点啊啊非常非常近,啊就是这里两个点会非常非常近,还有这里三个点也也是很近,这时候呢这个几个差异化的结果呢就差别很大,比如说你还是采用均匀算的话,运算的话就相当于每两点之间的这个参数值是一样的。
所以呢它这里就容易产生这个纽结,你没看到这个地方已经出现了自交了啊,就就效果很不好啊,然后如果采用其他的方法呢,基本上还是比较光滑,你可以看到中心的在在这个地方表现的还是比较粗不错的,这里面时长的话。
这这一块啊还是有点这个尖角是吧,然后forty上的话的话,总体上表现也还不错,但是这里和这里还是有明显区别,这些证呢大家都可以尝试一下,所以不同商的话呢,这个带来的结果是不一样的,所以是哪个哪个更好。
事实上是就是那个每个参数的话,对于他的一个一个理由啊,所以没有最好的,所以要根据你数据的这个一个分布或者是具体情况啊。
那么这是一个更复杂的例子啊,这个同学应该也是常见句吧,呃用那个高斯基函数来拟合,这左边的这个呢他用r b f神经网络来拟合是吧,那这个东西挺好。
他现在已经能够完全理解这个神经网络实际上就是一种拟合方法是吧,只不过我们这里呢这个尾数是知道的,因为这些点点我们知道它是一个一维,所以呢你把它拆了化到一维的这样一个参数节点上面。
然后再来做拟合就就很直观,那么这个因为网络如果对于高维数据是不可视不可看的是吧,所以只是几维啊,本周为数不知道,那时候呢这种问题就相对来说你是你是没法判判断出它的好坏,也只能从它的误差函数来判断。
所以呢对高维数据的这种理论呢,相对来说就就是啊只能通过一些这个loss function的一些值啊,但是对我们二维一维的这种数据,三维数据就可以看得见啊。
所以也肉眼就能判断出它的好坏,那么这是另外一个同学的一个一个递交的demo啊,这个demo还有点长,我们看看其中几段啊,也是让大家看看它的这个交互界面啊,每每点一个点,就就就自动在就拟合出一个这个曲线。
这个是他是用神的网络,就是初值可能是比较糟糕,后来就收收敛过来啊,我跳着看啊,这是其中的一个二啊,我看看这是用应该用高斯差值,它它这个西格玛就是那个值在不断变化的时候呢,这个结果也不也也是有差别好。
你可以看到这些曲线上这些这些解都是拟合着这个原始数据,就是哪个好哪个不好,在我们这里呢是能看得见啊,可以直观的判断啊,就像我刚才说的高位数据,你你觉得好不好,你是两眼摸黑,你以为你根本不是看不见。
所以你也只能从误差来来判断,但误差是零也未必好对吧,这个通过前几节课大家一个印象是非常深刻了哈好了。
那么这个作业就讲解到这哈,我们已经把部分的优秀作业,我们都挂在主页上,大家可以去下载参考啊,还有他的一些优秀的这个报告,好,我们课程继续,课程呢上节课我们开了个头。
就讲几何四纪啊,几何设计啊,就是说我们要去对这种产品的外形建模啊,这种工业产品啊,汽车表面还有无数无论什么样的产品是吧,那么呢在早年没有计算机的时候呢,大家都是先啊这个去采样一些点的,或者是先概念设计。
这个一般是有一些产品金额,产品这个美工啊,他们去画一些草图,然后呢呃还有二维的这种图纸啊。
那么最终你要去生产的时候,或者抽到建模所,还是要有一些数学的表达,你就比较精确,你你如果采用一些点,这个是很难表达出所有的这个这个表面的点是吧,所以在以前那句话就是这种设计师啊。
就在图纸上勾了一些图片啊,你可以看到呃,然后呢这个曲线不知道是什么样子。
但是我知道这个关键点在哪里,所以用用这个叫做样条的方法啊,就是啊就是样条样条呢它就是一个软木条,就这个就这样一根软软木条,就软木条呢它比较柔软,它可以自由地弯曲,当然在一定程度下啊,弯曲它也能反弹回来。
所以他有力学上面他是个弹性感啊,弹性感,弹性感呢就是只要你不超过他的那个弹性的,这个就是弹性到十属性的这个临界值,它都能回来啊,那么那在一定范围之内的话,这个弹性感呢就就可以弯曲,那么这些呢叫压铁。
压铁是比较重的铁块啊,就是就是这个放在这里呢,它也不会动啊,因为摩摩擦力足够大,所以呢这个设计师描了一些关键点,就是这些押解的点啊,1。2。3。4。2可以可以看到,然后你就压到这里。
他就认为这个点是很重要的,就就把这个压铁放这,然后就让让这个木条呢就沿着这个压铁自由弯曲,就形成小曲线,然后那个那个设计师有盐的这个一样条,就连续的描述一条曲线出来啊。
这这就是这个曲线,当然大家大家就要去问这个问题啊,那么呃这个这个这种曲线叫做自由曲线,就是没有数学表达,我只有一些关键的节点,那么你怎么去数学表达他呢,哎这就我们现在已经学到了啊,拟合呀,毕竟啊差值啊。
还有什么方法,你要把它的数学方程给它求出来,求出方程以后,你后面才能做你后面的事情对吧好,那么这里就自然就有一个问题,这个在传统用样条来生成这种差值曲线啊,这个只是通过工程的方法去描出来的一条曲线。
但是曲线数学表达有没有啊,这个是啊我们要关键事情,如果你只是画出来没说表达,你还是没法去做后面后面的一些运算或者叫制造,对吧好,所以大家一起来想想啊,这个样条这个木样条就是软木样条。
这样写自然通过经过若干点所弯曲,自然弯曲形成的这样一条曲线到底是是什么啊,有没有数学表达啊,那么这就是啊三次样条函数今天要讲的好好,那我们先把先把它抽象压铁就是固定点是吧,这个叫形制点。
好在我右右边这个图就是用这个三角形的这个顶点啊,就三角形就表示压铁啊,就就这个这个这个点是关键点,这个点是关键点啊,这一头一尾也是关键点,好那么这个黄色的线就是那个软模样条自由变形所形成的一条轨迹啊。
所以你的模样条啊肯定是一个差值形的一个曲线对吧好,那么我们来看一下,那么嗯实际上是在早年人们也在推导,想推导这个这个软样条的这个数学方程,事实上如果从力学角度上来解释,是还是可以解释的啊。
就是说你这个螺纹样条它是个弹性梁啊,所以楼面样条它本身有一个弹性模量,弹性模量就是呃来度量它一个力跟它受力的一个关系,鸦片呢就是个载荷力啊,所以由这个能量条的那个玻璃欧拉方程就是力学方程啊。
就是这个叫呃曲线的弯弯,曲弯矩等于弹性模量乘以几何惯性矩,再乘上它的曲率啊,就这个这个是指这个曲率呢,因为它是个呃这个函数方程是吧,所以它的曲率是这样计算的啊,这个微积分里面同学们都学过这个公式啊。
就是y x的曲率是这样一个实子好,这个时候我们来看啊,这式子呢是一个这里有平方,这里有3/2次方,所以它是一个呃比较比较比较这个大的一个非线性的一个表达。
但是呢诶我们如果假设这个弯曲程度啊不是那么剧烈啊,那么这个y一撇啊,就是这个导数啊啊就就就小于一啊,所以他这里做了个假设,就在这里叫小老度,假设就是如果弯角不是大于40度,他认为y一撇啊就远远小于一。
小于小于什么意思呢,就是分母这一项呢它就近似为零,近似为零以后的话,就下面这里就变成一,所以上面这个式子呢就变成了这个式子了对吧,就就变成了这个式子,就就这一项已经没了嘛,所以就变成这个式子啊。
这个式子以后呢可以可以可以看到好啊,那个就就相对来说分分母没有就比较简单,然后再因为两个压铁之间没有外力,没外力的话,这个这个叫叫唤醒矩,它就是一个一次式,就是这个式子好,那么由由这两个式子一对比是吧。
这两只只是所以呢y两撇就是一个现行时,那么积两次分就可以得到y x呢是一个三次函数,什么意思呢,就是说每两个压铁之间它是个三次函数,这两个亚铁之间也是三个三次函数。
所以呢就可以通过这样一个近似来解释这个软木样条,它的那个曲线啊,是分段的一个三次函数,每一段呢是由这个行词典所所定义的啊,就这就是它的一个力学解释,当然这个从数学上来讲,上次也是比较好的啊,太简单。
二次呢没有拐点,就是表达力不不够丰富是吧啊,那四次以上的拐点比较多,并且次数越高,同学们知道这个多项式次数越高,计算就越不稳定啊,因为它次这个这个次数高的话,乘法太多是吧。
那么所以三次呢是人们比较喜欢的一个一个选择啊,因为二次没拐点,它因为它只抛抛物线嘛,它没有拐点,所以表达不够丰富,三次呢刚好有一个拐点啊,所以它至少可以表达拐点的这个这个形状,40以上呢就多了好。
那么这样的话呢就大家就诶就数学上来讲呢,三次也有它的好处好,下面我们来看一看,就是既然这一段这一段这一段都是三次是吧,那么我们怎么来推导这个三次函数的方程呢是吧,那么这个方程需要满足什么条件啊。
怎么来求解好,如果我先不讲啊,大家可以来思考思考啊,这几个点压点的点是固定的对吧,然后这里这一段这一段这一段都是三次函数是吧,好这一段三函数三参数大家知道哈,是有几个几个几个未知数啊。
就是四四个系数对吧,所以呢你只要去求出每一段的四个系数,就求出它的函数方程,那么那么那么这里有没有什么约束呢,比如说在在在这个点这个点这222段,这一段和这一段是不是是不是在在这一点大牢了。
所以要啊至少c0 连续,而且在这一些简单可能还有c一连续,还有c2 连续,因为三次的话呢我们基本上讲的就是c2 的c2 连续啊,那么在在这里是不是就可以得到很多约束啊,所以我们最早方思想呢也是这样。
我们来看一下啊,好假设每一段啊,我就啊这个假设是持这一段啊,是三次对三次最大值,三最小值表达就是啊最高次数是三次是吧,所以它前面有四个系数,所以每一段呢这个yi啊yi啊就有就有四个待定变量啊。
就决定这个这一段的这个函数,注意啊,我们这里还是以呃以函数来做例子的这个参数的,等一下再说好好,那么假设有零到n个这个形式点就是n加一个形式点,是不是中间就有n n段了是吧,n段的话就总共有四个变量。
因为基本每一段就四个是吧,所以变量有这么多好,那么你要求他们的话需不需要一些约束啊,是吧好,首先曲线要差值行,这点是不是这里就有n加一个约束一啊,每个点是一个约束好,那么还有呢我假设整体曲线是c2 。
这样是不是两段在在这一点就有拼接三个条件,c0 表示顶点大牢,c一表示有公共的曲线,c2 表示有公共的两阶导数是吧,所以123中间的中间的n减一个点,因为一头一尾去掉中间的都要满足这个拼接条件。
所以这里有三个,那么有n减一个中间的节节点,所以有总共有3n减三个约束条件,因为那个变量是4n个,你你要拿到4n个这个方程,你才能求解它是吧,所以现在我们来看看现在有多少方方程了。
现在已经有4n减二个方方程诶,有四按4n个变量是n减二方程,是不是变量数多于方程数啊,或者说方程数少于变量数,这还不够对吧,因为这样的话其实有五种多个解是吧,所以还要去找两个额外的条件。
这样就构成了是n个方程,就有四个变量,这样就可以唯一确定整个,那么那么这两个额外条件呢加在哪里是吧,那么当然很容易想到哎,我一头222个端点分别一个加入条件是吧。
给它加个条件即进就可以刚好满足这个这个方程方程的个数啊,所以这个边界条件这个也是很自然的啊,好那么我们来推推导一下啊,好我们推导一下那个这个推导过程呢,那个今天这个笔没带啊,所以啊就我又不去用纸来推导。
我们我们写一个文档。
文档,我把思路讲一讲啊,这个文档也挂在了主页上,好,这文本当然是这样,这个这个我把思路写到这里了啊,首先你上次这个定义已经讲完了啊,他们引入中间变量。
假设我节点处的两栖导数是n m m i m一般叫弯曲,就是刚才吹倒的那个那个m啊,推到弯曲,那么假设中间这里每个点啊,这个这个两条两条曲线的节点,它的那个两阶导数值是mi,我先带带,这个是待定的。
那么你那么你这个没转这个y两撇,就是它的两种导数呢,就能表示成,因为它是它是线性的嘛是吧,所以它又能表达成一左一右的两个两阶导数的线性差值,就是这个文档里面的,在这。
啊就就就这尺子是两个端点的这个差差值,差值以后的话,你再两次积分就可以写出这个这个这个这一段的方程,注意这里mi和mi加一两个两端点的两阶导数是不知道的。
但是我可以把它表达它在表达在这里等一下是可以来求的好,可以来求好,那么通过这样一个啊这个两个两阶导数的这样一个待定系数,就可以表达这个诊断函数好,那么整个函数那我们再看我们还要满足这个条啊。
这个这个约束条件是吧,我们每个约束条件呢把它列出等式啊,首先是端端点疲劳,然后一阶导数连续,然后在两两个导数是公共的嘛,就自然而自然而然就就有了,然后呢再把所有的这个池子把它连接起来。
然后再加上两个边界条件,就刚好构成一个n加一乘以n加一,接着心理方程方程组,因为每一个点有一个导数是吧,所以呢这个方程组呢大家课后再去仔细看这个文档啊,就变成这样一个式子,注意m一到m m n减一啊。
那个n减一哦,错了,这里是应该是n减一,好解解方程好,也就是有n减一个未知数,就是那个啊中间那些拼接点的两阶导数,那么这将构成一个方程组,与其求解方程组啊,这边和这边都是已知数。
就可以得出它的2000方这个导数,这两导出以后是不是就这个中间每一段这个式子就全都出来了,就就这个式子啊,所以呢它通过一个中间的一个变量,就是中间节点出的两阶导数,然后来来推出这个曲线的表达好。
那么这个这个方程组呢因为是待定了这个弯曲,所以呢这个方程组呢就是在啊这个这个这样条理论里面,这个叫三弯矩啊,三弯举这个这个方程组啊,这这方程方程组呢是有无解啊,因为这个方程组是可以证明他是啊对称的啊。
三对角的对就对角占优,什么什么三对角就是沿着直角最角线有一条两条三条三个角,而且这个值中间这个值大于这其他的每行啊,大于其他的两个量词的和,这个叫对角占优。
从计算数学来讲就是对角占优的这个方程式都是可以是满满字的啊,然后是是有一节,而且因为它是这个三对角,所以可以采用比较啊,一个简单的方法去求解方程组叫追赶法啊,因为刚好一追一赶两次就可以。
因为从第一行就可以求出求出n m1 ,从第二行就求出u u r啊,这样一行行来来做,具体的大家可以自己去看一下啊,而且这个三弯曲方程组呢,这个这个这个求解啊,这个三追赶法还是非常高效的啊。
好这里还漏了一个这个两个边界条件好,我们来看看下一章边条件呢,就是这里你可以看到啊,有人们可以设不同这边条件就是两个两个端端点的边条件啊,啊我把这个图拷拷过来。
啊就是这这一头一尾是不是刚才少了两两个条件是吧。
那么这两个条件你就你就假设啊,这有些叫自由端,就算是说我我就我就啊确定这两个两个端点的导数等于零啊,就叫自然样条,因为它自然伸展对吧,我就不管它还有什么价值端,就是说我这个地方的切线呢,我我想控制住它。
你给它指定是不是222边的切线叫导数一阶导数值啊,你也可以给它给它啊,这个这个这个给定这样也是两可以这样设来他的那个啊这个边界条件,当然你说我我我我说我这个两两个两个边界条。
条条条件是不是是不是一个抛物线的还是怎么样,你只要给一个条件,把这两个条件够了,你就上一页啊,就这个边条件有了以后,就可以得到一个n减一乘n减一阶的方方程组了,好好具体最早呢我们这里不会花时间。
我把这个思路给讲一下,就是你你这个由这个力学知道它这个是一个上三次函数,那么再由这些呃拼接条件啊,就可以待定中间的那些啊呃三次函数的形式,那么这里呢又引入一个中间变量啊。
就是以它为一个中间桥梁来表达各段的这个曲线,然后去求解出这个中间变量m i你就可以得到这个函数啊,这就是三次样条分段的啊,所以要调什么呢,样条就是分段的对项式,那么三次样条就是分段的三次多项式啊。
那么只不过每一段跟每一段相邻的两段之间满足一定的连续性,光滑性啊,至少是两节连续啊,好那么实际上是在这个这个推导过程中呢,我们还有另外一种就是什么,我可以先假设节点出这一阶导数mi啊。
一阶导数就是导数嘛,对吧,就是就就叫转角,就这这个这个这个力学几何意义叫转角推导过程是一模一样啊,这算过程是一模一样的啊,你们去找找一些书去看啊。
那么同样也是啊,可以可以这样得到这个中间的导数的那个m减一乘,以按m减一,接着线性化的变分方程组,同样这个这个方程组的形式是一样的,也是三对角,对角占优,而且是对称的,那么因为它是以转角为未知数来求解。
所以这个叫三转角方程组,同样求解也是这个用三三这个追赶法去去去求解好吧,那么这个在一般的数字代数的书上都有啊,这个这个同学来回忆一下,没学过的同学呢找本数字在数书出字,数字计算的书都可以找得到。
这就是经典的三次样条函数的这个推导思路,而且这个是无论是三湾区还是三转角放的主,他说有这个性质啊,是是有一节啊,大家可以有关心的话,可以去看看他们去证明啊,好那么这个呃嗯这里我稍微提一下啊。
就是这里因为我比比这个没带,我就鼠标啊简单试一下,就是呢因为两个形形成点之间,还有就是刚才呢是是完全这个用a0 x a0 加a b0 x加上b2 c啊,c0 x的平方就是这种多项式形式。
那话你变量就是有四个是吧,但是对于一些比较特殊的这种这种这种条件啊,中间这三次差次方程组啊,是可以很容易有两个边线条条件给定,比如说我们通常说的2。2切线好,假设这个点给定了,这个点给定了。
还有这个点导数给定了这个点导数给定了,那么事实上是是可以很快写出中间这一段的那个那个叫做这个多项式,三多项式的形式是吧,2。2线线刚好四个条件是股四个未知数,大家可以去推一下啊,就是你去求一组啊。
这个叫后面的差值多项式啊,就是待定一个啊,30多项式,2。2线线给定啊,那么切线呢就是刚才带进的那个那个转角值啊,那么就可以用后面形来求啊,马上写出来中间的这段曲线,另外你说我给你2。2曲率也同样。
你可以去带进这个曲线啊,这个形式,然后呢就求出这个形式啊,那么这个呢是数学上的一些技巧,就是说我我可以把这种都有同样的条件的形式,编辑条件形式呢给它预先求出一组啊,这种满足这个性质,但性质什么呢。
你求出四条曲线,那一条曲线呢是经过这一点,那么其他点都等于零啊,呃另外一条曲线呢是经过这一点,其他条件不等于零,还有呢呃第三条是这个导数是给定的,其他作者一零,这样的话呢你就给出2。2切线的时候呢。
有那四个函数就可以马上做出来啊,这个函数形式真的只不过是最早过程中比较简单一点啊,我这里啊今天没有比这个这个就先这样提一下,后面有机会我再给大家把这个思路讲的明白一点。
好好这个是一个啊啊这个这个这个呃附附加的一个东西,但是前面那个思路大家啊可以理解一下,这个不难啊,就是啊知道他是三次,那么你就可以这样去推啊,这就是大学里面的数字函数都有讲的啊。
数字数字方法里面都有讲的好,那么这次就是和科比的差值多项式,你可以看到啊,我这里啊写写一下思想是吧,那么这是两个点啊,就是两个两个端点,这是两个端点的导数是吧,那么呃那么这个这个h0 h一和这个呢。
就是我刚才说的待定的四个函数,这四个函数呢在这个函数在这里是1000,这个函数h一呢是1000啊,这个函数呢是0010,这个正函数呢是0001,就是你只要是这样呃去去设。
然后你你这个你求出预先求出这个h0 h一大h大h以后呢,你那你给这样一个条件,这个函数就直接由这四个函数若就写出来了,那么这四个值刚好是上面这四个值啊,那么这四个函数怎么求。
就是就是这个方程式所给给定的啊,好好那么这个呃三次这样条呢也是一样道理,三次样条你可以看到我,我那个三四样条,刚才刚才不是要解放的主裁才可以推推出来嘛,啊那么在这里呢你可以看到它呢就直接用两个端点啊。
这这是y0 ,这是y n,这两这里是以这个两边给定的导导数为止是吧,那么中间呢是一些函数值,你看看到没有,sx就直接用这个形式点组合一个函数就把它写出来了,那么两个端点呢它也是组合了两个函数。
那么这些函数是怎么待定呢,假设你在这个这个中间都是给定的值,加上两个端点的导数值,那么这些基函数怎么给定,就跟刚才后面的差值一样的,那么那么这个函数就在什么。
就在在在在这一点加上i j就是等于1i及i等级的时候,其一其他都是零,他只有这个值是一的,全部全部是零,那么中另外一点也一样啊,那么两个端点的这个函数的一样,那么只在这个x0 处端点处,它的导数是一。
别的值全是零,同样这个也是一样,所以说你预先求出来y呃,这个呃f f0 到f n加二以后,那么你只要条件是一样的,那么我这个函数呢就直接可以这样写出来,就根本不用去求方程组,那大家就问你不喜欢程组。
怎么刚才那个不就白搭了吗,实际上是把方程组呢是这里每一个n加一个函数是求换的组,因为他的条件都是特殊的啊,就只占一点等于零啊,一不等于零,所以呢这里是用刚才的方法去求求方程组啊,就这这里有n减一个函数。
加上这两个端点的函数,就这样,所以这个就叫做几样条啊,那么刚才后面的这个这个思想呢也叫基函数,用后面的积在啊,那么金函数的性质我就不去不去不去展开了啊,因为你要你要你要你要去研究的话。
也可以去去找到这些这些这些关系啊,好咱们好,那么三次样条函数呢,我就刚才讲讲到那好吧,那么还有三次样条曲线,曲线就就不用讲了是吧,你们上节课刚刚就有理解了,因为函数呢它有局部性嘛是吧,它不能多值。
那么怎么去推广到曲线啊,大家都会了吧是吧,好你就就就把三个分量看成是某一个参数器的三次样条函数是吧,所以你多出一个变量来了t因为我知道它是一维的嘛是吧,所以你先去做三的话,所以你上前面那个作业里面做了。
那么先把这个顶点用弧长上的话呀,或怎么算的话,然后每个每每个点对应一个ti,那么对三个分量x y z分别是t的函数对吧,所以就变成了三个这个并行的这个方程组求解就行了啊。
那么这个这个所以啊我为什么前两节课讲得慢一点,让大家理解函数函数完了以后呢,这种这种呃叫做呃这个呃矢量函数呢就是什么三个分量分别对啊,分别在函数而已是吧,那么只不过那个那个自变量是一个变量。
叫单变量还是多多个变量叫多多变量而已,所以这种向量值函数很好理解,所以把它变成了函数的这个啊形式,只不过我们有的时候要写的时候写成一个向量格式而已啊,好那么至少你们昨天是啊主页上做完以后呢。
这个怎么把这个三次啊,这个样条函数变成三次参数,样条曲线就会会了,好那么这里可以可以看到好,那么那么这个曲线实际上是这里啊,这个再把作业这个如果改一下,你们刚做完的作业,马上就可以实现这个啊。
但是实现这个的话要实现实现前面这个三次样条啊,就就是这个方法啊,这个这个方法反正就啊我们已经写这个文档给大家参考,大家好好再再再再消化一下啊,就这个在方程组呢求解不难追赶法啊,这个你百度查找一找。
这种3万系方程怎么追,怎怎么敢,一来一回就可以把方程组求求掉,好吧,这个大家练一练啊,好那我们继续啊,这个这个这个这个练一练,这个这个这个求解方法,那么,另外我今天还要讲一个这个曲线的这个几何连续性啊。
这个连续性呢这个呃同学们在大学里面大一学就听过这个连续是吧,好什么,什么叫连续呢,就是如果一个函数它可微是吧,f啊他处处是连续,那么这个就叫c0 连续是吧,c0 连续就是没有任何一个点是断的。
那么什么叫c一连续呢,它处处有问倒数是吧,处处可导,也就是它的导数是左导数等于右导数,它它可导是吧,那么这样呢就是两阶导数是吧,处处存在两阶导数,我们就把它叫做光滑性,它比较光滑,因为它它具有高阶导数。
所以呢有两条曲线啊,一条是t0 t一啊,在这另外一条是啊,这个这个x一这是一条,这是x2 ,如果两条曲线啊,给定曲线一个是t0 t1 ,一个t1 t2 ,刚好在t0 的时候,是是是是大佬的好。
如果这两条曲线呢在这个端点处,x一的右导数跟x2 的左导数从零阶到r阶都一样,那么这个曲线呢就是cr连续对吧,这个跟我们大学里学的连续一模一样的概念,就是虽然这里看起来是两段,我即使是一个光滑函数。
是不是是不是我也可以把它在这里看成两段,一边左一边右的是吧,那么这一段的左边的这个导数跟这边的这一段的右边,这个导数完全吻合的话,那么在这里导数就存存在了嘛是吧,所以呢这里如果是两条曲线在这里拼拼接。
那么呢它们从零接连接什么呢,零接就是他们端点,这是吻合的,一阶就是他们的这条曲线的右右导数,曲线在这里的左导数是一样,那么两阶就是它的两阶导数也一样啊,那么这个叫c2 连续。
这就是我们大学里这个学的这个连续性,我们是用这个这个函数在这一点的导数来刻画啊,这个是就是连续性的,但这种连续性有些什么问题啊,我们我们这个呃来看一下啊,啊这里这里解释了cd是什么意思。
cd就是啊这个两个端点大牢是吧,应该是一阶导数啊,这个是连续的,实际上是两阶导数是连续的啊,就一样,那么用物理上的话就是这个速度是一样,那么这是一些例子啊,实际上是在数学上面,我们也定义c-1。
这个比较少见,但是也经常会用,是为什么呢,他们两个大都大不了就叫-1啊,就是c f1 ,那你说你有没有cf 2呀,cf 3还没有,我们这个就不定义更cfm没有意义。
因为c f一已经什么已经是没大牢了是吧,我们是一个符号好,更多的用的是c0 c1 c2 ,这是什么凉血,站在这大牢,那就是它端点重合,但是呢它的它的切线不一样,这个线线是这个方向。
这个线线是这个方向是吧,所以它切线是不相等的,指指在这里啊,这个介绍了c一呢,就是什么有公共的一个切线啊,这就是啊这个曲线在正在切线时,正方向这么这么长,这曲线切线也是这个样子。
那么c一第二的话就更光滑了,就是不仅有c的相同的值,而而且有两阶导导数的值啊,这个这个相同的值啊就更光滑啊,你说c2 c3 c4 有没有啊,大家都可以定义好吧,这就是参数连续性好。
那么参数连连续性上是比较严格的一种定义啊,它有什么不足啊,我们来看一个例子好,假设一条一条一条线段吧啊这个线段呢是v0 到v这个点啊,这样一条线段,这线段大家看肯定是直线嘛是吧。
但是这个现状呢我把它表示成两段表表达,一段表达是啊,这这么一小段啊是参数是001,还有这么一长段呢是12,所以他们站在t的空值是一样是吧,都是单位t也是一。
但是呢你看这个这个一占的只有百分之可能一小部分,那么这个这一段呢占了占了一大部分,好我们来把这个式子写一下,那么那么这个函数呢是一个直线啊,所以可以看到它是t的一个单变量啊。
这个函数啊t从0~1这个这个样子我们来试一下啊,就等于零,就等于v0 是吧,没错就等于一一,这个这个变成了v一减2/3的为零是吧,好那么t从1~2那么大,大家也可以验证一下啊,7。
1的时候刚好是跟这个点重合,7。2的时候呢,二再再进来,刚好是v一啊,刚好是v一啊,也就是说我我这个也是直线段,是表达这一段,但是它的参数值是0~1,我这一段呢也是表达一段是表达这一段。
啊那个参数值是去从1~2啊,对所以说如果你不去看这个这个这个啊,食子你去看看这个图v0 v这两个five啊,确实是一条直线段,虽然它表达成两段了啊,好那么这样会有什么问题,我们来看好。
我们我们来看一下这个f在一它就值为一,这个左左导数啊,等于这个它这个饭呢在这里的右导数等于这个左导数,就不等于右导数了,有没有发现它好,也就是说这个函数的右右导数跟第二个函数的左导数,在这里是不相等的。
如果按照我们传统的这个函数的经验来看,这个函数是在这里,是不是c c一的,因为他们这个两边导数在这个拼接点是不相等的,大家能理解吧,好问这里发生什么事情,本一条线段是无穷接连续的了。
线段中间任何一个点就是无穷连续,那为什么会出现这种现象啊,我这个把它表达成这样一个分段以后,就左导数和右导数不相不相等了,就被判断成为这个函数,在这一点是不不连续了啊,就是不不是c一光滑了啊。
这这个什么呢啊这个问题本质什么本质是什么,我们求导的时候,大家求导应该在微积分里写的是对某个变量来求导是吧,所以它是反映了对这个变量的一个变化率好,而你左右两段这个这个参数啊。
这个这个变量啊是不是不一样的,因为这个单位一占这么小段,这单位一占这么一大段,所以呢它就导致了这个导数啊,是依赖于什么,依赖于这个这个参数啊,所以这个啊结论是什么矛盾号,那么这个问题是在哪里呢。
这个问题怎么原,原因是连续性依赖于这个参数,你这个参数的选择这个不一样,它的连续性就可能跟着不一样啊,即使是从小曲线,你如果给它做不同的参数参数化,那么它的连续间就不同,这就很奇怪啊,我同样是一条曲线。
比如说看上面这条线段,我明明看起来就像线段中间这个点,这个这个这个我不看的话,他当然是c无穷了,怎么可能连c都不,是,因为你这个上面这个表达式里面,分段再给它不同的参数的这个参数化了。
所以所以这个连续性的依赖于参数选择,所以呢它是什么,是跟这个曲线的本身的这个一个性质,依赖于一个外界的东西,但是你跟他做了一个插图画以后呢,就变掉了啊,所以导致他这个对他的性质的判断就错了啊。
所以呢参数连续性它有不足啊,因为它是对参数敏感的好,那那这样就要问有没有一个更加本质描述这个唉,这个几何连续性它不依赖于参数呢啊所以在这个c基地,就我们这个学科就一种新的联系性啊。
这也是我们学科的一个非常大的贡献啊,就是哎我们从曲线在本质上的一个连续,来来来这个性质来刻画这个连续性好,那我们还是看这个例子啊,那么那么这个例子呢我稍微对它进行一个改造,怎么改改造呢。
好我把它的参数啊,前面一段变成0~3分之二,不是一啊,我这里写错了啊,这2/3,那么后面的是是是2/3到二,啊我我就把它改改掉得了,好我呢给他做一个重新商量化啊,就或者是一个一个一个一个变换啊。
这变换呢前一段呢不是0~1了,是2/3或者2/3到到到t啊,就在这里变了,这个形式呢基本上也没有变啊,那么就把它放化,因为这个地方确实是2/3,那么这是一又13/3分之四啊。
所以呢哎这样一个重新把它做一个参数变化以后呢,发现诶这个函数呢在这一点这个t啊,这个这个这个三炸,就在在2/3这个这个这个地方呢,就左导数和右导数就相等了,三就就就变成c无穷了啊。
因为你可以再去推它的呃,导数也一样啊,所以这个就是做了个变化以后呢,发现他又回归了生无穷,所以这就说明了这个参数啊,它中间是但是不能啊真正刻画一条曲线或者一个形状的啊,真正内在的一个光滑性啊。
它它是个外部啊,这个这个依赖的参数好,所以它本质是什么呢,是本质引入了一个这个参数的变换啊变换,那么是怎么变化呢,把这个原来参数变成2/3 s这一段。
那么这一段呢变成这样这样一个这样的参数变换就带到带到啊,刚才刚才这个这个这个这个是狮子里到这里来,然后就变成了就变成了这这个式子了,好这是直接这时候又变成了一个c c一点连续了,使得原来不是c一的。
变成了c一的,好,那么这里呢就就看到了这个参数呢,我可以做很多变换,你即使给了我一条曲线,你是参参数形式的,但我参数可以任意变换,放在你这个曲线呢,就性质就就就没有办法去刻画了,因为你只要做个变换。
我我性质来,可是连续的又变成不连续,本来是光滑的,又变成不光滑是吧,所以所以大家就是想这里到底是发生什么事情啊,所以就引入了叫做几何连续性啊,加了加了一个字,几何减刑,什么叫做几何不变的五。
这个曲线怎么表达,我的曲线只要不发生变形,发生旋转平移都没关系,这曲线的这个本质它是就就固定下来了,像曲线的曲率就是它的一个本身不变量啊,它不会随着它的位置和旋转发生变化是吧。
所以我们要去找出一一个几何体或几何形状,或者曲线的一个本质上的一些属性,叫做几何不变属性,那么这个几何连续性就是其中的一个这样的属性怎么了,我跟你猜的话没关系,你只要这个曲线给我,你把它分成100段。
1000段或者两段啊,这个这个性质是始终是不会变的,好那么这个是我解释一下啊,好如如果这个参数曲线是是是这样一个由参数所定义的啊,这个这个范围应该是出体表示由x y z好不好。
这n个n个这个这个这个这个这个分量好,如果存在一个变化,使得这个变换变换的这个t啊,带进去弹性其实是是不是就是个佛函数了,符合这种rot等于ros s,看看有没有s就变成了另外一个参数了。
好就变成另外一个参数了,好s是从a到b t等于a到b是吧,那么这里做变换,你把这个这个t等于6s带到在这里去就发现啊,这如果这个这个这个带进去以后,它是关于s是参数的一个cn的话。
那么就称这个曲线是n阶几何连续,也就是说如果存在啊,这但是这个怎么找这个变换,这是另外一回事,如果存在一个变换,使得它达到了cn连连续,那么他就是个本质上它怎么它这个本身是几何n阶几何连续的曲线。
或者简称叫gg n cn是一般的连续性,那么g表示几何连续性啊,咱们如果写的清楚一点,叫g n多多一个字母是吧,所以大部分会用gn这样g的指呃,这个这个n的指数这样好,也就是说如果存在一个变化。
是这个曲线变成了一个这样的c n连连续的话,那么这个曲线本质上应该就是n阶几何连续,就跟我刚才那个例子一样的那个线段分成了两段,开始的时候看看诶,他不是一连续的,但是我做了个变化以后呢。
把它变成了11连续变换啊,那那我那我知道了那两个函数呢刻画的这个曲线在内卷一定是c1 ,当然你刚才那个没没讲c2 c3 啊,这个这没关系,大家都可以去证明啊,好几何连续性,所以九等于什么呢,有连续性。
不是他的联系,也不赖不赖,不依赖于这个t,为什么我存在一个变化,能把它变成一个sn,因为什么它的曲线看起来啊这个这个样子好像不是光滑线,但是呢它本质上是从一个cn的这个曲线变过来的,你怎么变就变。
就是离开不了这个本质上的那个光滑性叫cn,所以只不过呢它呈现出来了一个非光滑的这样一个性质,它的本质上就应该是c,那么我们称这种啊,这个曲线叫几何连续性啊,结合结合连续好,我们来看一下啊。
好这就是它的定义啊,定义我们刚才已经解释清楚了啊,大家再等一下再再消化消化一下啊,就是什么意思呢,我们研究中心呢要研究它的几何不本身不变量啊,比如说曲线的曲率,大家如果学学过啊,曲线论的话。
你这个曲线无论是怎么在平面上移动啊,这个这个这个旋转平移,它这取率始终是一个定值是吧,这个没那个一点的曲率是从优点的,曲率值是它是个刚性不变量,这个方法连续性几何连续性也是一样。
它的本质上就是个cn连续的啊,这个只不过呢你经过了一些参数变换,变成了一个看起来非光滑的这样一个形式而已是吧,所以所以呢它本质上是那么具体存在,他这个是另外一问题啊,怎么判断一个曲线本质上是到底是几节。
那是另外一个问题,我们先不讲好,那么这里有有有几个条件,因为条件这个不等于零,什么导数不等于零,因为如果导数等于零,这个这个这个就变成起点啊,一般我们曲线的不考虑这种情况。
还现在就是它的几何连续性与参数是无关的,他它是固固有性性质,就跟曲率一样的啊,曲率是固固有性质,它不会随着你的参数变换啊,变换啊,不会随着你的位置变换而变换啊,方位啊啊所以说你基因的条件比cs要宽啊。
更多类型好,我们来举例啊,举几个例子大家就就就理解了,好好那么几何连续性的具体形式有哪些呢,哈c0 跟c0 是一模一样,只要端点啊,这个不考虑它高阶,那么就是c0 ,所以c0 c0 等于g0 等于四零。
拼接好啊,反正因为这里没有导数,你这个g和这个这个c就没什么区别好,但是如果g1 g表什么意思呢,表示这条曲线的切线跟这条曲线切线是共线,所以它们具有公共的切线方向,切线方向是连续。
但切线长度可以不一样啊,比如说这个这个就就是就是这个曲线在这里这一点的这个导数啊,可能是这个膜是这么这么长,而这个曲线这个导数模可能只有这么长,虽然他们的这个导数值不完全一样。
因为什么一一个切线是两个分量嘛,就是x对t的导数,还有y对t的导数是一个向量是吧,虽然他们这个长度不一样,长度不一样,就是说不相等嘛,就肯定不是c1 ,但是如果他们有公共的切线方向。
那么这个这个就是就是记忆,因为什么,因为我可以通过一个参数变换,让这个切线值可以变短一点,那么他们就达到一个是光滑,就是g1 ,好大家听明白哈,好有公共切线本质上什么就是g1 c什么本质上就是c1 。
因为什么我要我要我要做个创作变化以后才变成c一好好,那么这样的几何意是什么呢,这意思是什么,它在这里有一个公共的曲率圆,比如说它的曲率是连续的,所以很好记啊,g是切线连续,第二是曲率连续。
就是这这一点就这个曲线在这一点的这个曲率圆,曲率圆就是它的两阶密切圆啊,就这个半径,如果如果这里还有一条曲线啊啊或者是是是是这个方向曲线啊,如果他和他可能两阶导数在这一点是不一样的。
但它的这个曲率圆曲率是一样的好,而曲率是不是我刚才讲了是几何不变量,所以它跟参数化是没关系的,那么这个也叫做gr连续,我先提一下啊,大家看看有没有问题,这个这个好没问题,我们继续。
这个呃算是呃呃现在我们就可以来解释啊,你们可能会经常用到的一些曲线编辑工具啊,事实上啊office就是微软的office啊,都有这种工具是吧,如果同学们做过一些平面设计啊,这一路确实还有pj。
有早年的这个矢量编辑工具,都是有很强大的这个编辑工具啊,这就是做设设计用的,就平面设计师,你可以看到这个e像这个字母的边界轮廓啊,就是有一些控制控制点就可以来来决定,当然到三维就到曲面了啊。
曲面我们放在后面来讲,我们先把曲面的东西把它搞明白啊,这个曲面上就是张量啊,后后后面再来再来看好,我们来看一下啊,我这里没有装任何软件,我就是一个好,我把ppt,开第一页ppt,这里这是pp。
我这个pp的软件office也一样啊,等下office 3,大家如果有电脑可以跟我一起操作菜单,这里有一个插入插入形状形状,这里可以插入什么矩形啊,椭圆是吧,你们在做时候也会经常插入一些简单的图源是吧。
好我们这些还是比较简单啊,我插入你选择这个行中有一个叫曲线啊,这个看到没有曲线曲线点一下好,那么这里出现一个十字,就表示你要输入了,输入什么,输入一些控制点,我点一点,我点完以后。
这个这个拖到什么时候呢,它会跟着我走是吧,好再点一点,因为现在只有两个点,它当然是直线段了是吧,好,但是我如果变的话,第三点你看这个我第三点动的时候呢,这整个曲线会会跟着我在变形前面已经不是直线断了。
是变变成一个曲线了啊,三个点上去是抛物线了啊,好我就随便第三点在第四个第五个,第六个,第七个好,那么什么时候结结束呢,就可以结束掉了啊,所以这个这个呢是一个几何体啊,等然后你可以拖动放大缩小啊。
呃因为它是个矢量啊,好那么那些控制点点跑哪去了啊,那当你选中你任何一个,它就有框表示你选中了好,那么选中的时候呢,你点右键,这里有很多菜单啊,其中有一个叫做编辑顶点,背景点是不是就看到一些黑色点。
这黑色黑色点就是你刚才输入的那些关键点,这就是那些形式点,你们昨昨夜昨夜昨夜几啊,昨夜三就是把这个呃,当然呃今天的作业才是真正的实现了这个30样样条了,因为它这个啊参数性能啊,好看了,看好你现在拖动。
当你把这个鼠标放在这些黑色点的时候呢,你可以对它进行修改,把它拖动一下,好诶,剪掉的时候呢,哎又出出现了一条一条一条这个线,这个线呢就是什么呢,就是这个曲线在这个形式点的切线方向。
好你可以点这个切线方向的两个端点是个白框,你可以把它拖动,没有拖动的时候呢,就线线就变长了,变短了,你也可以去旋转它,曲线就跟着你,这是在动,你看设计师就是来调控这些控制顶点啊,这是几何设计的啊。
这个好那么好,那么本来刚才你求出一条上次刚才最原始的那条曲线,就是我刚才今天讲的三次样条函数,那你现在呢你可以去修改它的点啊,位置啊,修改它的位置,这样的话你就可以啊加好多好多。
这个这个是去去去去设计你的形状,当然你说我控制定点少了怎么办啊,关系你点中间的任何一个点,点一下就就增加一个点了吧,哦是要选右右键啊,就就就增增加一个点了,所以你可以对这个形状不断的去去去给它加密啊。
当然你也可以把它删掉,点右键删除啊,右右键也有点怎么增加是吧啊,我删除好,我先不要那么那么多点哈,那么多点可能大家看的比较乱,现在把它删掉好,好再再再再看啊,我点任何一点的时候。
你可以做到拖动这个这个这个曲线呢,哎刚才点了一个什么,这里有有一个在点哈,有一个叫平滑顶点,有这个叫直线点,有一个叫脚步顶点啊,我现在点平滑,选什么平行线就表保证这个是个c2 连续啊,c连续是拖拖。
这个这一段呢也会更更,我在变,因为它们长度是一样,是具有相同的缺陷,这叫平滑点,平滑点确实是光滑,光滑点,如果你想做设计的时候呢,表表示这个光太光滑了,为什么我想把它变成一个直线点,这是啥意思呢。
就是这三点贡献就是这两条曲线在这里有公共的切线就行了,所以我拖这个点的时候呢,你看左边这个切线它它不会变短,这个变长变变短啊,这这这就是g没有啊,g是吧,是所以如果我想左边曲线形状还可以不动。
我右边把它变成啊这个扁扁一点的,胖胖的啊,那我就我就这样设计是吧,对我们怎么再再来一次编辑顶点好,假设我觉得这个点呢这个这个点啊,这个这个点呢不是不是个光滑点,是跟什么尖锐的点点,右键脚部顶点。
脚步顶什么就是不光滑的,就就就什么就是机灵的,所以我编辑这个时候呢,哎它不会动,也不会跟着我是共线,因为什么它是小点啊,那么这里我把它拖一下啊,就可以设计出这样一个焦点的形状。
脚点的时候呢就不是c也不c2 啊,这也不是g它只有是g0 的,我们我们再再来看一下啊,就这个这个角角角点的角两边的形式,谢谢仍然可以可以可以编辑,你想想设计一些尖点啊,就可以,这个工具你看这工具啊。
哪里都有啊,office只要office工具基本上都有啊,我这是ppoint啊,你你用word office啊,可能也也也有的吧,看一下新建一个word文档,大家要画图的话,经常啊也是插入形状好。
在word里面画图也没问题是吧,好用法用法好像是一样的,点右键点点啊,你就就可以做编辑,因为因为都是微软的产品,它那个编辑工具是一样的是吧,那个我早年也也也做过一些这方面的开发。
好我们不去看好那个同学们,现在啊你们对这个呃曲线的这个设计啊,这个虽然是曲线比较简单,但它的设计原理你们现在已经全搞明白了啊,然后你你在这里去去去去做设计的时候啊,这个会知道怎么去用这些工具是吧。
要加一个点减一个点啊等等,你要你要编一个真正点都都没问题了,好嗯,所以今天呃到到今天为止呢,就是把这个二维矢量图像编辑啊,它背后的三次样条啊就搞明白了哈,嗯好,那我们再再再来看一下两种连续性啊。
一种是叫参数连续,一种叫几何连连续好,那么参数连续呢,它是传统的c0 c1 ,它要导数连续啊,两级导数连续啊,那么它怎么它它那是取决于这个要依赖于这个参数化是吧,那么肯定做动画可能比较合适。
但是呢你要做设计叫做design,做modering,做那个建模说,因为设计师你要你要去通过这个啊不断的这个来去去交互调节,这些顶顶点来达到他的要求,那么啊啊就希望有更好的工具是吧,表达形式。
所以n连续它是适合于什么,不依赖于参数的一个本质上的连续性啊,就像刚才这里面这个这个点,你无论怎么表达,它始终是c0 ,怎么表达它就是c一啊,虽然虽然它左右切线是不一样,但它贡献了两边的切线是共线的。
啊贡献是你可以可以可以可以可以可以看到它这边切线这么长,这个导数这么长是吧,但是它这个点还是啊c一的,只不过他表现出来不是c一啊,他的基因啊,基因连续嘶,这就是我们今天所讲完的作业是啊。
我们今天布置作业,这作业是上次也也不难,但是为了呃等等,还有其他同学啊,那么呃我们给了两周啊,上一周也可以,因为这个主要是就是在什么学会解释这样调这个函数方程组,就追追那个追赶法,算你把最高法写完了。
这个当然中间要有些推导,因为我今天推导只是讲得比较模糊,那个那个啊我们的参考文操口文档里也有啊,然后再去细好好推一推啊,但我就慢一点好,那么这个呢就什么就按就模仿我刚才泡泡的那个曲线设计工具。
一个这样的设计工具是吧,首先你输入一个有序点点列是吧,实时生成分段的三次样条曲线,注意不是你们昨夜三作业啊,作业一的那个全局的差值或者叫拟合的那个奇函数了,它不是个调节函数,它是一个分段的啊。
这里我再说明一下,那么这种分段好处你可以看到啊,我我这个这个曲线在变的时候,有没有看见只有这个虚线的两条曲线是被变的,别的点是不是不动的,可能会稍微有点严重,像刚才我说的时候,这一条呀。
这一条这一条这一条这一条会稍微有点变动,变动最大的是相邻的两条,还有在相邻的两条,因为它是三次,它会影响四转,远离四段以后,这一段跟这段是绝对不是不会动的,我们再看一下啊。
啊这个222块五微微动微动了一下,这几条是绝对不会动的,这个就是一个非常好的性质,就说我在修改,我在在修改这个地方的时候呢,我不希望他全局都给我多变化,为什么这个这个变化以后,我那边已经设计好了啊。
你你给我变一下,那个不就功亏一篑嘛是吧,所以呢我需要这个曲线具有局部性,因为你们是分段上分段的这个三四线条,它这个点的移动只影响它的那个相邻的三段啊,那就就不会有这个这个啊。
所以呢如果你们用卓一到卓越三的三个方法,注意啊,注意到社会出现三,你们用的g函数都是全局的,你只要一点点变动,整个曲线都会发生变动,只不过比较远的地方能变动比较小而已,你们不妨再去用你们市场。
刚才在demo里面,这个呃同学在这个优秀作品里面就可以看到,你中间连一个点稍稍微动一点,它整条曲线都会动,虽然远的地方动作比较小,众的比较小,它还是在动啊,只不过微微动而已是吧,在微重而已。
那别人性态呢就就发生变化了,这句不利于设计,这是什么设计,我设计师一段一段来修改啊,我我来微调这个这个地方动一下,整个整个曲线全动,那这个是性质是非常非常不好的啊,所以好这个作业是开始啊。
这个体验啊怎么样啊,把这个差值的方法变掉,因为以前的差值你们是全局积函数,无论是用啊,呃这个me还是伯恩斯坦机还是高斯,还是什么什么rb f g函数,它是全局函数,那么这这个这个这个影响是全局的啊。
那么这里要变成分段的,好吧好,那么刚才那个操作啊,大家也也也看到了是吧好你你也类似,可以去拖动行驶点位置啊,去修改它,也可以去修改它,它它的连续性成为g一和g2 ,可能是不用买就g吧啊我这样改。
干脆把它改掉,你们没有去推导这个表达式,你们是不知道怎么控成为g好了啊啊乘积或,精灵吧是吧,精灵就是不光滑,就就是角点嘛,就刚才演示里面好,那么你们写一个可以啊,可以模仿着,因为这工具到处都在啊。
你们怎么抠脚啊,甚甚至那个photoshop里面都都有啊,都有这种编辑工具啊,都是大同小异,基本上原理我今天就讲明白了啊,是三样条啊,这个只不过三次样条参数性的啊,这个好。
那么呃这个作业我有给大家本来是一周啊,按照我以前要求啊,这个是自己学,这样的话已经做过了,那么我就留两桌吧,好吧,这样大家可能不用太大压力,好还有点时间。
还有时间,我们开个头。
好东西来了,北京曲线,这个我我拉了一个这么大的弯,好再来介绍别的曲线啊,这个如果是我,我给我们数学学生讲,就直接讲他的理论了啊,因为啊毕竟考虑到有些是企业的同事同仁哈,还有些是非数学专业的啊。
你们前面就理解了全局积函数啊,函数空间啊。
现在参数曲线现在都明白了哈,参数曲线就是这个xy跟t的一个就是相当于这个张量张量值啊,比如说这个这个这个因为它有两个分量嘛是吧,所以所a呢写成一一啊,b呢写成y0 ,c乘一零啊。
是变出体表示表示它是个向量,表示表示多值的是吧,那么那么嗯上fx就相当于是x t y t是吧,哎x t y t。
就是他就是一个这样的表达,它实际上是f4 叫叫叫出题的话就表表达了两个两个函函数,是是是两行上面xxt呢是上面这一第一个分跟t平方,第二啊p啊加权。
那么价格分量y t x等于1t平方0t加上零啊,是这个意思好,所以啊看到这种出题就是这样,这样写的话就比较比较比较简单啊,就不用不用老写这个这个矢量和向量啊,这他这个这代表什么。
就代表了这样一个有两个分量的函数,每一个就是函数了啊,就是所有都变成函数,只不过呢这个函数呢是由第一行就x t呢是由一一所定义,y t呢是由100所定义啊,都看明白了哈,好那个到现在嗯大家都非常熟了啊。
好好,但是你可以看啊,这个函数等幂函数一一这个点在这二零,这个点在这一零,这个点在这,曲线是指这个蓝色的曲线,好这个曲线呢跟这个三个系数啊,这三系数你把它看成是控制顶点的话,诶好像没有毛关系是吧。
它它好像不直观啊,like这个叫magic mini,很直观的有意义,应该就是说如果我想去修改这个曲线,我想去拖动这个绿色点,我不知道怎么拖,这个蓝色曲线会跟它变很不直观,就不利于我们设计师去设计。
因为什么我不知道这个蓝色曲线是怎么跟着这个绿色曲线是动的,为什么,你看为什么这个点出现在在这是吧,这个这个点动的话,对这个难度会有会有什么变化呢,不知道就是这个是一个非常不好的一个表达,这个叫密集啊。
表达有没有更好的表达呢,唉这个人类啊也是苦思冥想是吧啊,终于这个这个在60年代70年代啊,一个叫北泽的啊,这个工程师对他不是数学家,他是工程师啊,他是当时在雷法国雷诺公司是做汽车的啊。
因为当时做做汽车也要经常设计曲线,诶他发现这种这种这种这种密集啊,不好,很不直观是吧,诶他怎么了,他把这个秘籍啊成了这种形式,这种形式就是我们以前讲的brt基,还记不记得风扇机,这是二次的啊。
因为国产机函数也是线性无关,也当成一个二次多项式的一个啊,这个空间你从上面这一行是可以啊,这个变化到下面下面这一行来啊,好只要变成这个形式,你看到没有,这个这个系数当然会会更更更更着变了是吧。
这三个会跟着变啊,2t乘以一减t加上t平方啊,就只要把这个形式是稍微变成这个这个这个形式诶,我们来看一下诶这个形式以后呢,发发现诶这个点呢是变成了这个曲线的端点,这变成了这个选项。
另外一个断端点中间这个点呢在在在这这三个点呢连连起来,起来这个连起来这个红色这个叫做控制变形,跟这个蓝色曲线啊就很就很相似,如果你这个是红色曲线,是是是是是这样的,控制变成变形曲线就变成这个样子吧。
如果如果如果如果是这样的话,就先变成这个样子是吧,所以我可以可以很直观地看出这个三个控制点的形状,跟曲线的大致关系,至少是个大致走向,诶什么更加直观诶,我什么我下刚才那个三次差值的,我是拖动曲线的顶点。
但是呢我这个是拖动另外一个叫控制顶点,曲线呢能跟着我这个控制链在变而变,所以呢你可以看看刚才同样的一个呃叫多项式,我把奇函数变成另一个形式,或者用另外g函数表达,这时候它的控制点点就有非常强的几何意义。
又不是新的,是几百年前就有了是吧,但是北泽尔这个人啊,一个工程师,他不是学数学的啊,他就是个工程师,就是个在飞机场里面啊,这个这个这个做设设计一个普普通通的一员,他发现变成这一进函数以后。
诶它的这个这个这个性态呀,诶很直观,所以这因为并没有并没有新的发明,但是它的它贡献在于什么,发现了这样一个非常好的基函数啊,这个这个形式使得啊这个控制景点能够跟曲线之间非常相似,很容易控制啊。
那么那么这个曲线就以北侧命名啊,叫北侧曲线,所以曲线啊这个嗯他的故事也比较比较有有意思啊,他这个当时也没有一下子想到不用分散机,他用用了另外一个g函数啊,这个g函数啊,后来他自己也不知道怎么吹出来的。
但但但事实上后面证明就是国产机啊,那故事我就我就不去讲了啊,这个有兴趣可以自己去百度啊,例子啊,那么好,你只要固定义三个点,就是这三个点呢用波茨坦机去组合一把,然后就得到这个曲线。
那么你去拖动这个b的点的时候呢,你你如果b点是拖到这里来,这三角形变成变成这样一个形状,这曲线呢也会跟着你弯啊,就很难就很直观啊,所以啊这个今天我想这个呃就把这个意义先讲一下啊。
就是用播放器函数所表达的曲线,它本质上什么是一个三,是个多项式,那它比密集要有非常好的几何意义啊,风扇机不是新的,虽然是不是新的,但是北京这个人发现了这种好的性质,有利于在这个做几何设计啊。
这个啊所以说呢有些这种看起来不是很难的东西,就是来自于这个工程实践啊,它如果不是在飞机做设计啊,有可能他就不一定能发现这个事情,而数学家呢老是用国产机函数去去组合一些函数,也没有去去想它的这些好的性质。
为什么数学家没有工程基础啊,他不会去想到怎么去让设计更更友好,反正他对他们来讲就是一个函数空间,我能毕竟所有函数为常数定理对吧,所以呢这个是一个非常有意思的现象,这么一个简单的东西啊。
但是呢产生了这么大的意义啊,甚至以他的名字来来命名北辙的曲线,好吧好,那那么下面就是啊,那么为什么博尔坦基函数所表达的别的曲线有那么好的性质,那么我们就要去从研究博尔坦基函数的性质去研究啊。
事实上数呢博产基函数的性质在几百年前就研究的很透了,只不过正想着它用来做曲线设计啊,这就是本身的意义啊,所以现在所有的这个这个这种方式定义的曲线,我们都把它叫做北泽,所以他的名字啊,这个永留青史啊。
这个这个这个永远被别人记住,虽然看起来不是那么难的一些东西,好吧,这就是为什么就是很多东西要从实践结合起来啊,如果大家有很好的数学基础,又去实践中去去不断实践,去探索一些更好更友好的东西。
说不定就能发现很好的啊,这个这个东西啊好那么时间有限,那个现在已经快九点半了,那个保产机性质以及被主要曲线的一些性质,我们下节课啊再来阐述一下啊,那个东西都很简单了啊,后面呢这个今天是第四第四次了哈。
前面是因为考虑到同学的基础不一样,我讲的比较慢,那后面我可能很快过掉了啊,所以同学们自己去啊,嗯那么后面还有一关,这个北完全理理解好以后,别这是一段嘛,还被分到北辙呢,你分了,这不是分成多项式吗。
就是样条是吧,那么但是我们刚才的样条呢只是三次这种这种这种兵线的样条,它还是一段一段表达啊,人们用户就会想有没有可能是一起表达,然后然后也是一段一段是吧,b是basic叫基本样条啊。
好我会把它的产生的原理给大家介绍一下啊,把它原理介绍一下,以后你们就不会怕,为什么呢,奇函数长得怪怪的是吧,这一段一段一段一段的是吧,它就是为了是吧,解决这个函数的分段性质好吧,这个啊想听更多的故事啊。
这个我们下节课再见好,今天到这里为止,我看有没有提问啊,看来看到大家这节课这个都还理解的比较好啊。
没什么问题好,那我们就下课了,好再见。
GAMES102:几何建模与处理 - P5:Bezier曲线 B样条曲线 - GAMES-Webinar - BV1NA411E7Yr
啊同学们那个今天我们课程开始哈,啊今天我们准备啊把那个北这曲线讲完。
上周我们简单开了个头哈,我们回顾一下啊,在前面四,此刻啊我们重点很慢的比较详细的介绍一下函数或者叫曲线的拟合,那函数是单变量曲线,你可以把它看成是那个参数化的参数型的,已经多元的。
那么在我们这个实际造型中呢,啊有一个词叫逆向工程,建工程大家可能也或多或少听到过,就是说在早期中国计算机发展史的时候,像我们的工业也比较落后的时候,我们很多产品啊是是无法就不知道它的那个曲面是什么。
就没法制造,这时候呢我们就通过购买国外的一些这个产品,比如发动机叶片啊,或者是一些这个铸模的一些机机械鳞片,然后呢我们就通过去仿造它啊,就是我上面就因为这个曲面本身我不知道是是什么,是什么表达。
那么我们就上面踩点,通过踩点的话呢,把它勾勒出一些哎轮廓,然后再去模仿他,当然这只是外形上的一个模仿啊,或者是一些性能,这个我们这个课不是我们的内容,但是我们先把它外形就说逆向工程呢。
就是把产品的外形把它逆向,把它生成出来,那么这就涉及到一个联合,就是我们往往可以采到这个产品的表面上的一些点啊,虽然我们这里是一维表达,是二维,三维,后面我们都会讲到啊,通过拟合方法去做。
所以函数拟合曲线拟合这个非常重要的一个内容啊,只不过它用的函数形式是不一样的好,那我们来从带着观点来看,就是给了一些点,我们要去找一个好的函数啊,这个好的函数是什么呢,是有不同的评价。
然后心理和这些点呢,那么我们希望从一个函数池子里面啊,函数在池塘或者叫结合里面去找一个函数,那么这个函数池子呢为了表达方便呢,我们会定义一种基啊,这个机呢当成一个这个函数空间啊。
比如说二次函数就是这样的形式,a b c啊是待定的啊,去求,那么你去用这个好的函数的度量就可以求证那个这个函数是吧,就是我们前几节课讲的拟合啊,那么这个如果是参数性的话,就是这样一个形式。
它有它有两个分量啊,这样的话就可以表达范围,比函数是要广一点好了,我们再来看这个刚才说的含这个这个一个抛物线啊,比如说x分量y分量分别有,这样我把它写成向量形式,就是x是上面这三个值的啊。
这个这个t平方的幂,这组合y也一样,那么如果我把xy联立起来,这个这个接前g函数前面这个系数啊,就是空间中的一个点,一个表达x分量,一个表达y分量好,那么这样表达的话呢。
你可以看到这个mg函数前面这个顶点啊,就成了一个各个分量的一个系数好,那么我们从几何观观点,从另外一个观点来看,如果我们把这些点看成是我们用户要的,那么是不是t平方t这个密集啊,这是一啊。
这个密集是不是看成去组合这些顶点的一个阻系数,也就是说我用户的假设是啊,这个这些顶点是我不要的,那么我就g函数呢可以看到是另外一个这个这个全,那么这个呢就是一个几何观点啊,就是说同样一个表达。
但是代表他的观点是什么意思呢,就是我从这个函数集合里面去去去找一个这个这个系数是吧,好结构点的什么,我顶点给进,把把g函数看成是一个组合系数,那么我们看一下,如果是这个g函数如果不够好的话啊。
你看一看诶,我我这个顶点在这,第二个地点是在这,第三点是在在这,而曲线的是在这,就这个曲线跟这个三个顶点啊就就没什么关系啊,这这个原因是什么呢,原因就是这个g函数啊可能没有太多的这个几何意义。
或者说选的不好是吧,如果这样的话呢,我用户如果想想去调整这个曲线啊,想什么呢,我就想去调整这个系数,这个系数呢是一个点,那么如果把它拖到这里来,曲线可能一下子变得很大,就不一定不一定是这个样子了。
可能可能是变成这个样子了,就导致我用过啊去交货就不直观,没有那么几个意义是吧,所以这里呢就又导出一个这样的问题,g函数的选择很重要啊,如果你要去做设计好。
这时候呢就我把今呃这个我们的课比较重要的两个概念,一个叫建模就建模啊,两种形式啊,一个一个叫重建啊,英文叫reconstruction,什么意思呢,就是逆向工程就形状已经有了。
我呢去通过采集采样点去把它拆出来,当这个猜你要猜它的函数形式,函数奇函数啊,或者或者其他的一些性质,那么就通过理论方法,这个我们已经这节课讲得很很多了啊,还有另外一个呢就叫设计,设计是什么呢。
就用户呢它会发挥自己的设计美学的或者工程的一些经验,简单的从一个形状进行编辑,比如说我从一个圆开始编辑一个船的形状,飞机的形状行不行啊,那么这个叫设计,因为那个那个物体是不存在的。
那个物体呢是存在于设计师的脑袋里面,他呢只不过通过这个交互的方式,希望通过一些这个方式来把它把它做出来啊,因为他们可能可能也会可能会有个参考,但是呢很多时候呢是他是从凭自己经验啊,那么这个呢就是设计。
所以这两个从这个中效建模啊,像现在的扫描啊,都是叫重建啊,扫描仪呀,就什么我们我们的地球,我们的物品是存在的,你只要把它采样点到来,再去把它拟合出来啊,重建就重建,还有可能叫设计。
或者教学设计师提供工具,那么这个一个一个比较这个重要的一个要求什么,你要交互式啊,你要非常好的直观性啊,那这时候呢就是说我通过一些点,用户可能通过少量的一些点就能控制出一个曲线就好了是吧。
那么那么这些点呢这个曲线呢可能只有这些点通过一些组合组合,就是记函数组合去把它组合出来是吧,t从零变到一,这个曲线呢就一个一个点一个点就出出来了,那么就形成一个光滑曲线,这时候呢就要求g函数呢要非常好。
要么要很直观,刚才我们说的幂函数就不够直观对吧,刚才那一页好,那么我们如果把这个幂函数t平方t和一写成另外一种形式啊,这个形式我们以前提到过这个形式叫波尔斯坦基啊,光自产机如果写成这种形式。
你看他们也是二次的,这个也是二次的,如果把它改成这个形式的话,我们来看看会发生什么样的现象,好诶这个发生变成这个样子以后呢,这个顶点系数啊,就跟这个曲线啊就就很很相关的,一头一尾一中间啊。
刚好是这这三三个点,这时候呢哎我这个这个这个曲线形态呀,就跟我三个系数是个点就非常相似是吧,因为我多边形,我这个是这个这个样子,体现出这个样子,当然后面高次也一样啊。
这个这种设计方式方法呢就非常非常直观,能让艺术加压,让这个设计师啊很方便的去控制这些顶点来改变这个曲线的形状啊,使得这个这个他的那个那个编辑啊,设计的这个啊方法就非常非常灵活啊。
好那么下面就介绍这个分散机啊,上节课我只是简单提了一下分散机呢在数学上存在了几百年啊,这个早就有了啊,它的形式是这样啊,就是一个1t一减t的这样两个次数加起来是n啊,总次数是n次,多项式。
你可以看到它也是t的,多项式是n次多项式啊,那么中间有一个组合系数,主要系数在我们那个时候呢是写成这个样子啊,现在你们可能主要系数是写成这个样子啊,就是从n个里面拿个球啊,这这样一个一个一个一个个数啊。
这个大家都肯定接受过好,那我们这里有个记号,上面有个括号呢,就表示这个n次啊,那么下面i呢是表示第几个,那么i呢是有零到n啊,012345的线n有n加一个奇函数,所以n次多项式有n加一个减函数是吧。
一和这个t t平方啊,到那个,所以呢它也跟密集一样的,所以它等价于等下,我们也会证明它也组成了不高于n次的多项式的g函数,所以它的组合跟那个幂函数组合是造成的空间是一模一样的,他们可以相互转化。
那么国产机呢这个在历史上存在着很多年,只不过大概在上世纪60年代,50年代由法国的联络公司,人家公司是做飞机的啊,是造造飞机的,因为工程师叫比北zl,他呢把它用来做矩形设计。
所以一下子就变成非常非常方便和灵活,那么啊那个人们为了纪念这个这个发现吧,这个啊那么就以北热曲线来命名啊,那么这个但是奇函数呢我们还是仍然叫波斯坦基,因为博尔特产机存在了很多年。
所以我们不把叫不把它叫北极二基,因为体积函数是存在的,但是呢你说我那个呃一定要把它叫做北热机,临时叫叫也是行的啊,好我们来看看呃比较低阶的哈,这是连接的就是一个常识函数一啊。
那么呃我们先限定在001之间啊,好那么这个是一阶啊,一阶就是一减t一减t是这个函数啊,t是这个函数是吧,两两间啊,二那么是这是b0 绿色的这b这b23 也一样,b0 b1 b2 b3 啊。
这个绿色的是b一城市的b2 啊,蓝色的b3 啊,可以看到,如果你简单的用mac去画一画,就好像把这么几个曲线出来,当然如果你这个次数n啊再高一些,同样的啊可以幻化出来啊,好了,那么这个这么风扇机。
这个就是这么漂亮,就是说我b0 b1 b2 这个三三个顶点,然后如果你用二次的这个多项式啊,这个北北辙去画一下,就就就是这三点点是这个样子,曲线变成这个样子啊,就是很难直观啊,你看这个点。
如果你把它拖到这里来啊,那么这个曲线呢可能就会更翘一点而已啊,这个很容易用一个程序做起来好,也就是说我们上节课讲到这儿,用不用上机啊,给它曲线非常好的,好的几何意义啊。
这这个你可以看到这个跟我们以前说的函数没有没什么两样,止步呢我们换了个角度来看,是什么看呢,我们把顶点p i你pi以前是我们基函数系数,现在怎么我把它看成另外一个点,把g函数看到什么。
看到是组合pi的一个全是吧,好那么这个就生成一个函数或者叫曲线啊,这个这时候呢就我们p i是为主要,那么bi呢是它的组合系数,也就是说我比如说你334p0 p1 p2 p3 好,给定个t t等于零。
那么b i就生成四四个系数,那么是由p0 p1 p2 p3 p42 p1 p2 p3 组合出来一个点,好t等于0。10。2就在这啊,p b等于0。3啊,又又又生生成一个点,并且0。4啊。
好那么这样拼的从01光连续变化就形成一条曲线,所以中间的任何任何一点就是t在某个时刻属于01的一个一个点,那么t从0~1变化就生成一条曲线。
那么这个曲线上每个点都是由p0 p1 p2 p3 这四个点组合出来的,这组合是组合的,是这个权呢是由t变化而得得到的啊,所以从这个观点呢几个观点来看,哎我们同样一个函数形式,我把pi看的是我要的东西。
b g函数看着是个这个组合系数啊,所以bi的特性决定了这个曲线的特性啊,好那么别的比这个曲线的定义就这样啊,给定n加一个点啊,我们这是用三次啊,n n n n等于3b0 b1 b2 b3 。
那么呢由那么这个呢我们一般把它叫做控制顶点,就把这个系数叫控制顶点,因为它是控制这个曲线的这个这个一些平面上的点啊,我们这是二维的啊,单参数,那么呢这个把它连起来,顺序连起来,这个叫控制多边形。
那么由这个空中顶点跟中多边形,再由这个g函数一组合啊,就可以组合出一条光滑曲线啊,这个就叫北侧曲线啊,如果这个是波产机,就叫北色北色曲线,当然人类历史上啊,那么自从比较这种形式出来以后。
你把奇函数做个变换啊,把它去产生很大的很其他的一些类型的这个基函数也有很多人做啊,比如有些人去用这个这个机函数,生成一个更靠靠近这个多边形的一个曲线啊,比如说过去线等等啊,那么这样还有很多这种奇函数。
我们不去展开,那么大家这节课呢我可能还是讲它的原理,它的思想就是你们懂得懂得这道理以后就就能看得懂啊,早年一些文章为什么去构造那么多基函数,因为构造奇函数有它的性质是吧。
那么我们分散基函数且性质我们马上就会讲到,所以呢一条曲线通过这样的方式构造出来以后,这个基函数对这个曲线的形态是构成了非常非常关键的一个性质,所以曲线的性质来源于这个基函数的性质。
因为我顶点那是用户所看得到的交互的啊,好嘞,那么这是一些典型的三次曲线啊,3334g函数,这个这个在右上角大家可以看到,那么如果是这个这个形状1234,那你可以看到啊,还有这种带拐点的啊。
p0 p1 p2 p4 啊,你可以看到如果这个充值变形有折折一折,那么曲线就可能会有个拐点是吧啊,那么呢还有一个p0 p1 p2 p3 ,如果是可以控制顶点呢,这个是是共线。
那么这曲线就是p0 到p3 的这条线段啊,当然它也可能会产生自交啊,如果是p0 p一啊,p2 p3 是这样排列啊,那么它有可能直接啊,这个时候反正这三次有这么多形态啊,好那么这是高次的,这是n等于六啊。
高次你可以看到就是你你画了多少条曲线啊,这这多少多少个顶点,那么就有一条曲线出来啊,那么那么这里也也是六指,那么当然这个如果你要生成复杂的曲线啊,这个你可以用多段。
比如大家可以看到这个瓶子的侧面这一段里面这一段,那么右侧面是一段啊,顶面是一段,所以你可以用多少多段北子来拼接啊,生存,因为这一段应该是c0 光滑的,所以它是啊这个拼起来的好,那么这个同样的概念啊。
你你只要是单单参数啊,单参数,那么我们以前讲过单参数,只不过到空间阿三阿三空间只不过是x y z x t y t c t而已是吧,所以他他也应该是西格玛这个这个这个pi跟系数。
只不过ps 4空间中的空间中的一些点是吧,像这里b b0 在这b1 b是在是在这是吧,那么这是形成了空间中的一条曲线啊,它的性质也一样可以讨论,所以我这里只提一下,但是你说定义四维五维中的曲线可不可以。
只要是单参数,它的本质为主都是一,所以都是定义了曲线好,那我们呃下面就讲一讲这个北热曲线的性质,为什么它这么这么有名啊,就是在在设计中这么用了这么多,因为它有很好的性质,那么这个分散机的这个这个定义。
这个就在这啊,那我们大家要非常熟悉啊,cn i ti一减t n减i啊,这个就是分散机,那么这个基函数就可以看到我们这里画了一个呃不同的次数的,这个这个基函数,你看到它是左右最对称的。
就是d个跟dn减x实际上是完全一样,只不过关于这个中点是对称,你可以看到t和一减t刚好是关于这个中点对称嘛是吧,还有任何一个g函数它的最大值啊,实际上是就是在n分之i中第啊第零个应该是在零。
第一个视频应该在n啊,在在在一,那么中间的是n啊啊那个m之2/1啊,所以它的最大值还是比较比较均匀的分布啊,这个这个这个基函数好,那么还这个性质很重要,这个叫叫正性,就基函数呢你可以看到都是在零之上啊。
这个绿的成分的就是啊,这是第零个,这是第一个,这第二个计数啊啊那所以证很容易证明啊,因为它的表达式就可以看出来,还有一个呢它有个权限啊,这个性是非常重要,全是什么意思呢,我任何一个t。
这里是不是有n个n个基函数的值啊,它们加起来的和一定等于一,无论这个t是01中间哪哪个值啊,01中间哪个值啊,你只要取个t啊,那么在这里n个函数在这里上升值加起来,重点一。
这个实际上就是这个这个叫weight权,叫规权全加起来等于一是吧,这个性质非常好啊,那么有这两个性质呢,大家可以想一想,一个是加权平均这个ps是吧,这是曲线啊。
然后呢它又等于这是不是一个非常好的规划的一个加加权平均是吧,所以呢这个由正性加权限呢就推出来这个曲线是具有突破性啊,这个这个这个叫突组合,如果是阵型加强型,叫叫出组合,就这个叫线性组合是吧。
有基函数组合这个pi,所以呢组组组合就一定有突破性对吧,所以你可以看到这个曲线啊,这个多边形里面,无论这个怎么分布啊,这这是三阶的,那么这是多阶的这个这个阴影区域就是这个控制多边形的图标。
所以呢你这个曲线跑不出你这个图标范围之内啊,那么第二个呢就即兴这个已经证明了啊,就刚才讲了,我还没证明,但是这个啊我们这课不会去讲太多的这个理论推导,你去相信他这个是是那个不高于n次的。
因为同一个空间它有不同的基,所以啊本产机也是不高一次n次的多项式,那么这个密集也是,所以他们两个g函数之间一定是可以相互转化的,也就是说任何一个g函数都可以由它们表达。
就是像这个等于这个乘上第一列是吧啊,那么第二个是成了第二点啊,那么同样反过来这个幂函数也可以由它的去表达,只要把这个绝境的逆乘乘过来就可以了啊,所以那这个都是因为我们维数都是n维啊。
好还有一个就是递推式,这个就是我稍微提一下,就是n阶的这个一个基函数等于n减一,接着两个减个减和相邻减函数的这个加权,这个权呢是t和一减t啊,这个性质也非常容易证明啊,这个这个性质用来干嘛呢。
这个以后啊怎样可能会减少啊,也就是你可以看到从这里来就是一个g函数,是有两个低阶的g函数,通过一个组合声是吧,把它提升,因为提升的过程中呢是有两个线性组合,一减t因为中间带了个t。
所以一定会提高一个次数,因为t是变量啊,所以它会保存一些好的形式,禁止也会怎么让光滑接提高,因为你这个乘乘了一个t以后,你再求导它,这个导数呢就多多一些啊,所以它会提高光滑性啊,这个呢呃我先卖个关子啊。
这个等一下就会回忆起这个这个公司的好处好,那第二个性质呢就是端点差值,就是啊这个你可以看到除了第零个基函数在这是一以外,别的在这里都是零啊,同样在这个端点最后一个奇函数是一比,特别是零表示表示少数。
为什呢,表示这个曲线是有端点差值,因为只有第一个啊,就是这个曲线啊,就是差值两个一头一尾啊,无论你这个贬值曲线是怎怎么怎么怎么次数高啊,它是断点差值啊,所以这个别的选项有很好的性质,他差值手握两点好。
这是这是导数,你对崩散机进行求导,可以看到啊,这个这个导数公司我我就不推了,这个如果大家有一点点这个最大能力去求导,对对对,这个把这个式子带过来,对t求导,然后再经过一些简单的转化啊。
这都是大一的或者高中的知识啊,这些就会转化出来,好那么呢这里呢有一个啊,这里f一撇t等于这个,然后后面有一个这个啊,这个我把它具体化一下,就是也也是看端端点的啊,有零一,那么。
我还是以这个三次为为为例吧,啊好三次为例,p0 p1 p2 ,那么这个几何意义我稍微解释一下啊,好两个点在零和一之间啊,在零和一这两个端点做差值,这没问题是吧,p0 等于啊f0 等于p0 。
这个啊这里这里这里写错了,这里应该是p p3 啊,就是端点差b3 好,那么f这个曲线在这个零上的一个导数,导数有两个分类嘛,就是切线这个现象可以看到是第一条边跟它完完全吻合,只不过多了个倍数。
如果这是三次的话,这是应该三倍是吧,也就说是什么呢,曲线在这一点的导数切线方向跟他完全重合,但是大小是这个长度的三倍啊,啊你看是吧,同样这这曲线在这个点的导数也是跟他完全重合。
但是呢长度是p2 p3 的三倍,所以你看到它不仅手握相应那个相连啊,这个相间,而且线线呢就是手握的两条边,那么最高阶段话几何意义就不是那么明显,但是也可以很好看啊,p0 减去两倍,p一加上p0 。
你把它变换一下p啊,p2 加上p一除以二减去p一这个重重的两倍嘛是吧,好什么意思呢,是p2 加p0 ,就是这两点的中点跟这个点的方向的两两倍,所以这个点的导两阶导数是这个方方向啊。
那么同样这个点的两边导数呢应该是14,只是四个方向啊,所以这几个e还是挺明显的,但我们用的最多的是两两个,一个是端点差值,第二个切线啊要沿着手握的啊,这个边,那么这个升阶升阶的意义呢。
就是因为你风扇机啊,这个这个dj的n跟n加一啊,这个有这样一个关系啊,那么很容易把它推导出来,所以呢我我一条这样的,这里是一个啊,本来是1p0 p1 p2 p3 是一个是一个三次的。
那么呢我通过这个组合就可以通通出来,就是这里有一个点,这里有个点,这个点就变成了四次,就这个黑色的曲线呢是一个被呃,是一个呃是一个四次北朝的曲线的共同多边形,那么它生成的曲线跟这个由原来的p0 p。
1p2 p3 生成的30多万的这个曲线是一模一样的啊,就是它升阶,但是就曲线是保持不变,但是你空景点呢多多了一个次数变成四次,所以从这里可以看到,就是看起来这条红色的是由这个黑色的五个空。
五个顶点定义在40北朝的曲线,事实上它本质是三阶的,所以这容又引起一些曲线的降阶的问题啊,我这里不去讲是吧,实际上在这个如微笑曲线是由dj升级过来的话,它的次数就是那个dj的次数啊。
所以只是表面上看起来它的四次就是次数比较高嘛,而为了节省这个存储量,我们希望它次数越低越好,所以有很多人去做降阶,当然这个是早年很多文章啊,好在这里也一样,就是啊这个每条边加一个顶点啊,就就声音阶。
同样你不断的递归可以升到五阶,六阶,七阶八阶都可以好好,那么本周曲线还有另外一个非常重要的性质,就是这个decastle的算法啊,这个这个这个应该是一个拉拉丁文decastle。
就是呃完了这个就卡卡卡斯特罗吧,就是以前古巴的领导人哈给castle的算法,这个算法呢是发现了一个北辙曲线的一个非常重要的性质,最近出的就是由由刚才这个递归时所发现的啊,所表达的就就就这实质啊。
我们看一下好,这是这个这个算法到底在做什么呢啊我们始终得用这样一个式子,因为刚才g函数是不是有有这样一个地推死啊,你把g函数代呃,把那个式子积函数带进来,这样就拎出来就变成了这样一个关于顶点的一个组合。
好我们来看一下一减t我们把这两两个顶点啊,由一减t跟t t先任意给取一个值,这个值是0~1之间就行了,比如取取取1/3啊,取1/2好,那么这两个点就得到一个新点,那么这两个点呢就得到一个新点。
这两个点叫做新点,就就是这一列的啊,好同样操作我再做一次,那么由他们两两个人得到新点,因为他们两个得到了心点,就是这一列的值是吧,同样最后我在这两个两个点则得到了新点,就就这个点可以证明。
这个点一定是这个曲线在t这个当前值的这样一个位置啊,也就是说我通过这样一个线性的组合了三次,就得到了曲线上这个点啊,这这个选项上这个点,而且还有好多好多限制,我这里统一讲一下啊。
就是通过这样一个分割分割啊,分分了几次以后,那么就得到血线上的一点,并且1234,因为这个点把曲线分成了两段,因为一个左边这一段,一个右边这段可以可以,我们可以肯定这是个点。
就是表达这个值曲线的这个北这空空的顶点,所以这一段这个曲线是由这么四个控制顶点所表达的三次北辙,同样这边的一半是由123是所表达的这个北条曲线,所以这个算法呢不仅是求到了学上的一个点。
而且把这个选项上这个分成左右两段的北泽二,表达的控制定点都求出来了,而且最后一条边就是跟这个曲线在这一点是相切,所以所以这条边就是它的切线对吧,这个这个这个显然因为因为这这个边就是跟它相切是吧。
这条边跟它相切,而且是中点,所以它们线性相等,所以这是啊这个这个直接连续好了,所以这个算法呢你要去求曲面上的一个点啊,给另一个t你要去求一个点,就是这这么简单的一个一个递归啊。
每就是每次运算呢都都是线性线性组合啊,所以算起来非常非常快,也非常非常稳定,因为线性组合不会造成太多误差积累是吧,所以它技能非常稳定,并且可以证明他的那个时间和这个占用空间并不大啊。
啊当然这个算法呢这个也不是完美的,因为它一次给定个t只能只能算一个点是吧,历史上还有好多些算法,我同时算n个点应该怎么算是吧,会有更好的算法,我这里不讲啊,只是告诉大家有这些一些一些因素要考虑。
因为你画条曲线,你总得采用很多点是吧,那么一个检测方法与for从t从零到到一做循环t的音t加等于零点,0。1就取十个点对吧,你你算算十遍,把它连起来就是曲线,如果是0。01,那么就是100个点是吧。
就就就画的更密了啊,好了,那么这个对抗算法是性质啊,我就总结一下啊,总是用这个去去做剖分,可以看到啊,这个呃t我取1/2就找到t等于1/2的点是吧,我去提取1/3就得得得到1/3这个点。
只不过普分的时候呢都是用1/3来来补分啊,只要保持这个普分的比例,我如果去等于2/3啊,就得了2/3,在这个点就是绿的这个普普普门过程是吧啊那就这样,所以他结论啊,你几个意见也很强。
把分成两个子北侧曲线,并且空中控制顶点也找到了啊,那么这个性质非常非常好,这个性质啊,这个如果深入研究的话,他可以一个是做离散是吧,就是把取线变成多边形,就是因为你要踩踩点嘛是吧。
还有求多项式根啊等等啊,比如说leeping算法,我这里不展开就会讲,有些同学呢这个可以去去看一些相关的一些这个这个课程啊,初级好比j讲完了啊,我这北热就讲讲到这里。
那个其他的这个啊大家都通过自己的自学去看看北辙的,因为北这个书太多了啊,并且已经很容易躲,我今天把主要的一些北京的一些来源啊,这个一些呃这个呃性质给大家大家讲一下啊,大家脑袋里就有个印象。
去看书呢就不会太突兀啊,所以北京的这个奔驰产机啊存在的,只不过这个北周这个人呢把它用来做做了设计啊,发现他的这么好的性质啊,用来做飞机的这个造型,他虽然是一个非数学家啊,是个工程师啊。
但是呢它产生影响非常大,所以像现在所以这种形式的这个就叫北辙是吧,诶好那么下面一个这个就也是以前讲过的哈,就是我有k个点啊,那那那那么你实际上这就是作业式的任务是吧。
你怎么去生成这个中间插值它的一个分段的样条是吧,那么这个上节课讲的那样强呢,它这个整体方程它要把所有点全拿来啊,这个一起去生成这个这个这个曲线是吧,那么上节课我们也讲了,就是你可以改变这个连续性是吧。
拖动这些这些这些感是吧,连续性好,那么我可不可以两每两个点之间来生成,用北泽二来也来生成的,就是我中间去去什么去待定两个空军点,那么再加上一头一尾,假如我用三次啊。
那么这样话的就这两个点之间我就生成一条曲线,那么那么下两点之间啊,我也生成一条几条曲线,只不过中间还有若干点是要待定的,那么这里就涉及一个问题,我这里定在北侧曲线跟这一段配的比分体现在这一点。
要保证一定的光滑性是吧,那么问c0 c1 c2 的条件,那么这些待定待定的点需要满足什么条件,这就是两个北周曲线的拼接条件,好好我首先大家我问你啊,四零平行线是不是很容易懂啊,只要这个点是固定。
这个是公共的,那么这两个曲线一定在这里拼牢了是吧,所以c0 非常自然就满足了,那么c1 c c c什么c是这个,切线要连续对吧,而我们刚才知道了,北侧曲线在这个切线啊,是这条边的三倍。
如果是说要左边这个曲线在这一点切线跟右边曲线在这里切线要相等,是不是只要三点共线,战略控线是什么,是切线方向相同,而且切线左右线线是差的三倍,所以这两个曲线段也要相同啊,因为三可以约掉嘛是吧。
所以c一连续是不是很容易找到,就是三点共线,并且p这个点是这两个待定点的中点啊,所以c一很容易推c2 呢啊,这样就稍微缓一点,这样你只要去按照我刚才那个有一个食指啊,你去推也能推出来啊,等一下我来讲啊。
好那我下面更想问大家,我们学过几何连运行,如果我不需要c一连续,应该是怎么设计是吧,有没有有没有什么啊,这个这个更多的设计方法g什么g我只要切线方向一样,可不可以长途不一样对吧,这叫g1 。
是不是上节课我们讲了,那么如果是g一的话是什么呢,是不是只要三点共线就行了,不要求它们相等,就是基因啊,所以你们这次作业你们可以很容易改,随意改成g一是吧,好啊,这就是我讲完了这个平行条条件了哈。
因为曲线比较像,比较简单啊,那么你只要啊这个这个这个把端点的导数啊,这些啊把它列接,你就可以去去推测出来啊,所以c0 简单,这里只要这个点是公共的,你这两个曲线自然是c0 c一啊,c一是三点。
这个这个共线啊啊啊啊。
这里写写错了。
那那个g3 点贡献就够了,因为3g只要切线啊,这个是这个相同就行了啊,放一下相同,但c一的话呢三点共线,且要等等长好好,那么这样呢稍微联系啊,稍微稍微复杂一点。
实验的实际上是你只要把这个几何意义找到就行了,这这这几何意义我放在刚才讲了,就是这个终点,所以终点你你要平行,你要你要想相等嘛是吧,可以推出来这两个阴影三角形是什么,是是相似的,市场就是全等啊。
因为因为因为这两条边是一样的嘛是吧,好所以最最最最这个如果你要判断他的c2 条件,你它的相邻的三点都要拿来做考虑啊,那么这样呢变量就多一点啊,这个既然我们因为我们没去推过,所以我们就就先忽略啊。
好那么构造三次差的曲线,如果有刚才那个经验的话呢,呃同学们可以啊,就是呃我们上节课讲的三四样条啊,是要求解一个global,求解一个整体方程组,如果这个顶点有个点点点,再再再再动一下。
你的方程组是要重新求解的是吧,就比较麻烦,不利不不利于设计,那么有没有更好的办法呢,啊,我这里介绍一个工程中经常用的一个利用几何方法来构造这种分段,三次曲线好,那么你希望每一段都是一个北侧曲线啊。
就是这一段是个本子啊,三次这一段是这段这段哈好吧,我们中间还要满足一定的联系性,是不是都是要带进中间的两个点是吧,那么那么这里两两个点也要待定,这里两个点也要待定是吧,那么这些点怎么来待定比较好呢是吧。
我们介绍一种方法啊,这个方法呢也挺实用,就是就是也是很多工程中用这方法啊,我这里稍微讲一下,假设是1234好,如果你要去这个这个去产生这一段的空空军,然后呢这个点沿着它平行啊。
那么这个长度呢取成它的1/6,啊那么这里也一样啊,那么那么这个方向呢取成这两个点的平行方向啊,长度取线1/6好,1/6,我用红字表表示好,那么这样的话1234所构成的北侧的曲线就就可以构造出来。
你可以看到这个方法的时候,是不是这两个相等,所以这里面这个那么这个呢可以可以可以随便取了啊,那么就可以在另外一个区间,可以看到这个学校跟这个曲线就达到c级连续是吧,有没有c2 啊。
这个根据我们刚才你可以注意一下,还有买到什么条件,但是至少是c一啊,那么这里也一样,c啊,就是说可以通过这种构造方法构造出中间的两个点啊,这个平行1/6平行1/6啊,就够了啊。
那么可以证明他甚至有可能达到c2 ,这过程中他们这样做,因为这样做的话呢,每一段在这里,每一段呢它都是由相邻的四个点所决定的,所以很远的这个点这个曲线啊就跟他是没关系,就就具有局部性。
因为如果用上节课的那个方法呢,它你需要整体求解一个方程组啊,这个一点动一下,整个曲线都要动啊,好了,这就是样条曲线跟这个啊,这个叫分段北则曲线这个样条。
那么这个样条呢我们不跟我们上节课的样条是不一样的概念啊,样条的是真正的一个一个样条,是一个光滑,是c2 连续的这个这种这个样条的叫北,这样条就是每一段五是构造方法去这个构造,然后满足一定光滑性。
它要满足cr是比较难的,门cr是要一个全局的这个方法好好,那么呃什么呢,像条本来是那个严格来讲是从那个木板,一个木条来的,叫样条是吧,但是呢你可以看到它具有分段三次的特性。
我们把这个分段多项式曲线也叫分段,本周曲线都叫做样样条啊,你可以看到这个曲线里面啊,有些是光滑曲线,有些是直线段啊,有些甚至还是c0 ,连续是吧,都没有啊,那么这个都可以把它看成样样条。
甚至一个多边形样条啊,因为也是也是样条,因为它是依次分段的,多项式,也是样条是吧,只不过这个样条的概念呢就可以更广一点啊。
那么这个就讲完了。
那么下面我们讲下一个内容啊。
这个这个b是什么意思是吧,好那么这个北京的学生不多啊,不足那个以前提到过是吧,它具有全局性,全局性什么呢,因为因为这个g函数啊,你可以看到它在零一区间就是从头到尾之间。
这个g函数你可以看到都是定义在整个空间,无论哪个g函数,它都是一个全局,不是说整个实数啊,是指在这个0101这个范围之内啊,因为如果是定在a和b之间的话,你可以把它规划过来啊,我这里也不去提好好。
那么这个全景镜是指在这个0~1区间是是一个全局的,什么意思呢,我中间的任何一个顶顶点做一些小小财务劳动啊,就是这个b i做一个脑洞,因为你这个奇函数在零一之间都不等于零,你可以看到吗。
每个g函数都不等于零是吧,所以呢它势必会影响到对任何一个点的影响,就是你这里一个点的移动,也会对这个点进行一些这个扰动,因为整条曲线是在变的,虽然可能离他远一点的话,劳动者是比较小。
但是呢这个但它毕竟还是一个会有变化,所以这个北侧曲线呢是比较那个呃这个这个啊就全全局性啊,啊那个那个平台上面有同学在问,刚才那个北京这个是第一点和第二点怎么构造是吧。
唉就是就这个点怎么构造,可以随意,这是一个自由度啊,这中间的话是由这些所约束的啊,从一头一尾就跟讲的样条一样,就和你的自由度,你可以去调它的方向等等啊,这个你可以自由一点。
好,没关系,好,我们回来,那这个全全局性啊,好那么这全局性的原因就是这个基函数是全全局的,你是用了一个全局基函数,至少在零一空间中,你是用这个全体技术,所以你就导致你这个这个函数是全局的一个影响。
一点点的系数变化你都会有影响是吧,好我这里稍微提一下,你们在前面也用过神经网络去去去做函数拟合那个sigmmd也好啊,阿蝙蝠也好,也是全体减函数,这就是为什么你在做这个网络更新时候。
你一点点数据更新就得重新做一遍是吧,就是这个阶函数所引起的啊,如果你能用局部清函数呢,可能就更新不用全局的更新,只要部分的更新啊,就知道我在讲什么好,我们再继续好,也就是说样条曲线就是一个分段的啊。
分段的话有什么好处啊,每一段呢我可以局部的调整好,不会影响很远的地方,所以它具有很好的局部性,这局部性是什么呢,有助于设计师去思考诶,我当我另外一部分设计好了,我想局部修改这部分的形状。
我只要去改这里的曲线就行了,没有必要我改进一点点就影响我很大的地方或车身是全局地方对吧,所以这个角度来看啊,从从学术性角度来看,就这个你的这个表达一定的有局部性啊,没有局部性的话。
这个是这种这种这种方法是很难做设计的,我我那我本来那边修改好了,我在我这里稍微调一调,我所有的形状都给我动一动是吧,虽然可能动的不多,但你毕竟还是在动是吧啊,这种真正的局部性的什么,你这里一块修改。
我肯定这两段会有任何的修改,为什么他们是局部定义的啊,这里有一个问题,就是说好我分段表达没问题是吧啊,这个一段一段表达,反正我就表达成有有有有这个六段,我就表达六段,但大家有没有去想啊。
但是数学家做基本上就会想的比较深刻,有没有一种方式啊,对这种分段的对象是我也统一表达出来,那就非常漂亮了啊,就是哦哦不不是分成六个函数去表达,我通过一个函数表达,但是呢它就是有分段的性质是好。
那么我们来看一下这个思考吧,我们来看一下这个是怎么引出来的,好同样我有很多很多个点,我想定一个曲线,我的曲线呢这个d i就是这些d i d0 d n,我呢也是想通过一个基函数去组合这些顶点。
形成一条光滑曲线,但是呢我需我需要什么,它是一段一段的,要用什么系呢,我能不能这几个控制顶点定义一段,那么这几个混子顶点定义这个制定点定义另外一段,这样呢你这个g函数要有什么性质啊。
g函数本身就必须要有局部性,如果你进函数是一个全体减函数,像北北这期一样的话,你不可能达到这个目的是吧,所以我们要要有那个性质,我们要从基函数的局部性质来构造来思考这个问题啊,当然也要振兴和全性。
但现在来看你们再去思考这个问题已经晚了啊,这个数学家已经几十年前就想到了,好我们把这个思路讲一讲好,那么市场是在60年代啊,后,后来呢就用到了这个这个这个设计中啊,这是他的历史历史。
好啊好这个公司又出现了这个公司呢,实际上是具体这个是不是由这个公式来,我也不知道,但是呢我我们这样去理解,看到这两个g函数是低阶的,那么我乘上一个一减t和t那么就变成一个高阶的是吧,这是个非常好的递推。
因为一线因为这这两个啊,这个这个次数就升升升升一次满啊,好那么我如果要模仿的话,我局部是不是处处也可以定,然后有一个g函数去平移是吧,然后再通过这样一个乘法就可以去升升阶,升级的话可以保持光滑性啊。
就是提高光滑性好,那么这个思想价啊,刚才忘了讲了一个这个参数one啊。
我我这个用用一张图来表达,你要去,啊呃这个用这些点去构造一条曲线,那么同样我这里t要要有个这个这些点的参数是吧,这个参数这个点对这个参数这个点对对这个参数这个点对这个参数好。
这个参数化我们也也已经有了这个概念是吧,这是用d0 号点到d,所以叫d i那么我这个这个参数叫t0 啊,这个叫ti,这个叫t m啊,就是这个具体怎么算的话,因为它它们是相互连接起来啊。
其他的话你你简单一点就有均匀参数化是吧,复杂一点就用悬长啊,或者是中心参数化都可以好,我希望呢d0 乘上一个奇函数n,那么最基函数是定义在t t0 这个这个这个这个这个上面。
既然呢也这里有有有几个基函数,但这几个氢元素的最有局部性,可能它的跨度呢可能就是就是局部范围,超过这个范围就是零,这时候是不是这里没没没没没几段啊,每一段是不是由相邻的几个点就有计算出的组合。
有还有局部积,所以局部性质,所以这一段曲线呢就是由相邻的几个点来定义的是吧,这个建函数怎么构造,我我可以是一样构造,因为什么这个节点都是定义好了,所以我只要一个基函数呢沿着这些节点重复的平移就行了啊。
那平移过程中可能跟这个节点距离是有关系的啊,这关系怎样就会吹出来啊,或者等下等下我我解释一下啊,这就是什么,哎我们又联系联联想到那个那个神经网络是吧,哎我有一个这个这个da这屁股嘛。
这个这个激活函数把它平移下伸缩一下,这个伸缩呢就是由这些节点的宽度来决定,平移呢就是让它在这里乘积函数是吧,给每个地方都有计数嗯,它和它组合,它和它组合就可以组合出一个一格一个函数出来,好哦。
由于这个g函数有局部性。
所以导致这个曲线是有局部可控的性质,可以从这个角度上去理解,这个可能下次同学们还不一定完全能理解,没关系啊,这个第一次听到,然后后面呃这你们再慢慢慢慢消化一下,好这就是一个这个示意图啊。
好这些顶点是我的叫做空中顶点,然后没控制控制变量呢有一个参数参参数,这里面是一个均匀节点的形式,那么这个叫做节点向量,你必须首先对这个节节点啊,这个控制顶点要要有个参数,这是就是节点向量。
那么g函数是由通过节点向量来定义的啊,就是每个每个阶函数来定义在这个啊相邻的几个节点向量啊,节点中啊,只不过是慢慢平移啊,那么这个是将这里是均匀节点啊,因为还有用弧长来做监理,你可以看到-10123好。
那么那么这个计函数怎么构造呢,啊我文件我们也不展展开,我们讲一下思路哈,嗯跟零阶一样的零一,你去定一个连接的,就是要直直线啊,就是水平直线由刚才那个组合我要定义一阶的,怎么办呢。
我就用这么相邻的两个连接,一个乘一减t,一个乘t然后1l阶就变成这样一个帽子函数了,同样这是一阶,这是零阶啊,那么同样是一阶,我再用这个乘一减t相邻的啊,这个乘t加起来就变成了这样一个两阶。
啊怎么递推上上去两阶又这样乘就变变成三阶,好这里你可以看到光滑性有刚才的这样一个跳跃,变成这样一个c0 ,并在积分啊一层变成一个这样这样的光滑函数,那么这样慢慢的往上升以后呢。
你可以看到它的跨度每每每升一阶呢,它跨度多一个节点的区间,这个是占占两个,这个这个是占三个123,那么再升级的话,那这个就比这个多一个,因为这个是一减t乘上它相邻的t啊,就就多一个。
所以它的跨度呢就就多一个声声音阶啊,所以它不仅是定义了高阶的g函数,而且它在它的定义区间,从数学上来讲叫叫井知己,知己呢就扩扩大了一下好,那么我们所有书上就一吸上来就是这个式子啊。
这个一上来就是说变量条就是这样定义的,这变压强这个定义方式有好多,还有通过擦啊,擦伤法定义,那我们这里就引出这个递归定义好零阶就是这样这样一个函数,这个函数呢每个节点区间定一和零,就是这个中间段就是一。
那么它的高阶k是k减一跟k最简易的两段,一个是di段跟di加一段,通过这样一个线性组合多出来,那么这个组合组合系数是怎么来的,就是可以去反推过来啊,由它的权限就可以推出来啊,这里我们也不去推啊。
反正反正就是这样一个表达就表达呃,事实上是挺好记的啊,这个我等下讲到非虚拟节点,那么注意这里我们定义的东西是在均匀节点啊,叫uniform,叫均匀节点。
也就是嗯每个控制顶点呢它的这个对应的参数是一样的啊,实际上就是我们的均匀参数化啊,就均匀节点啊,那么这个式子是这样好,等下我们还要定义非均匀节点是一个什么形式啊,那么这个是非均匀节点。
非节点是t0 t1 t2 t n啊,到tn加k这个叫叫节点向量,定义方式也一样,在每一段中间的是一,这是第零阶t i t i加一好,那么呢k接的话是由dk减一两个阶函数做出来。
这组合着的系数是挺容易记的啊,这个系统呢是什么,这两个指标加起来,ti加k减一减去第一个指标,ti上面是t减t i是这两个是一致的好,那么第二个系数两个加起来也是一样,i加k这个是i加一。
然后上面的这两个是一样啊,减t就这样啊,所以当时我们因为读博期间这个非常熟啊,就是这些指标是非常非常非常容易记,记熟了就很好记,它是有规律的,好这规律呢你要去真正的去把它搞清楚啊,还是要花不少时间。
毕竟这个数学符号一大堆啊,指标啊一大堆很容易搞错啊,我这里讲几个重要的吧,好我们我们我们我们先先先看几个例子啊,好这是一阶的第一个基函数t0 开始哦,是这样,那么t2 开始是第二个计算数啊。
d那么d第七第三阶函数就是就这个是吧,这是n31 啊,一切的第三个啊,后面那个值呢是krm是接触,这是第几,第几个由他们他们俩两个组合就变变成了一阶的,这这个建筑。
由这两个组合呢就变成了这样一个跨度为为三个节点区间的计数是吧,因为它跨度两,它跨度两,他们他们俩一乘起来啊,加相加啊,线性组合就变成变成这样子啊,就这样慢慢慢升阶。
那么瞬间的话呢它就变成三次三阶的那个奇函数啊,那么由这个三阶的两个相邻的就变成了这个细节啊,就它们变成四节啊,这是几个图,你可以看到所有b站的g函数都长得像帽帽子一样的,有点像高斯函数,不完全是高速啊。
只不过呢接触越高跨度会越大,那么这里有很多一些这个性质啊,这个系列性质呢我也想啊,也不是呃想详细介绍,因为呃你作为一个课程来讲,这个是要讲不少时间啊,我们这里大部分是这个非数学类的。
我们就不用去学那么深啊,就能看得懂它这个是什么原理啊,那么我这里讲几个性质啊,我看看这个性质呢,像第一行行行,那那我来解释一下啊,那么我假设这个是n也就是ni k k,接着计算数第i个。
它的非零区间是在哪里啊,进行分行间是ti t i加k应该结论是一样啊,那ti到ti加k是非零,其他其他地方都都等于零,无论它是小于ti的还是大于ti加k的。
这个就说明了奇函数的不信lol这一任何一个dx这个计数是k阶的哈,它的区间只有是ti到ti加k是非零,是长长的这个样子啊,那么这个之外都都是零啊,所以呃从刚才这个递推式啊。
是可以证明出来每个阶函数都是局部直接的啊,只在部分是非零别的零啊,这个第一句话,第二句话呢表示弹性就是加强等于一好,我们来看一下啊这个例子哈,那么下一个计划中呢是从这里开始下一个下一节点对吧。
因为往往往往往往左往右平行嘛,再下一个好,这里是不是有有好好几好几个基函数是会会经过好,我取任何一个点,然后这里有若干个基函数经过他值给拿来,把所有的非零的这个价值拿来,这些值加起来一定等于一。
所以通过刚才那个构造非常好,就是你无论在哪个地方,你只要是非零的加权,你去加权呢,多多等于一比什么,表示它有非常好的突破性,局部原有突破性啊,所以这个是基函数的权限,我们就得到了啊。
当然所以我刚才不是指出这些系数是怎么得来的嘛,上就是有全性倒推过来的啊,我们就不去推了,大家我们把性子直接跟大家讲一讲,那么还有一个叫光滑性的话,在这个拼接处是k减二接连连续啊,啊这里这里还少讲了一个。
就是b按照g啊,对这g函数没问题啊,就是这个g函数在这个节点,ti到七,the basis啊,是在这里,是c k,接连续啊,这个怎样曲线的时候我再解释,那么这个呢这个就叫做它的紧支集啊。
就是就是就就这个区间就仅仅自己就是指非零非零的区间,别的区间是等于零好,刚才是g函数曲线,就是这个这个这个意思啊,如果每个曲线顶点这个控制地点都有,都有一个这个叫做这个这个参数的话。
那么这个曲线可以可以这样定义啊,就是直接把这阶函数跟这个顶点,但是组合一把就可以找到一条曲线啊,这个这个这曲线呢这个顶点呢就叫做控制顶点啊,你也可以把它叫做debug的顶点啊。
就跟刚才那个北京的形式是又一模一样的,剧情世界跟以前的rbf g还是一样,只不过以前去平均一个一个点的话,是用rb f g的高斯g函数,它是几个亿,我看好好几个亿在在这里。
我们这里用了五阶啊啊k04 是表示第四段好好,也就是说武器的话呢,它是用相邻的,五阶的话应该是六个点,123456会定义其中的一小段曲线,这曲线呢是中置加的中间啊,因为有刚才有粗暴性。
那么那么这个这条曲线呢由这五个点定义,如果在第五之后还还还有一个曲线啊,还有一个叫第第六,第一第二第三第四第五第六会定义第二条曲线,就像我随便画,可能可能在这啊。
也就是说d0 到d5 这六个点定义一条曲线,因为n等于五啊,好d一到第六定义第二条曲线,那么一一直类推,如果还有第七期,那么其实第三到第七定义这条曲线,所以你可以看到它相邻的一个点就是六个点来定义。
其中一段往往往那个在这个往右平移一下,就下六个点,又定义第二条,下面有个点再定义第三条,所以你可以看到它控制控制多边形是一条,但它这个曲线呢是本质上是什么,是分段的,你这一段一段在这个段上呢。
它是n减二的连续性,如果这是n啊,这是五,应该是n的三阶连连续啊,就这两个曲线在这里是c3 啊,本质上就是一个分段的多项式曲线啊,一个分段曲线表达成了一个非常漂亮的这么统一形式。
通过构造了一个这种局部的计算数,就统一表达了,或者是一个这样的一个技技巧啊,不可以定义分段的这个这个这个曲线啊,好这里有些性质我我就提前讲吧哈在这里刚好也也也讲到了,就是叫叫叫做重节点,好。
如果你这个节节点啊,就是刚才那个参数啊是可以重合的啊,就是刚才那个t这个节点,那么某个重合啊,那么这里就有这个性质,一旦有点点节点重合啊,在这一点的这个这个光滑性就降降一阶啊,如果这里是两个两个点重合。
那么其他的方法性就降到c c2 ,如果再重合降到c1 ,再重合就变成c0 ,你要去通控制这个曲线的光滑性,可以通过节点的重合度啊,你是三重还是两重还是一重来控制它的,这样是不是也有利于设计啊。
就说我刚才指出我这一段这一段直线啊,我我只有基连续怎么构造,我只要让让让这个点的对应的节点重塑呢,是三小,这是三次的,就就可以达到g好,如果我要设成一个尖点,就是c0 的,它不光滑。
只要它所对应的这个这个节点都是要达到啊,三重或者四重啊,就看你这个这个这个接受啊啊也就是说我这个连续性啊,可以通过这个节点的重塑啊,因这里是不相等吗,你可以去三等于t4 ,就是相当重重叠在一起啊。
来来控制这个曲线的光滑性,我把先把结论讲讲啊,就具体怎么控制呢,这个需要一定时间,你们去再去去去看一些书去推导啊,好也就是我可以通过这个这个重塑来控制这个曲线的,在拼接点的光滑性。
那么这里就是为了让让让让这个曲线,反正这个曲线我用我用三次啊,三次的话就这四个点构造一段,点构构构构造一段,那么这两个手摸两点呢就并不差值是吧,所以我只要让点的这个从从数是是是是k重。
那么这个曲线呢就就会插值它因为层数一高的话,它这个就t占为本周基,那也一样啊,那么这个重组也可以这样啊,所以如果你要手摸端点要差值的话呢,一般我们会把手摸的重数设成一样啊,推重。
那么这里是你看到n等于五,还是刚才那个例子,1234566个顶点决定要曲线,如果我把这个曲线的两个重塑设置,那么这个北热机啊,本来第二条机就在这个这个端点的退化成了北周基,这个理论都是有保证的。
好好我们这个下面啊,下面是下面是另外另外一些一些例子了,这里啊好,如果你看这是重叠的哈,没错,你看t0 到t3 ,它是不不不重点,是t6 到t7 ,它也不不重点啊,这所以这里只是定定义了两两段。
他1232有三段呢,有三段前面的五个点,五的话是一段,应该是一段t3 ,好那么就是如果这几个点是不重合,那么那么这个端点就不差值啊,如果重合的话就就差值。
所以你也可以可以通过重节点呢来控制这个端点的行为啊,这里本质呢我讲一下,就是就鸡啊,上次他跟北周基有非常强的关系,你只要在一个编导系的两个端点都是能从数是n减一的话,在这里啊,我提一下啊。
那么这个是一个比较普通的,有有有这么多顶顶点,就有个问题是有个好处是什么呢,就是你把这个点进行一这个拖动,它,这个曲线呢只会局部的一段或者若干段受影响啊,远离它的这些段数呢,它就不会受到影响。
用户呢如果要修修改这一段的话,通通通这个点啊,那么只有少数的几段会跟着修改啊,这段数呢由这个接触所决定决定的,所以远离着这些点呢一点都不被动,绝对理论上保证是不动的,它可以局部的去进行一些设计和修改。
还有一些这个啊这个算是刚才讲完了啊,就是如果多子k重的话呢,它就啊这个达到这个混泵感激函数了,那么为了差值的话呢,就两两头一头一尾都都用k重是吧,那么它的一些性质也是挺有意思啊。
就是啊一个端点如果如果是k轴的话,两个端点也差值,然后也相切啊,相切系数不一样啊,然后嗯一个样条可以分成这么多多段的,这个次数为k减一的这样一个曲线好,那么呃你如果从数节点存数一多。
我就就可以降低它的这个方法,就reduction continuity,就是挂画性啊,那么你l从就变成就降了c k减一,从把那个次连续就变成k减l减一啊,好那么这里面啊。
某个顶点只会移动这个区间的这个曲线,别的区间的曲线是不会动的,刚才我也解释了啊,就这个叫叫中间插入节点,这个我就不再展开啊,那么这是个试点,这个试点呢我解释一下这个点呢,它移移移到这里来了。
这个曲线呢由这个黑的变成了这个黑的啊,你看到这段确实一模一样,不会动好,我这个顶点又拖到这来了,现在可能变成这样这个这样这样形状,但是但是这一段呢是完全不会动,它已经远离了他他那个区间啊。
这是边条曲线这个局部性的一个非常大的优势,我我为了修改这一段的形状,我用户在在在这里拖动这个顶点,我修改的曲线就是在这里,这个是会变的,但是它仍然是一条整体曲线啊,这个我稍微呃就提一个这样的啊。
这个这个呃问题吧,就是如果在在神经网络里面,你把那个西格玛的这种全曲g函数变成局部机,我也有这个性质啊,当然是次的啊,就这样的话有个好处,你这个拟合出一个网络出来以后,如果我有新的数据更新了。
我只要它所对应的那个附近的基函数,你不用整个网络再重新去更新啊,那么这样回答诶很多好处是吧,因为你这个这个这个源不断会有新数据来嘛,啊啊这个我就不展开啊,这个这个当然这问题呢是一个非常有意思的问题。
这个我们也在思考,然后但是嗯高维的时候还是遇到很多问题啊,这个暂时是个open的problem,哈计算计算机就是插节点算法啊,这个不断的插入节点,这个算法就就是就在这啊,这这也是个递归啊。
具体的啊我就不想去去去展开好吧,这个因为这部分第二条要搞得明白的话,甚至你要去写程序的话,还是要看不少东西啊,我在这里只是啊比较宏观的给大家带啊,这个啊这个一个简介。
让大家知道变量计函数的来由啊啊嗯这个我以前也讲过啊,刚才讲过,就是这个是是个n等于三的时候是1234这四个定义第一段,那么第二个四个定义第二段后面是个定义第三段。
这个这个呃能量条就是我们上节课讲的木头的那个样条是吧,但是这里呢我们也把它叫样条是吧啊b呢是指basic的一个简写啊,那么我们这里叫叫叫基本样条,因为在计算数据里面,10年代50年代就开始在用啊。
70年代变成一个计算几何里面,一个非常标准的一个设计曲线的一个啊方法啊,那么这里面的这个这个理论唉是比较比较多的,今天呢也只是走马观花啊,带大家这个了解一下冰箱条啊,呃对于我们这个叫重新学专业啊。
或者叫计算几何专业的,这个同学原来需要花大概7~8个课时才能才能全部讲完啊,我们这个一课时只能点到为止,那么呃大家脑袋里有一个这个概念啊,就变样条是怎么来的哈,他为什么啊。
好处它的好处最大的好处就是局部性啊,有突破性啊,还有其他很多很多的性质,就跟北泽尔一样的,有导数递推,还有基本地推,还有几何方法,还有还有做做图一样,链条本质上就是一个分段的北侧。
那个可以通过那个呃节点向量的重塑来得得那个得到,我这里画了一条曲线啊,这个光滑能不能,那么这个是个尖点啊,中间还有一段直线段,我刚才不是说了吗,你只要是这种每一段都是多项式的话。
就一样条函数现在是个样条,所以过程中这个东西是非常非常重要,你无怎么去画,我中间是啊,这是这是这是这是g一是吧,那么那么那么这是这是c0 g0 啊,那么这是有多少,那么我都可以把它表达成一条曲线啊。
那么这条曲线呢是什么,是很好的,通过构造节点向量的重合度来他们的这个光滑性,比如说这这一点是光滑性,是c0 ,只有拼接啊,那么可以构造什么构造三重的节点对应三个点啊,是相相同的。
就能生成这样一个尖点是吧啊,这个这个就很容易灵活去用到过程中,我不管是一条是光滑的还是分段的光滑,还是c0 就拼接的光滑啊,就是这个连续不光滑,但呢这个这个差值呢跟跟刚才讲的差距又不一样。
它是要什么去去反解成一个控制多边形,那么这个反潜呢就也涉及到上节课所讲的那个那个方程了啊,因为它是很多地方是要待定的,但它在规模呢不是整个曲线了,它规模呢是分段的,就每一段要去解一个方程。
每一段要解解方程啊,咱规模就不是特别啊,好这部分呢讲起来还是挺花时间啊,我在我们这样一个102的这样一个基础课里面呢,我们就不展开啊,要靠大家冰箱调这东西,这个理论博大精深,还是非常漂亮的啊。
以后你们要用,这时候呢你们再去看这部分东西,因为你们你知道了那个那个那个啊那个比这还第二条好,那么讲完了以后呢,我这里下节课呢可能会把样曲线的其他的部分讲完啊,那么这里开个厂啊,就是大家可以去想一想啊。
就是,虽然可以表达很多曲线是吧,但是一些简单曲线,比如一个圆,一个圆啊可以证证明一下用北泽尔是表达不了的啊,或者是一个圆弧吧,就是分之一圆弧啊,那是因为圆弧你你很容易想到这样这样一个多边形去逼近它对吧。
但是它是表达不了一些音源的,这个很容易证明啊,就是用多元是曲线,既然连这种圆都表达不了,那么这里面出现什么问题啊,这么就下节课我们会把有理啊,是要要要除上一个分母啊,这个形式要给大家推出来。
那么有理是什么呢,事实上就是摄影摄影几何的一个呃讲啊,就是从从从顺应空间,那这个就是像他啊,就跟我们重新学吧,平移变成了那个极这个叫起始坐标一样的概念啊,就可以把那个圆给表达出来,好吧。
下节课呢我们把有理讲完啊,下节课会会比较也比较快啊,因为后面还有好多关于三维的网格的一些处理的东西,还要还要讲,所以有理讲完以后呢,那么是曲线啊,就是我们工业的标准。
就是工业界世界飞机啊啊轮船啊这种这种曲面方法,曲面是甚至甚至设计这个字体都是统一用非均匀有理变量调,因为它也可以表达圆表达直线,表达这种多项式曲线啊,然后之后的话就还要介绍曲面啊,验证部分很快。
因为曲线是基础,去里面就是曲线的张良机形式,张量机我们以前也提到过是吧,就是两个g函数相乘,就表达了一个二维的一个一个一个g函数就可以装成一个曲面啊,曲面讲完以后,这个基本上啊再讲这个细分。
还有影视基本上这个光滑或者叫连续曲线曲面理论就讲完,后面就进入到离散的,离散的话就是这种去这个离散网格啊,就是曲面的离散,就是网格曲线离就是多边形是吧,那么零散跟光滑之间存在一个什么样的东西呢。
就是一个啊划分,就是你要把连续的形式你搞搞明白了,连零散的形式呢就是一个差分形式啊,所以离散这个结壳里面实际上就是我们连续着几何的一个离散啊,所以连续在那边呢有微分几何,因为研究这个曲线的微分属性。
所以有并集合名上电面呢就是要离散微命集合好吧,后面的知识还是比较多的啊,我们说前面的这个曲线的这个一部分呢啊就是连续型的曲线,一部分呢我们还有一节课到一节半课啊,争取一节课上课讲完啊。
后面就进入到离散好,那么今天的课呢就到这里哈,会有点难,但确实是如果同学们啊以后要用这个知识呢再去找相关的书,你们只要有有一个印象啊,有就像学东西一样,你们跟c语言的指针一样。
你们只要记住他有这样的概念,有这样的东西它是怎么来的,听说他它的一个逻辑真正要用的时候呢,你还得花大量时间去就推倒他那些性质,理解他那些这个这个定理啊,或者是他那些啊具体的计算。
如果你要写到甚至要写到这个程序的话,就更要进行精细了,指标不能发生错误啊,那那个呢就留到同学们未来有这个用的时候再去学啊,不不由我们这个课来教的很细,因为考虑到很多同学可能可能也不会会去用这个。
它只是去控制,那么今天提完以后,你就发现了这个控制变量条有好的手段是吧,也可以控制这冰箱调的这个节点向量啊,可以很多手段来去控制,那么你还可以控制有理变量的全函数,这个圈呢对这个曲线也是有影响的啊。
所以你们在3d max maya或者lol啊,这些在参数到底是对应的什么啊,那么那么怎么去控制未来稍微有个印象,具体的这个更细节的知识呢,还是靠大家自己去自学了啊。
因为我们不是本来这些东西还是要很好的推导啊,大家还是要理解深刻一点,但由于是这个这个基础课,我就讲到这里,好吧好,那么今天啊这个讲到这里吧,我看看有没有提问,提问还是光滑性的问题啊。
有个网友在问这个刚才的几何样条,第一个点和第二点没有办法约束啊,要不要考虑,我说我我建议嗯这个约束的自由度就留给是设计,因为一头一尾这个呃这个切线是可以自由调节的啊,好了,那么昨夜我这里再提醒一下。
昨夜是那个交接,这时候不交,那么那么上节课布置的作用呢是整体的一个32条啊,是要结合局部方全息方程。
今天呢我在上上个ppt里面看到有同学已经教了啊。
但我建议你如果教的同学呢可以可以再把这个给实现一下,这种呢就局部性的了,就是构造也很也很简单,就是每一段构造一个边调函数啊,这这个曲线,然后相邻两段的满足一定光滑性,这样的话呢你这个曲线呢也有机会性。
只不过呢它这个达不到c2 啊,c啊,c可以啊,或或或者记忆就可以好吧,这样的话呢又多了一种设计方法好,这个就稍微的花了时间,我觉得建议大家就不一定做了好吧,那么这个是一个可可选的。
如果大家有时间就做一做啊,也也不难,至少比那个姐那个三转角方程要容易多了,好吧好,那今天就到这里为止,好啊。
GAMES102:几何建模与处理 - P6:NURBS曲线 细分曲线 隐式曲线 NURBS曲面 - GAMES-Webinar - BV1NA411E7Yr
啊那个各位在线的同仁啊,同学们啊,啊晚上好,那么下面我们啊这个课也接近一半了啊,在前面五节课啊,我们啊学完了曲线的啊,函数的一些构造啊,那么今天呢会把los曲线曲面全部讲完,因为后面进度会加快啊。
因为前面那些东西你们如果理解好的话,这个主要是啊我更觉得应该受制于鱼啊,三点水的鱼里面的方法理解你们的本质,后面呢你们用的时候呢,可能还要去啊找相关的一些资料。
好那么上这个课之前我们讲一下那个这次作业是。
那么这是昨夜市呢。
呃总共我们是留了两周时间啊。
好嘞这次可能相对来说比前几个作业要复杂一点,因为它这里涉及到那个啊求解方程组啊,特别是推导那个三转角啊,这个方程啊可能是有点难度啊,这次总体上30份不到一点啊,这个但是交叉的同学呢就做的还是挺不错的啊。
我这里演示几个。
那么这是几个呃,从同学们的报告里面拿出来啊,就是基本上交上同学们都能够完成啊,一个矢量的曲线编辑和那个设计工具啊。
总体上做的还是不错的,你可以看到啊,可以去调节曲线的一些节点。
还有它的切线啊,你可以是啊从全局求解三次样条,得到一个处处cr连续的,也可以是调节中间的某个节点啊,达到呃少一点的这个连续度啊,g一连续你可以看到切线的长度是不一样的,所以它是记忆,那甚至产生焦点啊。
c0 好。
这里我们挑了几个同学的啊,这个做的不错的,我们认为这个交互啊啊已经从理上设计的,还是可以成为一个其他这个工具的一个小小的功能了啊,已经达到实用的程度了,你可以看到这个这个交互手段与那个我们的嗯。
office里面不管是word还是pp point,整整一些工具里面的矢量交互啊,这个基本上功能都达到了,你可以编辑节点,它的它的切线是吧,改变它的光滑度啊,你也可以呃更改这个切线这个连续度是吧。
嗯好这是其中一个同学可以看到它这个交互还是蛮啊,操作起来还是达到了我们预期的效果好。
这是另外一个同学,这个大家也看一下嗯,界面有所不一样,但他做做着它能实时的叠加啊,不同的这个顶点啊,当然实时的拖动实时的交互,这些顶点以及它的位置啊,切线都可以啊。
你还可以支持继续增增加那些输入的点是吧啊,那我们跳一下啊,那么这里可以看到它也能够改变这个切线的连连续接啊,设计尖点,啊啊这个做到这个程度,基本上你这个工具就使用了啊,你可以作为一个插件啊。
放在你其其他程序里面啊。
这个用户比较灵活的,能够涉及他所想要的啊,这里呢我们也看看一个其他同学的啊,这个呃我就跳一下哈哈可以看到他这里输入一个曲线以后,他就,这个大家想想这是两个兔两个耳朵,所以他这里想把它变变成一个尖点啊。
这个一个c0 连续的,那么这个耳朵这里呢它它它它也认为是看看它是改成啊,还还是保持光滑性c一啊,它它现在变成g一了,就是我从这边他希望这边稍微圆圆弧一点,圆滑一点啊,就把它切线拉长啊。
这个这个点变成g一点去了是吧,然后在交互兔子的这个这个脸部啊,就达到一个,当然这个如果对这个是真正的艺术家设计师,他如果呃绘画画的话,他用的工具可以很灵活,也是计非常不错的东西啊。
好大哥呃,这是部分的优秀同学的作业啊,这个报告,然后我们也会同样啊分享啊。
给同学们好,跟往常一样好,那么这是左眼呢啊举个例子还是不错的啊,好嘞。
好我们继续讲我们那个呃那不是好了,那个我们回顾一下我们花的前五节课,从拟合到后面的那个北北造曲线的一些概念,那么你这个曲线设计呢上次就是一个函数的一个呃,这个叫做向量形式是吧。
所以我们的以前构造rb f函数也好,各种函数下也是对每个控制定点叠加一个全函数,只不过rbf函数是叠加那个啊高斯g函数,然后幂函数呢是叠加幂函数是吧,所以从代数观点它是函数空间去找个函数是吧。
呃来以后我的数据,但是我从几何观点的话呢,我给你点,我怎么用函数去加强这些点啊,这是几何观点啊,这几个观点就给定一些点,我怎么样设计一些性质比较好的全函数,使得呢,这个点的构成曲线啊。
所以这个曲线的性质啊,很大程度上取决于这个g函数的选取啊,如果你选择幂函数,我们以前讲过是吧,它这个曲线跟顶点之间没有很明显的关系啊,这不直观,所以啊人们找到了崩散机啊。
就被热找到了本散机来设计这个曲线,当然我们以前讲过这本散机也不是他发明的是吧,就是数据上历史上就存在的,但是它用来把崩产机来设计这样的曲线,然后做来做交互啊,就达到了非常好的一个直观的应用。
这是它的这个成名啊,这个之处,那么北斋是个法国人,所以这个第二个e啊,我这里显示了啊,它是一个法文字母啊,就是应该带一个撇的啊,就是应该是个法文,所以啊但是我们这个用用英文字母的话,就这一撇就说不出来。
所以我这里指出一下啊,好那么后面我们会发现北周曲线用的g函数啊,在这个这个区间零一啊,如果是a b的话,可以规划到零一啊,所以它在零一选项上,每个键函数都在零一上面都是非零,所以它是个全局函数啊。
这虽然全局函数不是整个实数轴啊,但是在我们的定义域上,零一它是一个啊全局函数,所以呢北侧的曲线呢你动一个其其中一个顶点的曲线都要动啊,所以它没有很好的局部性,什么什么意思呢。
就每个点这个我是我上面放一个奇函数,就每每个点关于ut函数,这些函数呢只在它的那个地域的附近啊,就节点的附近才有定义,很远的地方呢,它就等于零,所以呢这个点跟全函数一组合呢。
所以就变成了一个局部可控的一个性质,这样的话很有利于设计师啊,我一段一段云状态设计,我那边设计好了以后,再设计另外一部分呢,这部分我就不会不会影响了啊,所以这样的话边条曲线在设计的时候啊。
达到更广泛的应用,上次作业式里面,你们刚才几个demo里面里面可以看到,你只要是一段一段的定义,这种曲线呢都具有这么好的性质,所以你可以看到啊,这个这个我讲的也比较快啊,就是主要是一个阶函数的构造。
在建函数呢这个每个顶点呢它有一个参数啊,这个这个参数叫节点向量啊,那么节点有了以后,那么就可以在节点上定义积函数,那么如果是不同接触它跨越的这个区间是不一样的,所以计函数每个线函数都可以这样去定。
定义好以后呢,主播这些顶点就构成一条光滑函数啊,光滑曲线好了,那么今天呢我们就继续要讲完这部分啊,其他部分,那么实际上是在这个过程中设计的时候,发现北热曲线呢它本质上是个多项式,x y都是多项式。
关于t的多项式,但是很奇怪,就是或者说大家很容易证明北侧曲线多项式啊,它是没法表达一个精确的语言,好像像这个有个例子是用了啊一个圆分成四部分,每部分是用用一个三次的去表达啊,同学们也可以可以很容易推导。
或者你定一个误差,然后呢呃选取最佳的这样一个四个混动顶点啊,因为手握这个比如说这个第一象限,这个是圆弧,手摸两个顶点肯定定了,那么这两个点点什么样是最佳呢,你可以去去定一个度量,好度量其中的啊。
不管是那个啊这个这个最大误差还是这个这个叫积分误差,那么就可以选取出两个好的,但是呢这个圆呢绝对不是一个精确的源圆弧,所以呢啊多项式曲线呢是没法表示圆弧,但是在工程中圆弧和直线是大量的被应用。
所以呢你不能给它圆弧的话,本周曲线这种形式也是会具有它的局限性,所以人们越来思考,怎么样让这曲线表达的这个类型更广泛一点,因为原是一个基本的在工程中啊,原来取啊这些这些这些几何体是吧。
所以它的局限性又发现了好,那么呢这个但是人们进步探索以后发现,这个实际上在我们重新学中也经常啊,实际上是学过啊,games 101的同学就知道我们可以重新投到屏幕空间,要做一个投影。
反正投影的话就是在图形学我们一个非常重要的一个呃,这个呃我们的学科的特点或发明吧,就就是啊发明了这个一个叫起始坐标,就是把这个坐标啊啊声声声音为,然后呢因为这声音为以后呢就是一个物体投到我。
我屏幕空间以后呢,它的这个这个点啊就形成这样一个关系啊,就形成这样一个向量关系上,其坐标带来好处,就是把那个呃旋转本身就是矩阵相乘,它把平移也变成了这个这个矩阵相乘啊。
所以使得我们这些钢琴变换平移压旋转呢,就统一用这个矩阵相乘就可以表达啊,那么投影变换的实际上是在投影几何里面是有很多研究啊,大人们发现诶我在一个平面上,在一个呃这个相机平面上形成一个圆。
但是它空间中的那条曲线啊,可以不是可以是一个多项式啊,这个但是投影过来以后呢,它可能是个圆啊,所以是因为投影要做个除法,所以呢你要足够分母才有可能达到这个这个表达精确原啊,所以这个就叫有理啊。
在数学上有理就是指带有分母的,就像像像像有理数一样的,有理数是两个整数相除啊,整数是不带分母的,分母是一,那么有理数是除以一个分啊,那个啊整数是吧,所以说带份分母的,所以呢这时候有点被这曲线就提出来了。
所以说我不在这个这个呃这个空间上去定义曲线,我在他高位空间去定义一下曲线,这曲线呢然后呢定完以后把它投影回来,你可以看到上面这个跟北侧是一模一样的,只不过呢这个中下面除了一个这个这个东西啊。
就出了一个这个这个分母,这分母我们再看一般形式,就是我们一般会带一个全好好,上面呢是呃这个这个就是传统的北辙,只只不过加了个群,然后呢把这个把这个全放下来,p i在上面,全在下面。
这时候呢这个点呢实际上是类似什么呢,类似于p i这里啊加了个一是吧,因为它再加个除法啊,所以呢呃就是如果我们把本产机跟这个p i这个北泽尔中间加个群,然后再把这个全跟这个g函数呢组合一把,放在分母。
这时候它就变成一个游离形式,因为它带分母的分母只不过是是个实数,因为w就是欧米伽是是是属于实数啊,啊这个一个实数好,那么这个形式怎怎么来看呢,你也可以看成这个样子。
pi呢才能承认上一个全形式还是跟一样的,只不过只不过这个全函数啊是一个有理性是全函数啊,以前只有只有这一块对吧,现在带了个弦除以这个规划,所以可以可以看到这个的和也就差点一啊。
因为我把上面的这个和把它加放到这儿来,所以它加起来一定等于一,所以呢你也可以把它看成是这个形式,我每个pi呢经过了另外一种特殊的权函数组合,一把就变成了有理曲线,只不过这个g函数呢是个有理形式。
是这样一个形式啊,这样就是这样,所以啊这里呢有一个特殊情况,就上面和下下面消掉啊,对那就等一以后呢,就这个就同等于一了,因为对这啊这个不散基函数是有权限等于,所以就退化成为北辙啊,这个北侧曲线。
所以呢如果全系数都等于这个有理,就是多项式的啊,当然如果不等于,那么我们改i是具有意义的啊,d e那么这个e呢就有可能让这种曲线呢啊就这种形式形式,曲线呢就表达更广泛的一类曲线。
那么这里是一个这个一个形象式的解释啊,就是我空间中的一条曲线是在三维中,然后我投影到一个平面上,这个这个城市的啊,那那么这个城市的呢就有可能是个圆锥曲线啊,那么这条曲线呢有可能是空间中的啊。
这个一条一条曲线,就这个曲线有可能是多相似的,是北侧表达,但是这条曲线呢啊有可能北辙表达不了,它有可能是个圆或圆圆锥,北辙曲线就表达不了,但是空间仍能表达,所以通过这种方式呢啊就把游历北侧的曲线。
这个这个这个类型啊,呃表达的范围就推广了啊,好那么这个圈引入一个全有的好处呢,实际上是这个就有啊,这个全啊,还是对这个曲线的这个形状会有影响啊,比如说这个全都等于一,它这个上就是被北侧曲线。
如果我两边的全啊,手握顶点的全大一点啊,中间是一或两边是十,那么这个曲线就会远离这样一个混多边形,相反如果我把全这个这个这个设置多大,那么这个曲线呢就很靠近空洞类型啊,这个呢是这个视野。
就是中间一个这个这个比较大就比较近,这个比较小就比较远一点啊,所以可以看到我还有另外一个形式,让这个权呢来控制这个曲线的形状啊,我圈越大,我曲线越接近我这个这个所对应的这个控制控制顶点好。
那么这个右边这个例子呢是把表示这个顶点在拖动啊,所以顶点在控制顶点在拖动时候,这个本身对曲线当然会有影响啊,这种是个毫无质疑是吧,你可以看到我点点不动我,我增加增加权。
那么那么曲线也会慢慢慢慢靠近这个顶点啊,所以大家这个直观上的几何意义还是比较明显的啊,大家看一下,就是引入权以后增加了它的一个啊这个曲线设计的一个变化啊,在80年代,90年代也有很多工作文章。
有很多很多做设计不同的这种参数放在那个奔驰产机里面,这样的话呢就让这个更多的这种控制因子啊,能够对曲线形状产生影响啊,那么我这里啊这个不讲,我这里只是提一下好,那么有里边的曲线的性质啊。
这个我不就不去展开,你是当你只要知道了北热曲的性质,这里其实基本上都有啊,线线也一样,切线是两个手握的边都是相切的啊,粗暴性也有啊,还有导出t j性,还有助读法都有,然后再回过这个投影空间来来做。
所以它的那个系数呢就是始终是在一个分母,所以表达稍微复杂一点,但它的性质是完全可以继承下来啊,就是基本上所有性质啊,呃大部分性质不能说所有啊,因为它毕竟占有分母,还有些性质是是保保证不了啊。
但是呢它同样也很直观,可以用来做设计啊,这就这啊,但是他的表达范围广一点是吧,至少这个北侧曲线是它的一个子集,因为有理曲线的全图等于一,就是北则曲线,所以它他表达的范围当然会更广一点啊,性质也保留了。
这些也非常好好,那么在这的话如果要去讲细的话呢,这个需要一点时间,那我这里就直接讲,就是啊如果要表达表达1/4圆,你这个全啊,你只要这个两个端点是一,中间设成二倍的根号二啊,这个就可以。
这个圆呢可以证明他是个精确的圆啊,没有任何误差,跟这个视频机缘完全吻合啊,所以用游离形式呢就可以表达,当然说你用三三那个三次的,可不可以一个两点点亮一点点,三个点点,四个点点是吧,啊这样这样可以表达吗。
也可以表达这个这个有全的,我记得是好像根号三啊,这个一根号三一啊,那么那么这个同样也可以表达近期的言,当然你用45次可不可以都可以啊,没问题,那么关于游里北侧曲线的一些这种推导,我这里就不详细讲。
大家清楚这个他的motivation是什么啊对吧,就是为了表达更广泛的这种曲线,特别是圆圆锥曲线和圆曲线,椭圆呢,还有抛物线啊,就是多项式是呃比较难搞的,那么这些有理曲线呢就可以很好地表达这种比较啊。
这个规则的曲线好好有理,就是这个概念啊,那我就不展开了啊,就讲完了好,那么下面就进行到这个最终大家经常听说的lp啊,那到底是啥啊,nb是这几个词的缩写啊,neu是non uniform,叫非均匀嗯。
r就是rational有理啊,b s就是be spring啊,这个大这个大家大家都说了啊,好rational也熟了,好,让uniform什么意思,就是说还记得吗,就是我们当时定义这个记函数的时候呢。
我们是有均匀节点对吧,真的是每一个p i这个对应参数是等等距的,这叫等距节点,如果这个节点是非均匀的啊,这个这个有宽有细,甚至还还有重合啊,这个如果这个节点有重合它的它的连续性就会就会就会减少是吧。
就如果重合的多一点,甚至可以产生c0 的间点等等好,be fine被basis是吧,所以这个节点如果是非均匀的话,就表达了所有的比较一般的这种样条形式,所以这个叫非均匀啊,所以非均匀是指节点向量非均匀。
它节点向量影响g函数,所以g函数呢还有带一个有理,所以你可以看到它的形式是用一模一样啊,这是第二条g啊,这个这个g函数呢可能是定义在这个非均匀有理节点向量上面是吧,每个pi嗯对应的这一个参数啊。
这个是均匀参数化呢还是均匀啊,这个等聚餐的话,还是这个服装上的话,这个由于参数化来决定的好,我们改i就是这个全啊,这个就是pi啊,所以这个形式是一模一样的啊,pi然后这里有一条曲线啊。
好不一定是不用上影机啊,rational搞明白了,rational只是指是指他有理啊,好了,所以我把这个干把这个定义应提出,大家也能基本上你明白了,所以关键点你还是要理解北这边央调的这个奶油啊,有理智。
不过多少分母啊,让他表达更广,这个这个这个更多范围的这样一些控制啊,好那么那不是这个曲线,我们在最后总结啊啊所以你有可能不是曲线影响这个曲线,这个有很多因素啊,第一个控制控制顶点啊。
用用户基本上都是通过交互控制顶点来设计曲线,是第二个节点向量,引体向量就是每个顶点点沙朵朵对应的参数啊,这个参数呢可以由啊这个参数化啊,这个怎么参数有很多是吧来决定,所以说p4 上面组合一个阶函数。
这g函数是定义定义在这个节点上面的啊,只不过它跨度呢可能是跨度了相邻的一些节点,那么节点之外呢它都等于零啊,所以p5 呢可能是定义在这个上面的对吧,那么这个节点呢是在这里是非零啊。
你可以看到每个节点上面还是有一个阶函数跟它组合,它是局部的啊,所以从这些性质可以推出来,你在哪个区间上面哪些计算数是沸点,可以反推啊,这个是要稍微稍微要一点点小小的这种呃,这个细心的推导就可以了啊。
当时我们学的时候还是比较熟的好,所以这个东西你不用说话没关系,但你要理解他的这个这个这个啊这个来由啊,像国产机什么国产是什么,是整个区间它都是非零啊,这就不一样,所以节点向量定义了基函数的局部性啊。
或者叫奇函数,那么全呢也影响了这个形状啊,就是那个欧米伽啊,那么它可以表达更多的圆锥曲线等等,也是具有很好的几何几何性突破性啊啊什么啊,如果你两边都有重点的话,就有端点差值性啊,相切啊,还有变差缩减好。
变速缩减,我以前可能没有特异体,那么变差衰减性是什么呢,变差缩减性是指那么一条曲线啊,如果一个直线与这个曲线进行相交啊,利用这个性质啊,人们就可以什么啊,就可以知道这个这个直线跟曲线有没有交点。
因为什么它不会多余,所以这个叫叫变差缩减性好,那么这个性质用来做曲线的求交是非常重要的,而曲线除胶是一个极其重要的一个东西,是所有cad系统里面的一个非常核心的一个部件是吧,你这不操作。
还有这个曲线在这个胶啊啊前面的胶等等啊,好所以那么可以看到刚才在这个所谓卓越里面,同学们也引用了这个nb曲线或者是分段的北辙啊,这虽然不是有理的,但没关系啊,有理只不过可以表达圆弧而已是吧。
那么在在看的demo里面,同学们可能不一定是表达圆弧啊,注册耳朵呀一个曲线是吧,所以设计师啊以不同的美工,可以利用这些工具就可以去设计这种图案啊,这个图案呢啊分段光滑,分段不光滑都有啊。
你可以看到这里就有点点是吧,这这这这c0 也是机灵是吧,所以其他地方都是比较比较比较比较光滑,所以在那个很多工具里面啊,但是novs可能那个是曲面啊,前面我们等一下会会稍微解释一下。
那么在如果俄罗斯曲线的情况下呢,就里面有三个因素大家都可以考虑啊,你可控制点点,这个是很直观的一个节点向量,接下来很多一些美工呢可能对于这个原理不懂的话呢,它基本上就会缺人使用较均匀节点啊。
所以实际上是均匀节点是大家就说你不用去管什么节点,不节点你就均匀啊,这这样啊,实际上就是什么就失去了有理啊,就不要表表示圆啊啊,所以呢这个这里面有很多控制手段呢,大家如果懂这个原理呢。
以后不妨自己可以去调一调试一下,可以设计的更好好,那么这是一些其他的一些这个例子啊,我这里就不去展开,可以可以看到你可以通过控制节点的这个这个这个叫做重塑,你看减减重数不一样的时候呢,这个基函数本身啊。
这下面这一行是g函数啊,本身就可以产产生一个节点,计函数本身就不连续,向左边的话计算数全是全是光滑的,这个是不光滑啊,你看到这两个基函数是不光滑,就不光滑的,就可以查在在这里产生两个尖点。
所以呢你可以看到这个我可以通过节点啊,以及控制零点呢可以来控制这个曲线,在不同的地方有不同的连续性和光滑性,好好,那么是曲线为什么很重要,就是它是所有的c d7 系统啊。
当前啊至少人类当前的所有的工业这个cd里面的一个工业标准,就是你无论是什么cd啊,你可以看到工业设计里面有有out cad啊,啊sally walks啊,这个是打锁的啊,还有ryo啊。
ryo叫犀牛里面的number工具啊,基本上都是这个nb为这个底层的表达啊,所以所以它是成为一个工业标准啊,那么在历史上起了好多好多标准标准这个数据格式标准,所以大家追求这种标准的话。
不同的这个cd系统呢它的数据就可以相互交换啊,我的数据比如说导是oto oto cat出来的工具啊,成为标准以后呢,那你会找到另外一个工具啊,这个这个工具是吧,历史上有什么step工具啊,标准啊。
怎么整体标准啊等等,还有a s s这种标准啊,那么我这里也不去啊,这个详细展开啊,如果大家有兴趣可以去看一看啊,不同的这个协会啊,有共同的这样的数据交换的过程,你可以看到右边这个图里面是七艘船啊。
这里面的这个曲线啊,大量的这种这种nos啊,这个呃是统统一的一个nb啊,就表达,所以你的数据格式呢就是用nbs格式表达好,所以它一个是表达式标准,第二个是交换式标准啊,你没有标准。
那么你这里设计的曲线你就找不到另外一个系统,这个就就你这又得重新设一遍,这是这是这是这是啊,很不方便的是吧,好还有在一些动画设计里面也有很多,那不是这个这个影子啊,max和maya都有啊。
大家很容易去找到这些工具啊。
好了,那么这个是呃这个这个那不是我就讲完了好。
下面一个主题好。
叫细分曲线细分我我也相信同学们可能会有一些偏说过啊。
这也是一种在啊实践中产生了一种这个呃,曲线形式或者曲线构造方法啊,设计方法,那么大家回忆一下北京曲线的那个作图啊,大家有没有还记得啊,我用decastle的算法作图,我这样四个空分值零点啊,我这样呃。
比如说我要求中间t等于1/2这个点的值啊,那我可以12/2分之一,然后一条线就一条直线是一条直线啊,你这些也只是1/2啊,那1/2,那么中间再取1/2就达到了这个点啊。
可以可以判定这个点就一定是曲线上的点是吧,如果你是想取1/3的话,就基本11/3比二一比二好好,一比二,每一段都是一比二,那么就得到1/3是吧,这就是做出几个e非常非常直观。
好这个做出方法大家从另外一个角度上看诶,我可不可以认为这样我给定一个多边形,就像一块这个这个这个比如说是这个啊,嗯一块石头是吧,然后呢我用刀这一刀把这部分把它切切掉,那么这一刀把这部分切掉。
是不是就剩下这个啊,那我再把再把这部分切掉,是不是就剩下的就是里面这一层是吧,我每一招的话,对这个多边形呢都是进行一个什么进行一个割脚,勾脚过程中,就越来越什么越来越光滑了,好你在这个情况下。
你你再去切,因为这里是左边是一段北侧,右边是左边,这是不是可以同样去用,所以呢我又可以切,所以说诶是不是有点像用刀啊去去磨光一个粗糙的一个初始的形状,对吧,我们啊这个这个比如说去去打磨一个什么。
要把它光滑,也是用刀慢慢慢磨是吧,所以这种方法呢哎启发的人们呢去构造与其他方式的构造曲线方法,我拿一个粗糙的多边形,我不断的去切切角磨光诶,慢慢慢慢无穷以后呢,就可以得到一个光滑的曲线。
所以这个啊就是叫叫割脚法,在80年代啊,发生了很多这个事呢,就是一个雕刻的过程是吧,一块石头很那个一块这个很粗的石头,那我不断地通过工具,工匠啊,通过工具把这个多余的部分,把它把它啊这个这个这个刨掉啊。
那么剩下的东西呢就是这个教授课是吧,所以啊在在教科界有一句哲学性的话,对吧啊就是啊这个实际上这个雕塑课啊本来就在那石头你手里面啊,我只是把它多余的边边角角去掉而已是吧。
这当然是一个比较哲学性的一个一个又表达了是吧,但是呢你怎么知道去掉哪些这个的能力,这个是不容易的是吧,所以台上一分钟,台下10年功啊,所以你要你要知道爆掉脸先,你这个是不知道你要去你要去有艺术修养。
要不断积累练的是吧,好那我来做个比方,就是我要不断去磨掉这些不必要的东西,就剩下这个曲线对吧,当然你无穷无穷次的模式以后,这个曲线就会越来越光滑啊,这就是这个叫魔光法。
这个这个比值几何几何直观很强的一种方法,构造好,那我们把这个问题提提出来好,假设给定一个多边形,那么我要设计一个光滑曲线对吧,我现在不想用这崩闪机这种光滑啊,这个基函数形式我能不能通过磨光的这个操作。
我一步步切,一步步切,把它若干步以后呢,这个曲线就得得到了是吧好那么这个就是一个主角法,当时啊也叫魔光法的一个当时的驱动好,我通过一个啊这个都通过一个给定的这样一个正方形,我不能去啊。
切刀切刀就剩下的这两条是吧,这边眼睛不断切啊,注意这个这个剩下的第二步呢,我又又去切,慢慢切以后呢,这个这个密足够的密以后,那么这个形状就出来了啊,就当然可以啊。
这个一个好的磨光者这个算法你要证明它无穷期以后,切它最后的这个光滑的极限曲线啊,就极限曲线一定是一个数学表达的光滑函数,那么这样这个方法呢就比较可靠啊,这个是数学上的一些保保证好,那我们看一个例子好。
那么这个这个这个例子之前呢,我们要要要把这个目光方法呃,我们也叫细分方法,也叫个小方法哈,n v他们就是不断的去把点点加密加密加密啊,但是这里呢有两个要点,你们掌握第一个呢叫top规则。
就是怎么去加点啊,第二个几何规则,这个点加到哪啊,就是这个是在在哪家,这是加到哪,把这两个搞明白,你这个细分方法就确定了啊,那么加减以后呢,是不是会把这个多边形变成更密了,所以说组成一个新动微型。
这个叫叫split那个split啊,那么如果是加拿大,那么就是加上什么,加上你把这个这个顶点的坐标给算算出来,往往一个好的方法,顶点的坐标是原来的老坐标的一个线性组合,那么这样的话就比较快啊。
好那么如果对于结果来看呢,也有b进型和差值性两种,后面我们再来介绍好,所以这个过程有两种,一个是加上哪在哪加啊,把这两个问题啊在哪加呢,最好是线线性运算快啊,加上了这个就加密啊,就是不断的增加。
增加这个顶点好,那我们来看一下这个大概在70年代啊,啊这个上次最早是40年代就有了,就是194几年也是想,只不过呢呃呃这个呃checking呢就是蔡京他把它用到的设计里面。
70年代才用到了我们这个领域好这个方法不难啊,这种方法一解释大家都很明白啊,就是嗯黑的这四个顶点是初始的正方形,我先加一下,给你来加在每个边的中点啊,这是这是加拿大已经确定了是吧。
然后呢我再怎怎怎怎怎么加呢,我每个点都朝他的左这个这个这条边去移动,你用到这这个点移到这了,你可以把它认为割了那个角是吧,你也可以把它认为割那个角一个就构成了这个图了是吧,好从这个出发。
再按我刚才的两个规则加到哪啊,首先是终点,然后在每个点在移动是吧,这就割掉割掉割掉啊,就就变成这个样子啊,你可以看到我们才割了两次,你这个方法你看j4 顶点增加一倍,根增加四倍,这个三次增加啊。
这个这个4x4x28倍对吧,所以它是它是二的n次方的一点点增加,一般哥哥556次以后,这个顶点就非常非常多了,因为它是二的n次方倍数在增长啊,所以基本上细分个几次就很光滑了。
因为光滑的意思是说它这个顶点足够密了嘛,啊左边这个是一个例子啊,可以看到是红色的顶点不能割啊,所以他这个做的方法是非常非常简单啊,这是最呃这个最早的一种,那么很有意思的啊,就这种歌法呢。
这个可以证明可以证明啊,它的极限是一定是收敛的,并且收缩练级曲线呢就是由这个初始多边形所决定的量,所以这个这个理论上是可以被证明的,格格角法的一个实践啊,那么这里是重复了啊,那么每次增加一个点。
然后呢这个点是它的呃,呃在哪啊,这这个是一比三啊,那是三三比一,就是1/4是三嘛是吧,然后呢然后再再取个这个啊,这这叫新编点是吧,新编点以后,然后在这个刚才我的过程已经讲完了哈。
好所以可以看到一个数字变形,那不断割一次,割一个角,那么割两次割三次啊,就很密了是吧,然后那么最后这个可以得到这个这个当然是要证明你不能落眼看啊,我我不光滑了,所以他是c无穷,不是啊,这个是可以证明的。
并且呢它几乎处处c无穷,所以它是一个非常非常光滑的曲线,只有在哪些地方在节点处,就是这里节点二次的话应该是在这个中中点附近啊,这里几个点是只有c一啊,所以他只有在这么少数几个点啊,就节点数是c1 。
光滑性不是那么好,所以它顶多找到c1 ,所以跟理论上也吻合了啊,这就是一个非常简单的一个细分好,那同样你刚才说我二次有了三次,有没有同样的,当然有了啊,我就直接讲了啊,首先边分裂成两条新边。
就在虚线是原原始的多边形,那我这里增加两个新号,然后呢啊边分成成两个新编,然后每个点重新算它的位置,这个点要移动到这来啊,每个点都要移动过去啊,具体移动的这是什么方法呢,大家看一下啊。
这个方法看看几个亿,大家能不能找得到啊,v2 i一撇就是这个点给它更新到这个位置,就是要根据它它的它的这个顶点坐标是是v i减一,v i v i加一是这三点是原来的老的三个点的一个加权。
就是这个点的左0。六零点,这三个加权一个是1/8,38/4分之一啊,那这样看呢,你可能看不看不出那个那个味味道来啊,你可以可以这样看啊,这两个连连线中点就是它的两个的一半对吧。
这一半跟他跟跟这个点进行一个连连线啊,这里有个比啊,就就在这啊,具体比例大家可以很容易推导,那么这个这个新的边界的坐标呢很简单,就是取中点啊,所以它的规则就这么简单啊,然后由这个十的多边形。
你再去按它的规则啊,每个边点加一个,然后然后这个点再移动,再再再往里移动是吧,那么就形成了更密的一个多边形了,好好那么就慢慢慢慢把它磨光了啊,好那么这个就是军训三次啊。
当然啊你人们在实践过程中还啊发明了n多的很多很多这种细分规则,我就不一一讲,大家清楚它的来源是什么啊,好那你要去证明这个刚才有个结论是吧,知道这个极限曲线是什么,它的光滑性是什么。
那么那么怎么样才能做到他的极限曲线的性质呢,这里提一下思路,大家去看文献的时候呢也能看得懂啊,他思路是什么呢,你可以看到每次分割的时候呢,它都是相邻的几个点的组合,那那么那么这个点呢又是这几个点的组合。
那最后呢这个点呢又是这个越来越组合啊,但是你可以看到极限点的时候呢,这个点这三个是相关,而这三个呢又跟这三个相关,所以它的这个相关简单,实际上是应该是一个大范围的几个点的这个相关性对吧。
那么你因为这个分割只是一个构造方法,所以你怎么去知道它的性质呢,所以呢这里面就要把它数学化啊什么,所以很简单就是什么用用矩阵形式,它多是一些新的组合,所以你把这个系数啊拿过来写成一个矩阵形式。
这个是l就老的这一层的顶点是新的内存的景点啊,这是增加了一倍嘛,2n是吧,所以它的矩阵是2n乘n这样这样一个,那么你再把它展开啊,那所以是变成一个2x2 n,所以极限曲线。
比如说刚才那个checking那个积分就会表达这样的形式,所以所以你这个这个点产生的新点,怎么又是乘这个矩阵,乘矩阵吧,有时候不断乘,所以呢可以马上就出来无穷这个极限制的去点了。
是原来这些点乘上这个这个叫西门矩阵的k次方啊,乘一次就表达一个星星点,再乘一次又表达系列心点,所以它的极限就是就是当这个k趋向于无穷是吧,好达到这个数字以后,大家就很容易去找你要这个式子收敛。
是不是要一个矩阵的k次方要收敛是吧,大家学过高大一的线性代数,就知道一个矩阵的k次方怎么算呀,啊我觉得大家大一是不是老是出乎一个啊这个题目啊,让让你算它的100次方是吧。
100方100方方就是100个矩阵相乘嘛,对不对,你这样是一个课程,当然是肯定是不是科学方法嘛是吧好,那么这里就要用到了代数知识哈,基本上要去做一个这个这个叫对对角分分解,啊那么p和频率是相似矩阵啊。
这个是这个叫三角化,就m就变成p一个对角正乘以p e好,那么m的k次方好不断相乘和p e这里再强成个p就抵消掉了,所以说是p中间那个矩阵的k次方的pv啊,所以所以你就要把它做三角化。
才适合于做这个矩阵矩阵的这个这个幂是吧,那么就决决决决定了这个对角线的这个元素的k k次方,如果你要他收敛,是不是这个对角线这个值不能大于一啊,大于它就喷一下子爆炸了嘛是吧,所以取出来。
而这个最小线的值呢就是这个矩阵的特征根很容易推出来,如果你让他收敛这个矩阵的这个蹭蹭根的最大值不能超过一啊,这那他最大值肯定是一嘛啊,所以结论就可以推出来,你只要这个矩阵这最少正根根啊,这个这个是一。
其他的是小一就会啊,所以你要构造一个好的规则,细分曲线的这个形式,你必须要保证它的这个细分矩阵的特征根不能大于一,大于一的话就会发散,就是这个这个曲线就越来越不知道是什么什么情况啊。
就是可能是随机的一个非常爆炸一样的形式,好这个大家思路清楚啊,就大家知道你要去研究细分曲线的一个极限曲线的性质,就是研究它的细分矩阵的特征,根的性质好,那么具体的这个很多细分规则的推导证明。
都都在围绕着这个这个这个根本性质证明啊,那么你这个在早年很多文章一个小小的这个改变诶,我要去证明他的这个芯片取证啊,这个政治根不大于我的方法就收敛了啊,所以就几篇文章就一个小的创新啊,这种文章蛮多的啊。
我就不去展开,你们去看到这个文章,所以就知道这个文章在卖卖什么是吧,可能在卖它的一个细分细分格式,格子卖了就完,完了以后呢还要证明它要收敛,所以这也要证明一下,这样的话两个贡献就够了。
所以早年的一些文章蛮多的好,还是比这个23次也好,都是b进行,它不经过那些原始景点,那么这里呢我介绍一种啊比较有名的啊,就是一叫做差值型细分,就是啊差细分什么意思呢,我要差值原来的多边形是不是是桌边形。
原来的这个顶点是不能动的是吧,是在我最后的极限曲面里面是吧,所以这这种差值型呢基本上有一个原则,就是圆的顶点不动啊,只是不断增加不断增加好,那么这个这个我把这个过程稍微解释一下啊,这是原始的一个多边形。
中间呢每条边呢就加一个新的啊,这些带红圈圈的就是新的对吧,然后呢这个红圈圈的位置是在哪,等下我来解释啊,然后然后增加完以后呢,位置可能是要重新计算,不再不能在边上了,是不是就还是原来这个直直线了是吧。
不能变光滑是吧,好那不断加不断加不断加好,可以看到好,你可以看到这个就点没有,它往往外窄了一点点啊,那么这个极限曲线如果你构造的好的话,它的曲线也是光滑的,也能达到很好的光滑性。
那么这个基本格式就非常好啊,这就是80年代上世纪80年代提出一个叫叫呃呃四点差值细分啊,那么这个细分呢你可以看到不是割咬人,原来角他什么他补这么一块,这就补这么一块,这里补补这么一块啊。
有可能这一块面积440什么,他不是割掉原来的东西,它什么它往这个雕塑石头上面去贴贴个泥巴啊,所以我们以这个执行呢也可以叫做补交法,它不是割脚,它是补角,把它补上去,就是越那就月光滑啊。
所以可以可以可以可以啊这样去理解,所以你可以看到运行是割角x字型的啊,是补角啊,那么我们介绍一种198987年的啊,那时候在90年代研究的很火啊,这个一种差值性的,它方法也很简单啊,他怎么样呢。
我我中间选选啊,那个啊这个相邻时段我我来我来讨论中这个点位置变到哪啊,是比较好啊,他们按规则比较简单啊,一这个取相邻的pi减一跟pi加二啊,那么取中点。
他认为他这个点呢就往往这个这个中点进去跟这个中点的一个延长线,这里取一点,就这样补一点,补一点以后呢,诶就这个橙色在这两条边就替代这条边,不就每条边都可以这样搞嘛是吧,当然手握两点,如果他非封闭的话。
处理一下啊,总有办法啊,这个我不讲好,那么这样的话就增加了一条边啊,就增增加了一倍点是吧,然后再不断的去去做他的公司很简单啊,就是这个这个这个终点沿着这个方向这个方向这个是啊。
就就就这个这个这个是这个点对吧啊,这两个是这个点是吧,那么那么那么这个点呢是是是这个中点好,就是这个减这个就是这个方向向量是吧,它的阿尔法贝就是中间,这这个是他的阿法贝,然后从中间往外偏啊。
所以他公司很容易记是吧,所以你第一个细分要记记它的几何意义,你就很容易记住啊,但这个是我90年代读硕士的时候就知道的游戏分啊,虽然很长时间没有用,我还是能很好的写出来好。
并且我还记住了这个阿法值人随便取吗,不忍啊,你法值,当时这个文章的结论是,阿尔法是大概是0~8分之一还是1/16哦,我也忘掉了好,这时候呢证明这个极限曲线是光滑的,如果超过这个1/8。
这个曲线就不是不就不收敛了,它就会啊这个这个变得非常难预测啊,就就很随机,像分形曲线一样的啊,好好,那么这个是几个例子,你可以看到啊,输输入的是红色的几个顶点啊,多边形,然后呢增加一倍啊。
这这里再再增增加两个新点是吧,然后不断增加最后一个这个曲线啊,你可以看到它都在多边形外面补了一些三角形啊,所以是是叫补那个角是吧,你可以把它这样形象的这样的去去理解好,那么这是另外一个例子啊。
大家看一看啊,有个直观的,你可以看到,如果我要插足这些多边形,我可以这样不断的去去细分构造对吧,所以你们昨夜四中你们辛辛苦苦求了个这个叫什么啊,这个这个这个三转角是吧,方程组才得到一条曲线。
我自己轻松的就构造出来了对吧,所以这个实现很简单啊,这不就是不断递归,你就可以求出这个曲线出来啊,好那么这里面呢是理论上我也我也说一下啊,就是这个阿法值啊,呃在在在一定范围之内呢,它是能证明是光滑的啊。
要不然就就非光滑生成了一些分形曲线啊,因为你偏偏离的太远,那么那么那么这这个下一步呢它它就未必能够透,现在有多边形,它会远离了啊,所以这个啊这个啊这个词不能随便取,那么这个证明的话也是通过啊。
类似于刚才说的,把这个细分格式拿来,你去证明它的这个特征根不能大于一啊,所以真的跟不上晕,就就可以推出来阿尔法的范围是这样一个思路啊,这个我就不详细展开了,那么可以看到这个啊,这这这这就是分形的啊。
这个阿尔法已经大于1/800了啊,这个就看到这个形状就非常非常非常古怪啊,就就像这个就比较比较光滑,这个可能阿尔法小于1/8了是吧,其他的曲线呢你可以看到做和分型的状态好。
那么分型我不知道同学们有没有听过这个词啊,分型啊,分型的就是它的形状呢有点像啊,随机数是吧,就是这叫这也叫分数为的几何分数为的几何图形,分析是研究分数位的好大很奇怪,为数不就一维二维,三维。
四维正整数为吗,怎么还有分数为啊,确实在这个数学上可以定义这种1。67维的曲线是什么样子啊,这个要用到这个分析理论,这分析来源于什么呢,来源于这个大概在上个世纪四。
我今年在有一个英国的科学家对这个海岸线,他要问英国的是个岛嘛是吧,英国的航线到底有多长,这个问题提出来啊,就觉得哎呀不就是量一量就行了吗,你换后来发现不对啊,发现差别非常大,为什么。
因为它的它的海岸线边界啊,看到没有,只是这样杂乱无章的,为什么你可能1年凉了,难得这么长,还有好多多这个长度被你忽略掉了是吧,误差差别极大,是差别有好几倍甚至几十倍的这个效果,为什么。
那你因为这里有好的好的细节,你如果这样量的话,长度可以变变成非常非常长啊,所以后面就产生了这样一个分形几何的一个学科啊,就是我们去研究就是这个排线呢它也不是光滑,光滑曲线,它是个非常杂乱无章的啊。
这样就形状啊,那么我们这课也不去讲分析几何,提一下这个这个词啊,因为既然这个试点法产真的分形曲线这类似的情况,那我这里提一下啊,这门这门课呢啊以前也是一门专门的课去讲的哈,那我我就提一下啊。
那我在研究生的时候就学过,所以它里面啊这是里面一个基本的东西叫ipad,要自迭代函数系统,就一个函数不断去迭代,不断迭代就可以产生这种分型的这个效果啊。
嗯那个如果还有木木啊啊这个给产生非常漂亮的这些图形,而自然界上这海线啊,还有山脉的轮廓啊等等,都有点像分型的这样一个曲线的形态好,那么刚才是四点法呃,实际上是呃就是刚开始介绍的那个呃方法是两点差值。
刚才我们也介绍了四点差值啊,四点差值这里阿尔法就把它固定成了12/8啊,好还有当然你说我为了创新,我是产生用相邻点的呃,六点去差值可不可以构造,可没问题啊,你只要保证一个基本矩阵啊。
这个这个这个特征根小于一,你就可以做到啊,八点超市可不可以,当然可以,这个就b没没没多大意义,就是你点太多,它的那个比较大是吧,它的局部性就不好是吧,所以常用的就是四四点比较好啊,质检是最有名的啊。
87年这个定的发明的,所以这个啊这种上传法,我要去藏在另外的差的细分方法,可不可以也可以,所以当研究细分啊,这个领域的人呢就是不断的去找各种各样的构造方法啊,然后去证明这个方法是收敛的。
你这方法具有创新性,你要直观,你同样也也要有好的性质,才会才会被啊能不能接受,要不然你这个只是为了呃去去去去创造差值细分啊,那就和细分规则去去去去做文章,肯定没有多少意义好。
那么呃这个除了这个刚才说的那些线性细分,还有一些人在研究非线性细分啊,像这我就简单讨论一下,就是两个点之间,我中间要插一个点,我怎么插,我我用一个双圆弧,我这个圆弧加这个圆弧啊,就是两个都是圆弧。
只不过半径不一样,那么就是可以唯一的求着中间的一个一个交,那么这个圆弧怎么构造,半径怎么都是单定系数,但是我一定可以达到一个这个叫做这个这个光滑性啊,这个至少加二连续两个圆在这里建牢。
并且向切线要一样好,那么这样的话一个多边形完完了以后,我每每个每个每个边都构造一个这样这样的啊,这个圆弧去去找这个,那么这个点显然就不是我这些点的信息组合呢,它是一个非常非线性的一个啊。
这个要解方程的啊,甚至要解决一个优化的问题啊,所以但这样也是一个啊构造方法,所以啊那么从线性细分到非线细分也有不同的这个方法啊,那么并且也要也要证明这个方法是无穷啊,这个极限之后一定要有这个光滑性啊。
所以它可以证明是加这个这个点啊,端点处连gcr都达不到,只能但这证明还是蛮难的,因为什么你这个方法它不是显示写出来的,是通过构造方法出来的,所以你要是证明的话还是比较难啊,当然你也可以光顺宝行。
整整整都是数学上的一些性质,所以你诶我我拍脑袋就想一个细分细分方法,就能够发发文章,不是你必须要去证明它啊,这个有些性质,这个稳定的啊,这个收敛的啊,谱还有什么保险要关注这个性质。
创新性才会被review所接收,如果你要去了解细分哦,我今天也就是开个场啊,给大家一个指针啊,就像学加c语言啊,你们多记一些指针啊,以后听到这种词汇哦,哦细分原来是这样一个构造方法啊。
那以后要去做的时候,或者要用的时候。
你再去啊这个找这些文章好吧,我这个就就不不去详细讲好。
我们把左右五给大家布置一下啊,很简单,细分卓越是要容易吧是吧,主要是你还要去求解决方程组啊啊等等,那这个是细分,就是不断的迭代是吧,一般细分和3~4次就足足够密了嘛,啊所以你可以实现这个菜金啊。
三次样条,我这p t都有差值细分啊,就是一个逼近一个细差值,非常简单啊,你只要会写程序,基本上呃这个可能几个小时就写完了啊,大家体验一下啊,就这个作业就放一周好。
明天这个作业就会在give up上给放出来,继续。
上面讲的这个就是影视曲线啊。
影视曲线呢是他我们看一下啊,这我们的,然后好多曲线类型都是这种啊,控制顶点加个奇函数啊,就是那么对曲线来源奇函数性质是吧,好,那么我们到现在为止已经呃呃这个了解到过很多这些方式定义曲线啊。
最简单就是我们高中就学过了是吧,一个函数五,我把把把这个函函数升为x跟y放在一块,就变成一个函数的曲线,这个这个叫高中啊,我记得初中的时候就定义过啊,什么叫函数的图,函数图呢就是x这个y放在一块是吧。
身为一下就变成了一个轨迹啊,x是一个t的函数,y分量是一个t的函数,那么这个叫参数曲线显示函数啊,所以啊这个只不过参数参数曲线呢是有另外一个参数t t变化,曲线上的点出来比较动,就构成了曲线啊。
所以它的更灵活啊,那么这个叫参数曲线,还有一种曲线呢,就是说我这个屏幕上的两个点,一个点xy啊,它两个自变量和应变量没有显示关系,不是和y等于fx关系,它是什么,是fxy啊。
是是被另外一个函数所表达的是一个方程式所表达啊,简单一点,像这个叫直线,大家一看就明白,这个大家一看也能知道是啥对吧,圆对吧,这个呢诶你就看得出来了吧,这个呢你你看不出来吧,哎我也看不出来啊。
但没关系啊,我这是随便写的啊,就是你可以看到你写写一个f等于fx要这个推出来不可能的,因为什么啊,我看我故意写了y啊,又出现在根号里,出现在log里面是吧,你不可能写出来是吧。
所以这种这种形式就不像我们传统的这种形式,好理解是吧,这个叫影视函数,一个方方程里面就叫隐函数啊,这个函数有什么用啊,我们来讲好,所以满足所有这种方程的点的轨迹也是一条曲线是吧。
简单一点就是你看这个直线大家都都明啊,这个圆椭圆大家也不用说了吧,除以一个a平方b平方嘛,好在大一的数学分析里面,大家学过任意给一个隐函数啊,我全局上写不出一个y等于fx这样形式,但是我在任何一个局部。
我可以定一个vc fx啊,这个叫隐函数存在定理,这是我们呃大一学微积分,学数学分析就学过的定理,就是这个隐函数呢局部都可以是表达成一个函数是吧,是因为什么,只要这个它会会退化。
那么我就可以找到一个啊这个这个这个这个这个函数,这个函数就是x n是表达成这个样子啊,就这等于零,那么这个基呢就是局部存在的那个显示函数啊,所以你虽然画不画不出来啊,虽然不能全局表达出来。
但我在一个领域的附近,我能够把它表达出来啊,这这叫存在啊,这只是叫存在定理啊,到底在哪不知道啊,所以数学上很多定理看起来很漂亮,它告诉你存在啊,而且还告诉你唯一,但是在哪里不是他的,他也不知道啊。
这这个还是要我们去找啊,但是我至少可以知道不还是存在这个函数好,那么隐函数呢我们从另外一个角度来看啊,嗯刚才你函数是fx y等于零对吧,我们我们设另外一个变量z等于f x y,也就是什么呢。
什么我在上面每个xy上面有一个函函数是z是高度函数,所以假设是这样,这样这样的形状,这好,那么你函数可以认为什么呢,是认为c这个的这样一个曲面与什么与j等于零,是这个xy平面的交。
交线就是你这个f x y所度量的曲线是吧,所以我可以看成是一个高维的函数平面的交线是吧,好那么我我我再等一是不是四在这个平面跟他交出这个截截面,就是fa观点一是吧,所以它是什么。
它是一个这个高维函数在零等值面啊,零等等等值线啊,取值为零的等值线在一个集合啊,啊呃那么呃这三个性质大家等于0=10间上小于零大于零的,我们规定啊就是小于零是在f是小于零。
外面是f大于零曲线上是f等于零是吧,你可以看到这个这个还是这样,这个是z在下面下面的,直接在上面是吧,所以它这个很容易理解,所以我们利用这个性质呢,就容易可以有办法去找到曲线上的点啊。
那么找一个饮食函函数当中的点呢啊这个叫叫显示化,也叫参数化,这个是比较难的一个问题,很难啊,这个一般很好很好的办法啊,这这个第四这个函数就是就是个典型是吧,第三个函数还好,那么这个平方我开个根号。
我也可以把它标出来,但这个函数很难是吧,所以说遇到这种啊非常复杂的隐函数啊,怎么样把它找出来或者画出来是一个比较难的问题,因为我找不到它的显示器啊,我这里介绍一种方法啊。
就叫做啊这个marking cube,那么介绍之前的话呢,我们来问这个问题,就是诶我如果想曲线怎么去表,怎么去构造一个隐函数去表达它呢,是哪个这个曲线,是哪个函数的零等值面呢是吧,哪个函数呢是吧。
你能不能找到一个函数,那么这个历史上有好多方法啊的方法啊,就叫做呃这个叫叫符号是吧,我里面全取一是正嘛是吧,我外面全取于零,是不是就一个里面全是正和令,外面全是等于零啊,是个符号是吧,可不可以可以。
还有呢为了光滑一点,我我用每个点到边界的距离作为这个这个函数的值啊,诶那么外面的值呢只不过这个距离是负的啊,那么这个叫叫有向距离场,是我对于平面上的两个任何一个点定义它的边界的这个具体的值啊。
里面就正外面的负,就这样的话就整个平面就定义了一个函数数是吧,那我用这个函数的零整成线就是这个曲线本身是吧,那么你也可以用这个呃这个呃平方这个具体的平方,这个只是你可能用于一些应用不一样啊。
带个平方可能容易求求导啊,但是这个sdf用的最多就是叫等,叫做那个距离符号场啊,符号距离长啊,sdf,那么这个函数呢有个性质,这个性质大家最好是记住啊,这个一般这个函数梯度不等于零,这个是个假设啊。
这个要要不然就容易发生起点,还有一个就是这个f梯度除以它的模规划,是这个隐函数这个的一个曲线的一个叫做法向,好像跟它的这个函数梯度是有这个关系啊,这个在微积分里面都学过的,这个是两两阶导数。
就是一阶导数的这个导数就是这个平均曲率啊,这个平均曲率流这个也是经常拿来用的,我这里不展开好,我想大家可能更关心就是影视曲线怎么去绘制啊,我怎么去画一个虚拟影视曲线。
刚才我们讲了这一个隐形曲线给予了你一个函数很复杂,你很难求出这个y等于fx这个形式表达,那怎么办,你就画不出来是吧,那么在历史上没有办法,这个有一种比较特殊方法,就是80年代啊。
这个就是你要去找一个隐函数的这个这个点啊,还是不不是叫什么非平方问题啊,比较难想像这三个还好都可以,比较比较简单是吧啊举例啊,这个就不用说了,这个这个直线想想这个这个很好表达成一个显示的是吧。
y等于一减a平方根号是吧,然后还还有这是上上半圆,还有还有下半圆对吧,所以这个是表示上半圆,这是是下下半月对吧,可以我至少可以把这个函数表达成分段函数啊,这个这个板就y根号一下是吧,就出来了。
但这个呢就不好表达是吧,那么这个函数怎么去画呢,那么在历史上这个80年代就一篇文章啊,这个提这个问题就是给另一个一般的这个二元二元函数,你怎么去求它的这个零。
整个面或者一般的a点的面等于a就加上z减a等于零啊,就这个f变成叉了嘛,没关系啊,所以呢你怎么样去去去找,完成我要的这个网格或者叫多边形或者叫曲线啊,并且把它画出来啊,这个这篇文章非常有名啊。
叫marking cube啊,marching就是爬行的意思啊,cube cube就是t他当时提出的时候是为了解解三维的这个隐函数,我们这里还是二维,二维的话,我们先把二维讲明白,三维的话你自己去看啊。
就能看懂啊,是基本上这个所有绘制影视曲线的方法的一个根本啊,就叫making cube啊,有n那个代码去实现了,所以你们以后要用直接去去找代码就可以了,好好他的思想是这样啊。
讲完以后发现大家也觉得非常非常简单啊,好我为了找一个这个函数啊,这个这个这个那些点在哪是吧,它呢用于格子,把它所在的区间画一个普分格格式点哈,我就计算每个格子点,把xy这个这个坐标带进来。
这个函数你是不是这就有个值啊,如果是如果是大于零啊,我就标它大于零在这啊,小于零在里面啊,这个图呢表示什么啊,蓝色的地方是在外面大于零的啊,这地方是小于零的啊,那么延迟越浅的值越小就越近嘛是吧。
所以你可以看到我对每个格子点我可算一个这种东西,是不是我就在格子点,每个每个值上面,每个格子点上面就有个函数值啊,隔着点越密,是不是这个函数值就相当于什么,我采样的比较比较密啊,好我要你去找零的点。
是不是就应该是在正负值交接的那那些地方啊,啊这不好,那么我们来看,假设一个格子四个地方都是正啊,但这里面不可能有零吧,基本上啊这除除非特殊情况好,假设是三个正,这是负。
那我可以判断这里一定有个零零的地方,这里有个值零点几吧,把它把它们相连,我就认为这个是曲线上的边,他说你我一定要举行反应行不行,可以没问题,但是我我说我把格子点加密,加密叫足够密。
这些地方基本上就是它局部性质基本上就是符合这些啊,这个格式的性质是吧,好同样这里有好多case,大家都可以去思考是吧,像像像这个case,这是正正负负,那我那我就假定这有个有个零点,这有个零点是吧。
把它连起来就行了,所以这就是87年谁管啊,这个是是毕竟任务文章引用极高啊,盈率极高啊,所以思想很简单,它就是呃这个你说他是比较粗暴的,在整个空间中采样,采完以后呢。
我去找到那些啊存在有可能存在值为零的那些点,把它找到,找到以后呢,然后再把它顺序下相连,一条条下相连,因为每这个格子都是这下面几种情况之一啊,那么这个是六种啊,在三是有15种啊,就是那个立方体啊。
就是这六种,所以你可以看到啊,你要是像这些地方都应该是属于属于属于这个或者这个是吧,地方是属于这种情况,那么这些有正负交叉的点呢,就是这这四种情况啊,然后你去不断的去找,那找完以后把它连起来。
就是这个曲线啊,这就是marin cube的方法,很好理解啊,不难啊,非常简单,但是你要实现好啊,有好多技巧啊,后面还有也有很多变种啊,这个比这个方法做的快,做的好好,这个方法本身思想很简单。
但是呢你要做好也不容易,为什么他有好多奇异情况啊,比如说这种情况啊,你你你你到到底是啊,这两个宇宙是零点,你你是这么连呢,还是这么连,问你那种情况是可能的,你不知可能如果你你连错的话。
你这个形状就什么拓扑拓扑关系都错掉了,对吧啊,所以这是个百代人里面的这个这个脸面前的一个问题,当然你你这个有有些办法也可以解决掉,为什么你把它加密哎,我就奇异性可以可以那个啊没有什么利用一些其他的性质。
如果对这个函数要倒数啊等等,我也我也去判断一下诶,我就知道这导数了,不应该是是沿这个方向,而是沿这个方向哎,我就有可能做判断啊,当然这个呃你有你有你有很多方法去去做一些更精致的判断。
好吧好还有哎我这个格子是不是每个地方都要加密呢,像这里再再加密,对这个早零点是没有用的是吧,所以我要尽快的找到那些啊,这个有可能有零点的这个这个地方再对它加密,这样的话计算量可以少啊。
这个叫adaptive啊,叫自适应的啊,那么曲线啊,呃除了刚才说的那个定义啊,实际上它很有用很有用啊,是用来做重建啊,我做拟合啊,呃我这里讲一下二维的情况的这个例子,三维也一样啊,三维后面我就不讲了啊。
三维到后面可能就是讲别的处理上,三维中用影视曲面来做的这个啊重建方法很有名啊,婆送就是一种啊,好我问题是什么呢,我给定平面上的一些点,当然我先假假定这个这个这个这个点是从一个封闭物体上啊,是封闭的啊。
这个这个啊是封闭的一个曲线啊,那么呢我去拟合一个函数对吧,有可能优点很多,条或者是细分可不可以做啊,没问题啊,但是有可能这个形式很复杂,你你甚至这个点的顺序都不知道啊,就是这个方法适合于无序的啊。
嗯就是就是没有顺序的啊,当然在平面中去还是能够排得出来是吧,但是空间中这个序没有序的话,影视曲面就比较好,因为你做参数去拟合的话,参数选型拟合的话,你要求这个点是有序的,为什么你要求它的参数化好话呢。
又要需要去算啊,算那个弦长,弦长一点一点是吧,i i加一,i加二,所以它要有序,那么这种无序的话呢,就影视影视函数拟合就非常好,非常管用啊,那么这个方法呢是怎么来做呢,我也我也讲一下思想好吧。
具体方法有n多啊,这个这个不可能在我们这个基础课里面在一个个讲的很细啊,我讲思想,这,但如果我不去讲之前啊,嗯能想到啊,就比如说我要求一个函数z等于f x y xy是定在这个整个平面上的。
就比如说就定在这个矩矩形上的这个函数呢,要在这些点点应该应该等于零是吧,在这里面在外面把这些值给它全部啊,就是要有要要有一个特点是吧,这个值到底是什么,我才能拟合出一个函数出来是吧,我们我们现在想啊。
我先不我不想我我先不讲,好好一个,就这个值地方肯定是要等于零是吧,所以你要求这个函数这个函数f x i y i是吧,这就是p i就是这样啊,还有没有别的别的条件呢,如果我有办法拿到这个点的法。
向我知道刚刚跟一个看的约定法,向这里的任何一个点都是负的对吧,就比如说我我多取一个长度叫-1,是正一,这些pi一撇跟这个点pi两撇,我又得到了一些条件,y两撇等于-1。
是不是每个点我就得到了这么几个差值条件,你要去求一个函数差值,每个点以及在这些点是不是在求一个二维空间中的一个差值函数,诶,我们以前都很熟了,不会嘛,就什么我出了好多啊,就是你把这个平面倒下来。
那么这里应该是有这个是零,这是正一-1正一-1,正一-1就是零是吧,你是不是要求一个函数去插着它,那么那么怎么去求这个函数差,直接点啊,我们前面五节课打的基础就有了啊。
你f你肯定要告诉我你在哪个函数空间去找嘛,对不对,你说用rbf去找可不可以,那你按f就假设xy等于西格玛是吧,阿尔法i一函数i j x y是吧,样条还是去什么,这就变成一个拟合问题了。
你你你函数的这个求解就是在什么就在做拟合,只不过呢你和呢光用这些点来做拟合呢,可能精度不高啊,我还要利用它内外的点是吧,但是有些方法呢也可能中间也构造一点来做差值点越多,对这个函数性质拟合的会越好。
因为因为这个这个点越多嘛,你这个函数就可以更复杂来拟合这样一个函数好最后这个函数求求出,求出来以后啊,差值完以后,或者是你也可以差值,你也可以做拟合是吧。
就最小二乘嘛啊那么最后求这个f x y等于零的点,把它找到,把它画出来,就是这个绿色边,所以我用这个语言这么快讲完这个你们基本上都听懂了哈,你们前面有了拟合的这个概念以后,实际上是他就在做拟合是吧。
只不过构造一个啊这个二维函数去拟合这些点而已好,所以第一步啊,这个利用局部信息估计法向第二步,那么有些地方取一,有些地方取零是吧,这个更多的拟合点啊,第三步去拟合啊,这个拟合我们前面五节课。
特别是你们两节课都在讲的事情啊,讲完了好以后,还有很多方法,有很多方法就是rb f,你看这篇文章是最快01年的,就是就是把我刚才讲的那个过程用r b f g函数去表达,然后去去求吧。
还有很有名的2005年的是吧,朴素呢它它只不过是你和其差什么,它不管是你和这个点,而且你和这个点的梯度是吧,就是用了两阶的一个性质啊,就是构造一个微分方程啊,上头本质上也是那种拟合。
因为火速编辑那个呢那个呢不仅是你和这个点,而且是你和点的梯度,只不过它拟合的这个阶数高一点,但是还是度拟合,只不过呢是对函数有特殊的性质啊,啊后面还有什么screen,就是这个窗口的改进。
还有这个方法也只是提一下这个大概是2003西瓜,我就mmp u啊,它是什么,它是利用这种呃,这个叫做自适应的啊,上面去做啊,上面构造了好多好多不同的r b f函数,然后去去逼近它啊。
它就是提出这个market level就比g函数呢这个要好一点啊,那么是80年代的这个matt ball,还有bb就是用这个球不断不断叠加,以前每个球是一个隐函数,是个例。
x平方加y平方加c平方减一嘛啊啊,这个这个求啊去构造一个影像函数啊,一样好,所以隐函数这个也讲完了。
今天内容比较多一点,哈哈最后还有十分钟,我们再把nox讲完。
前面曲线基本上啊牛的啊,这个这个呃方法都都讲完了是吧。
这个啊从函从函数型到参数型啊,到这个影视函数到细分曲面和曲线吧,还做了曲线,你这些理解好以后去理解曲面就非常简单啊,我看看今天,好诶能讲的完,我们赶一赶啊,你留点时间给给后面好参数曲面的就是什么。
它就是双参数嘛,就是二维平面上一个uv到空间中的一个点是吧,所以好,那么那么这种优惠呢是不是实际上是我们以前提到过啊,就是怎么叫用专用机来构造啊,用啊用方向右方向跟v方向的两个c函数两两相乘。
就这些基函数呢就构构成了平面上的一个矩形区域上的一些奇函数,可以证明它也有也有正信,也有权限,因为所有加起来做点一啊啊,因为你这一代加起来这个有公共b one,所以这里加减一是吧。
然后然后每一列都把这个加完了以后,再再横向加全减一,所以它也是t函数,只不过呢这个那是用张量方方方法啊,这个这个两两相乘啊,这个一个方向好,那么呃一个方向是这个结函数。
右方向就积函数一相相成本就变成这个样子,帽子一样的哈,同样你要定义这个曲面形式呢就是什么,就是把两个奇函数体积函数加上一些控控控制顶点啊,就变成那么这两个这个东西你可以从这样看。
可以看是一个方向的一个比较曲线,然后做完以后呢,再用另一方向去合成,所以你可以看到这两个方向,所以看的是取限制曲线是吧,有一个方向构造完,等另外方向再把它构造一遍啊,所以它的方向是无关的啊。
所以你把前面的曲线这个明白曲面啊,就是麻烦一点,就是变成一个两个方向啊,这个两次的符合啊,它是曲线的曲线,所以曲线是根本,所以为什么我们前面要宁愿花五节课来讲曲线啊,讲讲透啊。
就是让大家理解曲面就是什么,就是两个方向而已啊,就是因为它本身就用这个张量来定义好,那么这个北斗曲面很简单啊,就是两个方向的北热机加上一个pg和pig,是这样这样一个格子是吧,比如说这是三。
这这是这是这是三次的时间,这就四个点,那么这也是啊,这个三次,那么这个叫做双三次,另一方向三次方相减三次,那如果一方三次这四次,那我们一般叫做3x4次被被热啊。
那么你这个行这个方向可以用你主机这方向也可以用另外一种机是吧,像这个是这三次,这个是十次啊,就可以装成3x10次的这个被罩曲面片啊,前面的性质在以前在我们那个cg的课里面,需要花很多时间来来证明啊。
去推导很复杂,因为它的它这个方向啊,它的这个符号就要多很多,但是它的性质啊完全跟曲线类似,边界差值啊,变差缩减啊,还有那个decastle的算法等等都有啊,变差缩减也有啊。
所以啊只不过就是符号系统比较多一点,因为它有u方向,也有v方向啊,啊是这个做主板,我给大家看一下,就是做的话不断细分,不断细分,也能求出中一个点,只不过这个点呢就不是曲线相切了,他这个切平面了。
好好这是那个拼接性啊,这个如果是这是一北泽,这是边北泽两边要拼接,要四个共点啊,控制地点如果要要c一就要什么,就是要相邻的三个点要贡献啊,并且要长途一样啊,这个方向也一样啊。
所以所以只不过增加了一些曲面拼接啊,这些特殊的一些情况啊,你要去做一些推导啊,但是这些东西都是曲线的一些一些一个性质的推广啊,那么曲面也一样啊,好那不是就讲完了哈,就是非均匀有理。
就是用两个张量积计函数来表达好这个乐不思里面的话,如果如果人们在未来你们可能会看到这个词叫train,叫那不就是什么意思呢,你怎么在一个novs曲面上,在工业设计里面,你可能在一个曲面上要掏不动。
这个曲面本身就是一个这么非规整形式,怎么办是吧,所以这种曲面在一个曲面里面拖动,因为那是曲面啊,它什么它是一个都是矩形域作曲曲面呢就限制了它的应用,就是他老要这个信誉是要举行嘛是吧。
因为他是张量性张量级形式嘛是吧,所以怎么样在曲面上挖个洞啊,那么一般形一般做法呢,就是怎么在用一个曲面上的直线去表达这个动物的边界,但在空间中去表达一个这样的一个曲曲曲线呢又很烦。
所以我一般在它的定义表达这个曲线,在这里表达这个洞,然后再把它带到这个北侧曲面片或者nova曲面片,就可以得到这个洞的形式,所以一般带带动的或者是这种回归整的曲面都是用参数域上的啊。
这个这个曲线来表表达啊,这个表达完以后把它印上去,找到了曲面上的一个呃曲线啊,就把扣掉,就是这个洞嘛是吧,最后变变成这样一个叫train nurse啊,叫裁剪曲面。
另外这个在在在这个cg里面还有一些这个推广的一些曲面片,我再提一下,这个可能同学们不一定用了很多,但是在这种软件里面经常会看到啊,就是什么,就是就是发电机曲面呢就有一个这样的一个局限性。
就差所有曲面片都要定在一个矩形域上的是吧,而取形有的时候去对一个非规则在取空间呢去跑分呢就比较难,所以但三角形就比较灵活是吧,所以我能不能在三角形上面再也定一个这样的一个光滑曲面呢是吧。
类似于这个相机的这种啊,北侧啊,曲名片呢有所以人们在80年代上78年的夜,发明一种这种定义在三角片上的北泽,类似于北泽的这样一个局面片啊,它的地方是横横,很简单啊,就是一个三角形上面。
我也定义好多空空这个节点啊,比较空空空的点点,这空洞控制点点点的去定义在这些点上面,就是比如说这个是分三段,每个边分三段,在这样也构成啊这么多点,那么它的g函数呢是这样一个比较有意思的形式啊。
实际上是这个这个这个阿法贝塔伽马的加下点一啊,这就是其中任何一个点的这个一个重力坐标叫重心坐标啊,那么那你把对坐标带进来,就得到了这个点在曲面上的形式啊,那么这个叫做三角比这个曲面片啊。
这个在90年代啊,80年代也有很大量的文章在在做这些方面的研究啊,这个呢呃可能用的比较少啊,但是呃这个同学们只要掌握住它的基函数是这个形式啊,并且这三个全函数i加j加k是有一个严格的约束。
它必须要等于n啊,是在在在在这里在这里,所以说看起来有三个变量,实际上是这本质上只有两两个变量啊,多一个变量是它是有个约束的啊,这对他的这个导数啊等等啊,这个研究就是有有些特殊手段啊,我这里不展开。
你们遇到时候呢再去看啊,呃只要我明白明白这个背后的道理啊,这个这个这个motivation你们去看就能看得懂好吧,那我也不去推导啊,这里就是呃也是连续性啊,这里一片这里一片都是三角域上的。
那么中间的这个连续性有什么性质等等这些地方啊,我们读书时候去推导,还是花了不少功夫去去推这些指标啊,这里推这些东西就是要有耐心,难道不难啊,因为i j k啊,这个呃什么i加一加减一啊,k啊。
很容易搞错是吧,只要细心一点都能推出来好最后那个总结一下啊,有理变量条这个东西就讲完了啊,所以要理解张亮机曲面啊,非常简单啊,你去理解,然后只要把曲线搞明白了啊,那么只要把曲线搞搞明白了。
那么你就对这个曲面的性质啊就去理解好吧,那么当然曲面有有一些特殊问题啊,有啊啊,你像这里有几片啊,曲面片,那么因为在这个焦点的这个光光滑性叫连续性呢,就比较特殊,曲线只有两段拼接。
所以它没有这样一个焦点的光滑性啊,这个问题在10年代的时候很难很难的一个问题啊,有很多人取得不不错的不错的工作啊,我这里也不展开啊,同学们有这个啊啊有兴趣哈,或者未来有机会接受你。
再你再去看他的这个最基本的原理,基本上都是曲线的这些东西的推广啊,好还有一个那就是你也可以进行进行上传出一个北泽题啊,那么这个叫北泽体思维就没有意义了啊,那么那么那么那么北泽体是干嘛用呢是吧。
实际上是取去做变性用啊,就我我用个铁套一个啊物体是吧,然后呢我本周呃这个这个中心进行变形,为你们物体进行变形,这就是我们未来要讲到的f f d啊,叫reform information,自由变形啊。
就要用到北体啊,还是把物体套在这个这个这个张量的啊,三餐张量题啊,这个这个题里面啊,好今天我们啊这个也是讲的比较快。
然后当时呢是内容都不难,因为最难的部分在前面几节课啊,这个要理解,那么今天算是有两个新东西。
一个是啊细分啊,细分也很简单啊,暂时你要去研究的话呢。
产生人家那么要有些功底啊,啊今天主要写一部分,一个有理啊,刚才学会了,还有细分啊,就是细分细分这两个还是比较简单的任务啊,大家再来练练手啊,熟悉一下细分是个什么什么什么形式。
还有一个隐是你试的本质就是在做做你和就刚才这一段啊,我我想细讲了,所以和函数的拟合,函数的回归是贯穿基本上大部分应用的,一个基本的是这个啊数学的基础啊,我为什么要花那么多时间讲你和是吧。
只不过用这函数的形式不一样是吧,那有些是我们这个g函数我们比较熟悉的啊,有些呢是什么用一个网络的形式,有些人可能是用一个判断性,用个数啊,分类数啊,有现在可能是用一些概率方式。
像这个贝叶斯啊这种概率形式,但除了上书上给,就是里面带有一些不同的这种问题呃,为啥问题要产生这个函数,所以都在做拟合啊,所以把这事情搞明白以后,看文章,看看他们的,听他们的,你就是抓住重点。
他到底在做什么问题啊,如果在做理科问题,用什么拟合函数是吧,是用我们的这种还是用什么什么g是吧,还是用这个一个网络,还是用这个一个数是吧,啊这个这个这个分类数还是用其他的拉出塔等等。
所以都是在什么fter,我的观察啊,只不过呢只是从不同行业,从不同这个方向来来说,他们解释的程度是不一样的好吧,所以啊函数这一块这个也很容易理解哈,你和我我也讲完了,最后就把这个nt给他。
虽然我里面很多性质没有去一个一个推导,那没关系,你们有了这个曲线的这个基础,再去理解曲面以后,如果遇到这个相关的一些问题,你们去看书,看参考书,还有网站的知识容易理解啊。
无外乎就是这个里面的是变来变去的啊,这些东西好吧好,从下节课开始呢,我们要进入那个离散型的网格了哈,就是我们在这个图形学最近的一二十年比较啊,主流的或者微,因为那不是这一块的,工业界。
这一块相对来说比较成熟了,但是在这个印象工程,我们更多的是用点云,是用三角网格来表,这个物体好,那么这个物体呢是三角化表达,它没有光滑的基函数,它所以它是个离散曲面啊,那么你离上曲面那些处理呢。
诶我们的微分微分几何可能就要做一些变动是吧,就要变造一些差分和一些离散计算好,那么我们后面的一半课程,就是围绕着离散的的曲面形式来做这个一些这个处理啊,差错化变形,还有你合成以及分析来展开一些这个介绍。
好吧好,那我们下周开始就进入到啊那个三角网格离散型的曲面的这个内容,好今天的课程到这里为止啊。
各位同学晚安啊。