GAMES302-等几何分析 - P5:5. 等几何分析中的计算域参数化 II - GAMES-Webinar - BV1dM4y117PS
一个介绍,我们上次课呢给大家介绍了呃,这个就是面向整体和分析的,这个计算与参数化的这部分内容啊,上节课呢给大家介绍了这一部分啊,那么我们今天呢就要把这个剩下的部分呢,内容呢给大家这个这把锁。
那么上节课呢主要给大家介绍的就是说呃,就为什么啊,要做这个计算与参数化这么一件件事情,然后呢给大家介绍了这个计算域,参数化质量的一些评判的标准对吧,还有呢,就是我们这个计算与传统化的一些方法啊。
一些方法,那么这边的一些方法呢,就是包括啊一些这个用手绘画的方法,变分调和的方法,对吧啊,还有这个,这个边界重新参数化的方法啊,那么实际上大家通过前面一次课的学习啊。
应该对我们这个呃面向整体和的这么一个区域,拆分化这么一个问题呢,有了一个大致的一个理解,那我们这次课呢就把我们后面的这部分内容啊,主要是面向一些复杂区的一些传统化的,一些工作给大家再介绍一下。
包括里面啊这个参数化这个问题里面,所面临的一些开放性的一些问题,我们也想给大家呃这个呃介绍一下啊,让大家呢包括对后面这个研究问题的选择啊,啊也有一些这个这个嗯体会。
那么首先呢我们介绍这个基于股价的这么一个,平面区域的参数化,那么实际上这个工作呢是我们团队许金南老师,在博士期间啊,因为徐老师呢是这个科大,这个陈华莱老师和邓建松老师团队啊,嗯毕业的啊。
所以他在博士期间呢,就做了一部分这个等级合同分析啊,这个参数化方面的一些工作啊,那么他的这个基本的思路啊啊非常简单啊,他说我们说的就是对于这么一个平面区域,啊,说明对于我们一个平面区域。
我们啥时可以先构造出他的这个呃,股价的出来啊,然后呢对这个股价进行一些简化,进行一些简化,根据这个简化呢,我在这个股价的这个信息呢,就显得比较简洁对吧,然后根据他的一些分支的长短啊,或者一些规则。
然后进行这种区域的剖分啊是吧,它上面引入这些,这样呢我通过这个区域的剖分对吧,然后呢再,这些东西啊,然后包括根据这个曲率啊,或者一些骨架圆半径的人做做一些这种扣分,这样我就可以把这么一个呃符的这部分。
一个区域啊,分成一些小的去对吧,然后呢,再对这些小的区域分别进行这个呃,参数化的构造,那你可以用我们前面讲的一些这种呃,离散的控制方法来进行构造啊,也可以啊,也可以通过一些呃把我们前面讲的对吧。
对单块啊一些约束优化,或者其他的一些方法来进行这种高质量的控制,都是可以,那么首先呢这边呢呃实际上也就是说我们前面,你如果只是如果对这么一这这块区域对吧啊,就这么一个平面参数域啊,平面计算域。
如果你把它当做一个区域来进行,技术参数化的构造,实际上是非常困难对吧,因为他本来这个o啊这些都比较复杂的啊,那么现在呢我就可以哎大家嗯进行分解啊,分解成一些小的区域啊,然后呢。
再对单个的区域进行这种参数化的这种构造,那么首先这边的这个骨架是什么啊,让大家呃如果学过前面的一些课程,我想里面会有给大家介绍一个叫做中轴的概念,对中轴的概念啊,什么是中轴,对啊。
中中轴的话实际上就是唉,就是啊和我的这些边界点啊相切的,我可以构成一个内切圆对吧,那些这些内切圆的圆心啊,它就会形成这么一个呃一些曲线段啊,那我就可以呃就构造出这么一个中轴出来啊。
当然这个中轴它可能在某些局部区域,是还是非常复杂的,它实际上是很难用于我们这边的这个区域分解,对吧啊,区域分解,所以说呢后面呢我还需要对他做一些简化啊,做一些简化,然后比如说就简化成这个样子啊。
讲完这个样子,这样我们就可以把它用起来,把它用起来,那么做了一次这么一个简化之后啊,做这么一个简化之后,后面的我就是需要进行这个呃区域的分解对吧,啊区的分解,那么这边的这个区域分解它是怎么做的啊。
他怎么来做的呢,啊他上也是宝,这是我们中轴上的一个分支点对吧,一个分支点,然后这是一个内切圆的一个圆的一个虚线啊,然后这个虚线呢实际上就是说呃,他这边会有两个相切的点,p一和p2 。
那么像我这边的这个区域的分割啊,我就按照这个p一和p2 的,p一和p2 的这两个点呢,作为我的两个这个呃分割点分割点,然后呢我就可以把这俩连起来啊,这样的话这就会分出一个子区域出来对吧。
就这块区域好用的一个字取出来,那么这样的话上,也就是说可以就可以完成我这个区域的分解好,那么这边是一些一些例子对吧,像这么一个类似手动模型啊,那就把它可以通过这个中轴路信息。
把股价的信息啊把它分成啊这么几块区域啊,一个是这个还有这些松子的区域都喷出来,包括蝴蝶的模型对吧,它也是可以按照这种思想的啊,把它分解成一些子虚,那后面的实际上就是。
我只要对单块来进行参数化的构造就可以了啊,就可以,也就是说刚才说了,实际上是对于这些模型,我们是很难用片单块的这个,参数化去进行构造的对吧,所以要进行这种区域的分解啊,那么像我们后面讲的这些方法呢。
都是呃基于这种区域分解的思想,来做这个参数化啊,那么这边是一些一些例子啊,就是说这边呢比如说我用呃,对于这么一块区域种调和影射啊,那我们前面讲的这个变回调和的方法。
还有我们这个讲的一个啊非线性优化的方法,还有这个就是这个呃建良老师啊,他们提出的这种基于股价分解的方法啊,那么他们之间呢做了一个比较好,可以发现对于简单的几个还可以对吧,就是两个方可能区别不大。
但是如果对于后面这两个复杂的模型啊,复杂的模型可能就会被产生诶,对于我们这个,如果你是只用单片的这种非线性优化来做啊,他是龙的质量还算还是还是还是挺,还是不怎么好对吧啊,而且他这个优化的时间啊。
各方面实际就是成本呢也是比较高的,成本也是比较高的啊,那么说对于对于这个,我说若是我们这种分辨的方法的话啊,分配的方法用国家分配的方法啊,那么我们说到的这个结果呢,包括质量啊,还有这个时间上。
我想应该都是嗯嗯会得到比较大的提升,比较大的提升,当然我们也可以基于这两个结果对吧,一个是呃非线性约束啊,约的约束优化的方法啊,还有这个基于股价分解的方法,可以在上面去纠结相应的呃一些pd对吧。
然后我们可以来比较一下他们的误差,比较一下他们的午餐啊,可以发现啊,就是说嗯,就是说我们在这个基于股价,这种多片的分解方法,那我们会得到精度更高的一些结果,精度够高的一些结果。
那么这边呢是基于股价的这么一个,平面区域的传统化啊,三但对于某些更复杂的一些模型对吧啊,是用这种基于股价的方法呢,可能还是有一些局限性啊,还是有一些局限性,那么后面呢我们呃就做了一个工作啊。
就是说我们怎样去对这种任意拓扑的,这个二维区域啊,二维计算域来进行这种区域的参数化的啊,我们这个是在2018年啊,一个semi上的一个工作啊,那么像我们这个呢,实际上就是首先提出这么一个问题啊。
就是就是说我给如果给你一个呃,平任意拓扑的平面区域对吧,它的这个边界呢,是我们的一些样条曲线来组成的啊,就这个不同颜色的这个红的蓝的,绿的这样条曲线就分段了啊,那我怎么样把内部它的这个这个这个这个区域。
用一些小的啊,第二条曲曲,曲面片或者北热曲面片把它给填起来啊,就是如果说白了就是这么一个问题啊,就是这么一个问题,那么对于这么一个问题啊,对于这么一个问题,那么我们怎么样啊,怎么样去去去做呢,啊。
但我们希望最后得到的还是一个高质量的一个,参数化啊,实际上我们这边呢主要就是呃,就是想的就是说呃我最后得到的这个参数化的,我们期望的这种方法需要满足哪些,哪些满满足哪些要求啊,需要满足哪些要求。
我想第一个呢就是说呃首先是要保边界啊,就说啊我输入这个是一个样条的边界对吧,样条的这个啊二维的边界,曲线的边界,那么我更希望呢,就是我们最后生成的这个参数化的结果呢,肯定要精确保持这个边界啊。
否则这也背离了我们这个等几何的初衷对吧,等几何的初衷上手,包括后面也有一些一些呃一些课题组,然后提出了一些呃,无论在这个法则求解方面等等方面啊,基于这个等几何的这么一个思路来做的,提出一些新的方法啊。
但是很多时候人就可能在保边界,或者各种方面的都是呃放松的一些要求啊,所以说呢我想呢就是说很多就是还能,或多或少呢我觉得和等级合的初中啊,还是有所有所偏离的,有点偏离,那么第一个就是要保变电商。
我觉得这也是我们整体核呢提出的,一个非常高的一个要求啊,非常高的一个要求,另外呢我们希望呢能够啊能够达到一种呃,自动达到自动达到一种嗯,免疫性的一个一个一个要求啊,连续性的要求,比如在它的内部呢。
我们新闻还是呃不仅仅就是虽然是高阶的对吧,但不仅仅是c0 ,连续的c0 就是嗯嗯前面讲过吧,那就是位置连续对吧,位置连续,我们希望最起码要达到c一或者g一啊,这种更高阶的。
可是c2 或者g2 的这种联系是吧,g2 的联系啊,那么研究生呢,我们希望它能够自动的去满足我的一些,连续性的一些要求啊,当然我希望最后这个分割曲线啊,就是说我就是我这个每一块这些蓝色的线对吧。
这些蓝色的线就是我每一片的这个这个,边界线嘛,也就是我们把它称为一个分割曲线对吧啊,分割曲线,那么我希望这些分割曲线,它也是要是一个自动化的构造的一个过程啊,而且大家我最后生成的这个参数化的结果呢。
还是应该是有一个满足我的单色性啊,他的这个嗯这个片的大小比较均匀啊,啊对吧,然后我这个等差结构要尽量的垂直啊,啊那么这些要求这些要求,也就是说我怎么样才能提出一个呃好的一个方,法,一个框架来。
然后去满足这些要求啊,就是我们我想这就是我们一个好的参考方法,他说嗯他要有的一些一些一些一些这个性质,这样啊,那么我们这边呢首先提出了一个叫做呃,通过一些呃我想叫做呃local global。
还是global和local的那个思路啊,就是我从先去呃全局去考虑问题,然后呢再考虑局部的一些构造啊,那其实这种思路在我们图形学里面也有一些呃,相应的类似的做法对吧,比如在网格的参数化里面啊。
呃可能这个我就不知道,这个刘刘利刚老师,在以前在这个一些这个几何处理的课里面,有没有讲啊,他他们上提出了一个非常呃非常有影响力,非常大的一个方案,就是一个local global的一个网络参数化的呃。
一个思路对吧,那我们像我们这个框架呢,我们的思路呢是以我们觉得可以成为一个呃,global local一个思路啊,也就是说我是怎么样的先考虑呢,就是说怎么样能够把这些区域内部的,这些蓝色的线啊。
就这些分割线我先能够构造出来,分割出来啊,我完成这个区的分割之后,实际上我后面的工作就相对比较简单了对吧,相对来说比较简单了啊,那么所以呢我们就提出了这么一个框架啊,那么这个框架主要有这么事故啊。
第一步呢,首先我就是为了生成一个高质量的一个呃,区域的参数化啊,所以呢我需要进行一些呃,进行一些这个预处理啊,这个主要是我在对我的编辑啊,特别是一些比如间谍啊,这个曲率比较大点的地方呢。
我希望能够把这个边界这个给你的这个边界,然后c这个,那个那个对这个边界进行分割一下啊,那么第二步呢就是也是非常重要的一步啊,我觉得第二步呢就是我怎么样去呃,把这么一个二维区域,它的内部的这个拓扑划分啊。
就是说它的拓扑信息啊能够构造出来,top划分也构造出来啊,主要是目前嗯这也是我们结构化网格生成啊,无论就包括像这个四边形网格或者六面体网格,里面非常重要的对吧,我怎么样能够去上层这种拓扑划分啊。
那么第三步呢就是说我根据你划分出来的,对吧啊,这么这个拓拓扑信息啊,我怎么样能够来生成啊,这个高阶的这个曲面片的它的这个水划分啊,他的风格啊,就是我这些蓝色的线我怎么去构造对吧。
也就是说即使我把这个内部分成一节top,那么这个蓝色的线,它的形状到底应该是什么样的啊,那么山我们这边呢主要是做了一个呃,全局优化的思路来做啊,全局优化的一个思路来做,那么这个全局优化的思路对吧。
那么我如果把它做好之后呢,那么实际是呃后面呢就相对比较简单了对吧,相信说我每一片我怎么来构造,高质量的那一部分片的这个产品化啊,分配的产品化,那么这边呢我们主要是用了一些啊,局部优化的一些思想啊。
局部优化的一些思想,那么通过这个例子啊,我们也可以看一下,就是我们的基本的一个流程啊,首先呢也就是说我要把给你的这个边界啊,在这个区域是一个有两个quick的对吧,咱这个中字对吧,在这边有两个洞啊。
那么它是两个规格的,那么商,我就说怎么样,能够把这个边界再做一些预处理啊,分成一些呃,边界比就是这个红色蓝色,绿色就是我的分段曲线对吧,可能你原来给的这些取代信息啊,并不是并不是这里这样分段的啊。
但是为了生存,最后生成高质量的参数化的结果呢,我还是希望能够做一些预处理,然后得到呢呃一个离散的就是折线啊,也说我可以把这些呃北的曲线的这个收尾端点,这个首尾相连,然后就成了一个多边形的边界嘛。
折线然后通过这个折线,我通过一些嗯是变形网格生成的一些结果,并且网格生成方面的一些结果啊,来来方法来做啊,但我们这边这个方法呢,主要是基于一个突分割啊,还有用的一些模板的方法啊,近视图分割。
还有模板的方法来做的啊,然后把这些啊相当于我就可以啊,给你输入的这个多少有多少段对吧,然后就可以把它内部分成拓扑信息,把它构造出来了啊,构造出来之后,下面我们就说的就是一个全局优化的思路。
也就是说虽然你这个内部的拓扑划分,我知道的对吧,但这些蓝色曲线的这个形状嗯,应该是什么样子才是最好啊,那么这边呢我们就用了一个全局优化的思路,然后去构造这里的分割曲线,就是这些蓝色的蓝色的线啊。
通过这个全球化的思路得到这些蓝色的线之后,后面我们就是可以对每一片啊,来枯燥鲜艳的参数化,当然我们这边呢为了生成高质量,对名片呢,我们也做了一些局部的优化,包括我怎么样去满足呃。
整体的比如一个c一的连续性啊,包括在七点,除了g一的连续性,我们这边都有一个有所考虑啊,然后最后呢我们就可以得到一个唉相对比较高,高质量的一个一个参数化的一个结果啊。
那么这就是我们在18年的新版本上面的,这个文章,他得到他的这个基本的这个思思路和框架,就是这个样子,那么首先就是预处理对吧,那么像我们这边呢,就是啊做了一个北大的提取啊。
然后这个北大的提取实际是呃计算力学的人,就是在等你和分分析求出之后呃,他们他们说说其实一共一个词啊,就是说实际上这个在我们计算几何里面,是非常非常经典的一个做法对吧,也就是说任何一条呃变调曲线。
那么是曲线,我都可以把它转换成这个北的曲线段对吧,或者尤里边的曲线段的一个形式对吧,那么12这个里面呢,我就他这些转换前后,他们之间的控制关系,顶点的关系,我可以通过一个矩阵转换了。
就可以把它实现对吧啊,但我另外一个呢就是说呃可能我有些曲线对吧,它有些地方曲率曲率比较高啊,或者有些尖点啊,有些拐点啊之类的啊,所以这个时候呢我需要对它进行这个呃,进行把这个曲线来进行一个分割啊。
比如这么一段曲线,我希望能够在这些呃,这个曲率比较高的地方分成两段,对,恰好我对我后面这个参数化的质量的构造呢,就比较方便非常方便,那么我们这边对应了这个北泽西非的这方面呢,我们用了呃。
应该是我的博士生老师啊,不说了,我王昭老师,浙江大学王国章老师说提出了在1984年啊,提出了什么叫做这个啊汪氏公式啊,汪氏公司那个三,就是呃在这个我们c计算机和领域啊,就国际上非常有名的一个专家。
这个嗯,run goldman在他的呃计算几何的这个书里面提出了,就是呃你把这么一个公司啊,就是这个本人离散的方法呢,把它称为啊忘了formula one formula啊。
那么就是我们这个汪国涛老师啊,他在1984年提出了一个北京曲线细分的,这么一个公式,就说我怎么样啊,给你一个解析的光滑的一个北的曲线,或者怎么样来进行分段对吧,那么因为这个离散化呢。
在这个顶部的这个球交的这个复制里面,是非常重要的啊,非常重要的,所以我们这边呢也是借鉴了这个公式,来进行这种啊,北大曲线的这个分这个这个细分啊,当然这个细分呢,我们不可能分成很多的这个折线段啊。
就可能嗯也通过一条可能分成两段,三段就差不多了啊,那么也是通过我们这些预处理呢,实际上就是我们后面这个高质量的这个,参数化的构造呢,提供了很多的,更打开了一个更好的一个基础啊,那么经过这些预处理之后。
我们后面就说怎么样来进行这种啊,呃拓扑信息的这个错误划分的这个构造对吧,top划分的这个构造啊,那么这边呢我们主要就是第二步了对吧,你说我怎么样能够去得到这个离散的这个,这个边界之后对吧。
离散的边界之后,我怎么来生成里面的这个这个四边形划分啊,四边形划分啊,那么这边的这个思路呢主要是利用了一个呃,一个一个一个突分解啊,近视图分解的一个思路啊,那么实际上这个边呢我就说呃。
我们首先先勾到这个离散的边界对吧,然后就是把你就提取了这个本的曲线的首尾端,点,把它依次相连,就会得到这么一个离散的一个折线对吧,离散的一个折线啊,然后作为一个第三直线,如果有洞的话对吧。
我还可以首先要把这么一个独联通的区域,把它转换成一个单连通的,我就可以我现在插入一些一些点嘛啊,插入一些点,把连起来就可以变成一个单连通区域对吧,那么后面的就是我们用的这个,近似图分解的方法啊。
也说对于这么一个单联通的区域,我们可以呃,通过一些通过这么这篇文章里面,这个近视图分解的这个算法,我们就可以实现啊,对这个区域的一些呃区域的分解,那么当然这个区域的分解呢。
就是我的每一个区域它都是近视图的啊,所以近视图呢就是它有些区域可能不是啊,严格凸的啊,不是严格凸的啊,啊为什么要用近视图啊,因为你全部都用严格图的话,你可能就是说得到了这个分块的时候要非常多,对不对啊。
所以大家都可能应该了解这个凸的这个,多边形的一些定义对吧,to的多边形的一些定义啊,比如说如果你都是这种呃这种呃,如果这种严格图的话,你会得到很多的这个区域的,这个最后的这个分开的区域啊。
所以我们这边这种近视图啊,主要是现在16年的这个这个一个韩国人啊,他们提出了一个a c d的一个分解fs啊,fs,那么有了这么一个近视突,分解的一个结果之后呢,后面呢我们就可以啊。
对每一个分割后的这个近似的突区域啊,我们就可以用这个相应的哎,相应的这个模板法啊,这边我们也主要是采用了呃,2015年发展,在这个应该是ug上面,发表了c d f上面的一个一个没办法。
然后他就提出了对于任何一个区域啊,无论你是四边的还是五边的还是三边的,主要是从二到右边的这个区域啊,给你这个每条边上的另一个的这个曲线的,这个离散化之后,它里边的这个四边形网格啊,都可以通过一些呃。
固定的模板把它给生成出来啊,那么实际上这个,我觉得这是一个非常好的一个工作啊,12是为后面我们很多的这个呃,四边形网格的生成的,打下了一个非常重要的一个基础,就是模板啊,就是模板啊。
而且他们最后构造出了这个边界,构造出来这个边界,他们所生成的这个通过他的模板数据连接,它可以满足什么啊,起点数目更少啊,起点数目更少是最少啊,不是更最少的啊,那么这是一个非常好的工作。
我觉得啊既非常简单又非常实用,而且他们的代码呢也都开源了啊,严重,实际上就是说我们通过这么一个得到的什么,这个突分割这个子区域,像是它基本上我们都可以把它看成是呃,就是说22~6边的这么一个区域啊。
那么所以后面呢,我们就可以用这么一个模板法啊,这么一个基于python,这么个方式去生成里面的这个四边形网格,生成四边形网格构造对吧,而且我最后得到这个起点数目是最少的啊,是最少的。
那么有了这么一个次次课呢,我这就是可以得到啊,这么一个呃,区域的内部的这个四边形网格的跑分对吧,破分,而且我最后得到了这个所有的这个起点啊,它的这个度数啊都是三或者五七点的,度数是三个货物对吧。
也就是说我生成的这个四边形网格里面啊,要么是度数是四的,就是我的regular这正规的这一点对吧,都是度数为四的啊,那七点呢要么就是三,要么就是五啊,那么实际上就是这个这个东西会保证什么呢。
啊这为我们后面生成这种呃g一的啊,这种平面参数化,也就是满足基于连线的这个平面参数化呢,呃电的一个非常好的一个基础,最大的一,那么实际上就是我生成这个网格的话,它我我只是现在过构造出了top信息嘛对吧。
所以说我们还可以,也可以用一些类似于拉普拉斯光线的一些方式,来进行对这个生成的网格来进行光顺对吧,我通过一些迭代的方式来做啊,这边我就不多介绍,那么上次我把它构造之后呢,就是后面就出问题了。
我现在只是构造了出了什么啊,构造出来只是这些黑这些黑色的线,就是只是这些什么啊,直直边对吧啊,因为我们对于在传统化问题里面,实际上就是一个高阶的对吧,就说这些蓝色的线,我怎么去去生成的啊。
就这些蓝色的线我怎么去生存,我现在生成的只是这些直边的这些线对吧,那些这些蓝色的线我怎么去生存,就是后面我们这个全局优化所要解决的问题啊,需要解决的问题,也就是说这个里面我们刚才讲了。
就说一个好的一个参数化的方法,它在它应该满足哪些要求啊,第一个呢就是说呃它能够实现这种啊,内部满足内部的联系连线的要求对吧,你最起码也要c一或者g一吧对吧,另外一个就是说还是要这个这个分割曲线。
能够自动化的构造啊,所以而且呢就是说这些patch的,我生成的这个就是每个蓝色的这些边界曲线,所围成的每一个每一个不同的patch对吧,他们之间的patch的这个面积啊啊什么error问题嘛。
就是面积对吧,他应该是尽量的啊大小一致啊,大小一致啊,所以说呢我们我们说的就是说呃,我们先看最后一个问题,就是我怎么样才能够达到这种,让那个patch的这个面积啊,尽量的一致啊,尽量的这个相等啊。
尽量的相等的啊,那么我们后面呢就提要,要首先要解决这么一个问题,好解决这一问题啊,然后这个问题我们当时我在做这个工作的时候,当时我们也查了很多文献,因为好像当时也是很少有人去来做这个问题啊,就是说呃。
我给你一个区域的一个边界的一个b样条,表示对吧,那么有这这些这么多条变样条曲线或者,北的曲线所围成的这块平面区的,它的这个呃这个面积它怎么来算啊,怎么来算啊,那么我们实际上要是找到找到很多。
也好像也没有找到一个类似的一个一些公司,或者一些类似的工作啊,那么我们在我们这个工作里面呢,实际上就是呃去做到这件事情,去做到这件事情,那么上我们就最后推导了一下,就是给出了啊,对。
给出个对于一个由n个n段背的曲线组围成的,这么一个平面区域,他最后的呃这个面积啊,最后的这个面积表达可以写成这个形式啊,那么这个公式呢,它里面的这些呃这些量啊都是什么啊,都是和我的这个边界北的曲线的。
它是什么控制顶点相关的一些量啊,那么像我们可以通过一些呃推导呢,就可以得到这么一个结论啊,得到这么一个结论,那么有了这么一个结论之后呢,我们实际上就处理觉得这也是挺好的对吧,就是说我可以。
然后给你边界的这么一个n条的北的曲线,我就这个它所围成的这个区域的面积,我可以用一个显示的公式把它给算出来啊,把它给算出来,那么商这样我们就可以来去解决我们的问题了,对吧啊。
就是我们可以用一些全局优化的思路,然后去解这么一个问题啊,也是我们的目标啊,我们的目标啊,第一个就是均匀性啊,也说我这些蓝色的曲线,它所围成的这个面片的面积啊,这个应该尽量的一致对吧。
所以说呢呃我多少块是知道的对吧,我总的面积也是知道的对吧啊,那种的面积,就是我刚才用那个公式就可以算出来啊,然后除以一个n就可以了是吧,那么每一块的面积和这个n的面积要,所以说要尽量的尽量的接近。
或者平均面积要尽量接近就好了对吧,我们也是以这个来作为我的一个均匀性的,就这个碳纤大小尽量一致的,均匀性的一个度量啊,那么另外一个呢就是我这个曲线啊,它这个对这个分割曲线这个蓝色的线。
它的这个这个形状呢要尽量的对啊,要尽量的去尽量的好啊,那么简单的好,那我们就说啊,采用了一些这个和曲线相关的一些能量函数,主要就是它的一阶导数和二阶导数的这个范式,呃。
加起来这么一个一个内在的一个能量啊,那么上涨了就它的一个意义,就是一个y或者是什么啊,曲线这个蓝色的曲线非常的短,这个蓝色的曲线它的这个上面那个曲率啊,就是尽量的简单的对吧,你不能弯来弯去了是吧。
也就这样的话,像就是说我们这个对于这个分割曲线的,它的形状的一个要求,另外一个呢就是说哎,这个分割曲线,它们之间的应该也应该满足一些什么啊,这个,在这个焦点地方,他应该满足一些这个连续性的一些要求啊。
特别是呃气象连续啊这些一些要求啊,那么我们上就是这边的,就是我们的三个目标函数啊,那么有了这三个目标函数呢,那么就大家一贯的做法对吧,就是把这三个目标函数加权,然后去纠结这么一个优化问题就好了。
优化问题就好,那么这样的话实际上就是说诶,我就给你一个边界的这个北热曲线,围城融合区域对吧,它的面积我们可以算啊,然后我就会优化出来这些蓝色分割曲线,我知道它的拓扑信息了,拓扑分割就是这样子的对吧。
但这些蓝色的曲线我怎么怎么怎么构造,就是我们前面这个优化的空间,去这个框架去进行优化,然后呢就会得到它内部的一个呃大小均匀对吧,满足我的一些连云要求的啊,这么一个内在的啊,这么一个一个构造啊。
那么有了这些分割曲线的构造之后啊,分割曲线的构造之后,实际上我们后面就比较简单了对吧,我们现在就是把这个全局的问题给解决了对吧,那么实际上就是后面就是局部的问题啊,就是我这每一小片尾的它的传统化。
怎么去进行构造啊,怎么进行构造,那么所以说我们我们第四步呢,就是我做来这种用这些局部优化的这个思路,来做这种高质量的这个分片的这个参数化啊,分片的参数化,那么我们的第一步就是我们的第一步啊。
就是说我们首先啊,我们还是希望他要去满足我的呃,在这个边界组织吧,它要满足我的一些正交性的一些要求啊,也是我们首先要构造他这些呃,比如这些绿色的线是我在这个边界上的对吧。
边界上的绿色的点是我边界上的这个控制零点,对吧啊,那我首先要够先构造这些蓝色的控制点啊,那么这些蓝色的控制链接嘛是什么要求呢,啊第一个就是正交,就是所以说明就说诶边界两层的啊,就是这是一层这一层对吧啊。
那么也就是说这个蓝色的中式的,还有这个绿色的,他们要尽量的在一条线上,并且呢或者这个边界尽量到垂直才可以啊,然后这是我们的一个一个一个出发点啊,那么后面呢我再通过一些局部的c一的这种。
内在能量减小的方法,然后去构造什么啊,去构造这些红色的啊,这些红色的控制点点啊,那么这些红色的控制权,我这个就是要满足我的c连续性啊,另外一个呢就是我让他的这个每个patch啊,啊。
它的这个自己内部的这个参数化的质量要高啊,才可以啊,然后得到之后呢,我们再可以找到这些呃,可能你最后剩下的参数化可能某些嗯,因为如果这个边界比较奇怪啊,或什么之类的啊,还是有一些是无效的一些看法啊。
那我们可以通过一些方法把它找出来,然后呢再对它进行一个恢复,或者进行一个呃整体的一个优化,这样来做,那么首先呢,就是我怎么样在这个regular的这个区域啊,我实现呃这个c一的连续性约束啊。
然后在这些起点的地方啊,我刚才说的就是我们这个起点呢只有度数是三,或者度数是五的这个地方对吧,然后来实现这种基因的连续性的这个构造,那么当我们在边界上的正交性对吧。
那么正交性实际上就是他们这个两个切向对吧,应该相互垂直对吧,相互垂直也说他不在这个点击为零吗,所以我们这边用到一化的,我就是让他们这个点击啊,从这个尽量的小啊,尽量小啊,采用这么一个优化的这个思路啊。
那么所以呢我们后面的就是相当于啊,相当于我怎么样去在满足我的c e连续性的,这个条件下啊,我去让他们这个呃尽量的嗯,这个相应的控制顶点啊,在这个分割群上,它这个相应的这个偏移啊,尽量的少量的少是吧。
我们就通过了得到这么一个一个优化函数,那么对于这个基因连续性啊,基因连续性啊,什么叫做基因连续性啊,那么对于曲线两个曲线来说,记忆连续呢就是在这个点数,如果是基于连续的三,就是指他们的什么啊。
切向连续对吧啊,切向连续,那么期间来学,也说他们的这个切线方向是一致的,但可能在这个地方,除了这个偏导的大小不一致对吧,那么对于曲面来讲的话,可能就是在这个点的时候。
他可能这边有三张曲面或者五五张曲面对吧,五张曲面就是在这个曲面出来,它有什么切平面,连续切平面连续对吧,这个基连续在这个里面,就是在我们这些高质量的,这个就像这个汽车车身啊,这些曲面的构造里面啊。
g一或者g2 ,平时g3 的都有着非常高的一个要求,非常高的要求,嗯嗯那么我们实际上这边呢,我们希望能够在这个平面单动画里面呢,我们希望在这些啊起点的地方,就是这边的这个起点就是p00 对吧。
那这个点的地方,因为从这个点出发,我这边有五条边对吧,所以它是一个起点,在这个起点地方呢,我希望能够达到g一连续啊,那我希望能够达到g一连续,那么这么一个基连续我怎么能够达到呢。
啊实际上我们在计算几何里面有一些呃,呃可以把可以把这个显示的约束啊,把它给写写出来啊,也就说呢首先呢哎我从呃,我这些控制顶点啊,就是从p00 s包括s一对啊,s12 这些绿色的绿色的点啊。
还是s14 s13 啊,啊这些他们之间呢呃要满足一个关系啊,就这么第一个线性关系上,也就是说呢就是这条边啊,这条边可以写,要写可以写成它的呃,周围的一些边的线性组合的一些形式啊,就是这个条件对吧。
但这个阿尔法和贝塔呢我们是呃有一些嗯,通过一些规则可以算出来,这是我的第一个基于连续的一个约束条件啊,是这个样子对吧,参数的几何意义呢是这样子啊,另外一个呢就是还有一个要求,还有一些要求啊。
对对就是合伙的这个p一和s一对吧,这是我的p1 ,这是s一对吧,他的呃就是相当于在这个点的周围,它的这些边啊,他应该也是要满足啊,要满足一些一些一些一些约束的,就是四条边啊。
四个向量它们之间的也要满足一定的约束条件,就这个约束条件啊,那么实际上我们可以把这些约束条件,可以把这些约束条件都写成一个呃,按照最后编程写成一个线性系统的一个限制啊,那么写成这个现象系统之后呢。
我们可以发现诶这边就是我的我要求的嘛,对吧啊,就是我这些呃蓝色的点对吧,是我的自由度,蓝色的是我的自由度,我要求的就是这个p113 p112 ,p111 啊,是啊我啊这些对吧,蓝色的点是我要求的。
因为其他这个红色的点对吧啊,是固定的对吧,然后这些呃绿色的点也是固定的,而是通过我们前面的什么这个全局优化,求出来的对吧,所以我要求的就是在这个起点周围,说的那个蓝色的这五个点啊,对于我们这个例子来讲。
那么这蓝色这五个点呢,实际上就是一个,我们可以把它写成一个5x5的矩阵啊,再乘以五个向量嗯,这么一个分量向量对吧,然后呢回到这个右边向右变向呢,当然也是和我们的一个这边的一些信息,相关的对吧。
所以说我最后得到的会得到这么一个呃,一个线性系统啊,但这是对于这个起点的度数是五的情况对吧,那对于我的起点度数是三的情况呢,我就变成一个3x3的一个协议是吧啊,只要我们可以证明可以证明啊,对于这种呃。
等七点数目和三或者七点数目归位的情况,我们可以证明这么一个类似的一个线性系统,就是它和阿尔法一贝塔一,阿尔法二贝塔尔瓦和贝塔三等相关的对吧,这是一个对角的,但不是完全不是完全对角的这么一个矩阵。
它这个它是存在唯一解的啊,它是存在唯一,也就是说它的矩阵它是可逆的啊,这是可以的,但是存在唯一解,这个我们可以把它证明出来啊,因为比较简单吧,都是3x3或5x5的啊,那么我觉得他这个统一的一个表达。
所以说啊我们前面通过这种top划分,我所得到的我们这个起点数目什么啊,特步划分所得的这个节点数目都是要么是三,要么是五对吧,没有没有这个呃六啊或者七的情况对吧,所以说呃所以说我们最后得到了这么一个解了。
这个基于连续性这个题我们是可以求解的对吧,所以它就形成一个诶非常好的一个闭环啊,非常好的一个闭环,那么有了这个之后呢,我们上学我们后面不可以啊对吧,我们得到联系约束的这些呃。
这个两层的控制定点把它构造出来的对吧,那内部的控制定点我怎么来求呢,内部的红色的一点对吧,那我就可以通过一些能量低要发的方法,并且满足局部联新联系的就是这些,我现在就是把蓝色的对吧,还有这个棕色的。
绿色,绿色的,我们这些都都求出来了啊对吧,现在可以看下面的任务,就是把这些红色的点把它给求出来啊,红色的点把它给求出来啊,那么这些红色的点头像就是说啊,我通过这么一个演示,我们前面的一个呃能量是类似的。
就我们上节课讲到这个内在曲线的内在能量,曲面的内在能量是吧,类似的,然后去求解啊,而且这个求解呢,我们也是可以把它能量极小问题,把它变成一个线性系统的问题啊,进行求解啊,求解也是非常快的。
然后构造出个红色的这些点之后呢,那么后面呢实际上就是说我们就说怎么样去,因为可能有些地方还是呃无效的传统化对吧,对于一些特殊的一些例子对吧,所以后面呢我们要做一个检查。
把这些呃特别有自交这些地方的这些patch,但是参数化啊,把它给找出来,然后呢就是一个恢复,所以说呢我们上节课讲过了,上次,对于一个北的曲面来讲对吧,他的这个参数化,他的这个参数化呃。
它的这个参数化的这个雅各比,我们实际上是可以把它写成一个什么啊,形成一个2n减一,2n减一次的这么一个一个更高阶的这个呃,本人了这么一个表达的形式对吧啊,所以说我只要让让他的雅阁比有剑就可以了啊。
比如说我这个雅各比啊一定是什么啊,大于它的最小值,大于它的最大值对吧,所以说我只要我要让这个雅克比大于零,我只要让什么啊,不知道让这个最小的这个价格比啊,这个阿尔法二言里面,这个系数里面最小的那个值。
是最小的那个值是什么啊,大于零的就可以了,对啊,你把它给放松一下啊,那我们这边怎么来解决呢,就怎么来做的呢,这样就是啊用了一个,用了一个对数的这么一个一个发函数的类似法,函数的一个做法啊。
来去优化它的一个亚克力啊,有人来的感啊,然后最后呢就可以得到一个有效的一个,参数化的一个结果,我们这边是一些例子吧,啊这边就是我们呃通过一些呃北热曲,把一个边条转化成一些北的曲线的组合对吧啊。
然后可能做了一些北大的细分啊,得到这么一个边界的一个北的表示,这是你的输入对吧,通过这个输入,然后我把这首尾相连,会得到一个离散的啊一个折线的一个表示,然后通过我们这个四边形网格的划分。
特别粗糙的视频形网格划分对吧,通过通分解啊,假设模板啊,我上就可以得到这么一个内部的拓扑划分,通过这个脱口范围呢,然后我再通过一些呃,通过这个全局优化的方法得到,构造出这个最优的这些蓝色的分割曲线。
对吧啊,这些蓝色的分割检验,确定了三个我每个片的形状已经,所以说那后面呢就是我对每一个呃小的面片,我怎么做到一个高质量的战法问题啊,然后呢把它做出,当然我们也和那个许昕兰他们。
在那个15年的这个工作对吧,做了一个比较,就是他们基于国家的怎么分割啊,能分到他们分的快速比较少对吧,所以相应的这个质量的方面啊,嗯那我们要呢要比他们更高一点,当然这是另外一个。
就是这个类似于兔子头的一个例子啊,反观念,我觉得还是就是怎么样把这些内部的这个,蓝色曲线啊,把它给构造出来啊,构造出来这边是更多的例子,包括一些数值方面它的区别呃,三用雅各比啊。
还有这个形成的刚度矩阵的条件数啊等等,我们这边都给他做了一些比较,那么这边呢我就因为时间的关系,我这边就呃就跳过了啊,有兴趣的同学呢可以去仔细的看一下,我们的那篇论文。
是发表在18年的新版本上的一篇论文,那么实际上有人就做了这个这个工作之后啊,做了这个工作之后啊,我们说基于这种呃,四边形网格生成的这种图分解,加这个分析的方法啊,是不是最好的了啊。
像我们上次课就不要试试那个呃,第三次课就是讲那个有限元和网格生成的时候,我们提出了一个就是基于标价场引导的,那么一个区域分解对吧,我上次就说,那我们当然也可以把这么一个该大厂引导的,这个这个东西啊。
缺平原的话,中到我们这个整体合的参数化里对吧,参数化,所以说这个这个相应的这个框架呢,就应该是这个样子的,所以说我首先也是啊模型编辑的转化对吧啊,那么最后呢,你先然后呢构造一个类似的一个背景网格。
三角形的背景网格,也得到三角形的方法来做对吧,然后呢我生成这个呃内部的,基于这个背景网格去生成它内部的一些这个呃,对单场对战场或者一些小量相当场对吧,那么根据这个标价厂的这个这个区域,分解的这个方法。
我得到它的起点,生成它的流线啊,做一些流线的简化啊等等啊,然后我就可以把这个区域内部分成一些呃,比较高质量的一些事件形区域,对吧啊别说这样的话,我会的,我会得到一个什么啊。
和我们前面基于这种突分解的方法相比呢,就是我在这个边界上,它首先是没有七点,而且在这个边界处呢,它可能会满足一些奇这个垂直的一些要求对吧,然后呢我得到这么一个四边区的划分之后。
我就可以和我们前面那个方法一样,对对每个分块我就可以来做,也就是说我们这边呢这些分割线呢,就是我们这边所生成的这些流线对吧,就这么流线啊,所以说把这种标价厂的这种区域划分的收入,应用于我们这个等几何的。
这种复杂区的传统化啊,分享的是一个非常自然啊,那么这边呢我虽然也是类似的,因为我需要对它的边界来做一些微处理对吧,然后呢呃我们通过这种呃给到三角化,甚至要生成一些背景网格啊。
因为我在这个三角文化网格上来,去剪一个相应的呃求解线的第二场,就是通过求解这么一个拉格拉斯方程,然后得到他的一个旋转最小的一个标价层,对吧啊,那么通过这个标价场啊,我们就可以进行这种适量场的这个求解啊。
质量场求解,那么这个我也跳过了,因为我们那这个已经讲过了啊,他这个里面要构造要这样,我这边要想说一下,就说我你最后初始通过初始的流线时,剩下的可能是一个比较复杂的,一个相对比较结构,对吧啊。
一个同步划分啊,当然这个脱口划分可能不是,我们因为这个骗术太多了,对吧啊,我们商这边可以做一些呃拓扑结构的一些嗯,简化啊,拓扑结构的一些简化,然后呢就可以把它简化成这个样子啊。
大家可以发现有一边有一些盐,是有一些比较窄的区域,但我们是确实是假化不掉的啊,假发不掉的啊,而且呢像这些区域,比如像这个里面这边还有个小的,在一边切一点对吧,它类似于这种。
像我们可以关键可以通过一些光圈啊什么的,变成变成一个商家的一个起点啊,这样的话实际是对于我们,这个这个地方呢它这一块的这个参数化呢,我们可以生成一个呃比较高的一个参数化对吧。
因为你如果把它一个分成一片的话啊,他这个角点的位置啊,你可以选择对吧,但如果你变了变成这个样子啊,这里面他说我们这个边界这就是垂直本人啊,就垂直的,所以呢,我觉得这也是一个能后面需要改进的一个地方。
那么这次我们就是可以通过,基于标价厂的方法来做,当然是可以啊,那是可以啊,但是如果我们想把这种对战场的方法,把它推广到三维啊,比如说我要做这种大的六面体块的划分啊,目前我想这个无论是在图形学领域。
还是在网格生成的这个方向上,实际是都是一个非常呃困难的问题啊,也是啊一个圣杯的问题对吧,那么当我们可以退而求其次啊,我们家也是在19年的时候有一个工作,就是呃home。
这个上海理工大学这个成龙老师一块合作,包括浙大的黄金老师一块合作啊,把这种poly cube或者poly square的意义在思想啊,用到我们这个面向等几何的这个额,财产化问题里面啊,财产问题里面啊。
实际上是这个poly cube的实在,我们很多的对面体网格生成啊,特别推行学里面是嗯非常经典的一个方法了啊,所以说你说我给你一个数模12 十,我可以生成类似的这么一个类似于豆腐块的。
豆腐块的这么一个polly cube的结构对吧,poly cube的结构,那么有了这么一个结构之后呢,我就可以把这么一个模型分成一些呃,非常说明一些大的六六面体块对吧,大陆六面体块。
那么对面每个六面体块我来再去做相应的呃,相应的这个这个呃相应的这个参数化的构造呢,就比较简单了对吧,就比较简单了,那么实际上这个里面非常重要的一个问题啊,非常重要的一个问题是什么呢。
啊就是说我怎么样才能够去构造出这么一个polo。
那么实际上就是说怎么样才能够拨到这个,play队伍来,并不是一个简单的一个问题,特别是对于这种高质量的这个poly cube,这个构造,高质量的这个pop的构,那么我们这边就是为了生存。
这种高质量的课本呢,我们提出了一些也是类似于一些,优化的一些思想啊,优化的一些思想啊,也就是说怎么样能够尽量的让这个polo quipolo,cube的这个立面几块要尽量的少啊,要进量的少。
那么我们这边呢主要就是说能够希望能够唉。
比如说我们能够把这么一个六的一个block block,这么一个东西把它转换成一个四个四个block,四个blog对吧,那么实际也就是说呢这边为什么会有六个block,因为因为这边的这个高度。
和这边的高度不一样对吧,所以有时候我会额外引出这么两个blog,快来吧好,所以我都如果通过一些优化,能够让他们这个高度相等,那么这样我不就可以就分成四块了吗,啊分成四块。
就是这时候的一个一个一个基本的一个思想,好这边具体的我也不讲了,就是说像我们最后的三,就是也是把它变成中的一些呃发呃,基于这个有向图的一些简化的一些问题啊,然后把它演示归结成了一个约束。
为优化问题来做啊,优化约束优化问题来做,所以说大家可以看到,就是说比如说对于这个模型,这是相应的play game结构是吧,然后呢我最后生成了这么一个东西,所以红色的就是我可以通过一些简化的方式。
可以把它优化掉的啊,可以把它优化掉啊,那么我通过这么一个呃派系结构的简化,然后就可以得到啊,这么一个啊一个六面体块的一个划分啊,就刚才那个例子也是,这里面随着这个红色的这一块啊,都是我可以简化掉的啊。
也是通过这些呢,我实际上就是会得到一个更加干净的,一个六面体块的一个分割对吧,还有呢就是说啊,上我们就可以基于这些分割来生成相应的这个,呃体参数化的一些结果,提倡的这个结果。
相当于我对这边的每天和快手都可以办的,要办的构造是什么啊,我的躯体是我们前面前面第二节课给大家讲的,这个具体结果对吧,每一块我都要把它构造成一些样条体,一些样条体来做才行。
那么现在上这个工作会有哪些问题呢,我想第一个呢就是说啊伤身上的这些快吧,这个还是有些复杂对吧,而且他在有些地方,比如一个圆环的地方,它可能我是没有必要生成,你看这边它算生成的应该是八块对吧。
唉那么商业就是说这些小的块啊,就这边可能它都是一个呃,不是是一种是一个退化的流变体的对吧,有这四个地方,那么12,你说我们实际上对这些地方,可能是没有必要的啊,没有必要的啊。
所以说我们呢就嗯嗯后面又做了一个工作,就是发表在这个啊22年的这个18米上面啊,主要也是和黄健老师的一个课题组,他们合作的啊,那么主要是把这个名叫做close form的这种poly square啊。
把它用到了我们这些i j的这个参数化里面啊,特别是平面参数化里面,那么我这边这个呃closed form的police quare,它实就是把我们这个标价厂的技术,就前面我们讲的这个标价厂的技术。
把它演绎出来啊,这样的话呢,我们说所以说你得到了这个politude的结构呢,就会扩展到一个更加一般的一些结构就破了,终于十close form police scribe,比如这就是一个二维问题对吧。
如果圆环移动这种精确的poly square,你你可能会生成这种这种的一些结果对吧,那么其实这边就是一个交点对吧,然后你也说你最后剩的呢,它可能是一个三角形的三角形的一个结果对吧。
这样的话不就变成一个退化的四边形了吗,啊所以你知道生成的这个高质量在这些地方,它的参数化结果肯定是已经退化了,质量不高了对吧,质量不高的啊,上次对于这么一个角,我们可以把它放松一下。
就相当于种but close form的这种东西啊,三就说我们对于这个我只要中间插入一个,就可以成功一个四边的一个对吧,四条边对吧,这一条边这条是两条边而已对吧,那么有这样的话,我相信这么一个结构。
它实际上它的内部是没有什么啊,没有期限没有期限的是吧,而且呢它更加的这个一般性,更加的灵活对吧,要是我最后生成这个质量呢也是比较高的啊,比较高的,而且呢他有这个特别是一些边界的这个角点啊。
还有这个有趣方面的,他都会表现的会更好哦,表现的会更好,那么所以说我们整个的这么一个框架怎么的,整个的一个框架就是实际上我们说的就是说啊,比如说我先生成一些嗯,怎么样用这个b形式的poly cube。
来生成相应的参数化呢,比如说我首先要要做一些这个cut的一些generation,是再上传一些这些切了,把它切成这个生成一个东西对吧,然后在上面呢来生成一些相应的工作,计算下的标价厂啊。
然后基于这个标价场引导的这个东西啊,或生成相应的这个police quare啊,就类似于这么个豆腐块一样的对吧,那一个一个结构就是它的一个结构,然后呢我在我在生成相应的patch,生成相应的patch。
就是这个变量上啊,就是这个配置,那我但是我生成这个东西啊,可能会诶不是那么干净啊,特别像这些地方是不是那么干净,所以说我这边呢,还是做了一个拍摄结构的一个简化,它写个结。
就简化结构呢就可以简化成这个样子啊,叫成这个样子,所以说这个样子,我觉得就是应该是一个对于这个模型来讲,我觉得是一个最优的一个结果了啊,大家我呃,是不是应该不能再想出其他最后最好的这个。
分割的结果了对吧,这种这种四边结构好能看几个四边形,那么有了这么生动的判决之后呢,像我们后面呢对于每一个呃,每一个patch,我就可以构造这样的,这个ig的这个传统化就可以了啊。
这就是我们这个工作它整体的一个流程啊,整体的一个流程,那么这边呢是呃一些比较的一些例子啊,就是这边呢是我如果用这种传统的这种,exact form的这种place square。
所以生成了这个patch的一些划分对吧,这是基于我们的这个close form的一个方法,来生成的这个划分对吧,大家可以看到这种退化的对吧,这个这里还有这里对吧,包括这儿啊,对吧。
实际上这还有这个地方对吧,这些地方嗯,我实际上都都是已经呃相对于这个结果来讲,对吧啊,大家可以比较一下,我这个这边这个右边的这个结果对吧,它生成了这个呃参数化结果呢,这个质量会更高会更高啊。
那么当我们相应的这个如果把它等拆线,或者这个网格线把它画出来,大家也可以看到啊,就在比如这个区域对吧啊,还有这个区域啊,让我们这个这边都是垂直的对吧,哎这边呢是退化的啊,所以说在这个地方呢。
它的生成的这个呃质量会更高啊,采用我们的方法,那么我们也相应的和在上面的来求解了,相应的这个这个pd的方程,然后比较了他们的一些误差对吧,可以发现啊跟我们这种close form的说的误差了啊。
现在都是一个数量级,但他大概对于这个例子来讲,大概它的误差也小了一半,那么对于这种派系的简化对吧,page的简化,我家这边也是给出一些结果,就说这是呃构造出来的。
就是没有简化之前的就可以看到这个patch啊,这个相应的这个分割线啊,还是不怎么好对吧,那么我提示中,利用我们这个简化的算法所得到了这个分割呢,就嗯非常的好啊,我想在这个分割应该是对这个模型来讲。
也一个最优的一个分割了啊,包括包括这些例子啊,包括这些例子,那么基于我们的算法呢,就可以去呃生成一些相应的一些,比如二维的平面的参数化的一些结果对嗯,首先生成的这些四边形网格的质量都是挺高的。
当然我们也可以来来做相应的一些二维问题啊,是三维问题,三个问题就是我们这个体操动画对吧啊,比如说这边呢实际上就是用我们的方式啊,用我们的方式来做的一些方法对吧,来做了,生成了一些初始的一个结果对吧。
那么这些红色块呢,实际上就是在我们这个快速简化里面的,设置方法里面的,可以把它给简化掉的啊,可以把它给简化掉的啊,这是我们说明了最后的简化的结果,就是这个例子,那么后面两行啊。
那第三行就是我们的它的一些自由式的,拆分化的结果啊,那么后面两行是我们在19年的那个,c mi上的这个工作啊,它所生的这个配置大家可以比较一下对吧,比较一下啊,就可以大家发现我们身上这种快速啊会更少。
比如这个例子,我们这边生成的block是39块对吧,39块blog啊,这边是55个啊,那么对于这个例子,我们是59个,虽然是35个啊,而且相当于我们现,因为呃。
这边我就说不是说那种严格的那种political对吧,它允许这种标价厂引导的这种形式,所以你看它可以类似于扫略的,可以当一直扫过来,然后去找来来来来生成相应的这个参数化啊。
但是实际上我们在构造这种商业化的时候,可能呃你是可以把它看作是单块对吧,甚至我可以把它看成一个类似于扫略体的一个,构造的方式来进行构造建构造,那比如这边是39块对吧,39个blog。
那么这边呢我们只有只有这四个block啊,为什么啊,因为在这个眼镜的这个两个支架这块啊,你看他这个快速是非常多的,我们上次就是支架这一块上,就是只有一就一个blog是一个blog,连上是正义。
这两个blog,我们可以,完全是基于这种省略的方法去进行生成啊,少量的方法来进行生成,这是对于我们这个呃体操的话,我们这边主要做两个工作,主要做的这么几个工作对吧,第一个就是呃把这种police。
power cube的一些思路啊,用到我们这些局面向ig的这个动画里面对吧,对于我们体能,我们前面的包括这个约束优化的这种思路啊,还有这个变化调控的思路啊,我们这都是做过相应的这个体参数化的一些工,作。
体制化的工作啊,那么目前集中化还有哪些问题呢,还哪些问题呢,啊,就是我说后面呢我们这个面向等几何的这个三,重量方面啊的一些开放性的问题啊,我们也是想和大家一块做一个交流啊,一块做一个交流。
火药面临的第一个挑战性问题有哪些啊,就是说实际上我们前面可以用把这种呃,用这种polka的这种思想,是可以得到一些质量还可以的,一个参数化的结果对吧,分化的结果。
但是polly cube它有一个问题对吧啊,并不是说对于所有的对于所有的这个呃模型啊,它都存在一个political pub结构啊,或者并不是说对于所有的模型,我都可以非常鲁棒的。
非常稳定性的啊去生成相应的pluv结构啊,这是基于polituo方法,它的一个呃主要的一个局限性啊,就在这儿对吧,所以我们还是想啊,还是想能够有一个方法它能够做啊,完美的解决。
在我们这种三维结构化题材的结构化,这种结结构化的这种体化的拓扑公道问题,那么像我们说的这么这么一个问题,它实际上就是归结成了一个什么啊,就是我们的六面体,六面体的这个呃。
大块六面体的这个呃突破分的一个问题对吧,突破分的一个问题,那么另外一个问题呢就是体参的话,在这种呃71。71编出的这个,几何连续性的问题啊,比如说我们刚才看到了,这对于我们这个平面参数化来讲啊。
也就是说对于我们曲面的题型来讲啊,他在起点处的这个基于连续性啊,g2 连续性啊,这些几何连续性我们实际上是有非常成熟的,非常经典的一些约束条件来进行,来来可以做的,对不对啊。
但是对于我们啊对于我们这个呃体产生化来讲,对于躯体的这个方法来讲,我怎么样去保证在这些7。7编出的联系啊,我想目前呢还是一个非常重要的一个理论,一个问题啊,此外呢就是对于这种带有这种唉,裁剪曲面的边界。
这种体参数化方法是我刚才讲了,上次一个好的参数化方法,我们还是希望能够啊能够精确保持边界啊,即使你这个曲面的边界对吧,你这个呃模型的边界它是一个裁剪曲面啊,那么我们还是希望周围生物的体内化。
如果能够保持实质这些财产协议,那是最好的,但是可能这个游戏关于理想化了啊,关于理想化了,可能实际上就是说最后呃,这确实一个是一个非常难的一个问题,非常难的一个问题,可能我们可能还是要呃退而求其次对吧啊。
可能不是完美的一个方法去解决啊,但是我能够在工程问题里面能够把它用起来啊,演示好的啊,演示好的,另外一个呢就是说我们啊,虽然我们说体上化是为了干嘛,对吧啊,是为了能够把它这个题材化的结果啊。
或者这个计算与传化结果啊,能够用什么后面一些啊力学的计划,特别是一些结构力学方面的一些计算,对吧,嗯嗯但我们现在的基于的一个我们的输入呢,就是我这个输入的这个边界,它都是cd表示,都是这种局。
那不是曲面的表示啊,所以说我才期望能够,生成相应的这个曲面的这个参数化嘛对吧,去获得体的参数化,但是如果我们能够有一种非常好的,基于这种躯体的复杂模型的造型的方法,那更好啊。
当然我们后面呢这个也为此刻啊,或者大家介绍,我们最近把这个体系分和这种一些几何的呃,交互的一些构造结合起来了啊,来做这种呃,可以实现这种复杂躯体的或者模型的造型啊,造型。
那么实际上对于我们这个一般的题材上,问题就是我希望能够哎构造一个给你呃,模模型的边界对吧,我能够构造出一些呃好的高质量算法,结果希望它在一些内部漆的地方,我能够满足基于连续性啊,之类的这些一些要求啊。
当然这就是变成我们刚才讲的,就像这就变成了我们一个呃一个非常重要的啊,一个一个空间区域的大块,六面体分解的这么一个问题啊,对面体分解的这么一个问题啊,也就是说我怎么样去啊。
目前当然也有一些工作在我们这边,体网格生成里面啊,我可以用标价厂来做啊,但是你看到就是说可能目前很多的这个模型,也就仅限于像这么简单的模型啊,相对于稍微复杂一点的模型啊,我怎么样去呃抽取他的这些企图啊。
构造这些扣分啊,边界线啊,边界曲,边界面啊这些东西呢,实际上就是说目前还是要依赖于一些手工的一,些交互的操作啊,当然就是说理想化的方式呢,就说我怎么样去从啊,这个这个有个标价厂的方法,能够像啊。
现在比较成熟的这个像这个平面表面上啊,目前啊按照我们课题组的这个经验啊,目前应该这些应该都问题不大了啊,那么商务,但是对于这种体的拓扑的划分,拓扑的构造啊,及标价厂的这个引导的这个思路啊。
目前还是呃不通过一些说一些交互啊,还是比较难的啊,当然如果能够通过一些轻交互的方式来实现啊,这种top的分割啊也是可以的啊,还有一个呢就是说呃一些就是我刚才讲的一些,理论上的一些问题对吧。
理论上的一些问题啊,就是现在比如说这种啊基联性我怎么定义对吧,比如说我基连性的这些呃regular的地方啊,就是说对于六面体网格来讲,就是说我从一个点出发,我应该是有几条边,六条边对吧啊。
那么它旁边应该有呃,呃这个点旁边他应该有八个对吧啊,八个单元,八个六面积单元对吧,有多少个面啊,那么实际上他这些面和面之间,线和线之间边和边之间啊,我怎么样去啊,满足这些基于连续性啊。
这个对于这个ranger的地方,我想它应该是比较简单的,应该就是我们这个,曲面情形下它的一个简单一个推广对吧,但是啊但是在这种呃奇异编的地方,或者起点的地方,我怎么样去定义相应的这个记忆连续性啊。
就是一个嗯比较困难的一些理论的,一些问题还是存在的啊,比如这就是立面体网格嘛,但是蓝色的就是它的一些期限对吧啊,那么当然这个期限的这个交点地方,就是它的缺点对吧,那么在这些起点的地方。
还有沿着这些区域线的地方,它的几何连续性,那我怎么样去进行定义啊,对吧,这边就是这个六面体网格的这个立面体网格嘛,这边是它的一个企业结构,对吧啊,这应该是一个比较质量比较高的一个,里面体网格了,对吧啊。
那对于这么一个质量比较高的流媒体网格啊,如果我不找相应的这个体三化表示,或者去体表示的,那在这些期限的地方啊,包括在这些起点的地方,我怎么样去去满足相应的一些,连续性的一些要求呢,啊连续性的这个要求。
这就是我们要先解决一下这个问题啊,咱也就是说呢啊对于原则,其曲线的切一边的地方啊,我想着应该就是可以,把我们这个在平面参数化里面,这种基于连线的约束,可以把它就在这个七七点的这个地方的约束。
可以把它推广啊,我想这个问题应该是不大的,像我们在这方面也做了一些尝试,也做了一些尝试啊,但是啊但是啊就是说如果在起点的地方,我怎么样去,去定义它啊,应该是比较难的啊,这是其一线的地方对吧。
这就是我的呃呃一呃一些期限嘛对吧啊期限嘛,那么在这个期限的地方,我怎么样去定义相应的这个呃,这边商是呃一个类似也是四面体的对吧,它上有这么有有这么几块躯体啊,把它连接对吧。
然后这边呢就是这个内部的检查我的起点对吧,这边有些气边啊,气边为什么起边啊,这边啊因为对吧,因为这边是度数是三的嘛啊,那么实际上它这边实际上就是这三这三块是吧,三块他们算是沿着这个7。7边。
这样去延伸出来的啊,延伸出来的,那么实际上对于在这个期限的地方,它的几何连接,我想可以啊,把这个在这些节点就是平面型下,他起点上面一条件运输条件接连人也是条件,帮他做个推广,应该就可以。
但是啊但是就在这些起点的地方啊,有这个地方我尽量去定义它的记忆与连续性啊,不像这还是一个挺复杂的一个问题,对吧啊,这边讲解我们这几块这几块blog它在这个点处啊,在这个点处这边应该是有三块吧啊一块两块。
三块四块啊,四块这么一个躯体,然后拼凑了这么一个一个一个图形,对吧,嗯嗯但我这边是把这个绿的这块把它挖掉的啊,那么就在这个七点出,我怎么样定义它的这个低频线条件啊,那么如果能是显示的啊,那更好,对不对。
那么12也说了,这边呢我们讲就是给大家介绍一些相应的呃,这个,我们面向登记和分析的参数化问题啊,他面临着目前面临的一些理论上一些困难啊,包括一些一些最新的一些工作,目前也比较多啊。
当时上节课我也给大家列出了,我们引用后面的篇,最早的那天啊,做这个面向i g a参数化问题的一些呃,22年和23年的一些paper对吧,大家可以看一下目前大家都在关心哪些问题,我想后面的一个至于啊。
我想这个整体何往前继续发展,特别是嗯推向这个工程实用啊,一个非常重要的一个一个点呢,就是这个呃面向根结合的这个,计算与参数化的一个构造啊,然后也是和我们面向有限元的一个,网格生成引擎的啊。
这个研发是相对应的啊,这也是我们我们课题组一直在在努力的方向啊,我们希望能够呃第一个就是直接建模对吧啊,我们希望可以提供一些这种基于躯体的,这种直接建模的工具啊,另外一个呢就是间接建模啊。
我们希望通过可以类似于网格生成,可以通过边界啊生成内部的这个呃平面参数化,还或者体三化也好啊,我们希望能够去呃提供这么两个工具,来方便我们,特别是啊计算力学学科的这个老师和同学啊。
来从事登顶和方面的一些研究也研究啊,那么实际是对于这个等级和的实际工程应用,也是有比较大的这个应用类型呃,这个这个价值和意义,但是我们希望在在不久的将来吧,能够把我们这些工具啊能够实用化。
让它成为呃这个面向根据盒的一些非常重要的,一些前处理的工具啊,前处理的工具啊,当然我们也在做,就说啊相应的后处理对吧,也就是说可视化这一块,也就是我们通过整体和分析方法所所得到的,这些c e的数据。
仿真的数据啊,是不是我用传统的这些可视动方法,这个标量场啊,啊矢量场啊,还有这个呃大量草啊,这些数据啊,我都可以用传统的方法来来进行渲染的啊,当然是可以的对吧啊,但是里面也是可以提出一些新的啊。
面向这些新的这些呃等几何的这些法,对数据的一些高阶可视化的一些方法啊,我们也是啊前面做了一些工作,比如说登顶盒呢,实际上我想呢作为一个新的一个cee,仿真求解的手段,对吧,嗯确实给我们无论是做前处理啊。
做计算几何啊,还是可视化的一些联名老师呢,都提供了一些新的一些可以挖掘的,一些方向来做,好像这边是有延迟比较大啊。
GAMES302-等几何分析 - P6:6. 基于等几何分析的泊松问题求解 - GAMES-Webinar - BV1dM4y117PS
好各位老师各位同学,我们现在开始上课。
那么这次课呢给大家介绍,基于等级和分析的播送问题求解,我们前面几节课呢已经给大家介绍了呃,整体和分析的一些相关的一些知识,但是并没有呃,切入到就说怎么样利用等级和分析方法,来进行这种pd方程的求解。
或者一些力学问题的求解对吧,那么下面的时间就是我们会给大家来介绍,怎么样都是一种整体和分析的这个这些方法啊,整体和分析的方法,然后去求解相应的呃热传导问题啊,力学问题啊等等啊,那么播出问题呢。
应该是我们p d e里面最简单的一个,椭圆形的一个问题对吧啊,所以说呢我们这边呢就啊准备一波送问题,作为一个切入口来给大家介绍这几个分析的,他的基本的思想流程啊,包括在这个时刻里面呢。
我们也给大家付了相应的这个代码啊实现,然后让大家呢能够有更深次的这个了解,希望通过这次课的学习啊,大家能够对等几个分析啊,去求解相应的p d e啊,或者相应的力学问题啊,这物理物理法制问题。
然后有一个基本的一个了解了,然后呢能够自己开始动手去e,可以去写一些相应代码,因为我们在前面的那个开源的一个样条的,一个呃框架里面,就i games里面已经给大家提供了一些样条的一些,基本的一些功能啊。
它包括求职啊,求导这些啊,我不知道呃,没有同学去深入的去去看过,我们这个给大家开源的这份代码啊,12是基于我们这次课的学习,然后再结合我们前面的所介绍的这部分呃,嗯这个这个给大家开源的这个代码。
实际上大家知道就可以去实现啊,怎么样利用等级和分析的这个方法。
去纠结相应的一个pd的问题啊,所以这就是我今天介绍的一个,基本的一个提纲啊,首先呢介绍啊包装方程它的一个基本的定义啊,包括项链的加点金的思想啊,然后刚度矩阵的装配啊,包括这个特别是单元单元刚度矩阵里。
还有它的一些边界条件的一些装配啊,然后呢还包括呃这个等几个分析的r型细化啊,这个是我们课题组这边呃早期做的一些工作啊,我们也希望能够呃基于这个波松方程啊,基于波动方程,然后怎么样来啊。
对我们的这个呃参数化啊来进行优化啊,实际上这个r型细化呢,是和我们这个相应的这个s型细化,p型细化,k型细化相对应的一种呃一种细化方法,也就是说呢,它的最终的目的就是为了去呃提高仿真的精度。
那么首先是给大家介绍一下,这个非常简单的一个热传导方式,就是泊松方程它的一个历史啊,反正就是波动方程,很明显,就是说他肯定是啊,我们这个,波松他提出来了这么一个方程啊,波松呢是我们是啊。
是法国非常著名的一个数学家,几何学家和物理学家啊,让他在相应的这个领域都做出了非常大的贡献,而且这个波动方程呢,应该也是我们p d e里面啊,特别是计算数学里面最为常见的一种啊。
他经常利用在应用在这些像这个啊静电学啊啊,机械工程,还有理论物理对吧,方便啊,那么最简单的一个波动方程定义啊,首先我就是说比如说我要去求这么一个five啊,那么相应的这个five的这个定义。
现在这个five我怎么样才能够去呃去实现啊,去实现这么相应的一个啊求解啊,如果就说它的右端项是零的话,我们一般也把它称为是拉普拉斯方程啊,那么如果你引入相应的这个呃一些边界条件啊,或者一些立场的时候呢。
我们就有了这个thirtify等于f对吧,那么当然我们也可以把相应的这个这个问题啊,推广到相应的这个电厂啊,磁场啊,以及现在的一些呃热传导问题,就是热场的一些分布啊,那么实际上求解这么一个问题。
求解什么问题,实际就是我给你边界的边界条件对吧,那么我这个边界的这个边界条件,它在内部啊,不再满足这个呃这个原函数f的这个前提下,它相应的里面的这个,比如电场的分布是什么样子,磁场的分布是什么样的。
热场的分布怎么样子啊,那么像这样的我都可以去进行求解啊,那么上求解这么一个方程啊,就如果大家学过呃一些偏微方程数值解的话,我们大家都知道啊,里面会这个有一些格林函数的方法对吧。
也有一些分离变量的方或者特征线的方法啊,当然我们这边这边给大家讲的课是啊,从这个计算力学的啊,计算力学的这些角度呢啊去了解,去去进行求解对吧,那就是我们有限元的这个框架的去进行求解。
那么有限元的这个框架呢,它就是说就是说怎么样能够,把这个求解域来进行剖分对吧,然后在上面进行呃一些把它把这么一个pd啊,转换成一些线性系统的一些求解,当然实际上就是说在我们图形图像领域啊。
波动方程也是啊非常有用的非常有用的对吧啊,但最简单的比如像这个图像的一个呃,这叫融合问题吧,啊,也就是说实际上就是说,我希望能够来把这个蒙娜丽莎的这部分啊,眼睛啊,嘴巴这一块对吧。
换成哎这幅油画中的这个这个情况啊,但如果你只是把它的像素啊,pixel picture都这样去去做的话,你肯定有非常明显的这种结划痕对吧啊,均衡就会非常明显对吧啊,但是如果啊如果我在这个边界的地方。
让他去满足一定的边界条件,然后来进行一个呃非常自然的过渡,那么这就是去求解一个相应的一个波动方程呢,呃得到的效果就非常好啊,非常好啊,那么上在图形学里面,我们也有相应的一些工作对吧。
那图形学里面非常相应的工作就是什么啊,就是播松重建对吧,也就是怎么样对点云进行重建的时候,我怎么样去呃,去求解一个相应的一个隐私的一个表达,然后实现对这个点云的一个呃,三角网格的一个重建。
那么商业知识也是在图形里面呢,也是非常重要的一个应用是吧。
那么实际上有人说我们如果在,在我们等几何里面啊,我们就比如就考虑一个相应的在一个,那不是体上,或者那不是一个计算器上,然后去求解相应的一个偏移方程,热传导方程啊。
那么相应的这个strong form它的这个形式啊,就是这个形式啊,就是这个形式,那么像这么一个形式啊,这么一个形式,我们说f呢就是我们的什么啊,右端向应我们把它一般称为热传导的原函数啊。
它一般也是一个标量值,那么要求的呢就是这里的什么啊,又这是我们所谓的温度场,温度场,它这个温度温度长u呢,他应该演示从我的物理域到我的一个标量场,一个呃一个一个影射对吧啊,但这边有个习俗,比如说这个k。
它实际就是我们所谓的热传导率啊,热传导率啊,那么它就说在这个好mega的内部,我需要满足这么一个等式,这么一个方程的对吧啊,那么在这个边界上呢,我也要定义一样用的一些边界条件啊,因为这个边界条件啊。
我这边分为这么几个边界啊,第一个比如说就是我们的dd clay边界啊,td啊啊,然后这个纽曼边界啊,纽曼边界还有这个罗宾条件的这个边界对吧,那么杀就是说呃在这些边界上啊,我相应的比如用它要满足什么啊。
g啊,这个a要注意把这个固定的温度的长长值,对吧啊,或者一个函数值是,然后呢啊包括热通量啊,这个h啊啊这个在这个在这个罗宾面前的,我才要满足一些,比如像这个啊,等于父辈来乘以六减去ui的东西啊。
那什么比如说是周围对流界的一些温度啊,那么这个贝塔呢,就是我的对流传热的一些系数啊,当然我设计的三个边界啊,把它呃求一下病啊,我家就会得到,就是说我整个区域的这个边界啊,去个区域的边界。
那么这是呃一个热传导方程,它的一个基本的一个定义形式,就是这样子的啊,就是这样子,那么我们的目标当然就是求解这边的u了对吧,求解这边的u了啊,当然我们不可能去把他的这个精确点求出来的,啊。
对特别是对于任意的区域来讲,或者任意的这个边界条件来讲,可能对于某些特殊的区域啊,给你一个呃特殊的一个原函数f,我这个u呢它是有精确解的好,那么一般呢是,我们一般呢也是可以拿这种情况来来作为。
我们它的这个啊等几何方法,你得到这个数字点是不是呃精度高不高,那我们可以通过来进行验证对吧啊,那么实际上就是为了定义,为了去求解这么相应的一个wake,form的一个热传导方程的话。
我们上就是这边的要定义啊,这么呃两组函数啊,两种函数,第一组函数呢就是有一些啊试探险来组成的啊,那么在生产这个这个f呢,它实际上就是说在我首先就要满足这个,强形式的一些地理边界啊,就这是吧啊。
那么三也说在这个空间内,我要呃呃里面呢它满里面的u啊,它满足这么一个东西啊,买这种东西,那么上去在这个h one空间里面,h y h一空间里面呢,也就是说实际上我最后得到的我是这边定义的。
所定义的这个试探解,定义的这个斯坦解就是什么啊,就是啊就有一个平方可积函导数的一个呃,一个平方可积函数,那么si呢,我们希望最后所求得的这个物理场u啊,物理场u它是,他是在这个fi里面对吧。
他是在这个fi里,那么另外一组函数呢我们把它称为是test function,就是测试函数啊,那么实际上这个里面呢,我们如果把这个就前面的这个wake phone对吧,就这个两边啊。
这两边同时乘以二边角,并且积分对吧,因为我我严格意义上我要满足这个东西对吧,那我就可以把它写成弱形式啊,那就说啊如果这两边我同时乘一个vg啊,感染max是我在第一个那个试探函数里面的,对吧啊。
然后在这个区域上来进行积分,那么它应该等于什么f乘以好啊,乘以w然后在这上面进行积分对吧啊,也就是说这样我们就得到相应的一个呃弱性啊,我们会得到这么一个东西对吧,会得到这么一个东西。
那么这么一个东西的话,我下面要进行求解对吧,那么我实际上就是说我可以把左边这部分啊,来进行这个分部积分,分部积分,大家分部积分还记得吗,啊对吧,所以说这个啊可以回忆一下这个分分部积分。
他这个怎么来算的啊,它是怎么来算的,那么小,就用这么一个非分母积分之后啊,我会得到一个结果,就12件事是吧,哎这个也这个样子啊,就是说大家可想要就说呃后面看一下,可以自己推导一下。
就说我怎么样通过分部积分,我是怎么样把这么一个上面这个式子啊,一这个式子啊,把它推导成二的啊,那大家可以后面的自己试着飞了一下,试一试,那么实际上就是说呃因为我没说呢,就说这个边界对吧。
上有人说我把这么一个东西,通过分部积分可以转化成啊下面这个等式对吧,啊,而这个边界条件我们说这个这个在边界上啊,这套在这个套上是吧啊,它有三个边界对吧,d a r啊,那么在不同的d n r上。
它又满足不同的边界条件对吧,所以说我们当然可以啊,把它写成三部分对吧,把它写成三部分的积分加起来啊,把这三分与积分加起来,因为我们把这三种编辑条件对吧,也就是说他在这个地上啊,他啊等于不等于零对吧啊。
那么在这个a是这个边界上对吧,它是等于这个东西等于h啊,然后在r这个边界上,它啊这个这个又对n p的偏导啊,这个你的法向量这个导啊,它等于这个东西啊,所以说呢我我就可以把它哎,把它都写成这个形式对吧。
那么我们说如果把上面这个式子,再代入到我们前面所推导的这个方程里面啊,所推导的这个方程里面就会得到这个东西啊,或者这个东西还有同学说,为什么你把这一项移到了,啊这一项移到了这个左边去了,左边去了对吧啊。
这一项为什么啊,因为我们要求的是什么啊,我们要求的是u啊啊,而且刚好是在这个边界条件上,刚好在这个平台里面,它还有u对吧,所以说呢我们就把这一项移到右边去对吧啊,这边上是完全和右没有关系的。
和右没有关系,未知量没有关系的对吧,所以说左边就是和右这个有关系的,右边就是和这个右脑没有关系的啊,然后我们就得到了啊这么一个格式啊,这么一个格式,那么我们说呢我们还要要把它弄成弱形式是吧。
要么就成弱形式啊,那么实际上就是说我们啊一本的一个一个,就可以把它给这个问题就变成了这么一个问题,就是我们怎么样在fi里面找到一个u,让他满足呢这么一个关系啊,那么这个a大那个u是什么啊。
就是前面我们所定义的啊,所定义的这个就这这个对吧,它左边的这个东西啊,这个式子啊,然后l大l啊那个是什么啊,就是我们这个右边向啊,就右边的这个式子对吧,右边那个是,那么实际上我们这个这个这个东西啊。
那个满足它就是它满足一个交换的是吧,而且呢就大多是大于零,b接要满足这么一个条件啊,那么所以后面的问题就是说我怎么样去去求解,这么一个热情的,这个通过把强行视频热行词之后,我怎么样去求解这里的u呢。
啊这里用呢,所以我们这边呢呃,给它一个非常经典的一个方法,就是所谓的这个加热金方法啊,加热金方法,加强军方法的一个主要的思想呢,就是说我怎么样构造这种呃,有限维的这个近视啊,有纤维的近视,也就是说。
实际上就是我们怎么要把这种有限维的问题啊,有限维的问题能够能够转换成,能够转换成这个呃,把无限维的问题能够转换成这种有限维的问题,对吧啊,那么也就是说我们已经定义了一些空间对吧啊。
那么实际上我们说的再等几分钟,我们这有限维呃近似是定义在哪里的啊,定义在这个呃numbers的这个样条空间里面对吧,这个样条空间啊,所以说呢我们这个这个啊,你所谓的这个这个空间里面的这个omega。
就这个四函数,还有它相应的这个数字解对吧,这个u它都要表示这种nba的形式是吧,关于这种样条的这种形式,比如说这个a i x就是我的奇函数对吧,然后si呢就是我的这就是我的什么啊,这个系数对吧。
这ai x呢也是在这里面也是这个奇函数对吧,也就是他们俩呢呃一个是函数,哎呦我的这个解呢它们的表示形式是一样的啊,都定义在这么一个nb空间里面,那么是空间里面,那么实际上就是说呃di的就我的系数。
所以我们这边要求的是什么啊,就是di,也就是说这个di呢,就是我们要求的这个未知的量,未知的量啊,所以说后面我们大家就可以看到,我是怎么样通过加点音方法啊,把这么一个呃把这么一个p d拨通方程对吧。
把它转换成关于di的一个呃一个线性系统啊,一样一个线性系统再进行求解,连说相应的我还是刚才那个热形式,就这个样子对吧啊,我们也有说呢,我希望能够在这个找到一个呃数字点uh。
那么他应该等于vs加h那位是在这个里面对吧,啊,当然就说呃因为因为在边界的里面呢,啊它有呃呃要满足一些条件嘛,所以说一般都是领导或者或者一些常识对吧啊,也就是说实际上我们就可以啊,就可以上来定义啊。
就是一部分是这个位置这个东西啊,另外一个是介词这个东西就会加起来,就是说一部分呢是和边界化的一部分,和内部相关的啊,那么如果我们把上面的这个呃,uh和这个这个没给他们带进去啊。
那实际上就是说啊他们都是no不是表达吗,都是那么表达,然后把这个相应的这个表达式对吧,就是前面的这个好没给h vs啊,还有这个啊那个with jh对吧,因为他这边我们这个相应的表达式都有了。
然后我们就可以把它带入到,刚才那个弱形式里面啊,就这个弱势形式里面,然后我们就会得到这么一个东西对吧,找到这个,那么得到这个之后呢,啊得到这个之后呢,实际上就是大家可以看到我这个所有的这个呃。
呃项里面我都有这么一个,这个sci对不对啊,这么一个ci还是这么一个东西啊,所以说这样的话,我实际上就可以把这么一个项啊,把它给提出来,把它给提出来,把它给提出来之后呢,把它写到括号外面去。
然后就变成了这个东西,这种东西我刚才说了,我们要求的是什么啊,是dj是吧啊,有人说实际上有人说对任意的这个常数c i,任意常数c i,因为它是一个呃叫做测试,叫做试探函数嘛,试探函数试探的一个量对吧。
也对于所有的这个c i的话,他对于所有的政策啊,他都满足这个这个东西啊,所以说呢我我主要也是说对三,对于我每一个每一项,就是i从一到n1 q的这个每一项,这个ci前面的这个,后面这个系数应该都等于什么。
应该都要等于零,对不对啊,都要等于零,说这一部分,应该都等于零,他才满足对任意的sci它这个东西等于零对吧啊,所以说呢我就会得到这么一个等等式对吧,所以说我有左端和右端啊,而且右端我都是已知的。
那左端呢我是未知的,就这个dj是未知的,dj是未知的对吧,那么也有说了,这样的时候画的话,如果我们把这个呃aa这个东西对吧,也就是说这部分啊,把这个东西啊写成一个呃,一个一个一个一个矩阵的元素类型。
k i键对吧,然后左转向右转向写成f i的形式对吧,连说呢我就会得到一个什么啊,一个矩阵k然后里面的这个元素啊,每k键呢它就是这样来定义的啊,就是在这样来定义的,这就是这个对吧,那就这也就这个这个东西。
我是可以写成一个矩阵形式的,对不对,然后这个可以写成一个向量形式的对吧,因为大家可以看到我这个i从一到人,我是相当于我有a e q的等式的n e q等式,然后我把这个dj把它求出来对吧。
然后实际上我们这里的k f d对吧,d就是围绕为求的未知变量,就是我们的啊位移矢量对吧,然后k呢我们把它称为是刚度矩阵,k呢我把它称为是刚度矩阵,然后f,然后这个f就是我们这个力的矢量力的矢量啊。
然后我们所谓的最后要求求这个d对吧,要求这个d啊,那我实际上就是我只要求这么一个线性系统,kf等于d对吧啊,当cap这里当然我这边是写成了逆的形式啊,当然你也可以呃,就是说我们可以用一些呃。
对于这种大型的线性系统,我有一些迭代啊,或者其他的一些系数矩阵的,是这个经典的库啊,可以进行调用,然后进行求解啊,也是一般我们这个刚度矩阵care,整体的刚度矩阵k它都是一个稀疏的。
这样的话我们就会得到一个温度场的一个一个,理想的一个离散的一个近似值啊,理想的一个离散的近似值,就这个u h x就我的计算值就这个是吧,就这然后我们的dna呢希望要进行求解求解,当然这个gi呢。
就是相对于那个克里dd cli边界的这个数据,那么所以现在就说呃,大家可以看到就是我整个的思想就是这样子的,对吧对吧,但是对于我每一个比如说高度决定来讲,它的每每个元素我怎么样去,我怎么样来进行求解。
我怎么样来进行求解,进行填充啊,就是后面的这个问题,后面的这个问题啊,所以说呢我们就可以啊,后面给大家讲一下,我这个高度矩阵是具体来怎么来装配的啊,装配的,因为我们大家都知道这个normg函数。
它是都是高度局部化的对吧,它具有局部性嗯,所以说这个拉莫斯曲线啊什么的,我可以去用局部修改对吧,也就是说这个g函数都是定义在某一个,局部区间上的啊,局部区间上的,所以说我们最后得到了这些嗯刚度矩阵k啊。
他也是一个啊带状的一个稀疏矩阵啊,稀疏矩阵啊,也就是说,实际上我们就是说对于整体的刚度矩阵的,它的计算,它的组装,也就是说我们实际上可以把它写成,对这种呃单元的这种基本的解释,我刚才说的。
在我们等级和分里面的单元是什么啊,是我的节点区间所对应的这个曲线,或者曲面上的,他的这个呃曲线段或者曲面片对吧,小的曲面片啊,也就是说这样的话,我们实际上也就是说诶,发现这个等级和里面的这些计算单元啊。
这些基函数,新函数的定义,和我们有限元里面也是有这么一个好的特性的,就是局部化系数化对吧啊,也就是说我们上次可以利用这么一个呃特性,来进行呃,来减少这个呃你的呃矩阵系统的构建啊。
还有他的求解的一些工作量啊,因为它是稀疏的嘛,所以说求解起来也是比较方便,那么所以说我们要可以在一个单元上去求,建立相应的这个单元的长度矩阵k e对吧,这个k e。
那么这个k e呢它可以写成这个这个形式啊,这个形式,那么就是我们刚才讲的,就是和尚是一个一个道理啊,那么相应的这个单元的立向量呢,就可以我有三个三个嘛,然后我就可以把它写成这个形式。
那么我们就可以使用一个数组,来来去更新这个全局的矩阵对吧,因为我原来k i j是这个定义的,比如说我更新的话,我就把相应的这个单元的这个量,这个量把它加上去就可以了啊。
所以说后面的这个问题就是变成了什么,哎我怎么样去计算这个单元的刚度矩阵啊,单元的刚度矩阵,那么也就是说我们这个基函数,实际上它在cd可以边界上都是啊非零的,就是我们假设对吧。
当然我们这个时候呢如果是非零的话,我们就可以要需要引入一些相应的这个boundary,condition的一些一些条件,然后去做啊,所以说啊就说这个时候呢,我也说,我们希望能够把这个边界条件。
能够引入到我们的战斗矩阵里面,你说这样的话,我们整个的全局刚度矩阵,k和立向量f的这个组装矩阵的,这个总体的算法就是这样,就是我读入数据对吧,都是数据,你的边界条件,你的这个计算与你的这个计算机的这个。
参数化的定义,这个控制流量的定义,然后构造相应的这个ie啊,还有这个fcondition的一些矩阵对吧,那么你可以先把我们的高度总体刚度矩阵k,还有这个右边右边的这个向量的这个iphone呢。
都初始化都是零,都是零对吧,然后呢,我计算相应的每个单元的刚度矩阵和历史上去,然后呢对啊,使用前面这两个矩阵,对这个总体刚度矩阵进行填充,进行组装啊,进行组装,然后如果满足我的这个条件。
如果填充好了对吧,填充好了啊,然后我就可以去,当然这边呢就是只是我去一个单元,一个单元来算吧,如果就是等到下一个单元的加一嘛对吧,如果这个e已经超过你的单元的数目了。
那么就是在更新这个开局的f阶段的第二行,让他满足这个这里可边界条件就可以了啊,这是我们整个的呃装配矩阵,它的系统里面呢,呃这个这个做法呢就是这个样子,那么这是整体的这个刚度矩阵的最高的那个。
我如果呃我要看一下对每一个局部上,它的这个单元的刚度矩阵怎么来做的啊,那么它应用的这个立向量它怎么来做,我们下面看一下,那么也就说如果我们把这个没意义,就是我们的一个单元对吧,看到在这个我的物理域中。
就是我们这个曲面上,比如二维问题,就是一个局部曲面上,它的里面的一个单元,那么它的相应的我有一个阴影色对吧,我有一个阴影色,也就是说从这个物理单元到我的参数域的颜色。
建议说从我的样条曲面到我的这个矩形参数域,的一个颜色对吧啊,那么它有个阴影色就是这个东西啊,那么实际上我们是可以定义相应的,雅克比矩阵的啊,就是说啊也就是说如果我们上次个前面两次课,应该也有给大家讲过。
也就是说如果一个曲面从它的定义域,是一个矩形,一个正方形对吧,然后他可以有效的一个二维的曲面,那么天呢这个雅克比的定义啊,雅克比的定义它怎么来做啊,那实际上就是说呃,呃矩阵的雅克比基金就这样来定义的上。
就是x对perc呃,一个参数方向的求导,对y对101个参数方向求导啊,然后x等于另外一个参数方向,y对于另外一个参数方程求导啊,那么这个矩阵的行列式,我们把它称为雅克比矩阵的行列式啊,行列式。
那么为什么要要用到雅克比矩阵呢,啊为什么要用呢,呃呃呃这个雅克比矩阵呢,实际上也就是说我们实际上就可以把这个呃,物理在物理域上的这个积分啊,把它转换成到什么啊,参数域上的积分。
也就是说原来你可能是这个这个地方,你是dx d y,然后我们通过这个雅克比变换啊,雅克比变换再见,是他的什么行列式是吧啊,通过一个亚比和变换,我就可以我就可以把把它变成什么啊,d u d v,啊。
那么所以这边呢是一个非呃,比较重要的一个技巧,也是我们家六经方法的,一个比较重要的一个技巧,就是说我是怎么样啊,怎么样把这种呃在物理意义上的这个积分,把它转换到参数域的呢,我就用了一个雅克比不变换是吧。
雅克比变换,然后这边我用的这个借的,就是我的雅克比矩阵对吧,一个行列式啊,也说这样一来啊,也说对于我的这个区域的内部,还是区域的边界上啊,我都可以去定义相应的一些呃,通过同样的思路啊。
我就可以去定义相应的计算,相应的这个积分对吧,那么这样的话像我就可以去构造啊,去构造相应的单元刚度矩阵和立向量啊,然后就可以把它都转化到了什么啊,把这个积分啊都转化到了这个参数域上啊。
通过这个雅克比变换是吧,那么所以目前有有两个问题啊,就是说我怎么样啊,唉第一个问题就是说我怎么样计算这些呃,呃求值这些基函数和导数对吧,因为我这边可能假设它是nervous嘛啊。
那么我们一般呢就是把这些,那不是把它转换成什么啊,把它转换成这个bez来进行求解是吧,那就不转换成bba啊,那么另外一个呢,呃你还说我怎么样计算上面的这个积分啊,这两个问题啊,那么如果第一个问题就是。
怎么样计算机函数导数,这个我们要知道啊,第一个求值很简单,我们就用样条的那一套知识来进行求,就可以了啊,那么对于这个导数啊,对于这个导数,那么我们可以利用连链式的这个求导法则呢,来进行求导啊。
就我刚才说了,也就是说二对x的求导,可以把它写成r对cos一的求导,然后cos一对x的求导对啊,然后我要求的是什么啊,我要求的是这些角三,然后求一个学常简单的一个线性东西呢,那就可以啊。
那么另外一个就是怎么样来求积分啊,就说我虽然我已经把前面的呃,这个在物理域上的这个积分对吧,物理域上的积分,把它转化成了在参数页上的积分啊,那么在参数上的积分我怎么来求呢。
啊肯定不能说我们一些呃大家学微积分的时候,这个求积分的方式,我们肯定要用什么数值积分啊,数值积分,那么用数值积分的话啊,上到这个里面就是说呃我们这边最常用的啊,包括商在有些人里面也是这样的对吧啊。
都用这个高斯积分法,高斯积分法,那所谓高斯积分法的基本思想呢,就是说fx在a到b上的这个定积分的值,它可以啊用显存就是啊这么形式,也就是说我可以作为这个x i呢是我的什么啊,高斯点啊,高斯点。
也就是说呢我是可以把他的这个积分的值,积分的这个呃定积分的这个计算,把它写成这个形式啊,也就等于i乘以到这么几项加起来,这个f x i呢就是我们所谓的这个高士点啊,高点好看啊啊啊。
mei的w i呢就是我们的这个权重权重也说,这样的话,他们这些几项加起来啊,我就可以啊,这一项呢就可以当做这个积分的一个近似啊,积分的这个近似,那么像这样一来的话,实际上就是说我整个的这个积分的计算。
就非常简单了,对吧啊,那相对于二维积分,曲面上的积分也是一样的对吧,那么曲线预算积分呢也是一样的,那么实际上这边对于不同的词也说你用fx啊,你可以是一次二次三次一呃多次对吧,那么少对于不同的次数。
我们所用的相应的这个呃高斯点的取法对吧,还有这个权重的这个取法定义啊都是不一样,但是它这个规则是呃是定义好的,可以预先定义好的啊,这是我们呃数值积分课上啊,就是数值分析课上就跟大家学的内容啊。
大家学的内容,那么实际上就是有了这个东西之后啊,有了这个东西之后,实际上也就是说我们相应的呃这个呃高斯积分,通过这个高斯积分,我就可以去去算这些定积分的对吧,所以也是可以进行求职了啊。
而且我们是把这种呃积分的计算,把它转换成了什么多项式的求值的,这个计算是吧,而且这个高斯基本上在理论上可以保证,就是说啊对于多项式来讲,这个呃像有的时候可以是画等号的啊。
这个应该也是已经有非常完善的理论去保证它,所以说这样的话,我们就可以把前面那个流程进一步的呃,给完善啊,那么长,也就是说我输入相应的这个数据之后,你不找相应的这个连接矩阵和这个边界条件。
把这个刚度矩阵和右端点都设数据4x0对吧,你点下开始第一个单元,然后计算这个单元上面的单元,刚度矩阵和历史上的矩阵啊,然后你在这些计算怎么怎么计算的,我只循环遍历每个高斯积分点。
然后在这个基本点上我去算每个呃,这个相应的奇函数和导数的这个值对吧,然后你再把这些计算的结果啊,添加到单元矩阵相对应的位置啊,然后呢再把这个带分把它装配到总体的矩阵,对中配的接,那这个单元需要了。
再算下一个单元啊,那么如果所有的单元算完了,那我就得到了对吧,然后呢,我在算这么一个kd,等于f这么一个大型的线性系统,大型的线性系统,然后这样的话,这样的话实际就是把这个输出结果呢。
呃计算结果就得到了,就把这个d又得到了对吧,所以这是我们就整个的一个呃,完整的算法流程图啊,就这样就大家我们从前面的这个推导来看啊,我用等级和分析的方法,来求解这么一个波动方程啊,其实还好对吧。
不是那么复杂啊,所以无外乎就是你要把理解中,就要把从我们要从头至尾把这个整个的推导,你要理解好啊,理解好,那么推导好之后呢,那么你就把这个理解清楚之后,那你又知道我具体是怎么来算的啊。
包括它的这个积分的计算啊,然后呃这个这个对吧啊等等,但是到最后我求解这么一个呃大型系统系统,我完全有一些现成的库来进行调用的,对吧啊,那下面呢我们就可以通过一个看一下一些代码,看一下代码啊。
这边呢我是那个学生啊啊利用这个aa库啊,还有包括我们的一些呃,就是呃应该是这是基于我们的样条的,这个呃定义的这个函数啊,这个那个库,然后呢让他写了一个初步的一个波动方程,求解的一个东西啊。
应该呃他写的应该也没有花多长时间啊,可能花了一两天就写出来了啊,所以我也希望就是我们呃听上课的这个同学,同学们能够试着去自己去写这么一个东西啊,自己去,然后去验证一下啊,写的对不对对吧。
那么也就是说我们为什么叫做ak换一户,我们这边主要是来做这个系数矩阵求解的啊,这边上就是我整个的流程的主函数,学的函数不能及格啊,第一个就是初始化,第二个我怎么构造这个连接矩阵,然后第三个呢我怎么装配。
我就是装配这个刚度矩阵a的对吧,然后这边就是我装配这个右端向b的对吧,然后这边就是我处理编写条件的啊,然后我也说我a和b构造好了之后,边界条件弄好了之后,然后我就是可以把这个a弄到。
我构造这么一个东西啊,这个东西就是我用这个jk对吧,这个这个系数矩阵求解的这个方法,它属于a a a a a里面的函数对吧啊,然后我就可以用它调用这个上午这个函数啊,但是他只有一个参数。
就是我的右端项对吧,也就是说我要切边要求解的就是ax等于b吗,我要求的就是x嘛对吧,所以说这个时候这个x这个x我就可以用它到,来把把它进行求解出来,啊这就是我们整个的一个流程,就是这个样子。
等于说我们这边要写的函数就是12345,啥就五个函数对吧啊,因为这个系数矩阵求解都不是你来写的啊,不是你来写的啊,所以说这个时候我们就可以啊,就可以把这么一个东西啊,把这么一个东西啊。
得给把我们整个这个波动方程的等级和求解呢,就就完成了对吧,所以后面的我也可以给大家看看,就这边的比如这些函数啊,一个是初始啊,怎么建立连接矩阵啊,怎么装配啊,给大家讲一下啊,因为前面那个初始和创业联系。
还边界条件都是非常简单的啊,就比如大家看一下这个诶,我怎么对这个高度矩阵进行装配的是吧啊,大家可以看一下啊,实际上就就这么多行代码就可以完成啊,你说你先把这个矩阵都设成呃,设成零矩阵对吧。
然后便利我这个所有的单元对吧,然后呃得到这个单元的这个面积,为什么得到这个面面积,实际上就是说呃,也是就是和我们计算这个两个币矩阵相关的吧,啊,然后我在啊对设置相应的这个高斯积分点对吧。
得到这个高斯积分点啊,到现在后面大家可以看到我是不是就是对,写了一些循环,三九火焰的右方向为方向都写了一些循环对吧,然后怎么样就是连接进来组装矩阵的对吧,然后我在每一次组装矩阵的时候,我怎么组装的啊。
因为我要组装把这个系数嘛对吧。
他这个组装我每次都加这个值,那么这个值就是什么啊,就是我相应的在这个上面啊,在这个单元上,它的局部的刚度矩阵,对不对,这个字啊,哎这个怎么算的啊,这个怎么算呢,那我就调用这个函数啊,调用这个函数。
那么对于装这个右端下的这个装配,也是一样的对吧,也是前期设置明对吧,也是对每个单元都便利一下啊,然后对取得它的高斯积分点啊,然后对两个方向都来分别算分别算对吧,当然这个里面就说啊,我对这个单元。
这个单元上它的组装的是这个右转向的时候,我调用这个函数啊,主要是调用这个函数啊,所以呢大家是不是可以看到啊,还是比较清楚的对吧,那么就说我怎么样来算那个积分对吧,就是在这个高度矩阵上的每个值的积分对吧。
那么实际上就是说大家可以看看看,一看到他说我有这个test的方式对吧,两个方向test的奇函数对吧,还有这个小要求的啊,包括它的这个高斯点对吧,还有他的这个单元的这个数目啊,在颜色上这个里面的话呃。
我所有的这个样条的曲面的这个求值啊,进函数的求职,我都是调用了我们开源的那个样条。
段子库里面的主,比如说准备要找到区间啊,啊怎么样来它的奇函数的这些导数值啊,这些啊都是调用这个函数对吧,然后然后后面的话就是我对我进行,沿着右方向为方向进行循环了啊,然后我怎么样找到计算的一些积分嘛啊。
对吧,然后后面的话就是我要计算雅克比,为什么要计算雅各比矩,这样啊,因为我要我在这个城的时候,我要是一个雅各比行列式对吧,然后乘以相应的呃,相应的d6 d位对吧,再说把这个物理空间的积分。
把它转换到参数空间上,把它转换到参数空间上,那么这样一来的话啊,这样一来的话,我们整个的这个对吧,就上去说就可以实现啊,它的整个的值对吧,我就可以上去就是这个形式对啊,上次和我们那个公式啊。
应该是对应的公式的,应该是对应,那么这是这一个了,那当时对于这个就是右边右边下的这么一个,它的矩阵单元,这个积分的计算,我们也是按照同样的思路来做对,那么你可以就可以计算相应的这个呃,亚克比这个矩阵。
然后怎么获得这个面上的点啊,然后现在非常的返回值,也是我们这个公式是吧,应该也是和我们这个右端向的这个矩阵的,是类似的,啊那么它对于这个边界条件的处理,边界条件的处理啊,我们也是可以,通过相应的这个。
先有的这个比如说是的,下面是delete的边界,对吧啊,我就可以让他等于一的,那我就可以来进行设置一下啊,那对于其他的边界呢也是同样的思路来进行,有的有的同学说比较卡。
那现在怎么样啊,那就继续往下讲了,好那么下面呢我们再给大家介绍啊,一部分内容就是关于这个呃,整理和分析里面的大型细化啊,我们这个二线细化呢,我们这边基本上也是啊,基于这个不能方程来给大家介绍。
我来给大家介绍,那么为什么要做细化这个工作,为什么要做细化这些工作,实际上就是为了去提高这个仿真的精度对吧,提高这个仿真的精度,你说啥,你说你如果自由度的这个呃,自由度这个比较少的话啊。
自由度比较少的话,那么你相应的呃相应的这个。
相应的这个呃得到了这个解压,它的精度呢就不高对吧好,那我怎么样能够提高精度呢,我肯定要增加自由度的数量啊,那么这对于我们整体分析来说,一个非常经典的做法呢,就是说我可以插入一些节点啊,然后呢去去进行呃。
相应的这个呃增加自由度,也是增加这个控制顶点的这个数目对吧,这就是我们称称为所谓的h系化,h细化,还有一个方法呢就是提升提升高次数嘛,我可以把原来呃一个呃一个比如二次的对吧,原来一个二次的。
我可以把它呃把它升阶升高到三次啊,也是虽然它升高了三次,但他因为二次也是在三次的一个空间里面,对吧啊,所以说它也是可以正确表示的啊,正确表示的,那么像这样的话,就可就可以通过升阶呢来进行完成啊。
中间也完成,也是我们把它称为叫做p系化啊,那么这个h系化p系化这些名字啊,我们都是啊沿用了这个呃,要要那个有限元里面的这个一些叫法,那还有一个就是所谓的这个k系k细化呢,实际就是就是可以把这个嗯。
h化和pc化来把它这个结合起来,结合起来对吧,我看一下这个情况,那么实际上也就是说呢,这边呢我们说呢呃无论是p系化,h细化和k细化,它实际上都是通过增加这个自由度的数目,来得到更好的这个仿真的结果啊。
但是呢不改变它的这个几何对吧,特别是边界的这个几何,边界的这个几何啊,那么所以说怎么样来得到比较好的这个结果呢,唉怎么来找得到,如果我希望啊,如果我希望保持这个自由度的数目不变。
我怎么样去得到比较好的仿真结果呢,啊刚才我们上次我们前面都讲了啊,因为这个计算机的参数化,也就是说它这个内部的控制点的分布,实际上是和他的这个对他有非常大的这个影响,对吧,就说一个结果呢,一个方法呢。
就是说我可以对这个控制顶点的分布,来进行一个优化和优化啊,也就是说呢我的这个计算域的参数化改变了,但是它的边界几何呢还是保持不变,那就保持不变,那么实际上这边呢就是说我怎么样来诶。
来提高这个模型的质量呢,啊,我们这边呢实际上我们把它称为叫做r型细化,r型细化,别说这个怎么样来让这个控制点的位置啊,达到最优,达到最优啊,那么像我们这个最早的一个工作呢。
是不是2011年的这个新mui,上面,我们有篇文章里面,也是深入讨论了这么一个问题啊,比如说我们把它称为是二ref,把它称为是二ref,那么这个二元方面,这个二维方面也就是说我怎么样呃。
我如果给你一个初始的这个控制点的分布啊,然后我怎么样能够呃优化优化这个内部控制,重新定位对吧,重新定位它内部空间的位置,然后所以得到一个更好的这个精确模拟的,这个仿真的一个结果。
这就是我们的一个呃一个需求,就我们把它称为一个r refm一个问题,那么我们当时一个主要的思想呢,就是我们呃借鉴了从形状优化来的啊,比如说形状优化,当然就是我怎么样去优化你边界的控制。
定点边界的这个形状,然后让你最后仿真的这个结果能够最小的,也是,如果这时候我们把无外乎就可以,把边界的控制里,把这个内部的控制里面,当时我的优化变量就好了啊,就好了啊。
但我们这个服务的方法是非常呃经典的,比如像这个梯度下降法来进行纠结,这个相应的优化问题,也就是说你是只要去求解相应的这个,德尔塔这个东西就可以啊,求解相应的这个梯度就可以了对吧,进行估计,连上。
实际上就是说,比如说我们可以看一下这么一个例子啊,做了这么一个问题啊,就是如果你的这个呃右转向是这样定义的啊,所以说啊我们可以通过这个右转向,可以精确推导出来,在这个区域上它应该有一个精确点啊。
就是这么一个这么有这么一个解对吧啊,那比如说在说在这个区域上啊,它的它是一个精确解的,就是这样来定义的啊,那么这个精确解呢,它的呃呃他的这个解呢就应该是这个样子,也是在这个局长,我要在这边的自由度。
就这四个控制零点吗,四个控制零点对吧啊,嗯如果是这样的分布的话,我会得到的这个初始解啊,是这个样子,就是这个样子啊,那么那么如果啊如果对大家看一下,实际上这个点和这个点相差比较大的,为什么。
你看他是这边的上限只可以达到1。84,1。84对吧,而我的精确解释它的最大值是二对吧啊,那为什么呢,啊,因为就是因为他这个呃,内部的控制台分布并没有达到一个最优的,相对于我们这个问题来讲对吧。
所以我们二细化的一个目的呢,就是我怎么样去优化内部的这四个,控制顶点的位置啊,内部的四个控制点的位置,然后可以让啊这个相应的这个访谈结果,这个误差呢更小啊,那我最后通过我们的方法优化出来。
发现最佳的位置啊,对于这个问题最大位置它并不是这个样子啊,然后大家可以看到我最后得到这个检测的,特别是这形状上这个颜色的分布都差不多的,但它这边呢,就大家看到我这边是2。01的是吧,已经非常接近就行了。
大家可以看到我虽然误差还是有的对吧,但是我们这边自由度很少啊,就只有四个自由度啊啊就大家可以看到诶,为什么这个社会的顶点会往中间聚集的对吧,不放中间聚集的就是一,我是因为我这个什么啊,这个剪的特征对吧。
它是内部是凸起来的啊,所以说我这受空间,大家可以看到它都往中间引汇聚了,而不是啊像这样的初始的这个分布对吧啊,也就是说大家可以看到这就是所谓暗系化,也就是说呃我还是四个自由度,四个控制顶点对吧。
作为我的自由度,但是他这四个自由度的位置发生了变化,我们也是可以来提高相应的这个精度,对环境的精度,那么这边这边呢是另外一个例子啊,就是说我相信的这个右端项是这样来定义的啊,那么它的这个精确解。
我就也是可以把它给推出来的对吧,那么他像是这么一个情况啊,这么一个例子啊,也就是说,如果你初始的控制定点是这样分布的话,就它的特征它也是在中间的,对不对啊,那么你所以会得到这个项目这个解对吧。
上也是也是这个误差比较大的,你看只有1。39啊,是吧啊啊,但是如果用按照我们的方法做r细化之后,它最后的最优的分布是什么样子啊,比如说内部的控制定点是这样分布的,更靠近中间对啊,为什么。
因为它中间的特征在这对吧,我们所得到的这个解,看一下这个上限对吧啊,应该是应该是非常合精确点,非常类似,这是它的精确点啊,啊也就是说这是对于我们有精确解的情形,当然我们可以这样来做对吧啊。
如果对于没有精确解的情形呢,啊那我怎么来做,我怎么来做啊,然后我们这边就是也是一个播送问题嘛对吧,也是一个播送问题,大于等于f啊,在边上满足这个条件对吧,然后u s假设u x就是我们这种等级的分析方。
法,做到了这个ig的解,i g的解,那么这边的话,所以说我就说怎么样才能够呃,呃对于这种不知道经验结果怎么来做啊,那么说明呢如果u s是我的等级和的b音节,六五是我的精确解,那我说严格意义上。
它的这个误差e应该等等于又减去又一次对吧,又减去又一次,所以说我相应的就可以定义啊,就可以定义啊啊叫做一个余量函数啊,或者一个作为一个互相误差的,一个一个一个函数啊,那么上去说我可以定义这个r f。
他应该就是这样来定义定义的,ka就是我的这个单元的数目啊,什么可以作为计算单元的一个数目总和,也是在每个单元上,我都可以计算这么一个东西啊,计算这么一个东西,那三就是我是什么。
就是f减去德尔塔u x对吧,嗯所以说呢,而且呢我们会有这么一个理论上的一个结果,就说哎我这个等级和误差的一个二犯,这个误差它应该小于等于一个常数,c乘以这么一个表达式,这么一个表达式啊。
当然hk呢就综合我的,应该是周长的相关的一个东西啊,所以说最后最后我要求解的就是说,我就是变成了,我怎么样去优化内部的控制顶点对吧,让它能够呃极小化这么一个东西啊,为什么要极化这么一个东西啊。
啊因为我的精确误差我是不知道的对吧,我只能来估计我估估计对吧,所以我们把它称为是这个东西,就是一个后验误差估计的一个公公式嘛,啊那么我们当然我们最后的最终的目标呢。
我是希望能够呃去重定位我们内部的控制顶点,让它能够去极小化啊,极小化我内部呃,那个这个呃互相误差估计就可以了是吧,那么三代ui是怎么定义的啊,就完了我们这个波动方程的定义去练的对吧啊。
那么uh是我的中等几个编用方法所得的,这个呃这个这个逼近点逼近点对吧,那么这个uh它怎么来表示的,那么它是用呃以样条的形式来表示了对吧,t i j也就是你的一个控制的系数,或者控制的标量对吧。
那么它也是写成这种w形,我要我我求得求解,通过整体方法得到的就是t i g的值对吧,所以后面的这个我怎么样去计算这个,后验误差呢,所以里面的这个关键就变成了什么。
关键就变成了我怎么样去计算这里dirt uh啊,所以说又一次是它本身是定义在参数上的对吧,但是我现在要求他对物理域的x和y的,两个方向的分量的,它的二阶导数分别等于多少啊,这个怎么来就就变成了呃。
我们这个后验误差比较关键的一个地方,年收本整体和一个非常重要的就是,我要用一个呃同样的一个数学表示,来对他的这个计算域和物理层啊,有人说我这个计算域呢,它实际上就是呃参数化这个形式,还是我这个物理场呢。
他在这个集算域呢,它是呃呃写成这个形式对吧好,也就是说呢我们怎么样来求解呢,像我们就可以用相应的这个,但它有h的这个计算,我就可以用相应的这个链式法则来进行,链式法则来进行。
也就是说我们通过这么一个式子,我们啊实际上就可以得到对吧,那么t对cc的一阶偏导应该等于啊,uh对x的一阶偏导乘以x对付这一边的,然后用h对y的一阶偏导,知道y啊,y队还是在一边。
这是我们的链式法则对吧,链式法则啊,然后另外我对这个呃,这个t对这个艾特的一些开导,他应该等于这个样子对吧,我们要求的是什么啊,要求的是是这两个是吧,uh对s就比较偏导,u x对y的一个不相等啊。
所以说我这边有两个等式,两个未知数,那么求解这么一个啊,先有一元两,二元一次方程组二元一次的一个线性系统,对吧啊,那我就会得到这个东西对啊,那么j呢,就是我们这个呃,两个比行列式的一个一个值对吧。
就大家就这样看到,我这个u s虽然是定义参数域上,但他对这个物理域的一些片段,我分别方便我们分享,方便用链子法则我就可以把它给求不出来,对吧啊,那相对于二阶偏导呢也是类似的对吧。
那也说我这个t给cc的二阶偏导,这对entert 2阶偏导我都可以写成这种形式对吧,当然更复杂一些啊,那么我最后要求的是什么啊,是这两个东西啊啊因为我们那个dirt uh嘛啊,所以我要求的就是啊。
对x一阶偏导和对y的一阶偏导啊,然后来进行求解啊,这位是由两个方程,两个等式,两个未知数,然后就可以把它求出来啊,就是这个形式对吧,我们前面已经把这个u x对x,u x对y的这个叶片的我都求出来了嘛。
然后再给他,把这个前面的这个结果代入到这个等式里面,然后我们就可以得到,但是它有一次它应该就等于这个东西啊,就应该等于这个东西,然后就我们通过这一系列推导呢,他们就知道了这个货延误差怎么来算是吧。
或延误差怎么来算,所以说我们在整体和分析里面,整个这个are u farrefm上,我就可以这样来算对吧,也就是说我可以在这个i j上面来求解,相应的一个等级分析问题,然后计算它的呃后验误差。
估计啊这么一个算子啊,然后呢通过一些呃提速下降法,然后去对它的内部控制电台进行优化,让这个化药物产量更小,然后最后呢我们就会得到一个内部控制内的,最优的一个分布,那么还有一个问题。
就可能对于这种我有这种最小误差,就会用这种呃误差,估计会用误差估计的方法对吧,但是我不知道他的精确解啊,但是我又希望呃能够对它的这个误差,来做一个衡量,我怎么来做,这个也是我们希望能够有一个误差。
一个评价的一个方式来进行求解,那么实际上这样的话,我们实际上就是说可我们给提供了一个方法,也就是说我们如果一个它的真正的误差,精确的误差应该等于啊精确解减去u x对吧啊,e等于u减去u x。
那么从这么一个后验误差估计可以上,我们可以去求解,重新求解相应的这么一个等几何的方,等于有分析的方式来来来建的对吧,也就是说我们可以如果在这个等式的两边,我都是都写一个dirt。
那是不是可以并把它写成diu,减去德尔塔又h啊对吧,那么德尔塔又是什么,不就我的原函数吗,啊,所以说我们就可以写成德尔塔,e等于f减去德尔塔u h f减去大的,又一次我们前面会算了对吧。
经过前面那个推导,所以说这样的话,如果把这个这一项看成是一个右转向,那我现在求解的不就是e吗,不就是e吗,好诶又变成一个新的一个波动方程对吧,新的一个波动方程啊,也就是说通过等级和分析方法。
我们就可以把这个误差呢把它求解出来对吧,那么这个这个误差场对吧,它也是一个必要条表达的,因为他这种等级分析方法来求出来的啊,那就来求出来的啊,所以说这边呢我们就可以,如果你是还是用原来的自由度去算啊。
那么你得到了这个东东西肯定还是精度不高嘛,对吧啊,所以说美还是要可以在上面来进行四加,这个呃h fit来得到一个好的一个逼近,那么这样的话我们得到的东西它更加精确。
但它也是呃呃更加那个就是成本也比较高嘛,但是我们可以把这么一个非常巧妙的,把这么一个技巧,把它用来做这个refly的一个误差的一个,评价的一个方式啊,也说我是e等于u减去u h。
但我两边都呃做一个拉布拉算对吧,那就变成齐了,德尔塔e等于f减去德尔塔有h,而这样子的右边项目是可以算出来的对吧,那么所以我现在就去求这个e e就是我的误差,那我就可以把它进,把它精确的求求出来sb点。
比如说我们这边也做了一个实验啊,就是说这边就是我的计算域对吧啊,然后我通过在上面做了很多加息,人家控制顶点,原来我只有这个16控制零点,现在变成这么密的零点,然后我在上面的这个上面呢。
来求解相应的这个error surface,就是我那个求解那个e小e是吧啊,也就是说精确的我的误差的分布的是这样子啊,我现在求解出来这个啊,error的这个分布呢是这样的,还是非常哎还是挺像的对吧。
还是挺接近的,那么也是我们基于这么一个方式啊,也我也是也是我们对它进行了一个啊,对于呃首先我们在有精确解释上面,我们做了一些测试,就可以发现可以得到非常类似的一个结果啊,非常类似的一个结果啊。
此外呢我们也对这种呃没有精确权的这种方面,也做了一些测试,就发现他比如这边是初始的这个控制,正在分布啊,然后相应的误差比较大对吧啊,而且这个误差比较大的,住在这个地方,是当我通过一个啊创一些ai方面的。
一个迭代之后,就可以发现我这个控制电源,你看原来本来这边是没有控制变量的对吧,所以他误差比较大啊,那么现在的控制点就会慢,就会a就会有优化到这地方来啊,那么这个这个误差呢就变小了,嗯这是另外一个例子啊。
那么除了这个工作呢,另外呢我们在19年的时候也做了一个工作啊,实际上就是我们呃就发现我在做这种呃,阿里翻盘的时候,他经常会产生一些,就是说你只是用这种呃提出下降,是不是去优化的话。
会产生一些自交的一些现象,会产生一些自交的现象,那么怎么样才能够去避免自交呢,啊那么实际上在呃我们上次的做一些,就比如提出了一个叫做变分啊,调和的方法对吧,也说他如果呃满足一个调和隐私的条件的话。
那么它实际上就是可以避免自交啊,那么商也是恰巧我们发现诶,在这个有些人里面上有这么一个工具,就是在做网格生成的时候,它叫做一个whistle map的一个方法啊,那么长就是通过这个影视呢。
它也是可以达到无支交,又让他的又可以让他的这个呃一些节点啊,去呃去满足我的一些意向的一些分布,那么这个分布呢呃整个的这个知道了方程啊,就是这么一个这个方程的诶,大概呢它实际上是和我的这个波动方程。
有点类似对吧,不同的是,我这边会有一个叫做g catheter这么一个东西,gc就是我们班的叫做monitor function啊,这是我的这个主导函数,那么这个monicc function。
它是实际上就是说可以来控制,你这个内部的控制定点,我怎么分布的啊,怎么分布的,那么实际上就是说我们就是基于这个框架嘛,来来做了这么一件事情,所以说这个里面的关键就是我怎么样呃。
来定义这么一个model function啊,我们这边主要给出了两个定义啊,第一个modefunction呢,它是呃按照举例的这个度量来定义的啊,也就是我们发现实际上是说,因为在曲率越高的地方对吧啊。
就是这个比如这一个例子啊,就是说这是一个我平面的计算e,然后我最后得到一个solution surface是吧啊,来作为我的这个物理的解,就是它虽然是必要条形式对吧,它的高度值反应它的物理量的分布嘛啊。
那么实际就是说大家发现发现就说诶他在这个,曲率比较大的地方,但是呃应该是误差也是比较大的,误差也是比较大的啊,所以说呢我们就是把这个曲率这个度量,把它引进引进来,把它引入进来。
作为一个呃重要的一个啊一个一个modic function啊,小伙伴我们主要是用了主曲率啊,那么这个主曲率的义呢,咱们这个微分几何教科书里面都有,非常呃详细的这个讲解的,我这边就不讲。
那么这边呢我们也可以看一个例子啊,这边就是我们的一个计算域对吧啊,然后在这个计算器里面我可以给你呃,呃有一个精确解啊,这就是一个tan h的一个这么一个解就可以发现,就说上次他在这么一个圆的啊。
就是送一个小圆嘛,对吧啊,他在做一个圆的地方啊,也说当等于零的时候,它等于一对吧啊,所以说它的s就是说如果等于这个东西,高度是等于0。25的时候,它会上升,这边跳等于一了啊。
所以这便是会有这么一个非常重要的,尖锐的特征,在这啊,这是他的一个一个精确解对吧啊,那么实际上也就是说如果你初始的这个参数化,初始的工作平台正好分布的话,我就仿真出来的结果是这个样子的。
也就是说这个地方它的物误差,基本上都集中在这儿,对比较大啊,那如果采用我们这个呃,和曲率啊相关的这么一个model function,然后再和这个vismap把它结合在一起啊。
我们就可以让它的控制定点啊,a就沿着这个根本就在这个地方,他的就显得比较密集对吧,有点像理由的,有点像那个各项异性的一个意思啊,各项异性的这个意思,然后这样的话啊,这样的话我对我的这点就这个样子啊。
现在无误差了,也变小了,对吧啊,如果我们进一步迭代啊,进一步迭代最终的结果呢就这个样子,就是文得到回复到这里啊,那么相应的这个呃error是不是也就很小了啊,很小了啊。
所以说就说我们通过这么一个基于曲率的一个,毛利方式来进行这种猥琐map啊,那如果既可以保证无视交,又可以让我的控制点沿着某一个呃呃区域啊,去去聚焦,然后去得到这个精度更高的级啊。
就得是初始的一个patch的一个结构,就是我们所谓的计算单元了,就是我们等几何里面的计算单元就不同的颜色,就是我们的计算单元是因为大家可以呢,它确实呃都是取的计算单元对吧,这如果是中间的那个排。
中间的分布情况,这是最终的这个配置的分布情况啊,大家可以看到他这个呃,就在这边就比较密集了对吧,所以说在这边呢,因为它的特征都在这,绝对不到大都在这,所以说我最后30得到。
可以得到一个嗯比较好的一个分布,然后我相应的这个g可是a对吧,y x就说我这个另外一个model方式,我也可以把它作为一个一个嗯,作为它的一个内部的一个东西,作为它的一个modefunction。
也是把互联物它估计也可以作为一个model function,这样的话,也就是说我可以呃让我的控制顶点啊啊,最后适合的参数化既没有自交,又能够让我的这个误差最小对吧,也就是说我可以让我的控制点。
集中到误差比较大的地方去啊,误差比较大的地方去,刚才我是让我的控制零点集中到曲率这个思路,on surface区别比较大的地方去对吧,好这就是我今天介绍的一个主要内容吧,咱就是说呃第一个给大家介绍了。
我怎么样利用整体和分析框架来进行播送呃,问题的这个求解啊,播送问题的求解啊,大家可以通过这个框架和前面开源的这个,样条的库,然后大家可以试着去写一写啊,看能不能写对啊,看能不能写对啊。
另外一个呢我要给大家介绍了啊,面向这种坡松方程的呃,这个r细化的方法就是阿refer的方法,可能和他的思路啊,基本上就是说啊,也就是说参数节点提高次数对吧,或者这两者的结合都是需要增加自由度对吧。
但是我通过这个ai方面,就是我可以在不增加自由度的前提下,去提高法定的进度啊,所以说他也是一个思路啊,就类似于我们网格处理的remix一样啊,好今天的这个讲座就到这儿啊,可能有所言辞有所言辞。
我们下面呢后面呢争取啊,能够让这个网络环境呃变得好一点啊,因为发现延迟还是比较严重的啊,我实在没有办法,我们下次就考虑我先录好的视视频,先录好了啊,最起码我们在上传到这个网站的视频是流畅。
GAMES302-等几何分析 - P7:7. 基于等几何分析的线弹性问题求解及GIFT方法 - GAMES-Webinar - BV1dM4y117PS
好大家晚上好,那么现在正式开始上课啊。
这是我们是我们的第七讲,我们上次课呢给大家介绍了基于登记和分析的,这波松问题的一个求解,那我说播出问题呢,它也是一个非常经典的一个椭圆形的问题对吧,那么上它应该是一个在我们的热传导领域呢,更有代表性啊。
更有代表性,那么我们说呢,实际上我们可能在这个收听的大部分同学啊,啊应该来自于力学背景啊,或者计算力学背景,那么怎么样能够把我们这种啊等几个分析,和我们这个力学的这个背景联系起来。
所以说我觉得还是非常有必要,再给大家再学习一下啊,怎么样用读取和分析方法来进行,力学中的一些经典问题,比如说线弹性问题的一些求解,那么这也是我们这次课的一个主要内容,一个主要内容咱就是来介绍一下啊。
怎么样基于整体的分析框架来进行,我们计算力学里面最经典的一个问题,现弹性问题的求解,是这样的,我们也可以发现啊,这个线弹性问题,我们上次课讲的这个播声问题啊,他们在本质上还是有很多相似之处啊。
相似之处的,那么所以呢就是说银出来的什么,基于等级和分析的这个框架,这个求解的框架应该也是非常呃接近或类似的,那么实在后面的讲解中啊,大家也可以发现这一点,那么所以呢我们可能也只是呢。
可以给大家简单的梳理一下啊,这种线弹性问题的整体,来分析框架的一些主要的流程啊,基本上思想上和我们上次课的一些内容啊,我觉得本质的思想上是类似的,那么我们也呢也抢到了。
就当做是对上次课的一些部分的这个呃,一些复习吧,啊当然我希望还是希望就是能基于现代性问题,和它和本次场合这种热传导或者播出问题啊,还是有一些区别,还是有些区别,那么所以后面呢我还是想给大家介绍一下。
一种新型的等级和分析方法,叫做gift啊,那么这个gift的基本思想呢,就是希望能够打破等级和分析里面,对这种设计与或者计算域,与这个物理场的他们这个样条空间的一致性,从而更加灵活啊,方便高效。
那么这也是我们这个gift方法,的基本的一个思想啊,那么为什么放在这啊,我想因为前面已经讲过了,像这个热传导问题啊,和这个包括这次课所讲的现代性问题的,这个等几何分析方法的求解啊。
所以说我们也是想让那个大家可以啊,交流一下呃,更新的一些方法和框架,那么这是我们这次课的一个主要的一个内容,那么首先呢就是啊,这种线弹性问题的分解和分析方法方法,求解框架啊,求解框架。
那么像我刚才讲了现代性问题呢,实际上是有着丰富的一个研究历史的经典问题,特别在计算力学方面,这有着非常重要的这个地位,那么上等几何分析呢,我们说对于求解这种线性问题呢。
实际上是有着很好的这个求解的这个优势,对吧啊,因为在很多情况下啊,这个我们所通过计算力学方法所得到的,这个应力场啊,特别是线弹性里面,基本上还是有着非常光滑的这么一个性质啊。
所以说我们用i j来进行求解啊,i j它本质上就有一个高阶的一个性质,对吧啊,实际上也说,既可以利用它有这种精确的几何描述的,这么一个问题啊,还可以使用这种高阶连续的奇函数。
然后得到这种高质量的啊连续光滑的应力场,应力场,所以说它在很多方面呢就有一些呃,非常好的这个优势,当然我们这次呃课所讲述的啊,主要是二维线弹性问题的求解啊,然后也就是仅仅涉及到这个二维平面上的。
这个计算域啊,那么实际上对于三维啊,我觉得应该是非常简单的一个平均的推广啊,大家可以在课下来思考一下啊,基于我们这么一个二维的,这个线弹性问题的这么一个框架,我怎么样来进行啊,这个三维的这个推广是吧。
那么怎么这边呢,我们就给大家引入了一些符号啊,那么上市前面几次课啊,或多或少的都有啊,比较严重的一些这个呃这个延迟对啊,我后来想一想,是不是因为可能网络也有关系啊,还有一部分呢。
是不是因为我们用了这个这个笔的啊,这个画笔对吧,然后有一些动画,所以他在这个直播的时候呢,可能会有些卡,所以说呢我这儿呢就不给大家去弄这个画笔,也就是说这边这个缩影abcd啊,可以是取这种。
这边是一些记号啊,那么就是一些取值对吧,从一到d那么大,当然我们在二维问题里面就d9 等级,二三维问题,那么d就等于三对吧,然后这个里面也是呃,就是说我们这个里面的一些呃,分量的一些数对吧。
那么我们这个u a呢,指的就是u的第a个元素啊,第一个元素啊,那么呢它的微分呢可以用这个逗号表示,就是u ab,实际上是可以看作是,我是求着这个ua在x p上的啊,一个一个偏导啊,一个偏导。
而且呢我们可以用这种重复的下标来表示,求和啊,比如u a b b,它实际上就是因为我这边这个b对吧,它可以取从1~2嘛对吧,所以说u a b b我可以写成u a一加上ua 22。
那么上午在我还可以引入其他的一些记号啊,比如说像这种非对称张量的这个a啊,非对称重量的a上午就可以使用这个a,然后小括号里面的a b,表示它的这个对称的部分,然后这个如果是这个中括号对吧。
a a b就表示反对称的部分啊,所以我说我们可以很容易得出来,下面一些结论了对吧,所以说这个a a b它应该等于这个对称的部分,加上反对称的啊,然后如果是他们两个反一反对吧,我们可以写成啊。
是这两个对称部分的,加起来就是a a b它可以写成1/2,aa b加上a b a好,那么这一反对称的部分呢,啊我就要去这个相反数啊,虽然也是反对称的,就是这个意思啊,当然我们也可以下面这一行。
就是我们这个西格玛ab啊,西格玛ab,它是可以表示这种柯西应力张量的这个元素啊,然后又a呢,他表示这个位移向量的这个元素对吧,就是表示位移向量对吧,嗯所以我们后面这些方面。
这个西格玛西格玛就是表示应力啊,然后u就表示位移啊,f a f代表这个就是这个force,就是呃啊原函数数数,我们在这个都在这个日川那边叫原函数对吧,像我们这边也可以表示每次的这个单位。
体积体的这个这个一个月一个量啊,还有这个一品啊,这可以说是deep sheep sha b呢,就表示这种小型面的应力的张量啊,叫做工程的,我们这里就是应变啊,应变啊。
那么这边呢可能很多计算力学的同学啊啊,更加熟悉一些啊,对于这些记号,那么实际上我们也可以有一些结论对吧啊,也就是说比如说一些问题的,像我们这个县台一些问题的本科法,本构方程是什么啊。
它实际上就是要满足我们这边的嗯,这个胡克定理啊,因为这个signya比就是它这个应力应该等于啊,这个弹性材料的系数矩阵,乘以这边的这个应变对吧,这边呢是我们给大家介绍一些相应的,这个结合它的一些含义啊。
那么可能大家一下子也记不住我的,所以就大家可以在课下看一下,把这个好好去消化一下,那么上线弹性这么一个model problem 3,就是他这个一个问题的解对吧,问题解实际上就是说可以啊。
可以看出是我们这么一个线弹性混合边界问题,的一个时装form对吧,稍微有一说我们这个问题三,就是我们希望找到一个位移用啊,不宜用它,当然是从我们的物理域到这个这i d是吧,这么一个影射诶这么一个函数。
这么一个u我们这就是我们要求解的u对吧啊,那么我们希望呢他在这个区域啊,区域上呢他应该要满足这一个条件,就这个定力是吧,seek嘛,ab他俩加上f a,那么我们说这个f a就是那些体力嘛对吧。
他就等于零是吧,然后呢在一些边界上啊,就是说比如说在这个地边界上啊,他这个位移应该是给定的,他应该等于g a啊,就是这个因为它应该等于j a,那么这个j呢就是给定的given,这个啊边界位移对吧。
那么在这个纽曼变线上,他要满足西格玛ab乘以a b是等于h a h a,h a呢是在我这个你们边境上,他给定的这个x啊,可算和x那么实际上这些啊实际上这些加起来,我们说他应该就是呃,这个dex边界。
将这个圆圆边界就变成我们整个的边界是吧,整个的整个边界,那么这就是我们所谓的一个线弹性问题,的方程及主要形式就是这样的对吧,那么西格玛ab是什么,我们上前面就说了,这个西格玛a b它是应该就是前面的。
这和偏导相关的,对不对啊,所以说它本质上还是一个啊pd的一个方程啊,那么上次我们现在前面设计只是一个strong form,对吧啊,strong from啊,那么对于这种weekf就这种弱形式啊。
弱形式我们总要去主导它,啥时有时和我们上次课给大家介绍的有类似的,对吧啊,也就是说我们需要设置一个四函数,还有这个呃weight function对吧,trial function。
还有个weight function,那么我们通过两边同时乘以所谓的这个这个w,也说可以这个pass formation对吧,然后呢并采用一些分部积分的方法,我们就可以得到啊。
这个线弹性混合编制问题的这么一个呃,这么一个形式的表达,就是我们前面这个w怎么这个样子,弱形式这么一个表达对吧,那么说上这么一个东西啊,这么一个东西像我们和上次的结了,是不是类似的啊。
那么也是用了分部积分对吧,然后呢,怎么样把,就相当于把我们前面的这么一个p d c o,y a b加上f a等于零,这是我们要主要来满足的对吧,把这么一个东西变成了啊,就是说我们在不同的边界上对吧。
它要满足这么一个积分啊的一个等式对吧,所以后面我所有的什么这个高斯积分啊,那么的一套东西就可以用到这了啊,所以说啊,所以说这就是呃把它转换成每个形式啊,那么实际上呢我们也可以把前面的w是减一下,定义。
这像是个符号对吧,然后这样的话我们说就可以啊,就和这一样,是什么这个a u w对吧,他应该可以,因为w是u和w都是我的,这个前面定义过了对吧啊,所以说他应该等于w a b乘以c。
这是我们的弹弹材料系数矩阵对吧,乘以u cd再接存换积分啊,然后我这个lw是什么,lw是什么,就是实际上我们就是我们前面的这一项嘛,啊相当于这个我这个w这个式子对吧,w这个式子。
但我的这个左边啊就这一个啊,然后右边呢就是这一,然后我们把这个左边写成这个a u w啊,然后右边写成l w啊,然后我们把这个符号带进去啊,三就会得到这么一个呃简写的形式。
也是我对于任何一个在这个测试空间中的w啊,w我都可以啊,我都可以找到啊,一个找到一个u对吧,让他满足这些啊,常也就是说在我们这个计算固体的医学里面啊,我们这个w啊就是这么一个问题啊,这么一个问题。
装备叫做叫做虚功原理对吧,然后这个w的那被称为是虚位移啊,还有这个lw呢是上体力f对吧,乘以这个修为点,然后再加上就这部分了,那么这就是这个f加上乘以这个穴位,再加上这个边界的transaction啊。
得到了这个虚空上就这两部分就是它的这个,然后这个au w代表的就是我们这个应力啊,应力就是西格玛它所做的功是吧,这个都做功,也就是说实际上我们整个的这个等式啊,这个等式它就代表了它就代表了啊。
我在静态下的啊,经理学方面的,他只是个内功和外理工的一个一个平衡对吧,这个平衡,那么实际上我们把这些对称张量啊,写成向量的话啊,慢慢还可以降低它的接触,这就是我们的vlotation啊。
那么实际上就是对于我们这些线弹性问题上,我们这边有一些基本的一些概念啊,基本的一些概念,第一个呢就是我们所谓的这个应变的向量啊,应变对吧,这是个一穷秀啊,还没611622612加出来的。
然后这个虚的应变的相关啊,虚的应变就和w相关了对吧,这边就不说了啊,那么这个应力的向量啊,int的向量我们西格玛对吧,那么有呃西格玛一西格玛,西格玛一二是吧,西格玛一二啊,那么12是。
这个应该和我们前面所介绍的那个记号,是相应的,当然我们还有一些非常重要的,就是这边的所谓的弹性系数矩阵,就是我们材料的弹性系数矩阵啊,弹性系数矩阵,那么比如像这个d啊啊,那么它是一个3x3的矩阵啊。
那么我们这边的d i j的那个地方,它是可以看到是这个c a b c d的一个东西啊,一个材料系数啊,材料系数因为我们已经知道了啊,已经知道了这个什么啊,西格玛就是我的应力等于这个材料。
弹性系数矩阵乘以应变对吧,乘以应变啊,所以说呢我们商也是可以把什么哎,把前面的这个a这一项啊,a这一项啊的西格里面的西格玛换成啊d乘以,现在u对吧,那就是他了,对不对啊,我原来这个a u w是什么啊。
是这个吗对啊,也就是说我们是把这边的这个u是吧,u cd把它写成啊,把它换成这里的这个呃,用这个表达式来换成,换成一个应变的一个表达式,应变的一个表达式,啊那么相对于这种各项同性的啊。
就是个astroopic的这种body啊,那么说我们是有这么一个关系式的啊,就这个材料系数据材料系数啊,他的c a b c d x这个东西它等于mx啊,加上德尔塔ac e dt b d加上德尔塔a d。
加上德尔乘以德尔塔b c,加上啊number的x德尔塔ab乘以德尔的cd啊,就这个嗯大家知道一下就可以了啊,那实际上就是这个name和mal,就是我们说的拉力常数啊。
那么实际上这个呢呃这name和mea,就是大家非常计算力学同学们收集的,就这个样式模型和播种的系数,那么实际上这个number它上就是等于会一除以啊,e加位乘以1-2位啊,然后没了也算一个达式。
那么实际上这样的话我们就可以啊,我们就可以把这个应变,应力和应变它们之间的关系把它写下来啊,把它写下来,就是这个啊,就这个就比如说我这里的西格玛111,西格玛二,西格玛3312313212是吧。
它也和后面的这个应变相对应变,应该可以看作是这么一个矩阵乘法啊,那么这个矩阵的元素就是和我们的啊美啊,拉面常数相关的相关,那么像这个时候的这个应力和应变的关系式,对吧,上我也是可以呃把它写出来是吧。
先把它写出来啊啊这个写出来,这个写出来实际就是由我们前面的那个呃,矩阵的逆矩阵了对吧,把它把它给写出来是没问题,那么实际上对于我们二维问题来讲呢,我们对于这个z方向的呃,他的这个应变值呢我们是。
是要忽略的对吧,所以说他的这个呃,13323和一三呢就是就是等于零对啊,那么这样一来啊,这样一来说,我们就可以得到下面这个式子啊,下面这个式子,啊就这个西格玛一西格玛一,西格玛二二,西格玛二。
西格玛一二,他应该等于啊这么一个矩阵啊,乘以二乘以这个一分一一平方二,也就是说实际上对于我们平面应力,平面应力,我们实际上是有下面一个,非常重要的一个式子啊,非常重要的一个式子。
就是呃我的西格玛和我的一不送,我的应力和应变之间啊有这么一个关系,那么这个矩阵d啊,矩阵d它就是一个3x3的矩阵啊,他们这边的mu和lambda,就是后所谓的和我们的这个呃。
补充模拟压缩模量和泊松系数有关系,那么也就是说当我这个z方向的尺寸啊,z方向的这个尺寸和,与其他方向的这个尺寸相比,大多数它就像就会产生一种所谓的这个平面的,这个应变对吧,平面的这个应变。
只要在这种情况下,这个z方向的啊,z方向的这个主应变,它实际上就是要被约束,并且假设四零啊,也就是说像这种平面的应变的这种假设啊,我们经常啊经常啊应用于这种大坝漏斗吧,还有他这个呃。
其他这个岩土工程的一些分析问题上面去啊,那么实对于但是平面应变的,我们也是有相同的这个类似的结论啊,比如说我们也是要忽略z方向的这个应用力了,就是说这个西格玛三三,西格玛二三和西格玛一三应该等于零对吧。
那么你相应的这个一普通一一,普通二二还有对吧,相应的产品和这个西格玛一,西格玛二二以及西格玛一二之间的关系,我们身上有这么一个矩阵之间的关系,只是对这个矩阵求逆,我们就可以把这个西格玛一。
西格玛二和西格玛一二,写成关于1112和1122的这个表达式啊,这个表达式,那么有了这么一个表达式之后啊,有了这么一个表达式之后,我们实际上就是呃得到这么一个新的一个,矩阵间的关系对吧。
也就是对于我们平面应变,我们上次有这个西格玛,u应该等于这个mu应该等于d,所以iu这么一个关系,那么这个d啊,这个d啊就是我们的材料系数矩阵,它的表达式代表合作文,这个压缩模量之间只有这么一个关系。
好的,那么实际上这个平面应力啊,它经常发生在这种薄平板上,而且这些平板,这些平板呢,它只受到这个呃,与其平行的这个载荷力的一些作用,那么实际上我们前面所讲的这个平面的这个。
应变和平面的应力是我们二维弹性问题中嗯,这些经典的一些设定的方法啊,让是对我们弹性力学作为呃,是非常重要的一个理论的基础啊,所以说呢上面这两个框框之间的这个关系,这个关系我想大家还是要要要知道啊。
就说这个应力和应变之间的关系对吧啊,就这边的西格玛u,它应该等于d乘以1x6啊,那么这个d啊,这个d上次对于我们这种各向同性的,这种平面应变对吧,它的d的这个表达式是这个样子啊。
而这个它的法向的这个应力啊,法向的这个应力对吧,他应该等于是一个码三三等于name的乘以一,普通一加上加上一平二二对吧,那么对于这种平面应力,平面应力,它这个d的表达式又不一样对吧,又不一样啊。
那么所谓的这个法向的这个应变啊,实际就是内反对,那么上就是这个133,等于这么一个表达式啊,我需要也是通过了啊,啊我们这部分啊让大家对这种弹性力学,它们之间这个应力和应变他们之间的相互关系。
让大家有个了解啊,当然就是如果有同学想这个打算深入了解的话,我想建议啊,可以去进一步系统地去学习一下,弹性力学方面的一些基础知识,那么下午没在这个新的框架里啊,在这个新新的框架里面。
我们还是要希望通过整体的分析方法来进行,这种呃,现代性问题的求解对吧,现代性问题的求解,所以啊,所以这儿呢,我们还是呃,采用的就是这个加热金的这个方法啊,加热金的这个方法,那么也就是说。
我们是为了把前面的说给大家介绍的,这种线弹性问题的这种弱形式对吧,能够转换成这种呃大型的线程线性系统求解啊,我们也是和上节课给大家介绍的这个框架一样,也是可以用这种加点金的方法啊,在有限期里面对吧。
我们三就是把这种高位问题把它转换成啊,这种低位位在有限无穷为里面对吧,在在有限位里面来进行求解对吧,那么实际上也就是说呢,我们因为要用nervg来表示物理层对吧,实际上也就是说在这个集合里面的。
实际上我是可以用这种总裁的方法啊,比如说我这个w啊,在这两个空间里面啊,啊和v这个空间里面的w和u啊,都是采用这个那么实际函数来进行表达啊,那么实际上这个势函数,这个它的这个变量系数就是c i对吧。
然后这个即便是函数,这个就是di对吧,咱也说实际上我们要求啊,一个给定了一个函数g啊,那么实际上我们这边呢,就是它是在属于vh里面的,对不对啊,来上上,对于这个里面的每一个vh里面的哪个。
因为都存在与之对应的位置,满足下面这个关系对吧,那么说如果把我们这么一个交流,经这么一个等差的一个思想,应用到这个线弹性的问题上面呢,我们就可以得到这个u h啊,它应该的位置加上g h对啊。
然后呢我们去求解下面的这个不论形式啊,也就说对于我们这个rh里面的,任何一个是函数w h,它应该都满足这么一个弱形式啊,弱形式,所以后面啊,就是说我们呃就可以根据相应的一些定义。
把我们上个市里面的已知量和未知量呢,来进行分离,来进行分离啊,那么像我们这边呢,呃,因为这个单位也是都是写成了,这种奇函数的这种表达形式对吧,这种奇函数的表达形式啊。
上我们就可以选择一些减x的这种表达啊,比如说我们怎么样把这种多维的呢对吧,无穷无穷,为了把它变成有限维里面去啊,也就是说这样的话,我们实际上就是这个uh和位置的,这个第二个部分就上。
可以写成这种一种组合的一种形式,对吧啊,组合的形式,那么我们把这个因为我们的u和w,它是都是表示ng函数的一种形式,对吧啊,只是一个控制变量是c i,另外一个控制变量是di对吧。
那么我们要求的就是这di对吧,那么像我们上次也给大家介绍过了对吧,如果你在这个里面是,我就是可以把a等于w减去a了这么一个形式,八大三就是可以写成这形式对吧,那么实际上因为我们说啊。
因为我们说按照一定根据这个a这个表达式的,一个线性的一个性质啊,像我们是可以把它整理成这个样子啊,整理成这个样子,整理成这个样子之后就是五五这一步对吧,那上我们这一刻发现它对于任意的c i。
任意的c i他都要满足啊,都要满足啊,我们这边的,这个五这边这个式子对吧啊,所以说呢我们就相当于说呃,后面的这个b从e到d,然后到后面这一部分,这个东西呢它应该等于零对吧啊。
如果这个所有的这些项都等于零啊,所有的这些项都等于零,但是我没说呢就可以得到啊,就这页ppt的最后一个表达式啊,这个等式,那我们这边要求解的就是这边的d j对吧,所以要求也就是这边的d j。
所以说呢我们实际上就是可以啊,可以完成啊,可以完成实现啊,就是呃把这么一个弱形式,怎么样转换成了我们的所谓的这个线性系统啊,线性系统,还说实际上对于我们上面的呃,一些这么多各个方程对吧。
那么我们如果有a e q的方程,那么我们最后得到的也是n e q的未知数啊,那么这个n1 q等于什么啊,那么实际上就是我们前面的两个线性空间对吧,他们之间的这个位数啊,把它剪掉,把它剪掉就可以了。
那么也就是说,根据我们前面讲的这个所谓的虚空原理,那么我们相对于每一个全局的奇函数啊,我都有一个方程对吧啊,为我们这是一个全局的奇函数对吧啊,那么在这里呢,我们实际上对于每一个全局的奇函数啊。
都有第一个方程啊,上我们就可以引入一个i d的数组来表示,这边的时候我的自由度a从e到d对吧,然后一个全局函数的一个缩影,i联系得到一个方程的缩影p啊,这个p呢它等于i d怎样,当我们实际最终呢。
会也是会得到一个线性系统啊,会得到一个线性系统,就是这边的kd等于f k d等于f,那么这个泰迪cat就是我们所谓的这个stiffness,magic,实际就是我们的这个刚度矩阵对吧啊,刚度矩阵啊。
当然这边呢是一个整体的刚度矩阵啊,然后这个d呢就是我们的这个位移向量啊,就是我们要求的有要求的对吧,然后这个f呢就是我的这个呃force week,就是我的这个可以是外部的这个力学条件,之类的,是吧啊。
当然我们这边它定义了一些下标的一些东西吧,就是所谓的大p和大q,大p和大p q,那么实际上我们这边的这个k p q刚才说了,cp q是k里面的一个元素,对吧啊,这个元素呢,我上次可以根据呃。
这个这个右边这个框框里面的直接表达,把它给算出来对吧,包括f p啊,包括f p,那么实际上下面的问题就变成了什么,哎对于这么一个,刚度矩阵对吧,刚度矩阵我怎么样来进行这种呃,矩阵的装配问题对吧。
矩阵的装备问题要去完成它对吧,要说我怎么样把这个k和f把它里面的元素啊,都很好的把它求出来对吧,那后面呢就变成我总求d了啊,那么实际上这边呢我们根据这个虚空原理,我们已经构建了很多的这个局部的刚度矩阵。
还有它的局部的这个载荷的项链啊,下面呢我们就需要把它们装配到全局的,高度矩阵和全局的载荷向量组去,这样我们就得到了全局的一个呃线性系统,然后呢求解这个d i d j就可以对吧。
那么实际上我们可以首先计算出单元啊,他这个单单元呢就是在我们整体和分析里面,就是这个节点区间所对应的这个曲面片,对吧啊,这个局部的刚度矩阵,我们实际上就是演示,可以用下面这个式子来算一下。
这个k p q e这么一个东西啊,那么我们如果把这个应变啊,把这个应变成这个epsl啊,就像我们这边是线弹性问题对吧,写成这个样子的话啊,当然这个ba啊,他ba啊,他就是和我们这个基函数相关的对吧。
那我们家就可以把这种局部的刚度矩阵,局部的刚度矩阵啊,简写成k p q e,比如说我们这一页p p t啊,最下面的这个式子是减成这个式子,那么实际上这是对于我们这个高度,局部的刚度矩阵的。
那对于局部的载荷啊,我们也是可以把它写成呃,是下面这个f p e的这种形式啊,p的这种形式对吧,也是和我们的这个啊fa ha这些根据条件啊,这些右端项相关的对吧,然后这个a呢就是我们的几个基函数相关的。
对吧啊,然后这边也是用了应变的那个那个结论,那么啥也是为了将我们这种局部的刚度矩阵和,载荷向量装配到这种全局的系统中啊,我们也是需要下面的一些数组,就是个p啊,其实这个p啊它就是一个全局公司的缩影。
这个a啊,就是我们所谓的这个自由度,a4 的局部的积的缩影啊,然后e呢是我们这个所有的这个单元的,这个编号是吧,单元的编号,当然如果你最后得到这个dd clay边界条件对吧。
只是遇到了dclay边界条件约束,而没有这个呃,比如纽曼这个条件的话啊,这样这个非常方便的对吧,你只要把他那个呃,因为都只是值相等吧,只要把他那个条件啊,更新这个全局的载荷向量就可以了啊,也是这样的话。
我这边呢也是给大家说,写出了他相应用的这个伪代码是吧啊,你说根据我们前面介绍的思路,我们就可以写出相应的这个单元的这个,装配的过程,对吧啊,你看这边上就是主要有两个大的循环,大的循环就说一个是a乘一到。
这个是相当于我的分量的对吧,就是d和我的尾数相关的对吧,另外一个是小a从e到a这个logo,实际上这个和我的单元相关的,对不对,单元相关的啊,然后这边呢我就定义了一些p小,p大p i这些对吧。
就是和我的一些呃这个索引啊相关的东西啊,那么下面呢就是我怎么样对他的这个载荷,这个东西来做的,那么朝这边啊,这边大家可以看到啊,一个是局部的刚度矩阵,我怎么来更新啊,比如说这个右边的。
就是说我因为我这写不下了嘛,就是这个这个右边的这部分,实际上就是我们后面就是右边的这个,中式的框框里面的,所以呢代码是这个样子,那么这边呢也是,它就是定义了一个两重性了对吧,一个是b还有大b。
一个是小b啊,一个也都是从一到小d,从一到他的这个这些对吧,然后这个里面呢他就算了,我这个相应的这个每一,它这个局部的这这刚度矩阵,我怎么样进行装配的是吧,或者开pk啊,啊f p l我是怎么来弄的啊。
上台也是要先把这个k p q e啊,这些局部的这个高度矩阵的描述啊,把它给算出来对吧,所以这后面这边的这个问题就变成了,我怎么样来求这里的k p q e对吧,k p q e。
那么要求这边的这个开pk用的也是,我怎么样去构造这个每个单元上的,这个高度组件和载荷的项链啊,这样的眼霜也是要用到我们呃,上次课给大家讲到了这个等差的思想啊。
啊这个包括这个北京这个extraction啊,就是这个提取北大的提取对吧,还有这个高斯积分对吧,高斯积分的一些方法啊,高斯基本方法,也就是说实际上呢我们这也是采用这种等差啊,包括前面我们介绍的事情。
一个它的相应的这个单元的刚度矩阵啊,单元的这个刚度矩阵,实际上是可以通过这个式子来进行计算对吧,来计算,那这边它也是用了这个我们这个应变的,应变的这个表达式啊,应变的这这个表达式啊。
就大家可以发现我这么一个kpq,也说e我这个局部的这个单元的刚度矩阵,他最后一种是高斯积分,把它算出来,就是变成了一些函数的求值对吧啊,包括大家里面也涉及到一些求导啊,因为这边我要用到什么啊。
雅克比是吧,也就是说我这边像是需要啊,需要呃把把这个在这个物理空间上的这个积分,把它转换到这个参数空间中去啊,把它转换成参数空间中去,因为这边呢抓住了一个等差的一个事情是吧。
那么相对于单元载荷啊也是类似的啊,也是类似的啊,这边呢主要就是两个部分吧,一个就是呃这个它的体积力,它会像这个重力啊啊离心力啊,还有这个表面力啊,牵引力等等啊,那么像这边的文章。
也是要通过这些载荷来进行求解,三,就是我要求一下,这f p以上也是用的这个应变的东西对吧,那么最后呢也是通过把这个档次变换啊,然后和我们的这个高斯积分结结合起来,然后求它的右边啊。
这边这个思想是类似的啊,我这边就不呃,详细介绍了,所以说呢,所以说呢我最后得到了这个呃,表面的构建公司啊,就可以把它啊,类似的写成这个这样的一个形式啊,这样的一个形式啊。
实际上是对于其他的这个边界积分呢,也可以用类似的一个方法来呃,方式来进行表达啊,来进行表达,也就是说对于这种呃纽曼的这个边界条件上,我们也是可以通过呃创创建一个这个隐瞒数组,来表示啊。
就说我在哪些边界呢,它是一个地方边缘条件对吧,来创建这么一个东西,这样更加方便,这技巧呢我给大家知道就可以了啊,所以说这边的我也列出了相应的构,怎么样构造单元刚度矩阵的呃和载荷向量,这边是这个的。
就应该是对吧,呃一个相应的这个微代码对吧,大家可以发现他这个相应的就是,我和这个次数有关系的对吧,我两个方向的次数,因为我现在只是在两个单元上对吧,所以说这边呢我就要向商业的去调用它的。
这个sc function对吧之类的啊,还要求各个相应的一些偏导啊,这个雅克比啊对吧啊,包括一些循环三,这个循环我还删了呃,来做对吧,首先呢我我要构造这个b a e,就是我们通过这个应变来。
就是和g函数相关的对吧,那么这个b b e对吧,那么下面的我,因为我我这个关键的就是这个k嘛,我局local的这么一个局部刚度矩阵,它怎么来算的啊,就是调用这个词,那么当然对于其他方面也是对吧。
也是一样的对吧,就是我整个的p q e在这个单元上的标准去上,我就是呃这样来来来把它累加起来,对那啥对于我这个右边的这个frost,这个这个这个false function对吧,网上也是可以啊。
一类似类似的方法来进行主要进行一些求解啊,这样的话我就上去就构造了呃,实现了对这种单元,刚度矩阵和这种载荷向量的啊,它的一个,局部的一个计算对吧,那么我们总结一下的话,大家看一下。
我动在我们的整体和框架里面,来求解这么一个呃线弹性问题啊,线程一个问题我就今年哪些步骤对吧,那第一步就是说呃,初始化的问题是初始化问题啊,那我怎么样啊,涉及到的次数啊,结束啊,节点项链啊,控制点的集合。
包括这个全因子啊,再结合啊对吧,然后怎么样去调用函数,获得他的这些呃下标啊等等,包括我们要计算的一些一些这个呃高斯积分啊,这些这些这些词是吧,然后这也是初始化对,包括一些下标数组啊。
然后这些一些边界条验证它的设置啊等等啊,另外一个呢就是我怎么样去构建相应的这个呃,刚度矩阵,对吧啊,我我怎么样对所有的这个,单元对吧,所以说对这个单元做一个循环,从一到n单元的这个数目对吧。
那我调用这种单元的计算函数啊,单元的计算函数来得到这个k e和f e呀,那我调用这种单元的装备函数,来更新我的这个kf啊,啊,那这样的话,我上去就先从这个单元的这个高度矩阵。
然后组装成全局的高度矩阵对吧,然后这样来做,那么那么那么实际上这边的主要就是这一个啊,另外一个的话希望能够添加一些啊,边界的啊与约束条件啊,边界的约束条件,那么实际上这个边界的约束条件呢。
实际上就是说我怎么样啊,怎么样把我们的这边的一些,无论是delicate边界条件啊,还是这个牛掰面试条件啊,啊能够把它填到约束里面去啊,然后呃,综合前面的我们所构建的刚度矩阵,和这些边界的运输条件。
然后再形成啊,求解我们最终的一个呃线性系统是吧,比如说把我们这个偏移量啊,这个位移d可以把它求出来啊,然后最后呢得到一些结果,那么商这边呢就是我们得到的一个呃整体的啊。
整体的就是我们用等级和分析框架来求解,这个呃,先谈一些问题的一个解释,咱也说,如果有的同学以前学习过这种有限元方法,包括基于加六间的这种有些方法,来求解现阶段一些问题的话,呃如果在以前做过。
你就发现整体的框架是非常类似的对吧,无外乎哪里不对,就是你的cf function,你的新函数不一样对吧啊,还有你的这个节点的定义不一样,对节点的不不是节点的定义是这个什么啊,计算单元对吧。
计算单元对应的也是我们在这,我想这是等级和和有限元最大的区别,就在这儿对吧,在等几何里面,它的计算单元不是那些小的三角形单元,而是我的那些节点虚区间对吧,那实际上对于我们二问题。
就是我的参数域里面的一个,比如从01,从01啊,怎么两个方向相乘这个节点区间啊,我现在一个小的这个矩形片在参数域里对吧,那么到了我们的曲面的物理域,曲面的物理学他就对应于一个小的这个,曲面片对吧。
那么这么一个小的曲面片,就是我的等几何里面的计算单元,计算单元,然后在这个计算单元上的,然后它再用相应的这个呃高斯积分法啊,之类的方法,然后再去算是吧,这就是我们整体和分析它和有限元分析里面。
最大的这个区别啊,最大的区别,啊当然这边也也会涉及到一些呃就是下标啊,就这边呢也是我觉得就是说这边呃,实际上是对大家实现,就是这个程序实现方面是呃非常重要的啊,非常重要的。
也就是说像我们这边有一些我的一些学生,也开始实验的时候也会出现这些问题啊,就会嗯出现一些混乱的一个问题是啊,就是说商丘这边的商务没有两种方法,一个就是怎么样通过这个进行顺序索引啊,把这个位资料准备起来。
还有一些可以用这种自由度的数量,将物质量啊组织起来,就可能一大块就是好像用第二种方法更直接,对不对,更为直接啊,啊,那么实际上另外呢,我从我们如果用这种奇函数的这种方式,把这种未知量进行组织起来。
也是我们得到了这个刚度矩阵,它更稀疏啊,那么对于后面我们这个求解也是更好也更好,啊这是我们这个这次课的第一部分内容啊,就是说给大家介绍一下我怎么样要用呃,在我们整体和分析框架里面。
去求解相应的这个线弹性问题啊,线弹性问题,那么呃下面一部分,下面一部分我想就给大家介绍一下,还有一些时间吧,就给大家介绍一下我们这个gift的思想,简单给大家介绍一下。
大家应该可以看到我现在这个这个啊这个ppt,那么实际上是什么叫做gift啊,什么叫做gift啊,实际上就是说他实际上呢,就是希望能够对这个等级的分析方法,再做一些进一步的一些优化啊。
我就说登记和呃他的这个基本思想是什么啊,它的基本思想是什么,它的基本思想就是说,我希望能够在同样的样条空间里面去表示,或者几何对吧,还有我们这个物理场啊,还有我们的物理场啊,那么实际上这么一个问题。
这么一个思想对吧,非常简单对吧,无外乎就是把我们这个x y z,后面我再加一个w对吧,我认为g函数呢都是一样的啊,12代我也要说这样的以来的话,像我们这个几何对吧,就像这个飞机的这个模型。
它的这个几何和我的物理场之间啊,物理场之间他们上是有共同的什么参数域啊,共同的参数域啊对吧,比如说有了共同的参数仪之后,那么在这个上面呢,我们说它所具有的这个就有这个共同的这个呃。
共同的这个这个奇函数对吧,就可以定义的啊,那么实际上就是说如果这样来做啊,如果这样来做,就是说我在同样的这个几何呃,同样的这个样糖空间里面,就同时表示几何和物理场啊,会有哪些问题啊,会有哪些问题。
当然这个是好的对吧啊,那么呃你当然也会带来一些问题啊,下面呢我们就给大家介绍一下,年收,这也是我们这个所谓的gift,它的这个呃方法,这个框架的一个主要的一个auto vision,一个动机啊。
第一个呢就是说虽然啊,虽然就是说我们通过这个等几何的这个思想,对吧,我们实现了实现了这么一个几何建模和设置,反变形片发行方式,它的一个无缝的一个基层,或者统一的一致性化的一个表示啊。
但它确实也会存在一些问题,第一个呢就是说而且也说一些约束啊,可能不是我们想要的,什么意思呢,就是说呃可能你的这个几何,它本身呢呃可能是比较高,次数比较高的对吧,呃可能是用比如四次。
五次啊来表示的这么一个几何,那按照等这个等级和分析的实际的话,我表示这个物理场的时候,我还是要用同样这种高次的这种表达去表达,其实在有些时候可能是这种表示啊,呃可能是没有必要对吧。
也就是说我可能用这种二次的三次的就ok了,就可以了就可以了啊,爷爷说了,如果你硬要让这个几何表示和我的物理场的表,物理的表示啊不要一致啊,那实际上就是说也也是呃,有的时候呢可能是有些苛刻了对吧。
有些苛刻,那么当然还有一个还有一个问题是什么呢啊,因为我希望用什么,哎我希望这个实现他们经常统一表示对吧,嗯大家都知道我在一些几何计算理论啊,就我们c d d领域,我除了这个呃nervous。
除了这个必要条对吧,我还有其他各种各样的要求对吧,比如说像这种三角的样品,也是定义在三角翼上的三角画上的样品啊,还有像所谓的t2 条对吧,还有其他的定义在非多项式空间啊,也说我们像这个b样式。
都是定义在从1t t的平方,一到t的n次方这么一个多项式空间里,对吧啊,其实以前我的导师汪国真老师啊,他在大提出了呃一些非多项式的要求,比如说我在这个除了这个多项式啊。
我可以在多项式的后面再加上sin t cos 1 t,甚至我可以纯粹一些研究,我在这个3t cos e t啊,这些三角双曲的这个样这个函数里,空间里面它的一些样条表示方法对吧。
那么实际上啊实际上就是说这些样条对吧,你如果想用作等几何的话,我肯定还是要要用同样的表示去表示物理场,对吧啊,但是很多时候什么哎五这些样式的表示,实际上是,它并不是和现在主流的cd系统是兼容的。
对不对啊,所以说我很多时候就是需要把呃,你如果想用这些这个呃非多项式样条,或者其他的一些新型的样条,空间的整几个分析方法去做物理仿真的话,我就需要把现有的这个nbc的几何。
把它转换成其他的一些样条表示的形式对吧,但是很多时候大家都知道,因为他们这个所谓的海数学空间,样条函数的空间不一样对吧,所以说很多时候这种转换都是无法做到,精确转换,所以说这有这有三。
就是回到了我们就原来的这个等级和和,有限元的这么一个这个逻辑的对啊,也就是说这种很多时候这种经济的转换,它是不可能的啊,那是不可,那么所以说这也是我们所提出的这个game的方法,的一个主要思想是吧。
那么所谓gift的是我们为什么叫做gift,就是他我们把它称为命名,不是geometry,就是几何无关的一个厂的一个,毕竟方法物理场的一个环境的方法,也就说实际上是在这个里面呢,啊想法也很简单啊。
就说既然你等几何是要求你的几何表示,和你的物理场,一定是要在严格的一个物理空间的,这个样条空间里面对吧,那我希望他能够把这种限制啊,把它放松,把它放松啊,也就是说我在做几何表示的时候。
它是在这个参数域里对吧,它的样条空间它定义在这个上啊,那么我在做这个物理场的时候啊,物理场的时候,我是用其他的样条形式来表示这个物理场啊,比如说我这个几何啊,外形我是用三次的或者四次的变量条。
就是我用四次的变量条来表示的,那么我这个物理场呢,我用这个二次的变量条来表示啊,应该说说不同的是什么呢,啊就是说我这个几何和物理厂的,他们的这个参数域是一样的啊,这个参数是一样的。
它的意思就是我这个参数域的大小是一样的啊,比如说都是从01,从02再乘起来是吧啊,也就是说这两个方向,就是说他们这个也说这个矩形的大小,这边最右边的这个图啊,就这两个矩形的大小是一样的啊。
但是但是也就是说在同样的这么一个大小的,一个同样的这么一个参数域的范围内,他们这个节点的划分啊,节点的划分是不一样的,也就是说我可以甚至可以允许有这种呃t节点,比如说我们这个可以在上面定义。
所谓的p h t样条或者t2 条,对吧啊,这种形式啊,你说这样一来的话,当然也有说,我的几何是定义在一个样条空间里面啊,那么我的物理场,平行在另外一个样条空间里面啊,但是啊但是我的几何或者物理场。
他们有共同的参数域,或者叫做共同的参数范围,对吧啊,那么这样的话,我再把这里这个物理层,把它复合到这个几何上面,就会得到在这个几何上面的物理层表示,你说这就是我们这个gift的方法。
它的一个基本的一个思想啊,不知道大家有没有理解啊,那美丽的同学可以等下看一下我们的ppt啊,再进一步理解,那么实际也就是说呢有了这么一个想法之后,我这样的话,我就说我的几何对吧,你可以用高次的啊。
无论是五次六次七次都ok的,但是我的要我的这个物理场啊,我还是用三次元来表示,这样的话实际上可以避免很多的一些,包括计算成本啊方面的一些要求对吧,比如说我们有了gift的方法,可以让等几何的这个思想啊。
更加的什么啊,等几何的方法更加的灵活啊,更加也就是说我们可以比较一下啊,我们前面讲了这个总体和求解的框架,和我们现在讲的这个gift的这个事情对吧,也就是说等你和他是在同样的样式空间里面。
既表示的几何仪表示无内存啊,那我们现在这个跌幅的框架里面啊,我这个物理场的表示,就是和这个几何的压力空间可以不一样,可以并不一样对吧,另外呢就是我这个计算域在你要做,比如说这个s细化b细化的时候啊。
它的计算域是要怎么样啊,因为我是要同时对几何物理场进行h e r,p循环对吧,所以它的计算与能参数化是变化对吧,但是我gift的,因为我允许两个东西分离分离可以表示不一样,虽然我都是样条表示。
但它可以分别可以不一样对吧,所以说我可以gift带单计算,有的参数的话,我是可以fake,也是可以一次固定对吧啊,只是我这个用来表示物理场的那个样条空间,来做相应的h计划和p细化。
那么包括它的这个积分的单一单元啊啊,也就是说甚至我可以在,呃我在ig里面对吧,我在ig里面呃,你说做这个积分就是我参数运用上,技术参数运用的这个节点区间嘛,对吧啊,error在gift里面呢。
甚至我就也是可以做对它的参数化不做改变,对吧啊,不做改变,而且这个时候的我的这个degree,就是我这个自由度,我这个自由度我在等几何里面都是固定的对吧,是多少就是多少。
那么gift里面我是可以根据你的呃,喜好来选择了对吧,包括这个物理场连线啊等等,这方,也就是说也说gift它会带来哪些好处,它会带来哪去,也就是说我整个物理场的这个表示啊,更加的灵活,更加的灵活。
对吧啊,特别是对于这种呃物理上他可能有一些局部的,非常呃装的一些特征的时候啊,可能我用我们这个gift的这个非常灵活的,更加灵活的框架,可能更加的方便啊,更加的方便啊,另外呢我就说刚才讲了。
说我在做这些refinement,说这些加息的时候啊,作业加息的时候,我可以只把这些加息啊,身边这些操作呢只在这个样条空间中呢啊,这是物理场的样条空间中的来做啊,还有一个呢就是说呃,实际上也就是说我。
我因为我在基于这种雅克比的这种思想的话,我上就是呃需要做一个等差变换对吧,等差变换,也就是说实际上就是说呃我非常需要计算,从这个物理参数,物理域到参数一的一个雅克比对吧,那么实际上在这个里面呢。
我也是可以把这些东西啊,因为我在gift里面,我的这个呃计算域的参数化,也说我的几何是不变的,对吧啊,所以说我可以预先的来做一些计算,做一些预处理,这样呢,呃实际上也是可以提高这个方面的这个效率。
所以说呢我们商就可以来来做这件事情,对,就是说呃第一个啊就是说我们可以假设啊,我们这边的这个model problem也可以是泊松问题,也可以,我们是我们前面的这个,讲到这个线弹性的一些问题对吧啊。
比如这个a呢,你可以是一种椭圆形的这个pd一算子啊,p d e算子,那么实际上这样一来啊,这样一来我们所有的这个框架呢,我们也是和前面一样的,就把它转换成一个wake form对吧。
就变成这种a u v等于lv的形式对吧,我们这边就不讲了,所以前面讲了很多了,也说实际上我们在等几何分析里面啊,无论在gift方框里面,虽然说我们都有一个叫nervous这么一个呃。
来表达的一个平面域对吧,平面域啊,也就这个时候我们用的这个呃呃计算域的话,他这个这在这个基函数,n阿尔法cc所定义的这么一个参数域里面,就是p就是我们的参数域对吧,然后这个m c呢。
还定义了从参数域到我的物理域,这个aega的一个一个一个,影射方面的一个影射对吧,那么像这样一来,我们这个主要的是呃呃呃主要的思想啊,这个就说我是在另外一个和几何无关的一个。
样条空间里面去定义它的一个solution对吧,推进一个solution对吧,也就是说我这边这个solution u,它所采用的这个样条空间,和前面的这个这个几何的样条空间,是不一样的啊。
但他们呢又有什么相同的参数域的范围啊,也就是说这个参数域的范围是一样的,也就是我们后面的可以看一下一个例子,看一个例子啊,也就说张伟也说呢,我们希望比如这么一个非常简单的一个,播送问题对吧。
这里面的一个播出问题,要说f呢我可以去这样去定义它啊,这样去定义它啊,实际上就是说如果啊,如果你开始的这个计算机导论,就是我的几何计算域是这个样子对吧,它控制器的分布这个样子啊,那么这个参数。
相应的他的这个呃节计算单元是什么样子的啊,就是这个样子啊,就这个样子啊,为什么是这个样子的啊,为什么是这个样子的啊,因为这个我们应该开始给你的这个i j的,它的参数与它的节点向量的分布啊,就是这样子的。
就是说他一开始呢是比较密的,然后嗯嗯对吧,从0~1嘛,那么这个节点区间就是零点点040点,200。361点是吧,你说这边的是非常稀疏的,非常稀疏,所以他这边是非常宠溺的对啊。
也就是说在这么一个呃参数域里面,或者在这一个节点向量时,对于每一个样条空间里面对吧,他是这样,也就是说如果你采用啊,如果你采用呃ig的方法的话,我最后得到这个物理数字简直是这个样子对吧。
那么我这个ig的这个相应的error,是这个这个样子就可以发现诶,他在这一块的这个误差呢是比较大的啊,是比较大的,是这样的,那么我刚才说了,如果采用我们gift的这个框架的话啊。
也是我这边想用的这个次数都是一样的对吧,都是一样的,样条的空间的次数都是不同的,是什么,它的节点向量的分布不一样啊,也就是说我在我的这个如果在gift的框架里面,我在几何大家还是用这个空间来表示。
但是物理上的用这样的空间来表示,这就是他的这个空间更加均匀对吧,这个阶段线段的分布更加的均匀啊,如果采用这种画画来表达这个这种样态,微言去表示它,然后呢你就会得到一个新的物理解,新的一个一个物理解对吧。
一个16式就这个样子啊,不然我们把它的这个error画出来啊,为什么可以画,因为我们有有精确解吗,我们在这个区域上可以算出来,这个ux的精确点,就是这个啊,看不下去,你说这样一来的话啊,这样一来的话。
我们这个相应的这个eric map呢就变成这个样子啊,就发现了很明显对吧,那我们用gift的方法所得到的这个误差,要比ig方法得到的误差呢要要小一些啊,要小一些啊,为什么啊,为什么会出现这么个问题啊。
就是因为好我们在gift这个框架里面,我们采用了和等级和不同的样条空间对吧,为什么是不同的分,因为他这个在这个新的建成空间里面,它的接待相当的分布更加均匀,更加均匀对吧。
而不像前面的那个一开始是非常挤的,到最后又非常稀疏对吧,所以说你看就是说我虽然是同样的,等于几何的表示是一样的对吧,而我的这个物理场呢,我用不同的物理空间去表示啊,不同的这个样式空间去去表。
它一个是不均匀,一个是比较均匀,那我得到了相应的在这两个解放所做的这个呃,得到了误差,得到了物理解对吧啊是不那么很明显,我这gift上是更加灵活对吧,更加灵活更加灵活。
也就是说呢我可以得到误差更小的一个解,研究实际上啊实际上就是说我们如果啊,若一些比较在证明这个例子里面,我们采用比较均匀的这种节点结构,节点节点向量啊,我们这gap的话可以得到一个呃呃比i j a方法。
比德语和方法更好的一个一个一个物理解对吧,而且我们在这个里面,我这个计算域就这个几何的表示呢都是一样的,这边呢我们也是对它的误差做了一些分析,做了一些分析,那么实际上我们这个工作在很早的时候。
包括在今天在10年前,我们就呃呃就就在做这件事情,就在做这件事情啊,但是最后这个文章应该是在18年的时候啊,也也就过了34年才才最终录用,然后发表在这个ig a m e上啊,那么实际上我们这个工作。
一开始投到这个semi啊,当时这个修士教授,他就提出了一个非常好的一个意见,他就说啊,你这个工作啊,能不能通过说我们所谓的这个呃呃patch test,pilot test。
那么什么是pttest排列太史,实际上就是非常早在我们计算力学就提出了啊,它实际上是在我们评价这种线弹性啊,或者一些弹性力学问题里面,就说行函数在不满足人性的要求条件下。
这个这种类型这种单元收敛性的一种方法啊,这也是在工程上去验证的,一个非常重要的一个呃一个手段啊,别说我们我我们所是怎么样去判断啊,你这个所提出的一种新的计算力学的方法,他是不是好的。
你说是不是有蒙古满足我们的工程仿真里面的,这个进步的要求啊,一个非常重要的就是能够通过这个分别检验啊,pytest pytest啊,那么也说总要通过这个芯片检验的,一个一般的标准。
就是说对于这种有精确解的这种编制问题,它能够保证在边界条件时间啊,积分计算啊,求解线性系统等这些布置中,没有任何误差的前提下啊,也是我们前面给大家讲的这个整理和分析,求解的框架,对吧。
包括在这个计分计算,我们考试积分求解新系统,我们可以可能啊不是精确求解的对吧,只有误差的,是通过这种迭代的方式来进行求解的,然后他总会有一些误差出来对吧,包括在边界条件4+2等等方面。
但在对于等级号来讲也不是那么精确是吧,不是那么精确,那么12点说这个时候呃,你是不可能达到近期精度的,对吧啊,但是啊如果对于但其他词来讲,有人说,如果对于这种经济点的这种编制问题。
如果我能够保证前面的这就这几个步骤里面,我没有不会产生任何误差的话,那么你提出这个方法,你的计算误差能不能达到机器精度啊,能不能达到机器精度啊,就是啊所谓的通过这个芯片检验,通过排列test啊。
还是这个意思啊,那么实际上pytest的实在很多,在一些计算力学里面啊,啊是一个非常重要的一个问题,也有一些相关的一些文献啊,那么所以当时修辞教授啊,提出给我们提出了这个意见之后呢。
我们也是啊去研究了这么一个问题啊,这这确实一个非常重要的一个问题,他们也说我们后面gift啊,怎么样能够应用于这个实际的工程人员,对吧啊,能不能保证这个呃计算的精度啊,那么我们确实需要去做这件事情。
去做这件事情啊,也是说呢我们也是实验了一下啊,因为时间关系我就呃就简单讲一下啊,就在那我们上最后发现啊,这个gap的方法,在大多数情况下都是可以通过分片测试的啊,我们也是通过一些例子来验证了啊。
比如像这个对于这种均匀的这种element对吧,或者呃呃对于这种非均匀的一个是cpa,一个cpp啊,还有这种它的扭曲比较大的这种情况,我们都一一做了验证啊,做了验证我们就可可以发现啊,可以发现。
还有这么一个结论啊,我这边就直接说一下这个结论,就是像我们是对这种几种参数化啊,c p a c b c b c都做了一些验证,就可以发现啊,因为我这边是这个我的几何表示,和我的物理场的这个空间呢。
都是采用不一样的是吧,我可以让他们的比如说次数相等对吧,或者建设不同,或者或者所谓的这个呃,但是这些方面嘛我都可以来设置对吧,一个次数大于它,一个次数小于它对吧,一个是物理层,一个是几个三分化对吧。
也可以让它相等对吧,那么像我们可以发现,对于这种规整的c p a c b啊,比如cpa呢它是我用的这种均匀的啊,cp呢我是用的非均匀的这种阶段区间,对吧啊,但是还有c不c呢,还有这种比较扭曲的这种嗯。
这1p我们可以发现啊,对于cpa和cfb,我们是可以通过tch test啊,通过这个分别分别测试,你看他这样最后都达到了四的-16次方,14 -15次方对吧,也就是说实际上他已经呃是嗯。
基本上可以达到这种机器精度啊,机器精度好,对这种呃次数相等,这这这种情况啊,它是可以达到基精度啊,但是对于其他的一些情况啊,他是达不到这个这个这个机器进步啊,达不到这个机器进步,实际上就是说这。
我觉得这次也是我们一个非常重要的一,个发现啊,发现最起码我们是对这个修斯教授啊,提出了他所提出的这个问题啊,做了一个回应吧,做了一个回应,也就是说我们有这么一个结论,第一个啊就是说如果当你的这个节点。
但这个数据是一样的话啊,是一样的话,就说我是同样的表示同样的g啊,那么实际上也是你最后通过这些,多样式的组合次数,如果是他还是可以通过这个pytest啊,通过这个测试啊。
但是如果你在这个节点数据是不一样的啊,也就是说你对这种奇函数是允许不有是吧,也就是说呃也是可以通过这个pytest,但是如果你在这个里面啊,也是这个里面也是参数化是非常差,参数化非常差,非常扭曲的对吧。
所以大家再走啊,也就是说上市对于这种不同的基因啊,不同的这个次数啊啊,你是通过参数化的,也就是说只要你这个参数化的,通通过这个分辨测试,也就是说只要你参数化不是那么的差啊,不是那么的差。
它上还是一般情况下都可以通过这个patch test啊,这些test,所以呢我们最后也可以就是说呃,看一个看一个例子,就是说啊也说实际上我在这个里面,我甚至可以这样来做对吧。
比如说我的计算域也是给你的这个几何啊,你可能是这个numbers表示的,在number是空间里嗯,但是我最后得到这个solution field,我甚至可以不用nervous对吧。
我们可以采用一些有着更好的性质的,一些样式的空间,比如说像这个t样条啊,或者ps 4样条,他们有哪些好的性质啊,就说我可以做一些局部的加息的一些操作,对吧啊,你说这样的话,我就可以在保持原来的计算域。
那是空间不变的情况下,我在让他的这个呃,来表示这个物理场的样条空间里面,来做路口内发展的对吧,也就是我最后的这个局部加息啊,我只是在这个物理场的空间中呢,来来来进行啊来进行。
所以说这样的话我就可以来做这件事情,就是对吧,我就可以在呃,你的几何还是在nbs的样条空间里面啊,那么但是你的物理场是在这个p4 t的,这个样条空间,这样的话我就可以实现啊。
在这个物理空间里面来实现对呃这个局部加息,而不改变你的几何啊,啊这边像我们这边我因为时间关系我就跳过的,基本思想呢就是这样子啊,那么我们可以看一下例子对吧啊,也就是说实际上就是这边就是。
我们要也是研究这么一个问题啊,也就是说它实际上就是有一些局部的,这么一个圆环对吧,但他那会他的这个物理点啊,还有一些比较尖锐的一些特征区域啊,然后呢我在这几何数那不是表示。
但我物理场的时候pc样子要表示啊,也是,所以这边呢我就可以用一些火焰舞台估计,或者精确五,因为我这边可以有个精确点嘛,所以我可以用精确的这种呃,误差估计的一些方式对吧来做啊。
那么也就是说我的我的几何和我的物理场,都有一个共同的参数域的范围对吧,就是从这儿到这么一个大的矩形,但呃我一开始划分呢就是这个样子对吧,比如说你一开始这种在这个上面来。
得到了这个gift的这个点可能是这个样子,这边是它的物理层,就是我现在物理场是这样的对吧,现在我怎么样呢,哎我把这个物理场的它的误差啊,它的误差在它的参数域里面画出来,就是这个样子。
所以我们叫做gift error on the permeimax,三,也说我是在这个物理域中的这个误差的,一个这个颜色颜色是这对吧,唉我为什么这样画上,也就是说通过这样的话。
我就可以知道我对哪些区域啊,我需要进行局部加息了,对不对,而且我这个局部加息,不是在几何上去进行加息的,不是在说的什么参数域里面来进行具备加息啊,所以说呢,还有也就是说我这个这么一个颜色颜色呢。
就通过它去引导在我的参数域名这个局部加起,对吧,所以说我就说如果啊,我就可以,现在我就做了一次局部详细操作,对不对,然后在这个局部加减操作上,我在这么一个样条空间里面啊。
把它作为我的这个物理产生压强空间吧,我在上面来进行的gift的一个求解,都会得到一个新的新的一个solution是吧,那我再换一下这个slution啊,它的相应的这个gift error。
这个样子在参数域里面对吧,发现这也比较比较大,我在那就在这些红色的这些区域,我再进行加西北啊,然后这样一直下去就发现对吧,这是我的这个我最后得到的这个呃,实用性越来越接近我的这个真实的这个精确点。
对吧啊,啊这是最后的最后的这个呃局部加息的结果,然后这是最后的这个error的题目,这最后的这个思路是,这个思路已经非常接近我们的这个精确解啊,这些简单也就是说可以大家可以发现啊,就是说啊。
为什么我要把这个gift的这个误差,画在这个参数域上,也是它可以用这个东西来引导,我的局部加一操作对吧,就不在意操作,这是一个非常直观的一个做法,也是非常容易理解对吧。
啊这边呢我们也是对他的一些收敛的结果,来进行了一些做一些进行展示对吧,也可以发现这个gift的方法啊,特别是采用这种pc上图的方法,就是这个收敛的会更快一些,也就是说实际上就是说我们这边呢。
主要给大家介绍的这个gift的这个思想啊,gift的这个思想啊,比如说大家首先要知道对吧,它的基本思想是什么,就是说哎我的几何和和我的这个物理产的,样条空间可以不一样,但他这两个呢确实有共同的参数域。
共同的参数域啊,也是有共同的这个参数域的这个范围对吧啊,那么我在这个参数域里面,它你可以定义这么一个样条空间,按照这种节点的划分对吧,当然你还可以用这种节点的划分,来定义一个新的样条空间啊。
那么这个样子空间是来定义几何的,那么这个样子空间来定义物理场的,最后你把这个几何物理场把它组合起来对吧,就可以形成一个呃,在几何上所表示的一个理财啊,而且在我们这个新的gift的这么一个框架下啊。
我可以有哪些好处对吧,一定它变得更加灵活,另外一个呢就是我可以实现活动,numbers是来表示几何,但是我用其他的一些具有优良的性质的样条,来表示,物理上占了整个的这个框架呢更加的灵活,在很多时候呢。
我想也是有它的这个用武之地了啊,用武之地的,好的那我们今天的这个课程的基本内容啊,就到这儿啊,主要是给大家介绍了呃,记等几个分析的线弹性啊,问题的求解框架,应该和我们上次课讲的这个波声问题啊。
啊应该有非常多的类似的啊重合的一些地方啊,啊大家呢可以通过这两个问题来呃,深入理解一下我们这个等你分析的基本思想,我想到最好的,大家还是能够试着去实现一些呃一些框架对吧,去解决一些问题啊。
然后第二部分呢给大家介绍的这个gift,那大家会觉得大家要理重点理解一下这个gift,他这个思想最终的呃这个呃和这个艾灸对吧,它有哪些不同的地方,有哪些不同的地方会得到哪些好处啊。
我想这样弄就可以解决我们这边的这个呃,有些问题啊,但是大家可能对这个问题啊,可以有更深入的一些了解啊,好,今天呢好像这个呃没有出现太大的这个延迟啊,那我们今天的这个直播授课就到这儿啊。
GAMES302-等几何分析 - P8:8. 基于等几何分析的超弹性问题求解及等几何配点法 - GAMES-Webinar - BV1dM4y117PS
好我们正式开始,没上次课给大家介绍了这个基于登记和分析的,线弹性问题的求解框架,以及包括这个gift的方法,那我们这次呢,主要给大家介绍这个整体分析的超弹性问题啊,主要是一个非线性的问题的求解框架啊。
并给大家的简要介绍一下等级和配件,那么我们这个超弹性问题,它这个超弹性是体现在这个材料上的,其实我们很多的这个真实的这个世界中啊,就是说很多的这个材料啊,包括一些受力的啊,一些条件啊。
这些啊实际上都是非线性对吧,也就是说我们想要前面的呃,上次给大家讲讲的这个呃线性的这个问题啊,我们基本上还是呃做了很多的假设啊,也就是这个在真实的世界中是很少碰到对吧,也就是说实际上就是说。
实际上在真实的这个物理世界中,我们碰到的大部分都是非线性的问题,那么他对于这种非线性问题的求解,应该也是一个非常重要的问题啊,因为很多的场合里面呢,可能用这种非线性的思路啊去做啊,更加的对。
更加的多对吧,那么所以呢我们这次课也是来给大家讲一讲,咱们在这个等级和分析的这个框架下,来求解这些超弹性的问题啊,或者这个非线性的这些问题,那么另外一部分呢是关于这个等级和配电法啊。
像我们前面给大家介绍的这个等几何的方框架,都是基于这个加对经方法对吧,那加对经方法一个非常重要的,就是我需要把一个问题的强行式,把它转换成弱形式,把它转换成弱形式,那么实际上也就是说这种转换啊。
因为我是两边做了一下积分对吧,但我从小在中分部积分啊,这个然后去做啊,那么这样转换下去呢,上网也就是说我就可以啊,哎由于我们这个一些样条啊,这些基函数的性质,那我们就可以把它转换成一个线性方程组啊。
一个大型的线性方程组,而且因为这些基函数的一些性质,只要最后得到的,因为他就是局部性嘛,最后得到的伤是一个稀疏的一个方程组对吧,那么实际上也就是说这样一个稀疏的防空值,是非常容易求求解对吧啊。
这是这一套思路啊,然后当我算积分的时候,还是用什么高斯积分法对吧,所以说我需要在一些高十点上啊去求职就可以,那么实际是在这个里面啊,还是是会呃会带来一些问题,就是它主要的就是效率上的问题对吧。
所以说这次我们为什么呃,后来引入了这个配点法啊,也说了配点法呢,它是就是说不需要从这种强行驶当中,弱形式的这个转换啊,更加的直接,更加的直接,效率呢效率呢也相对比较高,效率呢也效率比较高,那么上这个呢。
就是我们所谓的这个呃等级和配电,那么首先呢给大家介绍一下啊,第一部分啊就是这个啊超弹性。
也就是非线性问题的这个求解啊。
那么刚才讲的实际上是对于我们这种呃,几何的非线性问题啊,通常是发生在很多的实际场景里面对吧,比如说像一些大位移啊这种,还有这种旋转的问题问题啊,就是比如像一些电缆啊啊这种膜啊。
或者这种壳的铁结构的一些元件里面啊,实际上是我们经常会碰到,经常会碰到那么什么,也就是说怎么样对这些文件来进行这种呃,物理法则啊是一个非常重要的问题啊,那么还会我们会涉及到一些呃。
有有限形变的一些问题啊,也就是说实际上这个里面呢就是一道大变形,对吧,你说不仅叫胃也很大,而且这个相应的应变也很大,实际上也就是说在特别是一些金属成型啊,或者一些这个汽车轮胎的一些力学。
一些接触问题里面的啊,我们都可能会发生一些额,有限变形的一些问题啊,有些变形的一些问题,那么另外一个就是材料的非线性,材料的非线性啊,那么实际上这个里面材料行为的特征,它实际上就是说啊我没事。
现实世界中各种各样的这种材料对吧,各种各种各种各样的材料,他们之间啊,比如说这个这个应力和应变之间的这种呃,非线性的响应函数,或者它的一组的演化方程啊,招式啊是是相对来说是比较复杂的。
也就是说我怎么样去呃,像这种粘弹性的一些聚合物啊,还有一些强势函数性的一些材料,我怎么样去描述他们之间的一些材料,非线性的关系啊,我们也有一些数学模型对吧啊,去描述它,这个也是非常重要的。
还有一些呢就是比如像这些啊,稳定性的一些问题啊,也是这些稳定的这个问题呢,实际上就是来源于我这个平衡方程的一些,不稳定性啊,比如像这种翘体的一些屈曲行为,贯穿的一些行为的啊,那么实际也就是说这些呢。
当然就是说它的相应的力学方程都比较复杂,此外呢除了前面的一些和几何啊,形变啊,材料啊稳定性相关的一些问题之外,我们还会有一些,就是像这种非线性的一些边界条件啊,就是它的边界条件可是最先进的啊,比如说呃。
以这种边界产生的非线性为特征的一些问题,还有他比如两个物体之间的接触或者变形,相关的一些载荷相关,也说我们很难用一个线性的一个关系,要去描述他们之间的这些边界的一些相互关系,对吧啊,边界条件啊。
这个也是标准,另外一个就是耦合问题,耦合问题,比如我这个流体和固体的酒啊,就像我们的心血管的,我用这个血液和我的心脏瓣膜之间,他上这个就是我们的一个流过耦合的,一个问题啊,典型的一个牛股耦合问题。
那么也就是说在描述这种不同的这种物理场之,间在相互作用的时候,我们也是通常会碰到很多的这个呃,非线性问题啊,非线性问题,当然我们这边所谓的所介绍的,就是这些非线性的现象对吧,非线性的现象。
实际上就是说我们主要是呃有几何形变,材料稳定性,边界条件啊,还有一些呃不同厂之间的相互作用就是耦合流,固耦合问题啊,这些等等啊,那么实际上对于我们来讲非常重要的啊,非常重要的。
实际上是我们这边的主要是关注的是什么啊,材料的非线性,材料的非线性,也是我们这边的所谓的超弹性的一个问题,那么也就是说这种超弹性的问题上,是他点的是一种非线性的一种弹弹性问题,对弹性力学问题。
好像我们这边的主要关注的就是是材料,非线性中的一个问题啊,他是这是最简单的一个问题啊,那么实际上就是说这类问题的求解,实际上和我们前面讲的线问题是类似的啊,也是总体的框架上是类似。
就是需要进行离散型单元分析啊,这个这些刚度矩阵啊,还有它的整体刚度矩阵的这个装配啊等等啊,但是在这个具体的处理里面的,还是有些不一样的地方,特别是我怎么样把这种呃材料的非线性啊。
把那东西这个东西考虑进去,所以我们这边呢会来给大家先介绍这么几个呃,方程,第一个就是,比如像这个本国方程是什么样子的啊,也就是说实际上对于这个现代性问题,我们的应力和应变之间通常是线性对吧啊。
但是对于我们这个超弹性和非线性弹性的,这种介质啊,这个应力和应变之间啊,它呃这个不再是这种线性关系啊,也说我们实际就是可以写成这种形式啊,西格玛等于d s,当然也可以选择这种增量的形式。
这种微分的这种形式对吧,也就是说实际解说这里的d s和d t,他分别就是我这个呃,相应的这个弹性材料取证啊,实际上这边的元素,python是应该是一个应变或者硬币的一个函数啊,也就是说他们之间呢。
就不再是纯粹是一个什么啊线性关系了啊,线性关系,这也是我们这边非常重要的一点,非常重要的一点,就是说呃从本构方程上我们说呢,它就和这个现代性的问题啊,就是本质的区别,别说如果我们要描述这种物质的形变呢。
我们也一般来说产生会这种形变梯度的,这么一个概念啊,商也就是说我从一个物体x dex,然后经过一定的变形对吧,你可以看成是一个弹性的一个形变,经过一个某一个时时间段对吧。
它就变成了哎这个大x这么一个形状对吧,这是一个超弹性的一个变形,那么实际上也就是说呃这个图呢,实际上就是我们描述了物体经过时间,一个时间段t的一个状态的一个移动,然后呃他这个是怎么变形的对吧。
也就是说我们物体质量,关键标识的是一个大x对吧,然后这是表示它的一个初始状态啊,那么当前运动的时刻呢,就是我们这个mt成为当前的这个boss啊,那么实际上在这个里面呃,它的上就是这个隐私啊。
我可以用一个fifi表示对吧,也就是说我们说所以说这个物体的位移矢量场,用它也是它整个轮廓是怎么变的,我上去就是写成x减去小x减去大x对吧啊,因为这个fix t是什么啊,是我当前的呃这个一个影射嘛。
我当然也可以写成这种形式,看这种形式啊,fxt也说fa是关于x和一个时间t的一个函数,那么这个时候呢,我们需要引入一个所谓的形变梯度的,一个概念啊,它上就是我物体的当前坐标,也就是小x啊。
它相对于初始坐标x大x的一个片段,对吧啊,那么很明显我这个小x对x的偏导对吧,我怎么求啊,还有这样我们可以看到呃,哎小x应该等于什么,应该等于大x加上啊,又dex对不对。
又是关于dex的初始的状态的一个函数啊,你说这样的话,小x对大于x偏多,所以说他肯定也应该等于一个,因为我们这边一般都是一个一个张量,一个专业,一个是0i加上啊又对x的一个偏导对吧。
那么这个东西我们大概也可以写作,也就是说所以呢这就是我们所谓的这个f,就是我们的什么啊,形变的梯度对吧,形变的梯度,那么商这边呢就是我们这个呃,其中的这个形变梯度的这么一个概念啊,所以大家还是要知道啊。
这个比较容易理解对吧,那么也就是说我们常见的这种仓排线的,这种材料模型啊,通常是由这种应变能的这个密度函数,来定义的啊,那么这个应变能的密度函数,它实际上描述了我们这个应变和应力,之间的一个关系啊。
好我们说这个因为面对密度函数,它通常是我们前面的所谓那个形变,形变梯度一个函数,就是这个c和f的一个品一个函数对吧,那么所以我们可以后面可以看到啊,就是说这个应变密度函数实际上就是说啊。
就是定义了我们各种不同的材料模型,我们后面可以看到,它有各种不同的一个函数表示,那么实在这种个性同性的一些材料,我常用表情呢,这边有这么几个标记,好啊,这个大家我觉得还是要了解的啊。
第一个呢我觉得就可以使用这种克星应变,c的不变量表示啊,另外呢还可以使用这种主打r c的,各种轴方向的一些表,兰分之120,兰博三比二四,另外也可以可分离的一种形式表示啊,f我们刚才看到的就是。
我们上上一页slide介绍了这个芯片梯度,对吧啊,当然因为它是一个矩阵嘛,我们实际上是可以呃求它的行列式j啊,j就是这个形变梯度这个矩阵的行列式对吧啊,那么这个c呢是所谓的科学应变啊。
然后使用这个呃形变梯度计算的这个c呢,他应该就是你f t这个f的转置乘以f啊是吧,然后这个科学不变量啊,那么实际上就是我们这个矩阵c的,有三个不变量对吧,三个不变量。
那么实际上就是矩阵c的这个它的g 19,它的这个矩阵c的,这个应该是对角线的元素加起来对吧啊,这个举证的这个积累这个概念对吧啊,然后还有第二遍,第三个不变量啊,那么包括它的行列式相等。
那么这个g呢它就是所谓的格列应变,他应该等于啊,比如说我这个形变梯度的转置成实际就是c点,就按1/2 c一点隔离一面这样点啊,那么主主拉伸我们这边number 1 number 2,那么是什么。
就是行为形状记录这个矩阵经过svd分解啊,说这个矩阵分解之后,这个对角矩阵的对角元素啊,就是这里的number 1 number 2 number 3啊,也就是说我们通过这个来着。
实际上就是大家可以理解,就是其中的一些一些定义吧,或者一些一些记号,这样也是都和前面我们这个形变梯度的,这个这个梯度啊这个相关的对吧,对有的同学说好像三菱要讲过啊,应该是物理仿真那块。
应该是讲过一部分这部分知识的,嗯说明这个同学学的还是比较用心的,那么商业要收我们这边有了这些呃,这些概念之后呢,我们实际上是可以定义各种不同的呃,相当于在这个超传性材料的一些模型啊。
这边是我们列出了四种比较常用的,比较经典的呃,超弹性的材料模型,第一个就是这个分类vk模型会简称啊,vk模型啊,那么他这个fi啊,就这个f和这个这个材料模型之间的关系,是这样是这样定义的啊,这样定义。
这边具体我就不做解释了啊,像这个前面的一些呃name的记忆啊,这些像都是都有个定都有定义了是吧,那么包括这个n x模型啊,这个是应该是比较常用的一个模型啊,那么实际上就是因为它是这样上来定义的。
一个一个材料模型啊,还有这个mi啊,the威力模型啊,他从这样这样来定义,把这个og og og模型啊,他这样来定义也是这边这个图呢,它实际上就是说描述了我的第一个的这个,pk的这个压力。
这个p这边压力啊和他的这个变形梯度f之间,他们之间的关系变变的关系对吧,就大家可以可以看到诶,像这个,如果是线性的对吧,如果是这个旋转线性的为它,这就是线性的关系啊,而我们很多的这个像其他的材料模型啊。
这个模型啊,vk模型和这个n s模型啊,包括这个修改了这个aa什么型,他们和这个压力和他的这个deformation,和这个变形梯度,它们之间的这个呃形变梯度它们之间的关系啊,这不是一个线性关系。
而变成一个呃非线性的一个关系对吧,所以说就通过这个东西啊,我们也是可以理解啊,可以理解啊,它具体的这个形状曲线是什么样子,就我们前面所讲的是本构的方程对吧,本构方程啊。
那么我们下面看一下这个所谓的几何方程,那么几何方程呢,它想就说本构方程式是描述什么的啊,是描述这个形变和应力他们之间的关系,也就是他们之间应该是一个非线性的一个关系,对吧,那对于几何方程来讲来讲的话。
呃,商场是来描述我所谓的这个,形变和位移之间的关系啊,曲面和位移之间关系,那么实际上是在这个线弹性问题里面啊,这个e系统它就等于必有是吧,然后b等于l a,这个这个这个呃是我们在上节课给大家介绍的。
然而在我们实际证过程里面,像这个g就是我们的各类应变,就刚才是不是它是不是这样的,它应该等于1/2,这个斜面梯度的转置乘以斜面梯度矩阵对,然后减去i对吧,这个东西啊,然后待会可以写成这种形式啊。
比如说杀在线性问题中,我们是使用了这个工程的这个应变ip啊,它三个实际上是格林应变界的一个线性部分,这个g啊,然后他忽略了这个应变的非线性部分,基于这现场性里面。
而我们在呃上次如果你是小形变就是问题的话,小小前面问题的话,实际上这个就这个基因的部分,是可以忽略不计的啊,但是如果你是一个大变形问题啊,那么这个这部分啊就可能不能忽略啊,不能忽略,这是几何方程对吧。
当然另外一个还有我们所谓的这个呃平衡方程,平衡方程,所谓平衡方程反而是非常关键的对吧,也就是说实际上你这里面需要满足一些,质量守恒的一些东西啊,也就是说我上我们在这种构型中。
我们需要建立一些局部的未分平衡方面的,一些强形式,强行式啊,也就是说啊我们从对于任意的一个时刻,t物体从一个状态到另外一个状态对吧,从,西格玛到这个cvt他需要满足一个质量守恒,质量守恒啊。
也就是这么一个关系对吧,比如说肉类呢是我们的主体,初始的一个质量的密度,然后肉呢是我物体当前的一个质量密度,因为他们这个时间应该是满足一种关系啊,那么当我们通过一些动量守恒的一些定律,是定理。
我们实际上就可以得到这么一个东西啊,也就说实际上也说我这个物体啊,受到的所有的外界的大小,应该等于这个物体线,动量对这个时间的一个导数啊,比如说我们通过这个呢我们就可以啊。
我们就可以推导出这么一个物体的平衡,这个标红的,这个上次我们呃在我们整个的呃线弹性问题啊,这个啊超弹性问题里面,非常重要的一个平衡方程,当我们后面求解呢,也是基于这个东西啊来进行求解。
但是他他需要满足一定的这个边界条件对吧,一定的边界条件,就是说无论你说这个b0 是什么啊,b0 是什么,就说12是物体,每每每单位受到这个体积力,然后这个呢右上面两点就是加速度啊。
右下面一点就是速度是吧啊,这个沙子后面微积分里面的这个概念是类似,对啊,这个u就是就是那个位移嘛对吧,位移的e导数就是速度啊,两阶导数就是加速度,然后对,就是说还有我们有一些边界上的一些固定的。
一些位移的条件啊,然后呢也有一些就是每单位面积,他受到的一些牵引力啊等等啊,包括这个一些东西是吧,那么上也说这个东西啊,上次我们后面的一个重点需要研究的啊,一个所谓的物体的一个平衡方程。
那么根据上面这个东西,实际上我们就就构造出了这么一个所谓的啊,也是根据这个弹性力学的发展,还有我们动量守恒定律,我们构建了相应的物体动力学的一个方程,的一个形式,对吧啊。
就这个那f就是我们的变异梯度对吧,然后s像我们这边是根据一些东西,我们可以有不同的一些有,因为因为我给你前面不再介绍了,这四种材料模型吧,你对于不同的材料模型,我这个s呢可以有不同的一些表达式啊。
啊所谓这个比如这边s它是比如说就这一个,对吧啊,就这个飘了,克里克服应力张量,然后它三个层面就是我们这个能量密度函数,对这个格林应变的这个导数啊,也就是说我们商也是可以把这么一个东西啊,根据变分原理。
然后进行分部积分对吧,然后得到一个等效的一个积分的一个week form,然后三就会得到这个啊都会得到,而且我们根据相应的这个能量密度函数,就我们前面定义的各种呃材料模型。
实际上我们也是可以求出相应的这个大s,它等于多少,那么具体的推导我这边就不讲了,就这个基本的思想呢,就是这个样子,但是我们刚才不是得到了这么一个等效积分的,一个week form是吧。
然后我们后面实际上就是说哎,怎么样来求他了啊,怎么样来求他了啊,因为我们这他肯定是呃是一个非线性能对吧,因为这边呃就u的二角头就又和u相关的对吧,所以他肯定是一个非线性问题啊,也是我们三。
现在我们需要在ig的框架下来进行求解对吧,啊也是我们怎么样把这种联系方式进行这个呃,根据i j a的方式来进行进行求解对吧,也就是说在呃大家都前面我们都讲过了对吧,然后在这个等级和里面啊。
它的计算单元是什么啊,这就是我的这个这是我的计算域对吧,我的物理域,然而这是这个这边是物理域的参数域对吧,然后这个参数域里面我沿着右方向和位方向,我都有一个节点序列啊,节点序列。
那那个节点序列有节点区间对吧,比如这边是一个呃右方向的阶段区间,这边是v方向节段区间对吧,那么商业说在这个我我就会这两个方向,它就会形成一个小的方块对吧,那么这个小的方块就是我的啊,在这个计算域中的。
它的参数域里面的这个这个节点区间对吧,那么它在物理意义上啊,就对应了这么一小片啊,我说这么一小片高阶的单元,就是我们的i j里面的计算单元啊,也就是说双方就是我们这个呃在等你和框架下。
我们基本的离散的思想呢,呃就是单元离散的思想就是这样子对吧,也就是说像我在各种表示对吧,比如说第一个位移,那我肯定要用这个呃,呃样条numbers的这种形式来表示做ai的,就是我的这个基函数对吧。
右翼就是我的这个控制的呃,系数控制控制的向量对吧,然后我这个斜面的梯度啊,我当然也是可以按照我们刚才说的,就是i等于什么u x对x的偏导是吧啊,那是不是这么这么一个东西啊,我就可以让来求对吧。
那么各类型面对吧,就是我前面讲的这个g它应该等于什么,bl和bn两项加起来嘛,对吧啊,那么b l b n是什么东西啊,我到那就是根据前面我们这个格林应变的,这个g的定义来求他,还有其他的东西。
那么实际上也就是说我们根据这种等几核的,离散化的这种单元离散化的思想啊,还有前面得到的这个平衡方程的这个等效积分,的这种弱形式,然后我们就可以得到这个平方程在ig框架下,它的这个离散化的形式啊。
就是这样啊,就这样哦,也就是我们实际上就是说可以啊,这边a i n j都是g函数的a i a,那么三连时我们都可以就可以把它写成,如果把这一项现在就可以写成m乘以u,那就是加速度对吧,然后加上r这块啊。
等于f为f,那么商也说我们商如果是净利问题的话啊,净利问题的话,呃这个我们说的是呃,呃一般来说这个m的m都等于零了对吧,那二呢就是形变引起的这个内力不是外力对吧,所以说如果你减时间相关的问题。
基本上就是这个样子啊,也是啊,如果是解这种动力学问题,就是这样的,但如果解听了一些问题,可能就只有这两项啊,那么实际上也就是说,我们如果把这种惯性力部分舍去的话对吧,我最后就是什么啊,就是二等于f嘛啊。
所以说我实际上就得到了就是这么一个东西啊,就得到这么一个东西,也是我最后求除了这个本质关系,他应该就是满足啊,根据这个东西来来推导出来,我们就是s它应该等于d g啊,这种。
也是我们代入到这个离散的平衡方程里面上,我就可以得到呃,这么一个开了一个类似于刚度矩阵嘛啊,就知道ko了,他应该等于啊,这个东西它也和我们现在也是一样的对吧,也就是说虽然这边的这个bt啊。
那个b它都是位移函数,但它实际上这两个形式不是不一样的,所以说12 10mm线弹性里面的那种问题,是不能够呃,简单的把它规划成一个线性的一个表示啊,啊你说它本质上啊。
这个方式它是一个非线性的一个一个东西啊,而且这个ko啊它是一个非对称,也是对于我们现代性里面ko,它也可以是一个对称矩阵啊,也就是说对于这么一个非线性的一个问题啊,我们就可以用这个牛顿迭代法。
牛顿迭代法啊,这个很多那个同学估计都比较熟悉的对吧,你说他实际上就说呃,来求解这种非线性方程的一种数字求根的啊,并不是解析求根的方法对吧,解析求根,就是说我通过这种球员公式就给他求出来是吧。
但是对于复杂的问题,我可能不能一下子把它表示出来,那我就用这个牛顿迭代法来进行迭代求解啊,人家说实它就是可以把这个做一个它的展开啊,也就是说它的就是说需要在计算时要求的,含它的啊函数值。
还有它的这个一阶导数值啊,然后先用就沿着这个梯度方向下降对吧啊,然后就可以得到方程的导数的形式啊,也是所以说呢我们就可以,因为我们要求的就是呃对于他这么来求嘛,让它等于零对吧,我们把这个u求出来。
所以所以说就是我们,所以呢要求它的一阶导数了,所以我们得求一下,对它求一导数的话,上,我就可以得到一个所谓啊切线的刚度矩阵是吧,啊,那么商也说这个k t u啊,发等于什么东西啊。
所以说是呃并对它求一下导数就可以得到这个,常言说呢我们上可以把它分成两部分,一部分就是这一部分,还有一个就是这一啊,那么第一个部分呢就是也可以把它按照呃,把d s这个东西改成dg啊。
g就是我们前面定义的那个格林性面目啊,然后12点这样的话,我们就是就是进步的,就可以把它写成一个k dd u的这种形式啊,那么实际上就是说,如果把这个b等于bl加bn进行展开。
我们就可以把这个bd相应的把它给算出来,它具体的表达式是什么样子啊,就稍微复杂一点啊,但是我是rus可以算的啊,你说实际上就是在刚才展开的这一部分,他的第一部分这个ko对吧,他就这一部分对吧。
它算是一个小位移的刚度矩阵啊,也就是说在我们先谈性里面,它只针对这一项啊,只有这一项对吧,那么后面的剩下这三项对吧,剩下这三项他是和我们这个大转型相关联的,高度,基本是在我们在这种超弹性问题里面嗯。
所需要的啊,所需要的,那么实际上对于这个kt的这个第二项啊,kt的第二项就是说,就这一项了对吧,这一项啊,那我们怎么来做啊,也是类似的啊,啊我们实际上就这边呢就是我们这个bl它。
我q他三就是和我的位移是没有关系的啊,所以说我这样就是可以把它推导出来,推导出来,然后我这个m呢就可以把它算出啊,双上线的这个k s啊,或者上一页的演示把它给算得出来,所以大家可以后面再消化一下啊。
可能一下子确实嗯公司有点多啊,公司有点多,也就是说实际上我们根据前面我们要算的,这个k t,它就等于啊前面这个kd加上这个k s是吧,那我们这边偏紧的,把它的算法都呃怎么求解都都都列出来啊。
也就是说所以我们要进行要算的是什么,kt等于等于零,或者说要求它的根嘛对吧,三就是牛顿迭代款的,就我先呃设定一个初始的六个初始啊,初始值对吧,然后把这个kt呢组装起来组装起来啊。
然后呃求出相应的偏偏移量,它应该就等于我们这个东西是吧啊,然后求出来之后啊,我们家建模在再进行迭代嘛,啊也就是说我先固定一个量,是先固定某一步,然后再求下一步再求6n加一啊。
那么说我要求的主外乎就是我这个偏移量,就我这个呃德尔塔u n是等于什么东西啊,那我下一步上也是在拖求什么德尔塔u n加一,我再去算一下u n加二的啊,我向后面就重复复好,我这个234步。
那我什么时候截止呢,对吧啊,就是我达到一定的这个啊迭代的部署对吧,或者达到一定的精度,然后我就可以把它呃停止了,那么实际也就是说初值呢,实际在这边也是呃非常重要的啊,我们这边一般是实数值是零的啊。
那么所以就说怎么样能够找到一个更好的一个,数值设置的方法啊,也是非常重要嗯,所以说我们总体来看,就是说我们在来用我们等几何的框架啊,等几何框架来求解这种超弹性,那精力问题啊,而不是动力学问题对吧。
动力学呢实际上就是最后是随着时间相关的啊,时间变化的一个问题对吧,我们现在还只是一个经济学的一个问题,对于这种经济学的这种问题啊,他怎么有框架是什么呢,啊也说比如说你可以一开始输入一个呃。
烟台的一个几何模型,你可以是二维就是曲面模型对吧,三维就是体的模型,然后你定义相应的这个材料的参数,还有它的一些边界的一些约束啊,然后对它的这个单元进行加加息对吧。
可能因为你刚原来你初始输入的这个模型啊,可能他这个自由度不够对吧啊,可以对他用这个插入节点啊,升阶啊啊来进行增加自由度啊,然后你设置你最后的这个收敛的误差,因为这个东西会涉及到呃,就是你迭代多少次数嘛。
就是你这个说花多少时间对吧啊,然后你设置这个收敛误差,还有这个初始的点啊,初始的这个位置,然后下面呢就是怎么样,哎我要计算这个你的切线刚度矩阵,还有他这个参杂的初始化啊,来来做这点问题啊。
那么来来后面来便秘便利,我所有的这个面片的单元啊,就是我那个不是把error问题分成一些呃,呃呃一些那个小的这个高阶的一些面片单元嘛,这些都是你的计算单元啊,然后我组组装这种单元的切线的高度矩阵啊。
那么啥也说,前面这个切线长度矩阵初始化,这30值一般都设成零了啊,它的元素都设置成零,就包括参差对吧,然后每个单不带对,每一个单元上,后来我组装相应的这个单元呃,切线的这个刚度矩阵。
然后计算这个残差向量对吧,然后呢再组装通过这种单元矩阵的映射对吧,然后组装相应的全局的矩阵啊,然后进行这个求解啊,嗯你说是呃如果啊还没有便利好,那么那么大你继续组装,继续看。
如果把所有的这个呃计算单元我都办理完了啊,下面我就求解相应的这个线性方程,然后把那个位移的这个增量求出来,对不对啊,然后这个周量是不是收敛没有收敛,我在做下一步迭代嘛啊在最大的那个切线高度。
计算机初始化提取,在便利啊,再继续计算,然后再下去,就也就说就这个迭代呢,主要是体体现在这儿对吧啊,停在这啊,也就是说如果收敛了啊,如果收敛达到了你的这个收敛误差了啊,满足你的收敛误差要求了。
然后后面呢我就可以输出分析的结果,然后就结束是吧,也就是说这边的商业就说我们是怎么样啊,大家可以看到我是上,就是还是一个基本的思路是什么,就是把非线性的问题转换成了线性的问题啊。
转换成了线性的问题啊来说,但但是我这边会有一个每一步会有不同,以前就说我是不需要计算什么啊,这个切线的高度矩阵的对吧,商务也说,这边也是和我们前面那个线弹性问题啊,不一样的地方呢。
一个主要的地方就是在这里啊,一个是要计算这个切线的刚度矩阵,另外一个呢就是我需要进行这种迭代的,这种求解啊,迭代的求解,你要说这就是我们啊在等级和分析框架下,来求解这种套弹性的经济学问题呃。
它的一个呃基本的一个套路,啊也就是说实际上这边的话呃啊对吧,我这边有这么几个函数,就是说比如说这是我们那个学生啊,他这个像我们在我们框架里面怎么来做的啊,大家比如读一些xm 4章,就是你的一些模型了。
然后创造一些约束面啊,啊添加一些边界的一些条件啊,对吧啊,然后怎么样初始化构造这个期间的高度矩阵啊,吸收系统啊,然后初始化相应的位移和速度啊,然后进行装这个呃,这个这个这个切线刚度矩阵的一些装配对吧。
然后球鞋位移啊判断收敛啊,所以说啊最后呢把这个位移啊,添加到模型的各个控制顶点上对吧,也相信你求证,就是这个控制定点的这个位移对吧,然后进行处理,进行形变的可视化,这边呢就是给了一个例子啊。
这边就是呃我就我这边会施加一个往下的力嘛,这边就是一个这么一个类似于1/2的,厚壁圆柱的这么一个模型啊,然后我就上面来施加一个往下的一个b啊,然后他这个按照在这种材料分布下。
这种设定它的一些材料属性对吧,那么相应的这种超弹性材料下,它相应的这个变形的效果,这个模型的阶数,因为它是一个volume,是一个b样条体嘛,现在的这个阶数呢就是4x4x3是吧。
那空着点点的数目就是13x2,11x12 11对吧,那么相应的呃,相应的这个自由度的数目是4950啊,单元的数量是16201620,那么是这边呢是就是它这个呃位移的分布,和它的这个用不同颜色标出来了啊。
在位移的分布是位移,大家看到这红的地方,就代表我这个位移位移比较大的啊,像这个这边我都是固定的对吧,所以这边就位移,这就是零了啊,这边现位移比较大对啊,那么这边呢就是相应的这个应力的这个分布,应力分布。
实际上这个大家可以发现,这个应力分布也是符合我们的一些认知的对吧,就说明哎这个红的地方,就这些地方他的这个啊用力用力比较大对吧,他可能受到了压弯曲压压力啊比较比较大,而。
所以这边呢就是用我们这个等级和的框架,来求解的一个呃超弹性的一个问题的一个仿真,那么这边呢就是说我们如果把这种啊,这个上面上面这个模型啊,对它进行加息三次的,反正结果作为一个呃精确点六星啊。
那么上我们可以计算,在不同的次数和不同的单元密度下,它的线弹性和超短线的这个数值的误差,就我们发现这边我们当然尊重了这个呃,有这个l2 的误差对吧,还有这个hy的这个误差啊,那么现在这个收敛曲线对吧。
那么商业兽们可以发现在相同的单元不成下,这个超弹性模型的精度上,是高于我们的线弹性模型的啊,高于我们的线弹性模型啊,而且随着这个单元密度的增加,这个套餐性模模型误差收敛的会更快啊,收敛的会更快。
那么前面的商是给大家介绍的,我怎么样用等几何的在整体的框架下啊,在等等几何的框架下来求解,这种超弹性的经济学问题对吧,超弹性的经济学问题,当然我也可以来来讲什么啊,这个相应的这个动力学问题啊。
动力学问题啊,这我我仿真出来的就是一个超弹性物体的,它的一个运动的一个过程是吧,运动一过程,这可能是在我们通信学里面也有挺多的应用的,对吧,包括在一些机器人上,这个软体机器人领域啊。
我们上也是一开始我们来做这个问题的时候,也是想去解决里面的一些问题啊,也就是说等几盒呢,它因为它自由度比较少对吧,所以它非常适用于去求解这种大变形的问题啊,大变形的问题,那么也就是说商。
如果我们去考虑相应的动力学问题,或者运动方面的一些球员的话,我们必须考虑它的状态变量和变形,但是随时间变化的这么一个过程啊,然后我们有牛顿定律对吧,这个大家啊还记不记得啊,也就是说一个物体运动的方程呢。
我们一般呢是可以表示这种这种形式的对吧啊,这个大m大m就是表示我的质量矩阵啊,也就是上次我与某些的这个体积啊,密度啊是相关的对吧,然后这个c呢就是为了这个阻力矩阵,实际上是与这个质量矩阵和模型的刚度。
是相关的,二就是我们刚才所说的这个初始的,它的载荷的向量啊,与模型的初始的形变大小是相关的,f呢就是这个模型受到的外力的大小啊,当然这个呃右两点和右一点对吧,它分别表示这个位移的二阶导数,一导数。
也就是我们所谓的加速度和速度,这就是非常典型的这个呃,我想301里面可能也讲过对吧,就这种动力学方程它的一个东西啊,也就是说如果啊如果我们把这个v啊,就速度对吧,就是右的e等于v是即为速度对吧。
然后a即为这个u的这个对吧,先给它加速度对吧,然后我们在这个学高中物理的时候,初中物理的时候也是让来记的对吧,也就是说当这个时间在诶tn加一的时候,运动方程会转换成d t n加一的时候。
这个这个相关计算就是这个样子啊,也就说我们上就是把就带把它换成这样子,就是m a n加一加上c位n加一,r u n加一等于f n加一,那么上网要初始的这个条件呢,就可以给它一个初始度。
还有一个初始的加速度啊,也就是说三种来求解,这怎么一个时间相关的一个问题的话,我们有两种方式,两种方式,一个就是所谓的这边这个字打错了,应该是显示的这个时间积分,还有或者影视的时间积分,两种方式对吧。
两种方式,也就是说对于这种显示的这种时间积分呢,它一般就是我计算呃,这个添加一处的啊,就十克添加一处的物理量来说,我只需要天时刻的对吧,上一时刻的物理量就可以了啊,有这个方法呢比较简单啊。
为什么说这也是他为什么称为显示嘛,是吧啊,显示的这个时间的积分计算啊,也就是说如果这个质量矩阵啊,它具有这种对角结构的话,它能够那么显示的基本方法,能非常大的减少这个呃运算量,但是在很多情况下。
这个显示的时间积分的收敛性是与否,上市是和你的部长有很大的关系啊,也就是说如果我保证这个最后计算出来,这个结果是收敛的话,我们需要非常小的不长才行啊,否则呢会对这个帧率啊会有比较大的损失啊。
那么还有一种方式呢就是演示的啊,就是演示的时间积分计算啊,也就是说它在计算,比如t n加一出的物理量的时候呢,它实际上是会依赖前一个时刻t还依赖什么呢,还要依赖一个未知时刻,tn加a的时候的一个物理量。
也就是说实际上在每一个时间步啊,他都需要求解一个非线性方程是吧,而不是那种前面我们说显示的就是直接哎,直接像一个显示函数一样把它给计算出来对吧,不是的啊,他需要求解一个非线性的一个方程啊。
所以呢通常需要与这个前面的这个扭转结带法,相结合啊,相结合,那么这个隐私的时间积分,它的优点就在于这个系统呢,它是一个无条件稳定的啊,不受这个时间不长的这个呃这个限制啊。
所以呢我们而我们在这个超弹性材料的,仿真问题里面,我们通常需要求解一个非线性质的方程组,而且我对这个整个的这个仿真的,稳定性的要求会更高对吧,所以说我们这边都选择了一种隐私的时间,经费法。
也是比较经典的一个new mark的一个方法,来进行求解,来进行求解,嗯所以我们现在后面就讲给大家介绍一下,我怎么要用这种隐私的时间进行反应,慢来求解超弹性的动力学问题啊,超弹性的动力学问题。
像我们也我们说呃,在下一个时刻的位移和速度,之间的这个计算公式啊,我们可以把它写出来,这个比如说下一时刻就是u n加一,它应该等于上一次课的这个位移,加上dt tt乘以什么啊,这一时刻的什么速度。
加上2/2 t和,这个还有这次的一些加速度啊,然后这个下一时刻的速度呢,它等于上一个速度加上大热t乘以这个东西啊,原来说呢我们可以发现下一时刻的位移和速度,实际上是由tn时刻的位移速度。
还有下一时刻的加速度共同决定啊,而我们这边的这个贝塔伽马这些的,都是一些自定义的参数啊,看它有一个相应的一些取得的这个范围,我们相就是可以把前面计算这种位移和速度,的公式代入到我们所谓的这么一个呃。
运动方程里面,对吧啊,然后会是得到一个关于什么加速度,a的一个非线性方程组,我们60通过牛顿迭代法对吧,我们前面要给大家介绍的,怎么要去求解对吧,给你个初始值,然后沿着这个梯度是吧,然后更新。
那么上来求解方程组,就可以获得下一次课的这个加速录制,然后再代入到我们得到下一时刻的加速录制,我们实际上就在说前面的这个公式里面,就会得到什么啊,我们相当于我们得到了什么,得到这个下一个加速度是吗。
我得到这个a减a减1+1之后,我是不是就可以算出u n加一了对吧,上午就可以得到下一刻的这个位移的大小,对吧啊,那么整个运动仿真呢,实际上就是来执行这么一个过程啊,也就是说我们是先算什么啊。
先算a n加一,再算u n加一啊,大家要首先要理解这么一个思路,那么上也是我们最后一班的,都是要算的是它是位移嘛,有因为我要算一得到一个仿真的一个动画,对不对,也是我们常最多功能。
我们可以把这个位移啊把它推导出来,把把这个位移推导出来啊,你说这个a n加一大等于什么东西,也就是我们最后所换的就是u嘛,就是要得到这边的u嘛,也就是说我们这个u啊,这个u啊。
这个u3 就是说呃呃求出来之后,我们说这边的阿尔法一阿尔法一直到六,实际上就是一些常数常数啊,这边呢就是它和贝塔相关的一些,一些是一个是和单推相关,还有这个贝塔和伽马相关,他上去就是一个常数了。
也就是说我们只有前面的公式,我们可以说下一个时间不得解,这是由上一个不接不的时间不得解,和位移的变化量来决定的,对不对啊,也是n加一是有这个对吧,和位移的变化量。
这边不是u n加一减去u a位移的变化量嘛,对吧啊,然后还有上一个时刻的速度,上一个速度的时刻的加速度对吧,还有它的位移变化量相关的,对不对啊,也就是说实际上就是位数量的。
我所以啥是可以转换成u n加一,通过前面的这个方程组,代入了这个物体的运动方程里面,我们就可以关于位移的一个非线性代数,方程是什么,就是这个就这样,也就是说这个方程它实际上是由t个事件簿啊。
n个方程组成的方程组,那我们来求解这么一个呃方程组呢,我们就可以得到每一个时间步的这个呃u啊,看到位移的解,然后我们在每个时间步呢里面呢,呃通过这个牛顿迭代法来求解相应的这个方程。
我们所得到他每一步更新怎么更新的,我这边就不就不仔细说了啊,也就是说,实际上我们在每个时间步的迭代过程呢,实际上就是我基本上就是在在算这个东西,在算出这个东西啊,当然我们呃在每次迭代的时候。
它都有初始值嘛,咱就是上一次迭代的这个收敛值,我们班这位置的初始值啊,也是我们通过高斯积分来计算,各单元的这个质量矩阵m对吧,然后再根据这个控制点的关系,来营造整体的这个呃质量矩阵就可以了啊。
所以说这边呢它实际上就是呃呃列出了啊,列出了我从一上个时代不到下一个时代不,我这个相应的这个关系对吧,刚刚系,然后这个横向同事一个事件簿中,他这个牛顿迭代的过程是什么样子的啊。
我怎么从1u11 直到这个u对吧啊,然后呢这个数下呢我上就是影视时间积分的,它的一个时间步的迭代,它上是有两个类似于矩阵的这种迭代,一样的对吧,比如说横向的是一个实践部中,它是牛顿迭代的过程啊。
然后这个竖线呢这个也是时间积分的,它的时间不的迭代过程啊,就像大家要要理顺这么一个框架,理顺这么一个框架,啊这边我就呃这是总体的一个框架啊,也就是说我先设定一个初始的一个位移啊,然后出设定出收线的呃。
收敛的一个也是误差吧,上上线对吧,包括初始化迭代的次数啊,然后我先计算运动平衡方程的这个梯度对吧啊,然后计算相应的运动方程的残差,计算这个位移的增量啊,然后计算误差,更新我的位移量啊,然后再迭代次数。
然后继续这样一直迭代下去,一直迭代下去啊,然后最后呢,我就会得到额收敛的这个节点的位亮啊,因为它在每一时刻他怎么来做,也就是说如果看这个整体的框架的话,我就先读这个我的这个底层的话,模型的文件对吧。
xm 5的样条表示的一个文件,然后我呃相应的去加一些呃,这个约束是什么样子的,边界条件是什么样子的对吧,然后把这个刚度矩阵啊,还有这个载荷向量啊,这个系数矩阵进行初始化对吧。
然后包括这个质量矩阵的这个初始化啊,然后也是时间积分的初始化,这边呢我要设置这个初始的位移,初始的速度对吧,然后下面呢我就说可以啊,这边他的包括这个装备的主量矩阵啊,位移速度啊,刚度矩阵啊。
这些都可以做一个初始化啊,然后后面呢就是来做一个免试时间积分的啊,时间的一个时间步的一个迭代对吧,我从第七步怎么来来这个移植下设计,当然我这边需要来设置这个时间的步长,设置时间不长对吧。
那么一问我怎么样去构造现在这个系数,然后你在时间过程中,在每一步的时候我就要计算呃这个时间的跨度,计算它的呃,这边就相应的分有两个问题对吧,一种类型是一种也是的对吧,但是它是一个线弹性的一个问题。
那就非常简单对吧,就我们上节课给大家讲的啊,然后如果是非线性的问题,就是要这个对吧,需要进行,如果是超弹性问题嘛,我就要进行这个迭代求解对吧啊迭代求解啊,然后我先算一下这个u n加一。
然后计算先用的这个呃n加一时刻呢,它的加速度速度,还有它的位位移是吧,加速度速度把它算出来啊,然后我再按照这个时间来一次来记,也就是说它上面还有两层啊,就是一在每一个时刻,我是我是一个呃。
我有一个迭代对吧,然后在时间不上,我又有另外一个迭代,那这边呢就是我们给出了呃,我们这个超弹性问题的啊。
来解决这么一个超感性的一个动力学问题的,它的一些结果对吧啊,它的结果大家可以发现我们,所以这里面所有的这个模型啊,所有的这个模型都是通过呃,都是通过这个提样条啊,体系分的样条来表示的啊。
然后通过这种提样条来表示,然后为它的计算单元啊,12是不多的啊,自由度还好啊,这都还好,但我们现在还是没有办法达到一个死死啊,我们这边就模拟了啊,这边像这个比如像类似于一个桥吧,就模型了。
这边我这边给你一个往左的一个力啊,那么这个超弹性的这么一个桥,它是怎么样来来来变形的对吧,发生那种变化,然后这边呢就是一个类似于手的对吧,这个手的一个稳固体啊,那么这个手啊它实际上就是我这个握东西。
它这个里面我给他一些像一些力的边界条件,那么手段肯定是一个超弹性的一个表示的对吧,那么在这么一个超弹性的一个下,它是怎么来来变形的啊,这边三就是类似于咳,呃呃一个恐龙的对吧。
一个他的一个一个周边类似于吃东西啊,或者这么一个一个变形的一个动画啊,嗯这边呢就是类似于一个右下角,这边呢就是类似于一个软体机器人对吧,当然这边画的不像啊,它类似于一个比如抓东西。
或者一个这么一个软体结构,这么一个一个瓷砖的这么一个东西了对吧,来来做的一仿真啊,也就说实际上我觉得就是说呃,我们在相同的这个精度下,相同的这个精度下啊,我们用这种啊等几何的框架来进行求解。
我们也做过的比较啊,要比我们用这种有限元的方法来进行求解呢,要快呃,6070倍左右啊,6070倍左右啊,因为说实际上就是说呃为什么对吧,就是我们第一次就给大家讲了对吧,那么等级合着它的优势。
就是说我在同样的精度下,可以用比较少的自由度来进化对吧,所以说呃就会达到比较高的效率啊,达到比较高的效率啊,而且呢我想呃等几何啊,它上是非常适用于这种大尺大变形的,这种现象的这个物理问题的法则对吧啊。
因为这个东西实际上就是和我们这个,用控制顶点来来做变形是一样的对吧,无外乎我这边的控制变顶点,在做编辑的时候要满足一定的什么啊,满足一定的物理规律,要满足我们这个超弹性的这个动力学方程啊。
这些平衡方程啊,这些啊,年度商在有限元仿真里面,对于这种大变形物体,容易出现这种网格扭曲变形对吧。
因为有些人他本质上还是用,还是基于网络单元来做的嘛,对吧啊,而但是呢我们在等几何里面,它就不存在什么离散的一个问题对吧,不存在把这个链条表示的东西,再把等离散成网格,类似变四面体网格。
六面体网格啊这些对吧,所以它它不会出现这种扭曲变形啊,也说不也不会出现这种多次重新划分网格的,这个问题对吧,就是它自然的呃就实现了这个物体的变形,对吧啊,也就是说登记和反制变大变形的物体啊,这种问题啊。
在保证这个较高精度的同时,也避免了这个频繁的一些网格划分啊,提高了绑定的精度和速度,那么这是我们第一部分,第一部分大概花了一个小时的时间,给大家介绍了啊。
怎么样啊,基于我们等几何的框架来求解呃,来求解这种呃超大型的问题啊,包括经济学问题和动力学问题,那么我想通过做一个大致的了解啊,就可能一些细节,还需要大家在课下好好去消化一下啊。
包括我们这边的一些呃一些讲解对吧,也是比较讲解来说还是比较呃,没有没有具体的一些细节问题上,但我想我应该是把整个的呃求解的思想啊,这个步骤啊,这些应该是讲清楚啊,那么希望大家呢在课下啊。
如果真的去从事这方面的研究的话啊,可以或者你想实现的话啊,可以进一步的去学习啊,进一步的去学习,那么或下面呢给大家简单介绍一下,大概花了半小时的时间,简单介绍一下这个整体和配点法啊。
因为我当时呃写这个呃大纲的时候,也是把这份内容写进去的啊,但我这边呢呃可能还是后来发现呢,可能基本思想还比较简单,那我就呃我们在这方面也做了一些工作啊,我们就简单介绍一下,那么我们前面讲过了。
咱就是说这个加勒军方法对吧,它实际上就是需要把一个嗯,强形式转换成弱形式,那么强形式转换成热行,是一个基本的一个手段呢,就是说我两边乘一下,然后做一下积分对吧啊,然后再用这个分部积分或之类的对吧。
做一个通过变分对吧,那把它转换成一个积分的计算啊,通过这个计算积分,然后再把相应的这个呃刚度矩阵啊,这东西这东西把它给组装好对吧,然后进行求解啊,也就是说实际上而几何配电法是一个什么,什么一个问题呢。
它实际上就是说呃我就不需要啊,把强行式转换成热形式了啊,我直接啊在这个strong com上,在这个强行性上来进行求解啊,也就是说它会在这个呃计算有点先显著一些点,然后在这个点进来来求解。
这个方程本身这个前沿的数字键啊,所以说这边非常重要的就是我这些点啊,怎么去选啊,实际上在我们这个c妈咪的这个问论文,文章里面,有好几篇文章都是都是来探讨这个问题的,就是说对于我们这个等级和的配点法。
我怎么配点,我怎么配点啊,实际上是有好几篇论文啊,比如说什么抄收敛点对吧,还有什么这个呃其他的一些一些啊,这个缺点的方式啊,比如说怎么配点,实际是这边非常重要的一个过程啊,啊重要的过程。
那么为什么配点法会还是会得到,是得到了一定的关注啊,那配点法呃一个非常重要的优势,就是它的效率还是比较高的啊,啊就是说虽然配点法它会导致,就是你会得到这个方程组啊,很大很多情况下可能是一个非对称的。
非对称的啊,而且这个相对于你这个边界啊,这个条件的施加,各方面呃都能够呃都还是呃也不容易对吧,虽然我们知道这个呃加入金方法可能不容易,但这个配点法能更难,但是为什么,但是配电阀的一个好处呢。
就是避免了啊,我们说啊家电学方法需要涉及到的什么啊,数字积分的问题,数字积分的问题,因为这个数字积分或多或少的,我们说很多时候呃可能是精确积分,但大部分同年下啊,用这种高斯积分两种之类的。
应该还是有误差的对吧,还是有误差的啊,那么商就是说配点法呢,他三人能够特别是对于这种numbers的这种解啊,你用高斯积分来做就是伤害肯定是有误差的啊,别说12是嗯,我们配点法的。
实际上就是也可以避免的,这种数字积分的问题啊,因为它不需要把这种强行式转换成弱形式对吧,那种积分的方式来进行求解啊,比如说我们说呢,这也是我们配电法,为什么能够减少这个计算开销的这个原因啊。
而而且另外一个呢我想的就是配点法,它本身与这种等几何也是非常匹配的啊,因为因为我们说了这个配电法,它本来就产生了强形式嘛对吧,所以说在这个方程中,因为像这个波动方程啊什么之类的,它通常会出现二阶导数的。
对不对啊,啊我们说在这个加载进方法里面,我把这个前形式转换成弱形式之后,然后就把这个二阶导数就没有了对吧,我用了分布积分嘛,所以说最后在这个弱形式里面,我只有什么一阶导数啊。
只有关于这个t的一阶导数对吧啊,也就说出现这么一个就一阶导数,也就说我在相当于组装这个刚度矩阵的时候,我只涉及到一阶导数的计算对吧,不涉及到二阶导数,但是为配点法,但不需要这种转换。
所以它还是需要这种啊二阶导数的二阶导数的,对吧啊,别人说啊,我们等级和里面选用的奇函数是样条的,奇函数对吧,那么像这类奇函数,它对这种求二阶导是没有什么问题,是没有什么问题。
因为它呃应该是一个就是一个高阶的啊,所以说这边非常重要的就是一个我们刚才讲的,就是在在这个等级和配电化里面,非常重要的一些呃研究的工作啊,都是来研究我这个点配点我怎么选择啊,配点我怎么选择啊。
那么沙这边有这么几种选,这个是什么grava坐标,还有这个demo坐标啊,还有我记得还有一些呃最新的工作,像那个什么超收敛的一些点啊,超凶的点,那么说格瑞这个坐标呢是用的比较多的啊,说的比较多的。
也就是说他这个选择,就是如果给你一些节点向量,cc。cos cos吧,还有些是持币,那么这grey坐标的这个cci他怎么选的啊,就是我们这个配点啊,这个配的点他是怎么计算的啊。
那么cci它上去它都从它的后面的第一个对吧,比如说coc 0,它就是第一个cos 1 cos 2,一直加到这个coci加p,这个p呢就是我们这个呃,你才装了这个这个这个电流供电的这个次数,对吧啊。
然后再取一个平均求一下p啊,也就说这就是我们这个,格y坐标对吧啊它的这个定义的方式啊,我想这个呢就是采用的这个这种方式,才是这种方式,比如说采用这种方式呢,我就可以对这个右方向和方向进行进行。
相应的这个配点对吧,相应的配点,然后通过这次配点的来进行求解啊,然后比如说我们要求解这么一个呃,呃这么一个pd方程对吧,当然是一个线性的一个pd方程对吧啊,那么实际上呃如果假设我们这个整个的区域啊。
用变样条曲面来进行表示的是pi,就是我的控制零点,然后呢我我需要进行配点,但实际就是把前面的这些配点,这个tai j这些配件把它带入到啊,代入到这个4。3里面啊,4。3里面啊,然后就进行啊得到一个4。
5是吧,得到4。5,那得到4。5之后啊,得到4。5之后,实际上就是说我所有的呃,我把这个因为我说的这个数字减对吧,都是和采用这个也是采用这个基函数,这些东西来表示的对吧,也就算我把这个4。6啊,u s。
这是我最后要求的这个物理场的这个物理解,这个u的表示代入到这个4。5里面,代入到4。5里面,然后呢我就会得到,然后就会得到一个线性方程组对吧,我要求的是什么啊,我要求的就是这里的u i j嘛。
就是u i j m啊,也就是说呢我作为这个k的,也是你的总高度矩阵f 16端向右,就是你要求解的这个系数对吧,最近的系数啊,张也说这就是配点法对吧,这就大家看看实在这个过程里面,我是没有涉及到。
没有涉及到从这个强形式转换成弱形式的,是没有涉及到从强行式转换成弱形式的啊,你说不会涉及到积分对吧,你要你要你要嗯说要这个做的做的事情呢,就是选好这个配点,然后把这个配点带入到这个呃这个强形式的。
这个pd里面啊,然后去把它求解对吧,然后也是会得到一个线性方程组的对吧,为什么是一个线性方组,因为它本身这个p p d e这个问题,它就是线性的是吧,所以说这个是没有问题的啊,没有问题的。
然后得到这个东西之后啊,我这边是编写调料链施加的,就是和前面四类似,实际上我们来可以来分析一下啊,来分析一下这个相应的这个来比较一下啊,这个加电机方法和我们传统的这个,和我们现在这个等级和的配电法。
他们计这个计算的时间啊,还是还是有差别的啊,还是有差别的啊,比如在这种1397个自由度下啊,然后加点云网盘用的是2。9秒对吧,我配电话叫0。5秒就可以了啊,然后这边呢是呃3000多个自由度对吧。
用了十秒啊,然后这边呢是这个1。4秒啊,不过是1万 1万多的啊,46秒啊,这五点就是,实际上大家可以看到这个这个加速比加速比啊,还是随着规模的增加呢,越来越增加是吧,那么元元说的实际是配点法呃。
和家具家具进方法相比啊,就是在呃计算效率上会得到一个呃,比较大的这个提升啊,比较大的提升对,然后也说我们商账上,我们也是可以把等级和配点法对吧,运用到前面的这个呃超弹性啊。
动力学啊或者静力学问题的一些求解里面对吧,那外乎呢就是我怎么样来把这种迭代的,这个非线性求解的问题,把它迭代化,然后对吧,就不用那些这个强行知道弱旋式的,这个转换的对吧。
刚才我讲的那个框架里面也是用到了这种强行,直到热旋式的这个转换的,比如说哎,我们也是可以把配电法运用到,刚才那个问题里面的嗯,那么我也是啊,前面的是应该是啊20年毕业的一个学生,一个硕士生啊。
他上就是把这个配点法用到了这种浮雕的,一些建模问题里面啊,他比如说像我这边问题,就是我比如我输入这么一个图像,这边是一个啊毛笔字的这么一个图像对吧,那么我希望能够基于这个图像来生成一个。
类似的诶这么一个形状的一个浮浮雕对吧,浮雕浮雕上,我们大家在很多的呃场合都碰到头了是吧,浮雕是包括一些建筑物啊,一些这个呃上面都有一些浮雕的一些建筑,下面呢我就是就是呢想把这种呃浮雕的问题。
把它转换成了一个pd一的一个问题啊,然后呢我们再用整体和分析的方法呢,来求解这么一个pd问题上来,就是来求解我在每一个像素点上,或者每一个位置上对吧,他相信了这个诶我要偏移多少对吧。
就是我这个z的值要偏移多少高度对吧,多少高度啊,我要升级多少高度来对吧,但大家看一下我采用这种呃,我知道选是一选选一个合适的一个pc的方程啊,我最后建模出来的图标,还是非常挺符合我们这个认知的对吧。
挺符合我们的认知的啊,也是所以因为因为这边这个像素点非常多对吧,人家说呃传统传统的家电性方法,可能这个时间成本是比较高的啊,所以说我们这边呢就采用了一个配点法,来求解这么一个问题啊。
虽然也是得到这个效率上,也是得到的一点就提升,这边就是一个蝴蝶的模型对吧,我这边我做了一个蝴蝶的模型的一个建模,这边是更多的一些例子是吧。
也就是说实际上大家可以发现啊,也说你们把这个等几何的问这个方式啊,啊这么一个框架,上次也是可以运用到很多的这个问题里面,很多的问题里面啊,不仅仅是求解这个pd啊去进行物理性的那方。
则包括我们图形学的一些问题对吧,图形学的一些问题也是可以,只要你涉及到pd啊对吧,也是可以把它呃,和这个等级和的框架结合起来来做一些问题,也是会得到一些有意思的结果对吧啊,因为我们不仅仅做了静态浮标。
我们还做了这种动态的图标,也说他这个base surface就是他这个机机体面,它是呃沿着一呃这个时间啊会做一些呃,按照沿着时间会做一些动力学的一些变形对吧,就是沿着时间。
它会满足一定的物理的变形的一些规律啊,我们也是可以把这个用到我们这边,相当于也是时间相关的一个问题了啊,当然它不是一个超弹性化的一个,一个非线性的问题,对吧啊,我们也对他做了一些仿这样一些求解。
应该说这是这一个,就说呃我们可以发现等几何啊,也是可以用到我们图形学的,其他的一些问题里面,不仅仅是物理防,好基本上我们这次课的内容就到这儿,那么我们主要是给大家介绍了两部分的,这个内容。
第一部分呢就是怎么利用等几何的框架来进行,这个非线性的超弹性材料的仿真,包括静力学的仿真和动力学的仿真是吧,还有呢就是给大家介绍了这个等级和配点法啊,也就是说我在我就可以不把这种啊强行式掌握,弱形式。
用积分的方式来进行转换啊,啊比如说不用这个变分法的这种原理,对吧啊,我说是呢,我直接就相当于在整个的p d e,整个的这个包括我们强行上面,我去合理的去选择一些配点,一些采样点,然后进行这些方程的求解。
好我们这次课呢就到这儿,我们下次课呢准备给大家呢,就介绍这个后面的一些优化的一些问题啊,包括从形状优化开始给大家介绍结构优化,对吧啊,相当于我们这门课,这次课程,这些课程也基本上要慢速慢慢。
进入到我们的后半段了是吧,后半段呃那基本上就是先讲这个形状优化,再给大家介绍的这个top优化啊,然后后面呢再给大家介绍基于体系分的这种,建模仿真优化的一体化框架,包括啊再给大家讲一下。
我是怎么样把这个ai运用到我们的这个呃,等几何里面的啊,还会大家给大家讲一次课啊,基本上还有啊3~4次课的这个时间啊,也希望呢大家呢能够在课下,多多消化我们的这些内容啊。
特别是啊因为等级和目前我觉得还是有很多的,呃这个研究的空间啊,还有很多问题呢,呃需要大家呢这个共同努力去解决,好我们今天的课就到这儿啊。
GAMES302-等几何分析 - P9:9. 基于等几何分析的形状优化 - GAMES-Webinar - BV1dM4y117PS
啊各位同学们,这个来继续上课。
不好意思啊,今天因为第一个那个因为航班的原因,还有那个呃刚才服务器有点,重启的时间太长了,所以后来又重启了一次,那么按照原计划呢,我们今天呢还是给大家介绍下一部分的内容啊,这一部分呢主要就是说呃。
是关于这个基于等级和分析的形状优化,这一部分,我们前面已经给大家介绍了这个呃,登记和分析的求解的框架,我们说等你分析呢,它本质上还是一种有限元的一种新的框架对吧,那么也就是说呢。
它主要还是我们用来做一些数字仿真的,物理仿真的,所以说呢就说我们这个做物理法则呢,当然是为了,就是说去优化我们初始的这个设计啊,初始的设计,那么这个初始设计好不好,对吧啊,12是决定于它呃。
你这个设计的这个外形的,它的物理的性能,物理的性能啊,所以说呢就是说这个物理性能呢,它能不能满足,真正的在我们这个环使用环境里面的,这个一些呃需求对吧,这就要求呢我们来做一些呃形状优化啊,甚至托比优化。
结构优化等等,那么实际上就是说这边的话我们还是希望啊,还是希望能够呃基于等级和分析啊,能够给我们在这个对这个初始设计设计的这个,改良方面呢,能够有一些他自己特定的一些优势对吧。
其实前面我刚开始介绍这个等级和分析的时候,也介绍过了,但实际上基于这个整体和分析的,这个呃形状优化啊,是有它这个天然的这个优势啊,也就是说它可以就像修改我们这个控制顶点。
一样的去呃对他的裤子顶点啊进行优化是吧啊,也说这个用户啊,它实际上就是说不需要再了解我这个形状优化,这个,底层的啊一些他这个优化的技术啊对吧等等,这些也是这个用户,如果你这个软件开发的好对吧。
实际上就是说你如果把这些软件开发的好,你直接让这个用户去指定哪些是固定的,哪些是自由的啊,当然这些都是针对这个控制顶点,而且呢可以去指定或优化的目标对吧,你是呃让它的这个柔度最小还是应力最大是吧。
还是其他的等等一些目标啊,把这些目标呢指定好对吧,然后这个计算机呀,这个c e这个优化软件,它就会自动的把这个你要优化的这个模型的,最优的这个形状,把它优化出来啊,像这样的话。
我想的就是我们一个呃是最理想的一个状态,也说不需要任何的一个后处理的过程,后处理的过程啊,我想这次是不是呢在等于分析框架下啊,这个形状优化确实有它本身的自身的这个优势,是自身的这个优势。
那么我们这次课呢,主要给大家介绍这么几部分的内容啊,第一个就是呃线弹性的形状优化,第二部分呢是这种呃就是三维的情况,就是三维线弹性的这种形状优化啊,最后呢介绍呃。
这个我们前面不给大家介绍的这个超弹性吗啊,介绍呢给大家介绍这个关于这个超弹性的。
这个形状优化的,你说首先呢我想还是要给大家介绍一下,这个结构优化啊,那么结构优化呢,实际上呃是嗯,现在啊是这个优化设计领域,非常重要的一个问题,非常重要的一个问题啊。
而且呢它这个应用的这个应用的这个场景量,现在也越来越多啊,啊包括啊航空航天啊,这个汽车的轻量化设计对吧,这个模具的设计对吧,特别是随着这个3d打印的出现啊,那么实际上就是说我们可以给这个结构优化。
结果呢,也可以更好的把它给造出来,是上去,原来就像这种嗯拓扑优化结构优化的结果,如果没有3d打印的话啊,那么用这种传统的这种剪裁制造,实际上还是比较难的,是比较难把它造出来的。
但是我们现在有了3d打印啊,那实际上就是说基于这种支持增材制造的框架,我还是比较容易能够把我们这个呃这些拓扑优,化结构优化的结果来把它给造出啊,12是结构优化在呃这个国际的,无论是学术圈还是工程领域呢。
现在都越来越受到大家的关注啊,那么像我们国内啊,有一些像这个国学老师团队啊,应该是国内做这个结构优化方面,最有代表性的团队,那么呃刚刚今天上午我们也在北京啊,再开一个就是开源工业软件的会,那么其中的呃。
这个这个开源工业软件工委会里面,下面有一个这个组呢,就是呃结构优化的这么一个c格组,那么也是希望啊能够把这个结构优化,这个能够在某种程度上的进行开源啊,然后呢呃无论是给我们的这个同学们。
还是一些实际的这个厂家用户呢,可以提供更多的一些呃共享的一些资源也说,不过从这个学术上来讲,那结构优化设计,它应该就是以这种力学原理和数学规划算法,为基础通过啊,最优化的方法去改变这种工程结构的尺寸啊。
这就是涉及到尺寸优化对吧,形状形状优化和拓扑的构型,这就是拓扑优化,那么12下面呢也是呃,给出了这边这三个图对吧,实际上也是给出相应的这个拓扑优化,形状优化和尺寸优化啊,那么实际上从北站来讲,特别的话。
他就说我这就去决定我在哪些地方挖苦对吧,然后这些孔的这个连接是什么样子的啊,那么像这个,我觉得他这个还是应该是属于,概念设计的一个阶段对吧,概念设计啊,那么形状优化呢就是说啥。
就说我我想去优化我这个物体对吧,它本身的这个形状啊,我们把如果把这个孔确定了之后,它这个孔啊,要要大概这个孔的形状是什么样子的,或者这个形状,它这个外形的这个边界应该是什么样子对吧啊。
那么这就是这个形状优化,也说它是呃,基本上是一个比较基础的一个设计的一个阶段,那么后面的会就涉及到这个尺寸优化啊,尺寸有关,包括这些特征对吧,这些孔它的半径有多少啊,那么我这边啊上半部分啊。
它这个宽度有多少啊,啊中间这个宽度应该有多少对吧,实际上这些呢都是可以呃,把它作为一些自由的一些参数啊,作为我们的参数变量,带优化的变量来进行优化的,你说啥在这个优化里面啊。
我就是说啊属于就是以尺寸参数的写优化,那么也就是说呢,实际上就是我觉得这三个阶段对吧,也是从这种概念设计到基础设计啊,再到最后就是详细实际啊,我想在最后再满足啊,整个的这个实际场景的这个需求是。
但是呢就是说很多时候呢,这种传统的这个比如有限元的方法,或者基于体术的一种方法,无论来说这个拓扑优化还是形状与化来讲的话,都是需要对这些优化的结果,来进行必要的后处理啊,好像郭老师也带着我们来做一个。
国家重点研发的一个一个课题里面,我们也是专门就是来做这件事情啊,总要对这种像素式的拓扑优化结果,来进行这种光滑化或者cad的重建对吧,或者一些局部的补强啊,那么也就是说12比如像这个simple啊。
这些方法,我这个徒步优化的说来接我,可能有些地方这个都是锯齿状的,这种这种外形啊,或者有些地方还是非流行的啊,非常脆弱的地方对吧,甚至还有些孤岛啊,那么怎么样对这些像素是表述的这种表东西啊。
这这这种形式来进行一些必要的,后期和b站几何的后缀啊,也是非常非常重要的啊,因为这样才能够呃,满足我们后面的一些制造方面的一些规范,还有这个工艺的一些要求啊,工艺的一些要求啊,我刚才讲的就是说。
因为这个结构优化确,确实它可以提供一些呃,新的一些设计的方案对吧,所以呢呃而且这种方案呢并可能比我们原来啊,这些老师傅他自身的这个呃经验啊,来得更嗯更漂亮对吧,然后更更具美观性啊。
而且这个功能性功能性可能也更好对啊,所以说在很多的这个领域都得到了很好的,这个应用,那么我们今天呢当然会聚焦在我们中间,这一阶段就说这个行道硬化这一块啊,那么也就是说呢我是对这个边界形状的边界啊。
外形的边界呢来进行优化来进行优化,那比如就像这个例子啊,这个是商家很多的,无论等级和论文,还有限元的,这个现在优化的论文都可以看到啊,那么比如说我这边呢,就是说我这边口上是固定的。
这是一个叫做开口扳手的一个例子啊,那我的设计目标呢,就是我在给定的某个材料体积下啊,使得这个呃我这两个呃,u fa和ub这两种加载情况下的这个位移啊,要达到最小化啊,那么u fu i b是什么呢。
就是我这个f a加载点啊,还有b加减点数的这个垂直的位移,这边呢我可以设定一些初始的一些边界条件啊,然后我这边呢都是用这个呃,因为是等级和的形成优化,是越这边可以看到是一些控制顶点啊。
然后我去我的优化变量啊,直接就是这边的这个控制顶点,当然你这边可以设计一些一些这个体积的,这个约束啊,杨氏模量啊,还有泊松比啊这些参数等等,包括最后的这个收敛性的判别的这个准则啊,你这边都可以去设计啊。
那么后左边呢就是啊一些优化的一些结果,对一些优化的一些结果啊,那么就大家可以看到啊,就是说基于这么一个初始的一个形状对吧啊,非常简单的一个用户,非常简单可以把它设计出来对吧。
然后这个用户呢只要设定一些边界条件啊,固定的地方,还有这些一些施加载荷的这些地方对吧,这些专业条件,然后计算机就会自动的把这些最优的外形,把它给算出来,把它给算出来,那么这样的话。
实际上就是说呃可以就可以实现啊,我们这种基于等级和的这个外形优化,形状优化了啊,那形状优化的这个问题啊,就是刚才我们说了,在呃这个等级和框架下,它具体是一个什么样的问题对吧,也就是说他应该就是说。
我给你一些固定的边界条件,然后给你受力的条件啊,然后呢呃我的怎么样呢,去优化一些部分的控制顶点对吧,也是咱们等几何的这个形状优化框架里面,它的这个优化的变量啊,就是一些控制键的位置啊。
所以说这也是为什么我们说的在呃,等你和框架下形状油画呢,呃会变得非常的直观对吧,盐酸的形状硬化呢,它实际上是一种通过调整物体的几何外形,来提高产品结构性能的一种方法啊。
那么也就是说在我们等几何的这个框架里面,它通常呢就是以控制点的坐标,来作为设计的变量,以我们这些物理性能的指标,比如说柔度最大的位移,最大的应力啊,为目标函数或者约束函数啊。
然后来构建相应的这个数学优化模型,所以找它最佳的这个形状对吧,几何形状啊,那么实际上也就是说,我们通过形状优化这么一个工具,我们就可以非常高效的去生成这种呃,作为合理的啊这个外形设计的方案对吧啊。
那么稍后在这个里面呢主要分为三个部分,第一个就是我切参数化几何的描述和更新,也是我的设计模型啊,那么这段我在我们这个等级和里面,它的直接竞标所更新,就是以控制顶点为为呃为找工具对吧。
还有一个呢就是呃结构响应的一些分析的,一些呃呃分析的这个这个部分啊,然后这边呢就是我们的分析模型分析分析,比如说我们等几何的框架或者有限元的这个,来解这些结构的问题,结构分析的一些问题对吧。
呃最后呢就是我们的一些比如优化算法,优化算法,在这个里面就涉及到一些数值优化的,一些方法啊,一些方法啊,因为啊虽然我们这边啊,是一个力学方面的一个优化问题吧,它本质上我们还是要把它归结成一些。
数学优化的问题来进行啊,求解啊,当然在我们整体合力框架里面呢,我们这些设计模式,它就是用一些呃控制这个几何形状的一些样条,或者控制网格来进行描述对吧,然后我这个分析模型呢就是用呃,我们等几盒对吧啊。
或者有限元对吧,再来进行数值方法的计算,来进行结构仿真的这么一个计算啊,然后我最后呢是通过一些数学,数值优化的这些算法来控制啊,我这个控制点我怎么移动对吧,来总结移动,然后呢我打一般来来说呢。
这种都是一个迭代的一个优化的一个过程啊,然后呢最后迭代优化收敛到这个机子啊,收敛到这个机子,也就是说一般来说的话,就是说我们可以把这个物理问题对吧,把它抽象成为一个典型的一个数学啊,优化的一个模型啊。
就是我呃需要极小化和一个目标函数fx,让它满足一些呃,比如物理性能满足一些体积的约束对吧,反正我这个控制顶点,我x它的他的这个移动的范围,比如或者或者等等,我只要把它放在一个框框里的啊,给他加一些约束。
那么实际上就是说在呃这些呃,所有的这个形状优化问题啊,我都可以把它分解成这么一个呃,线性或者非线性约束的一个问题对吧,非线性约束的一个问题,那么实际上也是我们这边的这个fx啊,包括后面的这个约束。
我们都有一些可以自由选择的部分,对不对啊,那么爷爷说,我这个fx针对这种不同的这种优化问题,这个优化模型啊,也可以有他自己不同的一些表达的一些形式啊,比如这个fx你可以是柔度是吧,可以是应力对吧。
也可以是呃节点的位移,控制点的位移,包括你整个的这个模型的体积啊,面积啊等等啊,这些目标函数啊,而且呢我很多时候啊这个包括它的这些体积啊,还有最大的应力,用功的时候也可以作为放在这个不等式的左边。
约束里面啊,来来来做,不仅仅是我的目标函数里面,所以说呢我们就可以把一些形状优化的优化,根据它的优化目标对吧,可以让我来分析一下啊,第一个就是比如说柔度啊,是我的目标,那通常来讲呢。
我们希望这个柔度呢能够是最小的啊,因为柔度呢它就称为是结果了,一个应变能,对吧啊,它就是指物体在受力平衡下,它这个存储的这个应变能的这个大小啊,那么热度值越大就飙车了,表示这个物体的这个稳定性就越差。
所以说呢我们希望这个浓度应该是最小的,最小的,那么柔度优化里面呢,就是说我们一般呢就是说呃,希望在呃浓度最小的这个目标还是这样啊,呃应该要满足多什么样的一些,体积或者面积的约束啊。
所以说呢我最终的这个呃优化的模型啊,优化问题的模型就可以写成这样子对吧,那c这是我的刚度矩阵,f就是我的这个呃右边的这个force function是,那么实际也说了,我是上可以把。
因为这个小f就是我这边的柔度啊,f的转之前用,那么你说我就可以了,就可以把,然后v呢就是我的体积对吧,就是说卫星的就是这个呃,你是要体积要达到多少啊,都可以做一些约束放进来啊。
那么沙特站就是呃去捡这么一个优化问题,也就是说我怎么样去呃移动我的这个边界啊,或者买这个哪部分的控制顶点对吧,让呃这个整个结构的它的容度最小,便携满足我的这些力学性能,还有它的一些体积的一些运输。
第二个呢就是这个节点位移对吧,节点位移啊,那么商演员说呢,我那我让这个物体模型啊,在受力达到满足这个受力平衡的这个条件啊,他某一个物理点的这个微量呢,它的这个值啊是是是位置最胃药最强化啊。
那么这个时候呢,通常情况下这个约束呢还是这个模型的体积,有限的面积对吧,但是他还是要求啊,还是要求不要满足,我的这个k等于f这个力学性能,但还有一些比较常用的就是应力应力啊,因为因为我很多时候在。
反而这个会实际工程中用的也比较多啊,就是为了防止这个结构发生断裂啊,那么我们也像这个用户呢,需要想想发展要求减少,这个在容易断裂处的这个城市的这个硬币,对不对啊,也就是说虽然柔度减小。
也能降低它的整个整体的一个平均应力,但是柔动脑往往更关注一个全局的对吧啊,全局的一个内容的一个大小,嗯嗯而很多时候对吧,因为都是因为这个和你本身的这个模型的形状,有关系了啊,因为可以模拟下局部区域。
它可能是应力处理特别大,会超出啊你这个模型的材料,它所承受的这个范围啊,可以说很多优化的问题里面呢,我们也是经常使用这个最大应力最小化啊,来作为我们的目标的函数啊。
但是因为这个最大值最小化的直接数字形式,大家都知道了,就说是一个mi max这么一个表达是吧,像这个大家都知道他这个直接数学形,它实际上是不可导不连续的对吧,所以说呢我们通常会用。
回去会选用这种plog的方法,来建议的这个实现啊,比如说呃,我这边呢就是我的一个应力的一个最大,应力的一个一个表示吧,啊那么cm大概就是一个应力值对吧啊,也就是说商也就是说当这个p呢,它是一个正整数。
也说当这个p足够大的时候,所有用例子中最大值的p次方的结果,会远远大于其他数值,因为所以说我就开p次k后,这个目标函数的值就差不多,等于这个最大应力值对吧,而我而我没说呢,这个东西对吧。
哎这个东西它实际上就是呃啊是可微的对吧,是可微的,可可以求导的啊,所以说为什么要求导,因为后面没有算一些什么灵敏度啊,什么之类的对吧,都要涉及到一些求导的一些计算,所以说呢我们还是还是要求啊。
就是说能够把这个目标函数这个应最大应力,最好换这个目标函数,把它变成发达,变成的一个可微的一个目标函数啊,然后去这样画出啊,所以说这是最大应力的一个目标啊,那么上面我们在很多的优化问题里面。
都会碰到这种类似的问题啊,就是说我要把一个最大的一个,什么度量最小化的问题啊,这个大家都可以拿这个那个思路而来进行借鉴,它还有的就是比如说像这个体积或者面积啊,像这也是这个我们这个模型。
这个一些非常重要的一些指标啊,比如说当然他也是要希望把整个呃,体体积或者面积现在某一个范围内对吧,然后去满足我的这个物理性能啊,或者这边也是这个最大应力啊,我要把这小小把它作为原始条件对吧。
相当于把两个两个两个这个定位啊,换一换换一换啊,那么实际上我们啊,我记得有一次讲这个参数化的平面,参数化的课程的时候,我们给给大家讲过一个方法对吧,我怎么样计算。
就是我这个呃一圈北的曲线或者一圈样条曲线,围城的它那个区域的面积对吧,那如果是一圈这个样条曲面啊,三维空间啊,把它围成了这么一个模型,内部的这个体积会有多少是吧,这个伤也是可以类似的去推导出一个公式来。
对吧啊也就说呢呃有了这个公式,实际上就是我们就可以把它放到我们这个它的,这个优化的目标函数里面啊,然后再去来满足我们相应的一些力学,性能方面的一些约束啊,那么这是第四个对吧。
也就是说这边是我们的优化目标对吧,优化目标啊,那12确定优化目标当然是非常重要的早,因为这个呢他就主要是根据你的目标对吧,你的要求啊来进行设置,那优化目标确定好之后啊。
让我整个的这个优化的模型也就确定了对吧啊,那优化模型确确定之后,后面就是非常重要的,就是我采用什么样的优化算法来进行求解啊,优化算法来进行求解,那么现在我们呃包括我们团队啊,用的最多的方法。
无论是形状有ip,就应该还是这个mma的方法,方法,就是说,然后他就说是一种比较常用的一种,非线性优化的一个算法啊,那么它实际上是对于很多的工程啊,科学问题都可以来解啊,它的基本思想啊也是比较简单的啊。
就是怎么不动不断移动这个约束的一些间接线,来进行非线性优化问题的这个求解啊,那是在在他出现之前,求解这种复杂的肺炎有优化问题,一个非常有挑战性的一个一个一个问题啊,那么伤时他在对198几年提出来的。
这么一个swamp,它的基本思想就是我在每次迭代中呢,调整一些伸缩参数,然后让这个目标函数啊,随着这个迭代步骤的增加而逐渐的这个优化啊,那么这个算法呢可以把这种约束条件,表成我这个间距均线的这种形式啊。
然后呢,我不断的调整这些间接线,来去求解相应的优化问题啊,然后再在这些优势条件时看到一组标记线,那么这些线它是可以呃,以递减的方式彼此靠近吗,那就最后就可以呃,如果呃达到我们的约束优化这个迭代之后。
它能够呃他们之间的距离就非常小的话,我们就可以看到它就是解决我们这个优化问题,但它还是有一些优点和缺点的啊,当然他的第一个优点呢,就是说它可以处理这种复杂的非线性问题啊,因为刚才说了。
就是说呃我们真正的在一些实际的场景里面,碰到的可能都是一些复杂的场景问题啊,特别是我们在这个形状优化,拓扑优化里面啊,那么另外一个呢就是说啊,他这个求解最后优化的这个呃,你到底优化到什么程度是吧。
它实际是和这个迭代次数啊,有比较大的这个关系,有比较大的关系啊,这是另外还有呢就是说对于这种大规模的问题,他的求解效率啊,也带速度啊,还是比较还是比较这个比较快的啊,收敛的比较快的。
但它也是有和我们一些传统的呃,有一些优化问题相类似的一些缺点啊,比如第一个就是说对于某些类型的问题,这个它很有可能会找到局部极小的一些,意识解啊,这个沙子对很多的这种迭代型的这种优化算法。
都会有这个问题对吧,都会有这个问题,另外一个呢就是说对于这种目标函数啊,目标函数变化过于剧烈,或者你这个约束条件的变化过于剧烈的时候,它也是可能会不会发生作用,发挥作用啊。
所以呢这也是呃我们这个所谓的这个mv算法,简单介绍一下,那么实际上也就是说我们最后形状优化对吧,呃问题实际上就是说我也可以看到,我们都是可以,它这个目标函数都可以求导的对吧。
那这个呢虽然最大最大应力最小化啊,他原来可能是不能求导的啊,但是我们对它做了一些改造啊,把目标还做了一些改造,就还是变成一个可微的一个目标函数对啊,所以说我们也是可以去采用这种基于梯度的。
m a 12盘的去求解,相应的前面的几个优化模型,优化模型,那么他下去是把整个的呃,一些问题分解成多个近似凸的子问题啊,然后通过迭代每个子问题得到原文里的解啊,因为现在初优化求解起来是呃比较稳定的对吧。
也是我们有一些比较好对吧,虽然他这个思想还是比较简单,也说我通过移动接近线啊,然后把呃一些问题能分解成多个的,近似的这个值,凸的这个值问题来进行求解,那具体的这个他的做法我就不说了啊。
基本上来说一般来说呃他的这个求解模型啊,比如说是这个样子啊,那么实际上呢就是说我这边呢阿尔法贝塔啊,比如说s键的是我原问题的这个实际变动,阿尔法接贝塔键呢就是指问题的上角往下。
那么这个键呢它实际上就是说呃,呃我把它分解成多个近视凸的子,问题的一些下标嘛啊,而我这边的这个呃a0 啊,a0 a i c i d i l这些东西啊,实际上就是说来,来决定你最终的目标还是什么样子。
是吧啊,那么这个yi啊z啊,这些是新引入的一些变量,然后可以通过求求解方程组求解方程的来结果,小火这边比较重要的就是这个啊,设计变量的上限和下限啊,也说这个呢它实际上是比较影响。
就是mma算法最后求解的这个收敛器啊,也是因为他这个为什么叫移动间接线嘛对吧,他这两项呢,就是就是作为这个移动间接性的这个边界,来进行,啊这边具体的细节我就我就不讲。
也就是说实际上就基于这种梯度的优化算法,进来处理呢,它能够因为我们这个工业函数对吧,可以非常快速准确的计算梯度信息对吧,然后他可以在一些可接受的时间内吧,可以收敛到这个目标函数的极值对吧啊。
但是如果用这种低度低于梯度的算法呢,一般还是要推到这个目标函数导数啊,还有灵敏度的这种计算形式对吧啊,那么呃比如说你用一些牛顿迭代啊之类的,还有计算,相应的还是理性来加快这些收敛的速度。
但如果是无梯度的这种优化算法呢,它迎来来说呃,主要是用于这种不可求导的这种问题啊,或者就是你这个除了过程的这个复杂度,远远大于你这个目标函数,计算复杂度的这个问题上。
那么实际上这类算法呢需要对这个目标函数啊,还有约束函数进行多次的这个计算才行啊,当然相比于基于梯度的这种优化计算呢,还是增加了这个总体计算的这个时间啊,但是优点呢就是简单了啊,不用求导啊。
有时候不需要复杂的数学推广啊,啊这边就说是一些介绍一下这个ma算法啊,ma算法啊,然后刚才讲了啥,我们这边呃在很多的形状优化这个框架里面,基本上还是要求导啊,还是要求导就可就涉及到后面这个呃计算这个。
结构的灵敏度分析的这么一个问题啊,灵敏度分析的这么一个问题啊,你说结构明明灵敏度啊,所求的就是我这个目标函数对吧,无论你是最大的应力最小化,还是呃啊这个柔度最小对吧。
实际上就是说让这个目标函数求这个目标函数,对这个设计变量的导数,求导导数,那么12结构灵敏度,这在很多的这个结构优化问题啊,可保险评估啊,还有参数识别时都都是非常重要的作用。
对也就说说你这个结构流化设计,它你最后求解的呃效率怎么样,收敛的快不快对吧,包括最后的结果怎么样,想都依赖于你在设计,最终涉及了你的灵敏度,分析的这个效率和精度是怎么样,那么三就是对于我们有些人来讲。
求解精度,灵敏度主要就是这种解析的方法,还有有限差分的对吧,比如说求导,就当这种差分来做些半解析的一些方法,半截式的一个方法啊,还有一些呃复变复变函数的复变函数的方法,还有伴随变量方法啊。
那么简易法呢当然是比较早的,但就是说他要进行比较繁琐的一些呃,人类推导才可以,那么上灵敏度的这个数值大小呢,它是就是代表了这个模型目标,你受到设计变量,它这个影响程度,对不对啊,比如说模型的目标函数。
你说的这个设计变量的养成对吧,也就是说如果你这个设计,比如如果这个母的目标函数,对于呃这个控制顶点啊,它应该比较大对吧,让它这么移动啊,然后让他往这个目标是最小,也就是说上次他在最终确定你这个控制点点。
怎么动的,比如说收缩方向对吧,确定这个优化问题,这个收缩方向上会有会极为有效啊,那么当然相应的这个呃这个求求导啊,我这边就不止一点啊,大家可以后面来看一下p p t啊。
然后实际上就是说这边比如这个我的目标函数,对我的设计变量的这个呃出现它的微分啊,或知道的上就可以根据他的一些目标函数啊,或者展开形式啊,直接来进行计算啊,但这边还是会涉及到相应的这个刚度矩阵。
对球技还有一些认识法则,啊,但就是这边还是会涉及到一些相应的呃,一些呃一些技巧吧,啊包括我怎么样用半水法对吧,来把这种呃求矩阵的逆变成这种方程组的求解,对吧啊,然后我怎么样通过一些矩阵计算。
来求得最终的这个导数值啊,那么这边呢就是说我通过这个具体的这个呃,单元短路矩阵,还有它的单元载荷向量的形式是吧,就这种形式对吧,然后相应的我就可以求一下这个单元啊。
线线材线下的这个刚度矩阵和呃和载荷向量啊,他对这个设计变量xi的,他们这个导数形式导数,我们就可以把它给这样写出来对吧,也就是说这边的xi就是我的问题变量,所以说我最终大家可以看到啊。
就是我最终灵敏度的计算,最终表现了我怎么样求这个是啊,就真的这都什么奇函数相关的对吧,一些矩阵的它的求导啊,雅各比的这个求导啊对吧,还有a这些这些求导一些问题,包括实际上这边也还是用到一些呃。
就是需要退一下啊,就我怎么通过这种积分的链式法则对吧,然后能够把它啊推导出来啊,然后呢去算出来啊,比如说我做几个的这个呃,比如b的导数啊,j的导数,g的导数啊,所以我怎么算啊,这个也是可以去推的啊。
那么包括a g函数n对这个s的,它的这个命令组的计算结果我怎么算啊,它也是可以都推得出来吧啊,后面的就是我们说的,就是实际上就是就是说我最终的这个把这个呃,向量的密度求出来之后。
然后我就可以来确定我指甲,整整个的这个某些这个自由度的设计变量,它的这部里面我怎么移动对吧,mac大家可以看一些例子对吧,这边呢就是说我这边应该是这边是固定的啊,这里也是控制了这三个控制定点。
这六个控制点都是固定的啊,然后我这边呢这个c格玛x往上4d对吧,然后这个c c c c和y的往上4d4 ,y x朝着这个方向往这边拉的,现在呢我就是要要求什么啊,要求我我这些呃优化这些控制顶点的位置啊。
然后呢我怎么样来,我怎么样来进行进,让它的整个的这个版的浓度最小啊,浓度最小也是他初始的是这个样子啊,这个你还可以设置一些雅思模量的参数啊,不是免的参数啊等等啊,也就是初始设计,如果是这样的话。
我最后优化出来时,就带着在这个开阔的地方对吧啊,才会变成这样,那也是符合我们初始的这个预期的,那么就大家可以看到,就我在这个等你和框架里面,因为我这边呢我的优化变量就是这些控制定点。
比如说你求导的这个呃,代价上也是也是变变低了嘛,对吧,这也是变小了嘛,就说你这个求导的这个计算各方面上也说呃,你不用求那么多次啊,那你这边比如有四个设计变量,有只求四个四个导数,就像四个定位定度。
那来决定我这个控制顶点怎么移动就可以了,那只是另外一类,就这边是固定的呢,这边是固定的啊,然后这边呢我我我我又优化了目标对面四个啊,然后我这边会往下,那我就最后这边怎么样呃,最优的这个设计啊。
当然这边呢它不仅仅把这个控制点啊放进去,而且把这个呃如果是numbers表示的话啊,他把这个位置还有这个全因子啊,那他这个分子分母都有全因子吗,那么这个全因子商也是可以控制形状的对吧。
那么也就是说还可以把这个控制点和全日制,这两个都可以看作是呃这个自由呃,这个设计变量来进行优化,那么这边呢就是刚才我刚才我讲的,这边就不多说了,对吧啊,也说那就是我们一开始给大家看的那个例子啊。
举了这个例子对吧,就是说我这边开口这边固定啊,然后我这个向上向下,然后这个最终呢呃这个它的受他的这个优化。
这个形状是吧,那么这是二维的这种平面的对吧,现代性旋转优化问题,那啥对于三维来讲其实也是类似的对吧,我这边就就简单过一下啊。
比如说我们这个上次弹弹性力学,三分线弹性的地区,就说是无外乎在我们登记框架里面,就是说我需要在体上来进行计算啊,在体上进行计算啊,那么商业说这边呢我就涉及到一些呃几何方程,平衡方程,本构方程的一些问题。
包括它的一些边界条件的一些约束啊等等啊,这边不讲了,就是前面课本上都给大家介绍过了啊,也就是说我怎么样在登记核的,特别是三维现代性问题里面,我怎么样把这种呃他的线弹性的问题,通过一些变分法对吧。
然后把它写成ku等于f的这种形式,好像这个里面非常重要的,就是说呃我在每个单元上啊,比如说在每个节点区间所对应的这个纸面片上,这个单元上,然后我去计算相应的这个单元刚度矩阵对吧,比如说单元刚度矩阵。
我之后再怎么样呃,来组装起来对吧,那在计算这个单元刚度矩阵的时候,我用了这个等参单元的这个思想是吧,然后我也是我要呃,我要把这种在物理域上的,对这种物理变量的这个坐标的这个积分问题。
把它转换成在参数域上,参数空间上的这个坐标的这个这个积分问题,那么这个形状优化的目标函数是吧,刚才都讲了,就是说相对于三维n也是类似的,你当然是可以是是吧,结构的最小浓度啊,包括最大一个理论小化啊。
还有这个体积对吧,这些都可以作为一个目标函数来进行求解啊,所以说你把这个目标函数呢,它的这个呃就出来之后,我就可以计算相应的这个灵敏度对吧,然后我包括我怎么样来这个里面,来满足一些约束啊。
所以说我们可以看一下,就是说在我们的整个这个呃,等几何的这个形状优化的算法框架,他这边诶你画了一个图是吧,就是说我需要先读取这个模型的几何信息啊,然后确定优化的边界,优化的变量啊。
然后去解决了ig的问题对吧,然后我对每一个设计变量,来计算相应的这个目标啊,对这个这个形状的这个,给我这个几何变量是吧,设计变量呢他这个灵敏度梯度是吧,然后确定你的步长是什么样子的啊。
然后执行一些相应的搜索对吧,也就是说啊然后呢根据这些呃你的步长,然后去确定更新你这个坐标的,控制顶点坐标的位置啊,然后然后再更新几何模型啊,下面呢我就可以再进一步算啊,就是说呃你这个在更新之后。
它的目标函数变成什么了啊,啊目标函数变成什么浓度已经降低对吧,嗯降低了对吧,降低了就是可以啊,如果没有降低,那我就可以说明这个更新的不对对吧,更新太大了或者怎么样,那我就可能要减小,你这个不长是吧。
然后再再再再回来啊,再进步,那如果呃柔度降低了对吧啊,那你这个最终也没有收敛到你的目标啊,啊还没达到这个浓度最小的这个这个目标对吧,没有那我继续回去啊,然后确定优化编辑,这这这都已经确定了。
然后我再算一下呃,再迭代一次对吧,来再求中i j nf来分析一下啊,分析一下,然后再计算相应的这个形状,季度b下去对吧,因为这个时候为什么要,因为他这个里面就变了对吧,为什么变了啊。
因为你这个这个你的形状内部的,这个点的位置啊,什么这些都变掉了对吧,所以呢已经i j求解,相应的以这个目标的值啊,目标函数的值,商业目标的函数的这个东西也变掉了对吧,所以说你在计算这个星上去走。
肯定就是完完全另外一个有另外一个结果是,然后一直在进行这个步长,是执行潜伏的,然后一直这样迭代下去啊,然后这样的话我们就说呢呃就会白城啊,无论是二维还是三维啊,都可以基于这个流程来进行呃。
来进行行动优化啊,那这边呢就是一些呃一些例子对吧,这边比如是一个呃三维单片,还有多片模型,它的形状优化的一些结果,这边就是呃应该是一个单片的,悬臂梁的一个初始的一个模型对啊,就是这边固定。
然后这边往下一个定啊,这是三维的这种自拍的这个控制设计,变量的可能会更多一些,更多一些,好这边呢就是一个多片的1/4代工,你看他刚刚才我们那个二维问题,是非常类似的对吧,外乎就是沿着比如z方向。
我是扫了扫略了一下啊,那像我们最后优化出来的结果,和中二维的这种结果也是非挺类似的,也是挺类似的,也就说实际上这样的话啊,这样的话嗯对于这种多片开门快手啊之类的,我们一场演示会可以得到我们这种想要的。
一些数数数这个优化的一些结果对吧,那么这边呢就是说我是呃一些更复杂一些,也不要更复杂,就说我是不建议是单单片了啊,毕竟是单块,我这边用的多快的,这个变量体可以组成类似于握个涡轮呃,夜深的这么一个呃。
这等级方法来做西装优化的一个结果,这边是一个初始的啊,一个形状是吧,然后我这边设备的边缘试驾的情况下,这边是往下的,然后这边哎我这个固定住啊,固定住啊,那么也就是说呢这样的话呃我要优化的啊。
我要优化的是其他的这个控制链的位置,然后这边呢就是我最终的这个涡轮叶森的旋转,以后的结果啊,那么是基于这个优化后的结果,可以在上面再做等级和仿真,然后看一下呃这个相应的这个对吧。
呃反正效果是不是满足我们这个要求,那么这边呢就是因为我这边是采用这种,柔度最小化为目标的优化目标的一个迭代的,一呃为目标的一个一个一个模型啊,所以说它这个里面它呃这个浓度,它就这个变化也是可以发现。
虽然说一开始呢这个数量还是很快的哦,下降还是挺快的,到后面呢就会慢慢的慢慢的收敛。
那么这是三维的形状优化问题啊,那实际上是和我们这个二维的形状优化的,问题呢是基本类似的啊,基本类似,那么最后一部分呢给大家介绍一下这个,超弹性问题,我们上次课主要给大家介绍,这个所谓超弹性问题,对吧。
他的这个在这个框框架里面,我怎么来进行求导,我怎么我怎么样来进行仿真是吧,那么实际上也就是说如果对于这种超弹性问题,我当然也是可以做形状优化对吧,那如果对于这种超弹性问题来进行形状优化。
和我们呃其他的方法用来也不同对吧,就是我们这边需要讲。
虽然我没在做这种超弹性问题,这种求解的时候啊,这是我们上手给大家看的这个框架对吧,比如说我输入样条几何模型,定一些材料参数啊,因为这边是超超弹性材料嘛,和边界的约束啊,然后分析我这个单元这个加息啊。
设置数量误差等等对吧,因为我要看看我最后的这个动力学啊,还是这个有没有收敛啊,然后计算计算相应的这个枪切线的高度矩阵啊,还有这个一些它的残差,一些初始化对吧啊,便便利变频单元对吧啊,是否收敛。
肯定如果没有对吧,我就继续下去啊,电力并非单元在每个单元上,或组装相应的单元切线刚度矩阵对吧啊,然后计算相应的产量向量啊,还有这个单元矩阵的影射全体集阵对吧,然后是不是编辑结束啊,编辑好的话。
如果就先求解这个全局的这个全局矩阵对吧,然后继续下去,这是我们上次课给大家介绍了这个超弹性,超弹性呃,方便了这个一些问题求解的一个,主要的一个方面对吧,那么实际上在我们刚才给大家看到了。
就是说对于这种呃整体和形状优化的,它的这个优化的关键流程是这样的,这也就是说呢也是呃定义这个优化问题,基本的一些参数对吧,社交边缘条件执行这个i j a的分析,仿真计算向的目标函数和约束对吧啊。
然后进行灵敏度分析,然后确定这个优化的方向和步长啊,然后更新这个控制变量的位置对吧,更新设计变量啊,有没有收敛啊,如果收敛呢是那就输出最终有关结果,如果没有再继续进行执行i及仿真。
在计算新的目标函数和约束,计算新的灵敏度对吧,然后再进一步确定这个优化方向和步长对吧,然后更新试一遍,然后下去,那么这是整个优化的问题模组是吧,所以说实际上就是说呃这边呢我就不说了啊。
上次也是和我们前面是一样的,无外乎现在的我变成了一个超弹性的一个问题,是超难性的一个问题,那么也就是说如果让这个,比如说是达到欧洲最小,作为它的用户优化模型模型啊,就这样对吧啊。
如果是优化目标达到这个最小应力的啊,就是就是这个目标函数啊,这个扇子在我们很多的传达问题里面,都是这样来做的,那最小位移对它的表达式啊,然后这个最小面积最小体积,它的表达式。
那么啥在这里面也是涉及到比较重要的,就是我怎么样去呃,计算你这个呃先超短线问题里面,他的单元刚度矩阵对吧,对这个设计变成这个求导公式啊,上回我要涉及到的这个求导公式,也是这个矩阵的求导是吧。
打个比的求导对吧,还有这个呃即函数的求导是吧,还有这个呃就是控制顶点,对它这个他们直接自身之间的这个求导,这些问题,当然这边呢就是说我这边呢会涉及到一些啊,这就控制顶点对吧。
还有这个全因子的就是全灵敏度的问题是吧啊,也就是说说你是不是考虑这个,只考虑控制链的位置啊,啊还是考虑这个全因子的优化,要不要考虑进去啊,比如说如果两个都考虑进去,你不能这样算啊。
如果是只考虑我的控制键的位置啊,那你可能是这样算,这边呢就我也把它都列举列出来了吧,那么实际上也是对我们这个超弹性问题来讲啊,那么伤我最终的这个刚度矩阵啊,刚度矩阵12是和位移是相关的对吧。
而且呢这个材料矩阵呢,实际上也是因为它是非线性的嘛,所以它们之间的关系呢不需要现代性,那么那么那么线线性材料,那么呃那么直接对吧啊,也说他是没有办法呢,直接有这个应力应变计算来得到。
就会相就说呃使得这个位于导数计算过程中呢,呃无法适应这种超弹性的这种材料啊,也就是说上就说这种求导的计算,在这种非线性问题里面,我们只能用差分法来求这个位移的导数,那差分呢大家在学这个微积分的时候。
都应该都理解了对吧,所以说发展整个的这个参数域区间,来进行离散化,然后我把这个呃,求微分的这么一个连续微分的问题,把它变成一个呃差分的一个问题,通过导数啊,点了这个前后相的插上,来求得这个导数的近视啊。
啊把这个近视呢作为我们导师一个逼近,也是我们这边呢,实际上是用了一个呃中心差分法来求一阶偏导,就说做一个它的展开啊,它的展开啊,然后这样的,这个我又对x的这个偏导的一个逼近形式啊。
就是这个啊这个我通过前面的这个颜色,也有一个u xi加在x等于这个ui简单啊,这个东西,那我要求的是什么啊,我求的这个啊,所以说呢,我如果实际上就是可以把它写成这个形式,你要这样呢。
我们实际上就可以把这种位移啊,对设计变量的偏导呢,带入不同的这个目标函数的导数里面,然后求得各个设计变量它的灵敏度的这个数值,然后来推导这个呃,前面的四种不同的目标函数嘛,它的这个导数形式是什么样子。
那么他这边呢比如柔度啊,还有这个位移啊,对这个这边导致清晰,我都可以把它解析的,把它写出来啊,那么实际上我们这边还有还有还做了一件事情,就是说实际上也是类似一个多分辨率的一个,一个思想啊。
反正后面应该我们也会给大家介绍啊,给大家介绍,就是说呃基于体积分的这个建模,仿真优化,一体化框架里面也有用的这个细分的思想对吧,像我们这边呢也是用一下,就是说啊我的设计模型啊,可能是触网啊。
为什么是出网格,就是我可能觉得没有必要啊,一定要用那么多的控制零件,都做过我的设计表面,但是我的仿真的模型也是我做i g计算的,这个模型啊,是西网课的这个系网格来干嘛的,就是来计算这个灵敏度的啊。
而且这个他们之间的这个灵敏度呢,它是可以传递回去,有的,虽然我是在这个细网格上来进行仿真啊,然后把这个出网格呢作为我的呃,控制控制网格对吧,有个设计的网格啊,但是呢就是说我这个,在新网格上。
每一个控制电,它能敏度是可以传递到这个出网格的,这些控制点数的,它的灵敏度,那这个呢是没有问题,也就是说实际上我们通过这种传递啊,我们这边也是给出了他的这个灵敏度,传递的一个解析的一个公式。
是解析的公式啊,那么通过这种解析的这种公式啊,我上就可以求得啊,在这个原来这个出网络上,它的相应的这个呃灵敏度怎么来更新啊,这边来更新啊,但是它之间呢基本上还是一个非常简单的,线性啊的一个关系啊。
偏硬的关系,那后面也是看一些例子啊,这边又是一个二维的悬臂梁模型啊,因为它是形状优化中比较简单,也是比较经典的一个例子是啊,那么像这边呢他就给出了这个问题的这个定义,还有边界的这个受理条件。
他这边形状优化的目标呢就是我在体积约束下,怎么能荷载讲的这个垂直位移啊,啊能够最小化啊,最小化啊,那么它也设定了现在的这个量的长度宽度啊,高度变化的范围啊,就是我这个形状变呃,设计变量你不能变化太剧烈。
是太那个啊,还有它的相应的一些,杨氏模量啊等等啊,这边呢实际上主要采用了两种方案来进行测试,优化啊,那优化的设计变量呢,就是模型上面积的上边界的六个控制点啊,这边的六个控制点就是它的这个设计变量是。
然后方案一的它的优化目标呢,就是我最终的这个悬臂梁的面积啊,不超过最大面积的70%啊,那么这是这一个啊,那么这边的实际他就给出了一些啊对吧,因为我优化的变量就是上面的六分点。
所以比如说它的最后的这个优化的一些结果,优化的结果,那么这边呢就是在这个整个的优化过程里面啊,整个内化过程中它是全平梁形状,叠在叠在里边是一个位置对,也是可以发现我把这个位移值作为我的形状。
这个优化的目标也是可以做到,这是另外一个,就是这个呃带孔薄板的平板的一个例子啊,也是我们在呃经典的计算力学里面,比较容易通道的一个例子对吧,他的这个模型呢,就是一个中间带孔洞的一个大型板。
然后板的这个四面受到向外的这个拉伸力啊,但是这个受力和模型啊这是对称的对吧,是对称的啊,所以呢就是说可能只能对这个,我们只要对这个板的这个1/4来进行建模,缓存,就变成这个样子就可以了。
那么像其他部分呢,就是如果是一个呃里面有个孔的其他部分呢,你就是呃都可以对线的来做就行了啊,那么像这个里面呢,我们这个目标呢就是说呃在面积约束下,它的柔度最小啊,柔度最小。
然后我们也是测试了对这个问题来做了呃,我们主要用了两片的样条曲面模型,来构建相应的这个cd模型啊,然后呃对这个设计变量和约束来也是设置了啊,我们上去是为了检验我们在多片模型下,这个形状优化结果的啊。
这个正确性,并且测试这个不同这个体积约束啊,对平板形状优化的呃这个影响,比如说大家可以看到,他上这边确实是分成了两个面片,面片一和面片,二是,那么也就是说在第一种约束下啊,在第一种约束下啊。
我们实验就是说我们还是大家可以发现,就是5s得到一个比较类似于一个一个圆孔的,这种结构啊,这也是比较符合我们的这个预期的,就是这个例子啊,另外一个这边就是一个,类似于圆角版的一个例子啊。
那么我们这个优化的变量呢,也这边是就它的这五个控制定点,就是我的这个优化的变量啊,也是我优化的边界是吧,优化的这个边界,然后这边30表示成了三个,那个是曲面片,那个是曲面片,那么。
就大家可以发现我这边呢就是说实际上在,线弹性下和在这个超弹性下,它这个形状结果的这个优化的这个情况啊,优化的一些情况区别呢区别不是太大啊,不是太大,但还是还是有些稍微稍微的一些差别啊。
那啥就是大家可以看到,就是说我在通过这种优化,通过这种优化确实是在这个呃尖锐的部分,他本来初始是这样的对吧,也是这边是应力比较大的,应力比较大对吧,我可以通过这种优化,让他这个应力啊变变得小一些啊。
而且呢让它这个地方尖锐就会变得更加的光滑,总体来说还是还是有效的对吧,也真的会变得更平滑,像这种设计的还是非常有效,可以减少像这个尖锐地方的一些应力集中啊,那么从这些图的这个应力分布上。
我们也是可以看到嗯,应力在这个优化过程中是减少了,而且分布啊它会变得呃这个更加的均匀,那这个后面再看一下,比如这个呃体积量的这个模型,体积量的认为这是一个三维模型,也做了超弹性的这个优化问题啊。
超弹性的这个优化问题,也就是说它是一个实际是一个侧面,它是一个t是一个梯形结构的一个量模型,也是我们这个优化目标呢,就是在这个体积约束下到最小化,这个才这个模型的柔度啊。
来提高这个整个结构的抗压能力了啊,然后这边呢体积量左边这边是固定的啊,这边是固定的,然后上面呢受到相应的这个力对吧,相应的这个力啊,然后这个力均匀方便在上面面的上面啊。
然后我们这个4g模拟实际上是用了一个,那不是铁来进行构建对吧,那么设计编呢就是下表面的12个控制定点啊,这边下表面的12个控制点来作为设计变量,然后这边为什么才出这模型,实际上也是对这个模型。
我们是有参考的一些呃一些例子,只要我,而且我们通过一些等几何的这种优化分析,求解之后,发现呢,也是像我们也是比较符合我们这个预期的啊,符合预期的,就是说实际上就是说我们三就是可以看到啊。
这是最终优化的结果嘛,啊最终我通过迭代一词,两次迭代五次迭代数,它最终优化了这个结果变成这个样子,那么三节说呢,三我整个的这个柔度的这个数值对吧,你看也是从这个400多下降到100 100左右。
100左右,那么包括相应的这个仿真的结果啊,相应的仿真的结果啊,这边就是呃优化前的,这是优化后的对吧,仿真的这个结果啊,那么上次通过这个仿真结果,也可以看到这个优化后模型的这个位移啊。
还有它这个硬币都是啊明显降低了啊,明显降低了啊,再说呃应力的上限从这个对吧,大概是900亿,下跌到370,你说三句就表明我整个结构啊,它内部存储的这种应变能是减少是减少的啊,也是相同边界条件下。
这个优化后的模型可以承受更大的压力啊,更大的压力,这是我们形状优化的目标嘛对吧,这边的商就是给出了就是我在线弹性访问下啊,它的这个形状优化的啊,左边是这个呃位位移了这个方程的结果。
这边是那个应力方程的这个结果啊,那后面呢是一个就是说带孔平板的一个例子啊,啊这个开口扳手模型的一个例子,开口扳手一个模型的一个例子,那么这个开口扳手呢,它是我们前面呃也也给大家看过了。
实际上就是说在线弹性材料下啊,现弹性材料下,是这个是这个结果啊,那个结果也这是我初始的这个形状啊,那么当然它的这个边界条件怎么设置的,就是说我这边只要控制定点都是固定,这边这边应该都是固定的啊。
然后我优化的呢就是这这些红色的啊,或者一些直接点的空,这些位置,你说这个红黑色的这个框点呢,就代表设计变量啊,红色的这个框点呢是代表联合变的啊,也就是说这些红色的点是随着什么啊,这些蓝色的点啊而变化啊。
而真正的我的优化的变量是这些黑色的,这些点啊,反正因为这边呢我是固定的对吧,然后这边往往上,那么实际上也就是说这些红色的点是跟随的,伴随的也多,有一个规则,我们定义了一些规则,它具体怎么跟着怎么变对吧。
我们这边是给出了一些规则,然后让它怎么样去变这个动,也就是说这边的山,就是这边呢给做了一个,分别在给出了这个线弹性材料下,它的形状优化的结果,还有在这种超弹性材料下,形状优化的结果恰好是前面的。
就是说呃实在六次迭代后基本上就收敛了啊,所以说实际上在现代性材料六次迭代后,就收到了555非线性分析材,超载性材料的话,它五次迭代后才收敛啊,你说像我们这边展示的模型呢,也是分别迭代一次,两次。
三次和最后一次迭代的结果啊,就是这边呢是分别展出了相应的这个呃,在不同迭代的情况下,它的这个优化的一个结果,这个体积约束的是变到了原来的1/3啊,比如说我们最后的优化结果上。
也是大家可以看到在我们这个满足这个约束下,上次达到了,得到了这个符合我们这种bl的这种结果,满足了我们的优化目标啊,发出来的优化目标,比如这边实际上就是说呃,呃主要介绍了一种对吧。
基于这种超弹性材料的一种形状优化的框架啊,那基本的框架和这种线弹性的还是类似的啊,但是不同的是,因为我这边是非线性问题啊,所以说我在这个无论是求导啊,还有其他的一些呃框架的一些元素的一些,计算方面啊。
我和线弹性还是有的比较本质的一些区别啊,也就是说当我们给大家讲的,就是我在不同的目标函数下,他这个灵敏度相应的怎么算啊,然后我怎么样根据啊对吧,根据中这种多分辨率的性质啊,也就说我的呃设计网格啊。
我的设计的变设计的这个表示,和我的分析分析和呃仿真分析的这个表示,他们之间是有一个呃可以灵敏度传递的方法啊,也是这样的话,我上就是我的设计变量呢就不用那么多啊,为什么要要要让设计变量不用那么多呢。
因为呃我们呃要达到比较高的这个登记和分析,房子的精度化,仅仅仅用呃,刚才那几个控制定点还是还是不够的,对不对啊,就是说我们还还是肯定要对他做一些加息啊,等等的,那你加息了之后,相应的这个控制点的这个。
设计变量的数目就增加了对吧,设计变量的数目就增加了啊,那么我怎么样,在这种不增加这种设计点的数目的这个情况下,对嗯,然后来进行这种设计优化,我就能够保证我最优化的结果是合理的对吧,所以我觉得这种呃。
到分娩的思想也是挺好的一个事情啊,而且我样条表是天然的对吧,天然的就是这种事情,我通过无论是局部的,无论是插入节点还是中间,我都是可以保持呃这个那个形状保持不变对吧,精确表保持不变,就是啊。
所以说我就可以在呃相应的这个下面,这个框架下来进行这种多分辨的计算啊,求解,可以大大,至少我可以大大减少我优化的这个成本啊,因为我相应的这个设计变量求导,你先因为这个少了嘛对吧,想想那个求导啊。
各方面的这个计算优化这个方面的计算的,实际上就是说也是这个成本呢也是大大降低了,啊,你说这是我们今天主要给大家讲的主要内容啊,主要还是讲形状优化对吧啊,形状优化啊。
那么我们也是通过一些例子啊给大家展示了啊,就是说在整体和分析的框架下啊,确实呃要比有线源框架啊,形状优化可以,你可以更方便对吧啊,因为我们基于这个等几何的框架,我就可以把形状优化的问题。
优化的这个问题变成上,直接对我的控制定点来进行优,它的位置来进行优化的一个问题对吧,我们前面也讲过多次,这三句相当于就是说哎我给你一个黑盒子,黑箱子对吧啊,你只要给我电解条件,给我受力啊,它的固定啊。
还有这些材材料参数啊等等这些边界条件,然后我就可以去优化出它最后中的这个位置,在哪是吧上,也就是说呢,这是一个非常重要的一个根据合的一个一个,根据合的一个思路啊。
也是根据和大优势的表现了一个,后面呢我们可以对他的这个呃拓扑优化啊,来进行讲解啊。