P1:1. What Makes Healthcare Unique - 大佬的迷弟的粉丝 - BV1oa411c7eD
欢迎来到2019年春季医疗保健机器学习,我叫大卫•桑塔格,我是计算机科学的教授,我也在医学工程与科学研究所工作,我今天的共同导师将是皮特·索夫兹,在今天的讲座快结束时,我会介绍更多。
以及课程的其他工作人员,问题是美国的医疗保健费用太高,目前我们每年花费3万亿美元,我们甚至不一定做得很好,患有慢性病的病人往往发现这些慢性病诊断得很晚,他们往往管理得不好,这种情况发生了。
即使在一个拥有世界上最好的临床医生的国家,医疗差错时有发生,错误,如果被抓到,本可以防止不必要的死亡,医疗保健影响着我们所有人,所以我想这个房间里几乎每个人都有一个家庭成员,所爱的人,亲爱的朋友。
甚至他们自己也有健康问题,影响你的生活质量,影响了你的工作,你的学业,可能导致了不必要的死亡,所以我们今天在这门课上要问的问题是,我们如何使用机器学习,人工智能是试图改变医疗保健的更大难题的一部分。
所以我们都有一些个人故事,我自己也有一些个人故事,这些故事让我对这个领域产生了兴趣,我的祖父患有阿尔茨海默病,他很晚才被诊断出阿尔茨海默病,今天对阿尔茨海默氏症没有好的治疗方法。
所以我并没有预料到结果会有所不同,但如果他早点被诊断出来,我们家就会意识到,他做的许多不稳定的事情,在他生命的晚年是由于这种疾病,而不是因为其他原因,我妈妈得了多发性骨髓瘤,血癌。
他在四年前或五年前被诊断出来,现在,我以前从未开始治疗她的癌症,她两年前去世了,一年前,现在,为什么她死得很好,人们相信她的癌症还处于非常早期的阶段,她的血液标记物被用来跟踪癌症的进展。
把她归入低风险类别,她还没有明显的疾病并发症,根据今天的标准指南,要求开始治疗,结果,相信最好的策略是观望,但她不知道,和我的家人,她的血癌,这是由轻链造成的,它们正在积累,最终导致器官损伤。
在这种情况下,轻链在她的心里积聚,她死于心力衰竭,如果我们认识到她的病在更远的地方,她可能已经开始治疗了,现在有二十多种治疗多发性骨髓瘤的方法,被认为有延长寿命的作用。
我可以给你四五个来自我个人家庭和朋友的故事,发生过类似事情的地方,我毫不怀疑你们所有人,那么我们能做些什么呢,这是我们在今天的课程中想要试图理解的问题,别误会我的意思。
机器学习人工智能将只是拼图的一部分,有这么多其他系统,我们必须对我们的医疗保健系统进行系统性的改变,但让我们试着理解这些人工智能元素可能是什么,那么我们就从今天的课开始吧。
通过介绍人工智能和机器学习在医疗保健中的背景,我会告诉你为什么,我想现在是1919年的时候了,真正开始在这个问题上取得重大进展,那我就告诉你,我将给你举几个机器学习如何可能改变医疗保健的例子,今后十年。
当然我们只是猜测,但这是由最新和最伟大的研究指导的,很多都发生在麻省理工学院,今天的课结束时,我们将概述,有什么不同,机器学习医疗保健的独特之处,你们过去都上过机器学习的课程。
所以你知道监督预测的基本知识,你们中的许多人都研究过聚类之类的东西,你肯定在关注新闻,你看到的地方,每天都有关于谷歌的新闻,脸书,微软在语音识别方面的最新进展,计算机视觉等,那么。
将这些技术应用于医疗保健领域的真正不同之处在于,答案是有很大的差异,在这里进行机器学习有很多微妙之处,我们会在整个学期讨论这个问题,所以开始,这不是一个新领域。
医学中的人工智能可以追溯到20世纪70年代,甚至在六十年代的某个时候,最早尝试使用人工智能进行诊断的例子之一是这个霉素系统,斯坦福大学开发的,目标是试图识别可能导致感染的细菌。
然后试图指导对这种细菌的适当治疗方法,现在发现这个算法,这个机器学习,这个简单的AI算法,能够在69%的病例中提出一种好的治疗方法,这在当时比最好的或非常好的传染病专家,现在它还有一些其他的元素。
挺有意思的,所以那些一直在关注最新聊天机器人的人,可能会觉得这有点先见之明,所以有一个对话框界面,电脑说,我准备好了,电脑,临床医生回应,这是一个两个六岁的男性病人,计算机测试它对正在发生的事情的理解。
上面说病人的年龄是2岁6岁,病人的性别是男性,临床医生五天前写道,他有呼吸道感染,电脑问他叫什么名字,乔,计算机响应,我的理解是病人的名字是乔,呼吸道是病人的症状之一,然后临床医生在入院前几天写。
他身体不适,就是一般的疲劳,计算机响应,请告诉我入院日期,临床医生回应,一九七九年三月十二日,计算机再次确认它被适当地理解了,这是后期诊断阶段的序言。
所以人工智能如何真正影响医学的想法已经存在了很长时间,然而这些算法,已被证明是非常有效的,即使回到二十世纪七十年代,没有转化为临床护理,第二个例子,哦,它的性质同样令人印象深刻。
是匹兹堡20世纪80年代的作品,开发所谓的内科一或快速医学参考系,这现在不用于传染病,但对于初级保健,在这里,人们可能会问,我们如何才能在更大的范围内进行诊断,病人可能会患上数百种不同的疾病中的一种。
可能会报告成千上万种不同的症状,每一个都给你一些视野,对病人健康可能发生的事情的嘈杂看法,在很高的水平上,他们把它建模为贝叶斯网络,严格来说,这不是贝叶斯网络,它在当时更具有启发式后来被发展成。
但在高水平上,有许多潜在变量或隐藏变量对应于不同的疾病,病人可能得了流感、肺炎或糖尿病,然后在最底部有许多变量,这些症状都是二元的,所以疾病不是开就是关,这里的症状要么存在,要么不存在。
这些症状可能包括疲劳或咳嗽,它们也可能是实验室测试结果的结果,就像高值的血红蛋白,a a c,然后这个算法会采取这个模型,为病人报告的症状,并试图对病人可能发生的行为进行推理,弄清楚鉴别诊断是什么。
有超过4万个边缘将疾病与他们的疾病导致的症状联系起来,这在本质上是概率性的因为它捕捉到了一些症状只会发生的想法,有一定的概率,一种疾病花了15个人的时间才从一个庞大的医疗团队中得出。
所以这是一个很大的努力,甚至在,你知道的,走向今天的时间,很少有类似的努力能像这次这样令人印象深刻,但又一次,发生了什么事,这些算法今天在任何地方都没有被使用,在我们的临床工作流程中。
阻止它们今天被使用的原因有很多,但我在我姑姑和我的解释中用了一个词,这应该真的暗示了它,我用了临床工作流程这个词,我认为这是最大的挑战之一,也就是说,这些算法是为了解决狭隘的问题而设计的。
它们甚至不一定是最重要的问题,因为临床医生通常在诊断方面做得很好,输入之间有很大的差距,他们预期的和目前的临床工作流程,所以想象一下你有,现在是一台大型计算机,我是说这是80年代。
你有一个临床医生必须和病人交谈,获取一些信息,返回结构化数据中的计算机类型,病人报告的症状,从电脑上得到信息,和迭代,你可以想象,那是花很多时间的时间,时间就是金钱,不幸的是,它阻止了它的使用,而且。
尽管使用它花了很大的努力,在现有临床工作流程之外。
这些系统也很难维护,所以我谈到了这是如何从15个人多年的工作中得出的,这里没有机器学习,它被称为人工智能,因为一个人试图用人为的方式推理,就像人类一样,但这里面没有从数据中学习,所以这意味着。
如果你去了一个新的地方,假设这是在匹兹堡开发的,现在你去洛杉矶,或者去北京,或者去伦敦,你想应用同样的算法,您突然必须从头开始重新派生这个模型的部分,比如说,疾病的先验概率将非常不同。
取决于你在世界上的位置,现在你可能想去初级保健之外的另一个领域,一次又一次,人们不得不花费大量的精力来推导出新医学这样的模型,随着新的医学发现,必须再次更新这些模型,这对部署来说是一个巨大的障碍。
我现在再举一个例子,从十九世纪开始,也是从二十世纪八十年代开始的,这是一个不同类型的问题,不是一个你怎么做诊断,但你实际上是如何做发现的,这是斯坦福大学的一个例子,这是一个非常有趣的案例。
在那里人们采用数据驱动的方法试图做出医学发现,有一个所谓的疾病登记数据库,来自类风湿性关节炎患者,这是一种慢性病,这是一个嗯,这是一种自身免疫性疾病,在一系列不同的访问中,每个病人,一个会记录,比如说。
这里,它显示出,这是第一次访问,日期是一月,一万七千二千,十七,一九七九年,膝盖疼痛,病人的膝盖疼痛据报道很严重,他们的疲劳是中等的,温度是三十八点五摄氏度。
这个病人的诊断实际上是一种不同的自身免疫性疾病,称为系统性狼疮,我们有一些他们的肌酐和血液氮的实验室测试值,我们对他们的药物有所了解,在这种情况下,他们服用了强的松,类固醇。
一个人在每个时间点都有这些数据被记录,几乎可以肯定是记录在纸上的,后来这些被收集成计算机格式,但它提供了提出问题和做出新发现的可能性,例如,在这部作品中,有一个发现模块。
这将对哪些方面可能导致其他方面做出因果假设,然后它会做一些基本的统计,检查这些因果假设的统计有效性,然后它会把这些提交给领域专家试图检查,这对那些被接受的人来说有意义吗,然后它利用刚刚学到的知识来迭代。
试图有新的发现,和,本文的主要发现之一,强的松会提高胆固醇吗,这篇文章发表在1986年的《内科医学年鉴》上,所以这些都是数据驱动方法的早期例子,以改善医学和医疗保健,现在转到二十世纪九十年代。
神经网络开始变得流行起来,不完全是,我们在当今时代所熟悉的神经网络,但尽管如此,它们有着非常相同的元素,所以就在1990年,有88项发表的研究使用神经网络解决各种不同的医学问题。
真正区分这些方法的一件事是,我们在今天的景观中看到的是特征的数量非常少,所以通常与我在上一张幻灯片中展示的功能相似的功能,如此结构化的数据是手工策划的,用于机器学习,这不是自动的。
所以必须有助手收集数据,正因为如此每次研究的样本数量都很少,用于机器学习的,现在这些模型虽然很有效,我将在下一张幻灯片中向你们展示一些例子,这些例子也遭受了同样的挑战,我之前提到过。
他们不能很好地适应临床工作流程,很难得到足够的训练数据,因为需要人工努力,以及社区的发现,即使在二十世纪九十年代初,就是这些算法没有很好地推广,如果你经历了收集训练数据的巨大努力。
学习你的模式并在一个机构验证你的模式,然后你把它带到另一个,它只是工作得更糟,好的,所以这真的阻止了这些技术转化为临床实践,那么这些被研究得很好的不同领域是什么,这里有几个例子有点小,所以我会读给你听。
嗯,在乳腺癌中进行了研究,心肌梗塞,心脏病发作,下背痛,用于预测住院皮肤肿瘤患者的精神科住院时间,头部受伤,痴呆的预测,和各种其他问题,这些问题也是我们所看到的性质,我们今天在新闻上读到的。
在现代应用机器学习和医疗保健的尝试中,提到的培训例子很少,从三十九到,在某些情况下,三千,那些是个人,人类与网络,神经网络,他们并不完全肤浅,但它们不是很深,要么对,所以他们,这些是建筑。
它们可能是60个神经元,然后是七个,然后是六个,比如说,根据神经网络的每一层,顺便说一句,这有点道理,给定输入的数据类型,所以就目标而言,这些都不是新的,那么什么改变了,为什么我认为。
尽管事实上我们已经有了可以说是,最近三四十年的失败,我们现在可能有成功的机会,和大微分器,我现在叫什么,机会是数据,所以说,而在过去,医学中人工智能的大部分工作并不是,数据驱动,它是基于。
试图从临床领域专家那里获得尽可能多的领域知识,在某些情况下,今天收集了一点数据,我们有一个惊人的机会,因为电子病历的流行,在美国和其他地方,现在在美国,比如说,故事不是那样的,即使在2008年。
当电子病历的采用在全美国不到10%的时候,s,但那时美国没有经济灾难,s,作为经济刺激计划的一部分,大约有300亿美元被分配给医院购买电子病历,这已经是我们看到的第一个例子,政策对创造,打开舞台。
我们在这门课上能做的工作类型,今天,所以钱就被用来激励医院购买电子病历,因此,收养率急剧上升,这是一个非常古老的数字,来自84%的医院中的2155%。
现在它实际上大得多,因此,数据是以电子形式收集的,这提供了一个尝试对它进行研究的机会,它提供了一个在上面进行机器学习的机会,它提供了一个开始部署机器学习算法的机会,而不是手动为病人输入数据。
我们可以从已经以电子形式提供的数据中自动绘制它,所以,有许多数据集可以用于研究和开发,在这个空间里,在麻省理工学院,教授开创了一项重大努力,罗杰标记,在ECS和医学工程研究所。
创建所谓的物理网络或模拟数据库,Mimic包含了来自重症监护室4万多名患者的数据,而且数据非常丰富,它基本上包含了重症监护室收集的所有东西,从两个护士写的笔记,通过关注病人身上的监测器收集的生命体征。
连接的,收集他们的血压,氧饱和度,到血液测试结果,成果的执行情况,当然还有处方中的药物,所以这是大量的数据现在人们可以用来研究,至少在非常狭窄的重症监护室学习,机器学习如何在那个地方使用。
我不想强调这个数据库的重要性,通过这门课程和更广泛的领域,这是唯一公开的电子病历数据集,全世界任何合理大小的,它是在麻省理工学院创建的,我们将在家庭作业中广泛使用它,结果,还有其他不公开的数据集。
但这些都是由工业收集的,一个最好的例子是经过验证的市场扫描数据库,它是由一家名为Truvin的公司创建的,后来被IBM收购,几分钟后我会告诉你更多,这个数据。
有许多竞争公司拥有类似的数据集不是从电子病历中创建的,而是从典型的,它是从保险索赔中创建的。
所以每次你去看医生,所以你的提供者会给你的健康保险寄一张账单,基本上说发生了什么,那么做了什么程序啊,提供诊断,用于证明这些程序和测试的成本是合理的,从这些数据中,你现在得到了一个整体的观点。
对那个病人健康状况的纵向观察,然后有很多钱在幕后传递,保险公司和医院之间,对Truvin等公司,收集这些数据,然后转售用于研究目的,像这样的数据的最大购买者之一是制药行业,这个数据,不幸的是。
通常不公开,这实际上是一个大问题,在美国和其他地方,这是该领域研究的一大障碍,只有那些有数百万美元支付的人才能真正接触到它,这是我整个学期都要讲的东西,这也是我认为政策可以产生很大影响的地方。
但幸运的是,在麻省理工学院,情况会有所不同,多亏了麻省理工学院的IBM,麻省理工学院的watson ai实验室与ibm有着密切的关系,看起来我们可以访问这个数据库,我们这学期的作业和项目。
现在有很多其他的倡议正在创建大型数据集,后来更名为我们所有人倡议,这项倡议正在创建一个100万患者的数据集,以代表性的方式从美国各地吸引来捕捉病人,穷人和富人,健康及有慢性病的病人。
目标是试图创建一个研究数据库,让我们所有人和其他人,里里外外,U,我们可以通过研究来做出医学发现,这将包括数据,如基线健康检查的数据,在那里取典型的生命体征,血,抽血,它将结合我提到的前两种类型的数据。
包括来自电子病历和健康保险索赔的数据,很多这样的工作也发生在波士顿,就在街对面的布罗德研究所。
有一个团队正在创建所有的软件基础设施来容纳这些数据,这里有大量的招聘网站,在更广阔的波士顿地区,病人或你们中的任何一个人都可以去那里,自愿成为研究的一部分,我刚收到一封邮件,我上周收到一封信,邀请我去。
我真的很兴奋看到,所以说,各种各样不同的数据正在被创建,由于我一直提到的这些趋势,它的范围从临床笔记等非结构化数据到成像实验室测试,生命体征,我们过去认为的临床数据,现在。
已经开始与我们的想法有了非常紧密的联系,作为生物数据,所以来自基因组学和蛋白质组学的数据,开始在临床研究和临床实践中发挥重要作用。
当然啦,并不是我们传统上认为的关于医疗保健数据的一切,嗯,也有一些关于健康的非传统观点来源,例如,社交媒体是一种有趣的思考精神疾病的方式。
我们中的许多人会在Facebook和其他地方发布关于我们心理健康的信息,给你一个关于我们精神健康病人的镜头,跟踪您活动的手机,会让我们看到我们有多活跃,它可能有助于我们早期诊断,我后面会提到的各种条件。
所以我们有,你知道吗,所以现在的整个主题是关于什么改变了,自从AI医学之前的方法,我刚才谈到了数据,但是仅仅有数据是不够的,另一个主要的变化是,在标准化健康数据方面已经做了几十年的工作,例如。
当我向你提到当你去医生办公室的时候,他们发送一份与诊断相关的账单,诊断是在一个叫做ICD9或ID10的系统中编码的,这是一个标准化的系统,对许多人来说,不是所有的,而是许多疾病。
有一个相应的代码与之相关联,i,十,大约一年前在全国推广,比之前的编码系统要详细得多,包括一些有趣的类别,比如说,被乌龟咬是有密码的,被澳门袭击的海狮咬伤,对呀,所以开始在这里变得非常详细。
当涉及到使用这些数据进行研究时,这既有好处也有坏处,但我们当然可以用详细的数据做更多的事情,而不是用不太详细的数据做更多的事情,实验室测试结果在美国使用一种叫做loc的系统进行标准化,又来了。
每个实验室测试订单都有一个相关的代码,我只想简单地指出,与这些实验室测试相关的值不太标准化,药学,国家药品法规你应该很熟悉,如果你服用了医生给你开的任何药物,你仔细看,你会在上面看到一个数字,你看到零。
零,一个,五个,三个,四,七,九,十一,这个数字是那种药物独有的,事实上,这种药物的品牌甚至是独一无二的,有一个相关的分类法,所以人们可以以一种非常结构化的方式真正理解。
病人正在服用什么药物以及这些药物之间的关系,许多医学数据不是以结构化的形式发现的,而是在医生写的笔记中的自由文本中,这些笔记经常提到其中的症状和条件,人们可以通过将它们映射到,所谓的统一医学语言系统。
这是一个包含数百万种不同医学概念的本体论,所以我就不多说了,它们将是本学期许多讨论的主题,尤其是在皮特接下来的两节课中,但我想简短地谈谈你能做什么,你有一个标准化的词汇表。
所以你可以做的一件事是你可以构建API或应用程序编程接口,就目前而言,把数据从一个地方发送到另一个地方,和火,f,h,i,r,是一个新的标准,现在在这里被广泛采用,在美国,为下游临床目的向下游提供数据。
也直接给病人,在这个标准中,它将使用我向你提到的许多词汇,在前面的幻灯片中进行编码,过敏,与这个病人的护理相关的问题甚至财务方面。
对于那些有苹果手机的人来说,比如说,如果你打开苹果健康记录,它利用这个标准接收来自50多家不同医院的数据,你应该预料到将来会有很多竞争对手,因为它现在是一个开放的标准,其他类型的数据。
就像我前面提到的健康保险索赔通常被编码在一个稍微不同的数据模型中,我的实验室经常使用的一个叫做OMOP P,它是由一个非营利组织维护的,称为观察健康数据科学倡议奥德赛。
这个通用的数据模型给出了从一个机构获取数据的标准方法,它可能有自己的复杂性,并真正将其映射到这种公共语言,如果你写一个机器学习算法一次,机器学习算法以这种格式读取数据。
然后你可以很容易地把它应用到其他地方,这些标准的部分真的不能低估,将我们在这门课上所做的事情转化为临床实践的重要性,所以我们将在整个学期中继续讨论这些问题。
所以我们已经讨论了数据,我们已经讨论过标准,这和电灯泡是机器学习的突破,这对这个房间里的任何人来说都不应该感到惊讶,对呀,在过去的五年里,我们一次又一次地看到,一个又一个基准得到改进。
和人类的表现在这里被最先进的机器学习算法击败,我只是给你看一个数字,我想你们中的许多人已经看到了错误率,论Imagenet对物体识别的竞争,2011年的错误率是25%,甚至就在几年前。
它已经超过人类水平到5%以下,现在,导致物体识别进步的变化,在医疗保健方面会有一些相似之处,但只是在某个时候,比如说,有大数据,对此至关重要的大型训练集,算法有了进步,尤其是在卷积神经网络中。
它发挥了巨大的作用,还有开源软件,比如TensorFlow和PI Torch。
它允许一个地方的研究人员或产业工人非常,非常迅速地建立在其他地方其他研究人员的成功基础上,然后释放代码,以便,这样一个人就可以真正加快这个领域的进步速度,现在,就那些算法的进步而言。
这些进步已经产生了很大的影响,我真的想指出的是,因为它们与本课程的相关性是具有高维特征的学习,所以这真的是2000年初的进步,比如说,和支持向量机,用L-1正则化作为稀疏的一种学习,最近在过去的六年里。
随机梯度下降,快速求解这些凸优化问题的类似方法,这将对我们在这门课中所做的事情起到巨大的作用,在过去的几年里,在无人监督和半监督方面取得了巨大的进展,有监督学习算法,正如我以后会告诉你的那样。
医疗保健的主要挑战之一是,尽管我们有大量的数据,我们只有很少的标记数据,所以这些半,监督学习算法将在能够,真正利用我们所拥有的数据,然后当然,现代深度学习算法,卷积神经网络,递归神经网络及其训练方法。
所以这些在科技行业的进步中发挥了重要作用,在某种程度上,它们也将在医疗保健方面发挥重要作用,我将举几个例子,在今天剩下的课程中,所以所有这些结合在一起,数据可用性,机器学习其他领域的进展。
以及医疗保健领域巨大的潜在财务收益,它可能产生的潜在社会影响并没有被忽视,在这个领域有很大的行业兴趣,这些只是名字中的一些例子,我想你们很多人都很熟悉。
比如DeepMind Health和IBM Watson,像Bay Labs和Path AI这样的初创公司,就在波士顿,它们现在都在努力为医疗保健构建下一代工具,基于机器学习算法,数十亿美元的资金。
最近几个季度。
走向数字健康努力,与数百家不同的初创公司合作,这些公司专门专注于使用人工智能和医疗保健,人们认识到数据对这个过程是如此重要,导致了一个所有,努力购买尽可能多的数据,ibm收购了一家叫merge的公司。
它制造了医学成像软件,因此,在2000年积累了10亿美元的大量医学影像数据,和十五,他们在2016年以26亿美元收购了Trans,熨斗健康,这是纽约市一家专注于肿瘤学的公司,就在去年。
罗氏制药公司以近20亿美元的价格收购了它,还有几个这样的行业举措,一次又一次,我只是想让你想想在这个领域到底需要什么,这一点和获取数据实际上是一个非常重要的问题,很明显。
现在让我们来看看机器学习将如何改变医疗保健的一些例子。
首先,我想在这里展示风景并定义一些语言,有许多不同的玩家,当谈到医疗保健空间时,他们是我们,他们是我们去找的医生,你可以认为他们是提供者,但他们当然不仅仅是医生,他们也是护士和社区卫生工作者,等等。
有付款人提供哪里有,这些边缘确实显示了不同玩家之间的关系,所以我们的消费者,我们经常要么来自我们的工作,要么直接来自我们,我们将向健康保险公司支付健康保险公司的保费,然后健康保险公司负责支付给提供者。
为我们病人提供服务,现在在美国,付款人既是商业的,也是政府的,你们中的许多人会知道像信诺或现在这样的公司,或者蓝十字,它们是健康保险的商业保健提供者,但也有政府的,比如说,退伍军人健康管理局。
它经营着美国最大的卫生组织之一,为我们的退伍军人服务,它有第二个,第二大卫生系统之一,国防卫生局,这是一个组织,这两个组织,付款人和提供者都真正赢得了中心,医疗保险和医疗补助服务。
在美国为所有退休人员提供健康保险,还有医疗补助,它在州一级运行,为各种个人提供健康保险,在其他情况下难以购买或获得自己的健康保险的人,这些都是州经营或联邦经营的健康保险机构的例子,然后在国际上。
有时候线条会更加模糊,当然啦,在像英国这样的地方,在那里你有一个政府管理的卫生系统,国民保健服务,你现在有同样的系统支付和提供服务,为什么这对我们来说真的很重要,已经在第一课讲了。
因为这个领域最重要的是弄清楚,你可以尝试改善医疗保健的旋钮在哪里,我们可以在哪里部署机器学习算法,因此,一些算法将更好地由提供商运行,其他的会更好地由付款人管理,其他的将直接提供给病人,上面的一些橄榄。
我们也要考虑工业问题,开发一个新产品需要什么,谁来为这种产品付款?
这又是一个重要的问题,当涉及到在这里部署算法时,所以我会通过几个非常高级的例子,从我自己的工作中,关注提供者空间,然后我会跳起来说得更宽泛一点,所以在过去的七八年里,我和贝丝·伊斯雷尔合作做了很多工作。
河对岸的女执事医疗中心,与急诊科和急诊科是一个非常有趣的临床环境,因为从病人到医院只有很短的时间,来诊断他们是怎么回事,开始治疗,然后决定下一步做什么,你把他们留在医院里,你送他们回家吗。
如果你为这些事情中的每一个,最直接的行动应该是什么,至少在美国,我们总是人手不足,所以我们的资源有限,要做非常关键的决定,所以这是一个场景的例子,在幕后运行的算法。
可能真的有助于解决我前面提到的一些挑战,例如,人们可以想象一个算法,它建立在我向你提到的内科医生的技术基础上,一份或快速医疗参考资料,试着把病人的情况讲道理,根据病人现有的数据,症状。
但现代对此的看法不应该,当然,使用每个症状的二元指标,必须手动输入,但所有这些都应该从电子病历中自动提取,或根据需要列出,然后如果有人能对病人的情况进行推理,我们不一定想用它来诊断,尽管在某些情况下。
您可能会将其用于早期诊断,但它也可以用于其他一些,更微妙的干预,比如说,更好的分诊,以确定哪些病人需要先就诊,不良事件的早期发现,或者认识到可能会有一些不寻常的行为。
这可能是你现在想浮出水面并引起注意的医疗错误,你也可以用这个,了解病人的情况,改变临床医生与患者数据交互的方式,例如,人们可以通过展示临床决策支持来传播最佳实践。
自动触发对你认为可能相关的患者的临床决策支持,这里有一个例子,它说ED仪表板,急诊科仪表板,决策支持算法已经确定这个病人可能有资格,心房蜂窝织炎途径,纤维素通常是由感染引起的,请从其中一个选项中选择。
注册途径下降,如果你拒绝,您必须为审阅者添加注释,现在如果你点击,在那一刻注册路径,机器学习消失,而是有一个标准化的过程,这是一个算法,但这是一个确定性算法,蜂窝织炎患者应如何正确管理,诊断和治疗。
算法来自最佳实践来自临床医生聚集在一起,分析过去的数据,了解治疗这类患者的好方法,然后在文档中正式确定,挑战在于可能有数百甚至数千个这样的最佳实践,在一个学术医学中心,你有病人来,你有的地方。
在系统中快速旋转的医学生或住院医生,因此可能不熟悉,对于本机构的任何一个病人,最合适的临床指南是什么,或者如果你去农村,通过正确的临床指南来思考的学术性在哪里,少了一点主流日常活动。
什么时候用哪一个是很有挑战性的问题,这就是机器学习算法可以发挥作用的地方,通过推理病人的情况,你可能有一个很好的猜测什么可能适合这个病人,你用它来自动显示正确的临床决策支持触发器。
另一个例子是试图预测临床医生的需求,例如,如果你认为这个病人可能有精神疾病,或者你认识到病人进来了,分诊抱怨胸痛,那么可能会有一个心理秩序集,其中包括,其中包括与精神病患者相关的实验室测试结果。
或者胸痛顺序集,包括实验室测试和现在可能建议的阿司匹林等干预措施,这些也是这些顺序集不是由机器学习算法创建的例子,虽然那是我们可以在这学期晚些时候讨论的问题,相反,它们是标准化的。
但机器学习算法的目标只是找出哪些是要展示的,当直接给临床医生时,我给你们看这些例子,试图指出诊断并不是事情的全部,思考我们可以用机器学习做什么更微妙的干预,人工智能和医疗保健对产生影响非常重要。
它现在可以有这么多其他的例子,在诊断风格上更多的是减少,专家咨询的必要性,所以你可能会有病人进来,让病人接受X光检查可能会很快,做胸透,但是找放射科医生检查X光可能要花很多时间,在某些地方。
放射科医生的咨询可能需要几天时间,根据病情的紧急程度,所以这是一个数据相当标准化的领域,事实上,麻省理工学院上周刚刚发布,三十万张胸部X光片的数据集,上面有相关的标签,人们可以试着问这样一个问题。
我们能建立机器学习算法吗,使用我们所见过的卷积神经网络类型技术,在物体识别中起着很大的作用,试图了解这个病人是怎么回事,比如说,在这种情况下,根据这张胸部X光片,预测病人患有肺炎,并使用这些系统。
它可以帮助减轻放射科咨询的负担,它可以让我们真正地将这些算法转化为设置,可能资源匮乏得多,比如说,在,现在,同样的技术可以用于其他数据模式,所以这是一个数据的例子,可以从心电图中获得,从看着这个心电图。
人们可以试着预测,病人有心脏病吗,例如心律失常,现在,这些类型的数据过去只是在你去医生办公室时获得的,但今天我们所有人都可以买到,比如说,在苹果最近发布的手表中,它有一个心电图,建立了一个单一的线索。
内置心电图,它可以尝试预测病人是否有心律失常,还有很多微妙之处,当然是围绕着它所需要的,我们将在本学期晚些时候讨论,以及如何安全地将这些算法直接部署给消费者,有各种各样的技巧可以在一些讲座中使用。
我将和你谈谈八十年代和九十年代的事,这是基于试图信号处理,试图检测,信号的峰值在哪里,看看山峰之间的距离,因为有大量可用的数据,我们一直在使用卷积,基于神经网络的方法试图理解这些数据并从中预测。
急诊室的另一个例子真的与不有关,今天我们如何照顾病人,但是我们如何获得更好的数据,这将导致明天更好地照顾病人,所以一个例子,我的团队在贝斯·奥迪肯部署的是,它还在急诊科运行。
与得到更高质量的首席投诉有关,主要的抱怨是,通常是很短的两三个字的量,就像左膝疼痛,直肠疼痛,右右上象限你是Q,和,这只是对病人今天为什么进急诊室的一个非常简短的总结,尽管它很少说话。
它在病人的护理中起着巨大的作用,如果你看看急诊室的大屏幕,总结了谁是病人在什么床位,他们旁边有主要的投诉,主要抱怨被用作临床试验患者注册的标准,它被用作进行回顾性质量研究的标准。
看看我们如何照顾特定类型的病人,所以它起了很大的作用,但不幸的是,我们得到的数据一直是垃圾,这是因为它是自由文本,它有足够高的维度,试图用一个大的下拉列表来标准化它,就像你在这里看到的。
会扼杀临床工作流程,对临床医生来说需要太多的时间,试图找到相关的,所以它不会被使用,这就是一些非常简单的机器学习算法变得非常有价值的地方,例如,我们完全改变了工作流程,而不是主要的抱怨,当病人进来时。
分诊护士分配的第一件事,是最后一件事,首先,护士把生命体征,病人体温,心率,血压,呼吸频率和氧饱和度,他们和病人交谈,他们写了十个字,关于这里病人情况的三十个字的说明,上面写着,六十九岁男性患者。
右上象限严重间歇性,吃后不久就开始疼痛,奥索是个酗酒者,所以我们得到了相当多的信息,我们使用了机器学习算法,本例中的有监督机器学习算法,预测一组主要的抱怨,这些抱怨现在来自一个标准化的本体。
我们展示了五个最有可能的和临床医生,在这种情况下,护士可以点击其中一个,它会进入那里,我们还允许护士输入主诉的一部分,而不仅仅是做文本匹配,找到与键入的内容匹配的单词,我们做一个上下文自动完成。
所以我们用我们的预测来区分优先级,包含这一系列字符的最有可能的主要抱怨是什么,这样输入相关信息就更快了,我们发现随着时间的推移我们得到了更高质量的数据。
这就是我们会在这门课上讲到的,所以我只是给你们举了一个例子,机器学习和人工智能将如何改变供应商空间的几个例子,但现在我想跳上一个层次,仔细考虑,不是我们今天如何治疗病人。
但是我们如何看待病人慢性病的进展,在一段时间内,可能要十年,二十年,还有这个,我们如何管理慢性病的问题,是影响医疗保健生态系统各个方面的东西,它将被提供者使用。
付款人,也是病人自己,所以考虑一个患有慢性肾病的病人,慢性肾脏病,通常只会变得更糟,所以你可能会留下来,你可以从病人健康开始,然后有一些增加的风险。
最终他们会有一些肾脏损伤随着时间的推移他们会出现肾衰竭,一旦他们肾衰竭,他们通常需要透析,他们需要透析,或者肾移植,但是了解这些事情什么时候会发生在病人身上实际上真的真的很有挑战性。
现在我们有一种方法来给病人分期,一种标准的方法被称为EGFR,它主要来自病人的肌酐,这是血液测试结果和他们的年龄,它给你一个数字,从这个数字中你可以知道病人在这个轨迹中的位置,但它真的是粗粒的。
这一点也不能预测,病人何时会发展到疾病的下一阶段,现在,其他条件,比如说,一些癌症,我接下来会告诉你,别走那条直线,而是病人的状况和疾病负担,这就是我在y轴上给你看的,可能会变得更糟,更好,更糟了。
再好不过了,更糟了,等等,当然还有,作为对病人的治疗和其他与他们有关的事情的功能,了解是什么影响了病人的疾病进展,这种进展什么时候会发生,可能非常有价值,对于医疗保健生态系统的许多不同部分。
所以一个具体的例子说明了这种类型的预测是如何被使用的,会在一种精准医学中,回到我提到的例子,在今天多发性骨髓瘤讲座的一开始,我说我妈妈死于,有大量现有的治疗多发性骨髓瘤的方法。
我们真的不知道哪种治疗对谁最好,但想象有一天,我们有算法可以把你对病人的了解,在某个时间点,这可能包括,比如说,验血结果,它可能包括rna搜索,这让你对病人的基因表达有了一些了解,在这种情况下。
将从样本中导出,取自病人的骨髓,你可以利用这些数据来预测病人会发生什么,在两种不同的情况下,我在这里向你们展示的蓝色场景,如果你给他们治疗,或者这个红色的场景,你给他们治疗B。
当然治疗和治疗B不仅仅是一次性的治疗,但他们的治疗策略,所以它们是跨时间的重复治疗,有一定的间隔,如果你,如果你的算法说在处理B下,这就是将要发生的事情,那你可能,临床医生可能会认为,好的。
治疗B可能是这里的出路,这将是长期控制,病人的疾病负担。
最好的,这是一个因果问题的例子,因为我们想知道,我们如何改变病人的疾病轨迹,我们现在可以试着回答这个问题,使用数据,所以说,比如说,可供您在课程项目中使用的数据集之一,来自多发性骨髓瘤研究基金会。
这是一个疾病登记的例子,就像疾病登记处一样,我之前和你谈过类风湿性关节炎,它跟踪了大约一千个病人,多发性骨髓瘤患者,他们正在接受什么治疗,他们的症状是什么,在几个不同的阶段。
关于他们癌症的非常详细的生物学数据,在这种情况下,RNA寻求,人们可以尝试利用这些数据来学习模型来做出这样的预测,但这样的预测充满了错误,皮特的一件事,我将教你们这门课,预测和预测之间有很大的区别。
为了作出因果陈述,以及你解释数据的方式,当你的目标是做治疗,建议,或者优化,将与你在介绍性机器学习中所学到的非常不同,算法,类,所以我们可以尝试治疗和管理慢性病患者的其他方法包括早期诊断,比如说。
阿尔茨海默病患者的,在过去的几年里,这里有一些非常有趣的结果,或新的模式,比如说,液体活检可以做癌症的早期诊断啊,即使不用做活检。
肿瘤本身的,我们也可以思考如何更好地跟踪和测量疾病,慢性疾病,左边的一个例子,来自麻省理工学院和Sesa的迪娜·卡布实验室,在那里他们开发了一个叫做祖母绿的系统,它使用无线信号。
我们今天在这个房间里有同样的无线信号来跟踪病人,他们实际上可以看到墙后面,这是相当令人印象深刻的,所以利用这个无线信号,你可以,你可以安装看起来像,只是老年人家中的普通无线路由器。
你可以发现那个年长的病人是否摔倒了,当然还有,如果病人摔倒了,他们年纪大了,他们可能很难站起来,他们可能摔断了臀部,比如说,然后可以提醒照顾者,如果有必要,也许可以,提供紧急支援。
这可能会对这个病人产生长期的影响,这真的能帮助他们,所以这是一个例子,我所说的更好地跟踪慢性病患者是什么意思,另一个例子来自患有一型糖尿病的患者,一型糖尿病是,与二型糖尿病相反。
糖尿病患者通常在很小的时候就发病了,通常在孩子的时候,已经确诊了,一个通常是通过胰岛素泵来管理的,它附着在病人身上,嗯,并可以根据需要在飞行中注射胰岛素。
但是有一个非常具有挑战性的控制问题,如果你给病人太多的胰岛素,你可以杀了他们,如果你给他们太多,胰岛素太少,你真的会伤害他们,你给他们注射多少胰岛素将取决于他们的活动,这将是他们吃什么食物的函数。
和各种其他因素,所以这是一个问题,控制理论界已经思考了很多年,有许多复杂的算法,今天的产品中存在的,我不会感到惊讶,如果今天房间里有一两个人有一个这样的,但它也为机器学习提供了一个非常有趣的机会。
因为现在,我们在预测未来的血糖水平方面做得不是很好,这对弄清楚如何调节胰岛素至关重要,如果我们有算法可以,比如说,拿病人的电话,给病人正在吃的食物拍照,我把它自动输入一个算法来预测它的卡路里含量。
身体处理的速度有多快,然后作为结果,想想当基于这个病人的代谢系统,你什么时候开始写小说,以及这会对生活质量产生多大的影响,对于这些类型的病人,最后,我们讨论了很多关于我们如何管理医疗保健的问题。
但同样重要的是发现,所以我们可以使用的相同数据,试图改变算法的实现方式,可以用来思考什么是新的治疗方法,并对疾病亚型有新的发现,所以在本学期晚些时候的某个时候,我们将讨论疾病进展模型。
我们将讨论如何使用数据驱动的方法来发现,疾病的不同亚型,左边这里,我展示了一个非常好的研究的例子,从2008年开始,使用K均值聚类算法来发现哮喘的亚型,人们也可以使用机器学习来尝试发现,什么蛋白质。
比如说,对调节疾病很重要,我们如何在生物学水平上区分,哪些病人会进展迅速,哪些病人会对治疗有反应,而且那个,当然啦,然后将为新的药物靶点提出新的方法,麻省理工学院的许多实验室也在研究另一个方向。
实际上与药物创造或发现有关,所以人们可以使用机器学习算法来预测,什么是好的抗体来试图与特定的靶点结合,这就是我的概述,在剩下的二十分钟里,我要告诉你一点什么是独特的,关于机器学习和医疗保健。
然后是教学大纲的概述,我确实看到上面写着六分钟内更换灯具,否则电源将关闭并进入待机模式,但我们有那个权利,好的,如果你没进这个班,你就被录用了,以后再跟我说,所有的权利。
那么机器学习医疗保健的独特之处在于,我已经给过你一些提示了,所以首先,不幸的是,医疗保健最终是关于生死的决定,所以我们需要稳健的算法,不搞砸,这方面的一个主要例子,我会告诉你更多关于,在学期结束时。
发生了一个重大的软件错误,大约20个,三十年前,在X射线类型的设备中,在那里,一个病人暴露在大量的辐射中,仅仅因为软件溢出问题,窃丨听丨器,当然,这导致了许多病人死亡,这是几十年前的一个软件错误。
在循环中没有机器学习,因此,类似类型的灾害,包括航天工业和飞机等等,导致了计算机科学的整个研究领域,正式方法,我们如何设计计算机算法来检查,一个软件会做它应该做的事情,而不会做,里面没有虫子,但现在。
我们将开始把数据和机器学习算法带入画面,我们真的很痛苦,因为缺乏做类似事情的好工具,对我们的算法及其行为的正式检查,所以在未来的十年里,这将是非常重要的,随着机器学习的部署,不仅仅是在医疗保健等环境中。
但在其他环境中,我们也有生死,比如在自动驾驶中,这是我们整个学期都要讨论的问题,例如,当一个人部署机器学习算法时,我们需要考虑,他们安全吗,还有我们如何检查安全,长期。
我们应该在算法的部署中加入什么制衡,以确保它仍然按预期工作,我们还需要公平和负责任的算法,因为越来越多的机器学习结果被用来驱动医疗保健环境中的资源,一个例子,我将在大约一周半的时间里讨论。
当我们谈论风险分层时,算法正在被支付者使用,对病人进行危险的分层,比如说,找出哪些病人可能会重新入院,在接下来的三十天里,很可能患有未诊断的糖尿病,他们的糖尿病可能进展很快,基于这些预测。
他们正在进行一些干预,比如说,他们可能会派护士到病人家里去,他们可能会向他们的成员提供减肥计划,这些干预措施中的每一项都有与之相关的资金,如果他们有成本,所以你不能为每个人做,因此。
人们使用机器学习算法来确定优先级,你给谁做这些干预,但因为健康与社会经济地位密切相关,人们可以想想会发生什么,如果这些算法不公平,它可能会对我们的社会产生长期的影响。
这也是我们将在本学期晚些时候讨论的内容,我之前提到过,我们在这个领域需要研究的许多问题,没有好的标记数据,在我们知道我们想要预测的情况下,是一个监督预测问题,通常我们只是没有我们想要预测的事情的标签。
但在许多情况下,我们不只是对预测感兴趣,我们感兴趣的是发现,例如,当我谈到疾病亚型或疾病进展时,要量化你在寻找什么要困难得多,和,所以无监督学习算法在我们所做的事情中非常重要,最后。
我已经提到了我们想回答的问题中有多少是因果关系,尤其是当你想考虑治疗策略时,所以我们有两节课是关于因果推理的,我们将有两堂关于强化学习的课,它越来越多地被用来学习医疗保健中的治疗政策。
我们讨论过的所有这些不同的问题,导致我们不得不重新思考,我们如何在环境中进行机器学习,比如说,因为监督预测的驱动标签很难,嗯,一个人必须想清楚,我们如何自动建立算法来进行所谓的电子表型分析,去发现。
自动计算出,一组病人的相关标签是什么,人们可以在未来试图预测,因为我们通常只有很少的数据,比如说,一些罕见病,全国可能只有几百或几千人,患有这种疾病的人,一些常见疾病以非常不同的方式存在。
因此本质上是非常罕见的,正因为如此你只能得到少量的病人样本,即使你把所有的数据都放在正确的地方,所以我们需要仔细考虑,我们怎样才能把,我们如何将领域知识汇集在一起,我们如何将其他领域的数据汇集在一起。
大家现在往这边看,来自其他地区,其他疾病,为了学习一些,然后我们可以细化感兴趣的前景问题,最后,医疗保健领域有大量缺失的数据,所以举起你的手,你看到你现在的主要成分还不到四年,好的,这很容易猜到。
因为你所有的学生和你可能不住在波士顿,但在美国,即使你毕业了,你走到外面的世界,你有一份工作,这份工作支付你的健康保险,你知道你们中的大多数人将进入科技行业,你们中的大多数人每四年换一次工作。
所以你的健康保险每四年会改变一次,不幸的是,当你改变提供者或付款人时,数据不会跟随人们,所以这意味着我们可能想研究的任何一件事,我们往往没有关于这些个体的很好的纵向数据,至少在美国不是这样。
这个故事在其他地方有点不同,比如英国或以色列,比如说,而且,我们对医疗保健数据也有一个非常非常糟糕的镜头,所以即使你去看同一个医生已经有一段时间了,我们往往只有你的数据,当某件事被记录下来的时候。
所以如果你去看医生,你做了实验室测试,我们知道它的结果,如果你从来没有做过葡萄糖测试,这很难,虽然不是不可能弄清楚你是否患有糖尿病,想着,我们如何处理有大量丢失数据的事实。
缺失的数据在患者之间有非常不同的模式,以及列车和测试分布之间可能有很大差异的地方,将是我们在今天的课程中讨论的一个主要部分,最后一个例子是审查,我想我已经说过很多次了,所以审查,我们将在两周后讨论。
当你只有很小的时间窗口的数据时会发生什么,例如,如果您有一个数据集,你的目标是说,预测存活率,你想知道一个人离死还有多久吗,但是一个人你只有截至2009年1月的数据,到2009年1月他们还没有死。
那个被审查的人,你不知道会发生什么,你不知道他们什么时候死的,所以这并不意味着你应该扔掉那个数据点,事实上,我们将讨论学习算法,可以非常有效地从删失数据中学习,所以做机器学习和医疗保健也有很多后勤挑战。
我谈到了访问数据是多么重要,但还有其他原因之一,为什么在公共领域获得大量数据是具有挑战性的,是因为它太敏感了,并从数据中删除姓名和社交等标识符,其中包括免费文本注释可能非常具有挑战性,结果。
当我们在麻省理工学院做研究的时候,通常我们要花几个月的时间,这是两年来从未发生过的,这是谈判数据共享协议的通常情况,把健康数据拿到麻省理工学院做研究,当然,我的学生写代码。
我们很乐意在麻省理工学院的许可下开源,但那个代码完全没用,因为没有人能在相同的数据上重现他们的结果,因为他们无法访问它,所以这是对这个领域的一个主要挑战,另一个挑战是部署机器学习算法的困难。
由于整合的挑战,所以你构建了一个好的算法,你想在你最喜欢的医院部署它,但猜猜那家医院有什么,史诗,或塞纳,或雅典娜,或其他商业电子病历系统,电子病历系统不是为你的算法而构建的,所以有很大的差距。
将算法引入生产系统的巨大困难,我们在这学期也会讲到,皮特和我给你的目标如下,我们希望您获得处理医疗保健数据的直觉,所以今天之后的两节课将重点讨论医疗保健,医疗保健实践创造的医疗保健数据是什么,就像。
我们希望您获得如何形式化机器学习挑战的直觉,作为医疗保健问题,形式化步骤通常是最棘手的,这是你会花很多时间思考的事情,作为习题集的一部分,并非所有的机器学习算法都同样有用。
所以我整个学期都会回到的一个主题是,尽管深度学习有利于语音识别和计算机视觉问题,它实际上并不是医疗保健中许多问题的最佳匹配,你也会把它作为习题集的一部分来探索,或者至少其中一个,我们也希望你明白。
健壮安全地部署机器学习算法的微妙之处,现在更广泛地说,这是一个年轻的领域,例如,就在最近,大约三年前,是第一个关于机器学习和医疗保健的会议,每天都有新的出版场所被大自然创造出来。
以及发表机器学习医疗保健研究的机器学习期刊,因为我们谈到的一些问题,比如对数据的访问,不是很好,基准,可重复性一直是一个主要挑战,这也是这个领域现在才开始真正努力解决的问题,所以作为这门课的一部分,哦。
你们中的许多人将成为,目前是博士生,或者即将成为博士生,我们要好好想想,研究领域面临哪些挑战。
您可能想要解决的一些开放问题是什么。
P10:10.Application of Machine Learning t - 大佬的迷弟的粉丝 - BV1oa411c7eD
所以欢迎大家,今天是本学期四场客座讲座的第一场,从开始的那一周会有客座讲座,从今天起的一周,然后在学期结束时会有另一个,皮特和我决定做什么,就是引进比我们更了解某些专业领域的人。
今天的例子是关于心血管医学的,特别是关于如何在这种情况下对图像使用成像和机器学习,今天的讲座,我们很高兴能请到饶德奥教授讲话,拉胡的名字不断出现,因为我在过去几年里做了研究,首先。
我的小组开始对超声心动图感兴趣,我们说,哦,这里有一篇有趣的论文可以读,我们读了它,然后我们写了另一篇关于做潜艇的论文,保留射血分数的分型是一种心力衰竭,我们读到,我没注意报纸上的名字。
然后突然有人告诉我,下个月有个家伙要搬去波士顿,他在做很多有趣的工作和有趣的机器学习,你应该去见他,我当然要见他,然后我告诉他这些文件,我读过,他说,哦,所有的论文都是我写的,他是这方面的资深作家。
所以拉乌尔已经有一段时间了,嘿嘿嘿,呃,呃,他已经是这个领域的资深人士了,他开始在康奈尔大学进行医学院培训,在纽约市的康奈尔医学院,同时在洛克菲勒大学攻读博士学位。
然后他花了他博士后培训机构后的第一块钱,在波士顿这里,在哈佛医学院,他职业生涯的大部分时间都在加州大学旧金山分校任教,在加利福尼亚,在过去的一年里搬回来担任一个职位。
首席数据科学家对一个勇敢的想法项目来说是正确的,这是麻省理工学院和布里格姆联合发起的一个非常大的倡议,妇女医院学习心血管医学,他会告诉你更多,也许和拉胡的研究真的已经全面了。
但是你今天会听到的事情实际上不是什么,他职业生涯的大部分时间都在做,令人惊讶的是,所以这家伙的大多数人都更多地考虑基因型,以及如何真正连接基因型表型,牧场,但我特别要求他谈谈成像,所以这就是他会关注的。
今天事不宜迟,谢谢你能来,所以我习惯于给临床观众讲课,所以你们是迄今为止最有技术含量的观众,所以你知道,请饶了我一点,但我实际上想鼓励打断问题,这是一个非常固执己见的演讲,所以如果有人有任何问题。
请在上课的时候把它们带上来,等到最后,你知道,在某种程度上,这是固执己见的,因为我觉得有点热情,我们正在做的事情需要付诸实践,它本身不是,纯粹学术上有趣的,我们正在做的许多事情已经开始了。
这里其他人已经在做的事情,但同时,就这样就这样就这样,从那个角度来看是可以的,但它真的必须走自己的路,这意味着我们必须对它的实践有一些成熟的理解,阻力会在哪里,所以讲座会贯穿始终,有某种观点和评论。
希望这将是有用的,所以只是一个快速的轮廓,只是介绍心脏的结构和功能可能不是,麻省理工学院的普通本科生和研究生培训,谈谈心脏诊断的主要类型,以及他们是如何使用的,所有这些都是为了帮助引导。
关于我们如何自动化的想法和决策,并将其引入如何将机器学习人工智能应用到实际临床实践中,因为你需要给出足够的背景,所以你意识到挑战是什么,然后可能每个人都有的问题是数据在哪里,一个人怎么能接触到这些东西。
能够在这一领域做潜在的工作,然后我要尝试一下计算机视觉,谈谈至少我一直在思考的一些话题,与我们正在做的事情相关的,然后谈谈周围的一些工作,超声心动图自动流水线,绝不是金本位制,但实际上只是试图让。
在这个上面打个凹痕,然后思考一下大卫提到的课程,你上周或上节课谈到了心电图,所以那里的一些想法,以及它们将如何有助于对未来类型的方法的洞察力,配有自动口译,然后我的背景实际上更多的是生物学。
所以我会回来说,哦,好了够了,有了这些成像的东西,生物学呢,我们如何在那里做出一些见解,每次人们试图为冠心病获得资金,他们试图大肆宣扬这有多重要,所以这个还是,你知道吗,我们和肿瘤科的人有一些斗争。
但这仍然是世界上主要的死亡原因,然后人们就像,哦,你只是,你只是,你只是在强调发达国家,有你知道的,很多传染病,这些疾病更重要,但即使你看看这些你看看底部,这个还是,如果这是所有的死亡原因,年龄。
调整数,心血管疾病仍然是其中的头号疾病,所以它当然仍然很重要,在一些发展中国家,这种情况越来越多,也是如此嗯,考虑一下心脏的作用是很重要的,因为这将指导,至少疾病分类的方式。
所以心脏的主要作用是它是一个泵,它将含氧血液输送到整个循环系统,给所有需要它的组织,大脑,肾脏,肌肉和氧气,当然啦,是ATP生产所必需的,所以这是一个相当令人印象深刻的器官,它每分钟泵出大约五升血液。
通过锻炼,可以增加五到七倍,对于有条件的运动员来说,不是我,但其他人可以大幅提高,我们需要保持一个非常非常有规律的节拍,所以如果你停顿大约三秒钟,你可能会头昏眼花或昏倒,所以你必须保持心脏有节奏的跳动。
你可以计算出这将是什么,在典型的一生中大约有20亿次跳动,所以我会在整个过程中展示很多图片和视频,所以这可能是值得的,只是停下来谈谈,心脏的解剖结构是什么,所以心脏是这样坐着的。
所以尖的部分就像这样放在一边,所以我要描述一下血液的流动,所以血液来自一种叫做下腔静脉的东西,或者上腔静脉,这是从大脑中排出的,这是从下半身排水的,然后进入一个叫做右心房的房间。
它通过一种叫做三尖瓣的东西移动,进入所谓的右心室,右心室有一些肌肉,它泵入肺部,在那里,血液吸收氧气,所以这就是为什么它在这里显示为红色,含氧血液从左心房流出,然后通过二尖瓣进入左心室。
稍后我们会给你看一些二尖瓣的图片,然后左心室,这是心脏的大主力,把血液输送到,通过身体的其他部分,通过一个叫做主动脉的结构,如此如此穿过右心,通过肺部,穿过左心,穿过身体的其他部分。
然后在这里用黄色显示的是导电系统,你们上节课讨论了电气系统,窦房结在右心房,然后传导,心电图上的p波代表通过那里的传导,你通过保存V节点,有延迟的地方,这是一个公关间隔,然后你通过心室扩散。
也就是QR复合体,然后复极化是T波,那是一种电子系统,当然,这些东西必须紧密地结合在一起,每一种基本的心脏生理学都会显示出这张图,叫做威格斯图,它真正显示了电气系统的互连性,心电图在上面。
这些是提供者用听诊器听的心音,这是捕捉心脏压力变化的流动,在主动脉里,所以心脏在一段叫做舒张的时间里充满,二尖瓣关闭,心室收缩,压力增大,这是一段叫做姐妹的时光,最终一种叫做主动脉瓣的东西突然打开,血。
穿过身体的其他部分,心终于开始放松,房室瓣关闭,然后你再填满,所以这种情况以循环的方式一次又一次地发生,你有这种电学和机械性能的结合。
所以我这里有一些照片,这些都是核磁共振,我要谈谈超声心动图,这是一种非常丑陋的颗粒状的东西,不幸的是,我不得不和核磁共振成像一起工作,它们很漂亮,但非常昂贵,所以这是有原因的,所以这就是所谓的。
心脏的长轴视图,这是厚壁的左心室,到左中庭那里,你可以看到这种美丽的湍流的血液在里面流动,它从心房流向心室,是不是另一个病人,它被称为短轴视图,有左心室和右心室,所以我们有点斜着看,然后这是另一个视图。
称为,那里有点沉闷,对不起,我们可以把它稍微亮一点,这就是所谓的四室视图,所以你可以看到左心室和右心室在这里,所以这些不同观点的原因,就是,最终,人们有了功能和疾病的衡量标准。
与这些特定的观点相一致,所以你会看到他们一次又一次地回来,好的,所以医生喜欢组织疾病定义的方式,围绕着这些相同的函数,所以心脏不能正常泵血导致了一种叫做心力衰竭的疾病,这表现在上气不接下气。
腹部和腿部积液,这是通过药物治疗的,有时你可以有一些人工设备来帮助心脏泵血,最终你甚至可以进行移植,取决于它的严重程度,那是泵,这导致了一种叫做冠心病的疾病,如果血液完全堵塞,你可能会得心脏病。
或者心肌梗塞,那是胸痛,有时呼吸急促,我们通过血管成形术打开阻塞的血管,在里面插个支架,或者一起绕过它们,然后身体的流动,我是说,对不起,血液的流动必须是单向的,所以异常是血液通过瓣膜流动。
是一种瓣膜疾病,所以你可以有两种类型的元音,所以这叫做青色病,也可以有漏音,那叫反流,表现为轻头,呼吸急促晕厥,然后你得修好那些阀门,最后是节律异常,所以像心房颤动这样的东西,这是中庭的颤抖。
所以两次缓慢的心跳,心室功能不全可表现为心悸、昏厥,甚至猝死,你可以在里面插一个起搏器。
或者里面的鳍状肢层,或者试图烧掉心律失常,好的,所以这就像是以生理学为中心的观点,但事实是心脏有很多细胞,所以那里有更多的生物学,不仅仅是考虑泵的类型和电功能,嗯,只有30%的细胞。
这些心肌细胞也是如此,这些是参与收缩的细胞,这些是易兴奋的细胞,但这只是30%的细胞,细胞内有内皮,有成纤维细胞,里面有一堆血细胞,我也是,里面肯定有很多红细胞,我也是,所以你有很多其他的东西。
所以我们要回到这里来讨论,我们应该如何看待疾病,思考泵送和电激活的历史方法。
但实际上这里可能有更多的复杂性需要解决,所以有很多不同的,所以心脏病学是以成像为中心的,结果它很贵,因为成像有,你知道,花了很多钱做,所以我这里有美元符号,反映了我们所做的各种不同的测试。
所以你上周看到了最便宜的,心电图,所以一美元符号,那是用来,我是说有很多用处,比如说,人们可以用超声心动图诊断急性心脏病发作,包括声波的超声心动图,最终更多地用于量化结构和功能,会导致心力衰竭,瓣膜病。
肺部高血压,这是另一种形式,核磁共振成像在这个国家并不多,但非常昂贵,但做的事情基本上是一样的,你可以想象,即使它很美,人们过得并不轻松,并能够证明为什么它比这种稍微便宜的方式更好,然后你做血管造影。
可以通过猫眼扫描,也可以通过X光扫描,这可视化了血液通过心脏的流动,寻找要植入支架的堵塞物,膨胀并支架,然后你有这些非侵入性技术,比如PET和Spect,使用像锝这样的核苷酸,铷。
他们寻找血液流动的异常来检测是否,有创伤性,有一块心脏没有得到足够的血液,如果你得到一个这样的,而且很不正常,你经常去那里,你可以去看电影,就像我以前的老师常说的那样,然后你可能会得到。
你可能会发现自己的支架边缘或搭桥,所以心脏病学的一个可悲的事情是,我们不用生物学来定义我们的疾病,我们定义我们的疾病,常与解剖或生理是否异常有关,还是正常的,通常基于这些图像或数字,好的。
所以我们必须做出决定,我们也经常使用这些同样的东西,能够做出一些决定,所以我们必须决定是否要把除颤器,并这样做,你经常需要做超声心动图,看看心脏的泵血功能,如果你想决定某人是否需要血管成形术。
你得做个血管造影,如果你想做瓣膜置换,你需要回声,但其中一些实际上不涉及任何成像,这是我要谈论的挑战之一,这就是所有的未来,如果你能想象建立全新的风险模型,你一直坚持的新分类模型,外面的数据。
外面的数据最终被收集起来,因为有人已经觉得值得为此付出代价了,所以如果你想建立一个全新的风险模型,谁会得心肌梗塞,你可能不会做任何超声心动图,能够用来,因为没有人会一开始就为收集这些东西付钱。
所以这是一个能够创新的问题,我会继续回到那个问题上,因为我想你会被震惊的,我们在这些事情中面临的小样本量,部分原因是因为如果你只是想依靠什么,保险公司会愿意付钱来获取你的数据,你会被困住的。
只有能够摆脱这些东西,我们已经知道了一些,我的大部分工作都在思考如何改变这种情况,好的,所以再多一点,然后我们可以吃更多的肉,所以数据成像数据存储的通用标准,是一种叫做dicom的东西。
所以数字成像和通信标准,在一天结束的时候,有一些压缩的图像数据,有一个二进制标头,我一会儿就给你看,有很多很好的Python库,可以使用这些数据的,你可以用一个免费的查看器,好的,那么我从哪里得到这个。
所以这实际上是一种难以置信的痛苦,所以医院是为了临床手术而设立的,他们不是为了让你容易而设置的,获得大量的数据来进行机器学习,只是不是,只是不是真的在那里。
所以有时你会有一些这样的数据档案来存储这些数据,但人们让这变得困难有很多原因,其中之一是因为图像通常以像素为单位刻录,带有可识别信息的,她会把病人的名字印在图像上,你会有出生日期,你会有其他属性。
所以你就被困住了,他们在那里不仅是一个问题,供应商,不要让摆脱这些信息变得容易,所以你实际上有一个问题,他们真的不容易批量下载或识别,部分原因是,因为这样你就更容易更换供应商,让别人接手。
所以一旦它在里面,他们会让你有点困难,你很难把它弄出来,人们在出售他们的数据,这当然也在发生,所以有一些尝试试图以这种方式控制事情,你想要的许多标签都是单独存储的,所以你想知道这些人的疾病。
所以你有原始的成像数据,但所有临床的东西都在别的地方,所以你有时必须把它联系起来,所以你需要进入那里,所以只是为了给你一点规模的概念,所以我们要做所有的心电图,从布里格姆和妇女。
大约有三千万储存在历史上,这都与成本有关,所以正电子发射断层扫描你可以得到大约8000个,我们是最繁忙的中心之一,你知道的,超声心动图在三十万到五十万之间,档案,所以这变得更有趣了,好的。
那么图标标头是什么样子的,你有某种标识符,然后你在那里有一些信息,图像的属性,病人姓名,出生年月日,这种东西就在那里,有一些可变性,所以这从来都不容易,所以这些不同的模式对他们有一些不同的好处。
这就是为什么它们被用来治疗一种或另一种疾病,所以真正令人头痛的是心脏在运动,所以胸壁会移动,因为我们呼吸,心动,我也是,所以你必须想象一些东西,因为它有足够的时间频率,你不会被心脏本身的基本运动所淹没。
所以这些事情中的一些并不是很好,所以幽灵或宠物获得他们的图像,它们是,你知道的,几分钟内的放射性计数,所以当涉及到像那样移动的东西时,这肯定是一个问题,如果你想有高分辨率,所以你通常没有。
你的空间分辨率很差,最终它不能很好地处理移动方面,所以冠状动脉造影有非常非常快的帧率,这是X光,速度很快,心电图可以相当快,核磁共振和CT不太好,所以图像有一些退化,结果,人们会做一些叫做门控的事情。
他们会在那里做心电图,心电图,试着把不同心跳的不同部分排成一行,然后说,嗯,你知道的,我们从这里拍这张照片,从那里把它和这个对齐,这个暂时,我要谈谈关于注册的问题,但归根结底,这是人们必须处理的问题。
所以这是一个有趣的计算机视觉问题,好的,序言差不多写完了,好的,所以嗯,那么我们为什么要想象这些东西会有用呢,所以事实证明,解释的实践涉及到大量的手工测量,所以像我这样的人和那些应该训练太久的人。
发现自己拿着小尺子测量各种东西,例如,这是动脉狭窄,所以你可以用一点卡尺测量一下,和这里比较说,啊,这里缩小了80%,你可以测量这个房间的面积,左心室,你可以测量它的面积,你可以说啊,它的峰区是这样的。
它的最小面积是这个,因此它收缩了一定的数量,所以我们做那些事情,我们测量,那些东西是手工的,我们做的另一件事是我们实际上只是通过观察它们来诊断它们,所以这是一种叫做心脏淀粉样蛋白的疾病。
具有一些增厚的特点,我会向你展示更多关于这一点的知识,这里有一些斑点,所以人们确实看着说,啊,就是这样,所以有一个,有一种分类问题,要么出现在图像层面,要么出现在视频层面,所以我们来谈谈这是否值得做。
但是但是是的,这是用软件吗,还是你真的拿着尺子和尺寸,所以软件包括点击一个点,拉伸某物并单击另一个点,所以这比从你的后口袋里掏出尺子要好一点,但也好不到哪里去,所以我们要讨论三个小领域,再说一遍。
这不是,我是说,在过去的两年里,我真的参与了这件事,或者说,大卫请我在这里发言是很好的,但我不打算,我想这个房间里的人可能在这个领域有更多的经验,但与我们一直在做的事情相关的领域是图像分类。
然后是语义分割,因此图像分类正在为图像分配标签,非常大的语义分割,将每个像素分配给类标签,我还没有我们还没有做任何关于图像注册的事情,我正在思考一些有趣的问题。
这实际上是将不同的图像集映射到一个坐标系上,好的,所以很明显图像分类是你想象中医生会做的事情,所以也许我们可以模仿这似乎是一件合理的事情,很多事情让放射科医生,解释图像的人确实参与了识别,他们真的很快。
所以他们通常需要几分钟来做像侦探这样的事情,有肺癌,侦探,有人得了肺炎,判断心脏里是否有液体,甚至不到一分钟30秒,他们可以,他们发球非常非常快,所以你可以想象,你知道周围的兴奋浪潮。
图像分类真的是一种后图像化,所以大概三年左右,大约四年前,我们在医学上总是有点迟钝,所以有点落后于其他领域,他们去的地方是已经有数据集的地方,它们是简单的识别任务,所以说,他们受到了很多关注。
和其他地方都被,获取数据有多难,所以如果你不能得到足够大的数据集,你也做不了什么,好的,所以大卫提到你们已经覆盖得很好了,这可能是一顶旧帽子,但我想说,在卷积神经网络之前。
医学中的图像分类空间没有发生任何事情,只是不是,我是说,人们甚至不认为现在值得做这件事,有很多兴趣,所以我有很多不同的公司来,在这些事情上寻求帮助,所以它现在是一种非常吸引人的东西,我想人们还没有想好。
我们将如何利用这一点。
例如,如果放射科医生花一分钟到两分钟读一些东西,把它自动化你能得到多少好处,真正的问题是,你不能把放射科医生带走,他们还在那里,因为他们是上钩的人,他们会被起诉的,它是医学界被起诉最多的职业之一。
所以我是说有很多人可以看X光片,你知道你不,你不需要那么多训练,但如果你是那个要被起诉的人,结果是医学上真的没有任何任务转移,没有那种,哦,我要让某某承担九十九,有什么问题就告诉我,就是不会发生。
因为他们最终不愿意把它传递出去,所以这是值得考虑的事情,所以你有一个相对容易的任务,非常昂贵和熟练的人做,他们拒绝放弃,好的,所以这是个问题,但你可以想象有一些场景,我们将更多地讨论它可能在哪里。
所以让我们假设这是一夜之间,放射科医生在家里睡得很舒服,你在急诊室里做了一堆研究,你想弄清楚好吧,我们应该给他们打电话,所以你可以想象可能会有分诊,因为现状是,我们会把他们一个一个带走。
也许你可以想象快速筛选,然后重新确定它们的优先级,他们仍然会被每一个人看着,只是顺序可能会改变,所以这是一个例子,你可以想象可能有单独的,你知道其他人可以同时阅读,我们会回到这个问题上,你可以有两条流。
这是否是一个有意义的场景,也许在资源匮乏的环境中,我们没有与放射科医生合作,也许这是有道理的,我也是,所以我们也会回到这个问题上,好的,所以这里还有一个问题。
所以医学上几乎所有的东西都需要一些视觉发现的确认元素,你知道有些原因很简单,所以假设你想谈谈有一个肿瘤,所以如果你要请外科医生做活检,你最好告诉他们在哪里,仅仅说这张照片有肿瘤是不够的,在它的某个地方。
所以有一些因素,那个,你需要更详细一点,而不是简单地进行分类,用一个水平和图像,但我想说除此之外,所以所以我你知道,当我让我们说,我要让我的一个病人去做瓣膜手术,我和他们坐在一起,发出他们的回声。
和他们并排坐着,把他们指向它所在的地方,拿出一个正常的比较一下,因为我想让他们参与决定,我想让他们觉得,他们不仅仅是信托,他们必须在一天结束时信任我,他们甚至不知道我在展示,我是说。
我会告诉他们他们的名字,但最终还是有一些信任的因素,他们不能这样做,但同时也有一种共同决策的感觉,你试图和一个生活真的很糟糕的人交流,你知道,冒着风险,这就是我们做这个决定的原因,所以你越能想象到。
就越难证明这一点,所以医学是这样的,你知道吗,我发现这篇来自伯克利的本·尤的评论刚刚出版,它谈到了这种紧张,预测准确性与描述准确性之间的关系,所以这是一种,这是我们认为很重要的典型事情,然后呢。
有很多人写过这类事情,医学是艰难的,这里的空间要求很高,在这个空间里几乎是不灵活的,所以这是一个很难解决的问题,就能够取得一些进展而言。
所以我们将更多地讨论一个可能发生的事情,好的,所以这可能是非常熟悉的东西,我也是,所以我们在一些疾病检测模型方面遇到了这个问题,我并不觉得这一切都很令人满意,就能够成功地本地化而言,所以只要翻阅文献。
它看起来像是一种能够解释,图像的哪一部分是驱动某种分类的,那个领域有点古老,也许可以追溯到那之前,但最终有两种广泛的方式,你可以想象找到一个范例图像,最大限度地激活课堂分数。
或者你可以拿一个给定的图像说,它的哪个方面推动了分类,所以在这篇论文中,他们要么做了这两件事,要么优化了这一点,从所有训练数据的平均值开始,他们优化了强度,直到他们为给定的类最大化分数。
这就是这里显示的,另一种方法是在某种意义上,你可以对分数函数求导,相对于所有像素的强度,想出这样的东西,但你可以想象你把这个给一个病人看,他们不会很满意的,所以说,所以很难证明这是非常有用的。
但似乎这个领域有所进步,我还没试过这个,这是马克斯·韦林和他的公司几年前的一篇论文,也许你们对这个有一些熟悉,但这最终是一种不同的方法,从某种意义上说,它们采取了某种补丁,这个紫色的补丁。
他们比较最终分数或班级标签,相对于你所知道的,所以把这里的强度,并将其替换为从外围进行的有条件结果采样,只是比较这两件事,看看你是否被激活,这是一种,这里的红色,也就是,这就是他们做条件采样的方式。
然后蓝色是负面的贡献者,你可以想象这里有更多的区别,然后在医学方面有更多的东西,这是大脑核磁共振,所以取决于这种补丁的大小,你会得到不同程度的分辨率。
定位图像中一些相关的区域,所以这是我们非常期待的事情,医学界的很多要求,就能够展示这一点而言,至少我们最初的尝试不是很令人满意,用我们正在做的事情做这件事,但也许这些算法变得更好了,好的。
所以接下来重要的是,好的,所以这就是人们所做的,所以所以我花了,你知道,我在哈佛做了心脏病学研究员,我只是追踪圆圈,我就是这么做的,我只是在画圆圈,我和我伸出一把尺子,然后把它喂进去。
至少程序为我计算了它的体积,面积和体积,但除此之外,你必须自己做这件事,所以这就像是一个完成的任务,有时你可能不得不,所以说,这里是一个关于卷的例子,通过追踪这些东西来计算。
报道中的大部分内容都涉及到这样做,所以这似乎是一个非常明显的任务,我们应该能够改进,所以医学往往不是最有创意的,在尝试一系列不同的架构方面,所以如果你看看报纸,他们都跳上了这个单元,作为最受欢迎的。
一种最受欢迎的语义分割体系结构,所以这里的人可能很熟悉,我真的只是它捕捉到了这一点,这种编码或收缩层,你在哪里取样,然后是一种对称的向上采样,然后最终有这种跳过连接,你在那里拍摄图像。
然后你把它和这种上采样层连接起来,这有助于获得更多的本地化,所以我们用这个做论文,我们会稍微谈谈这个,它在医学文献中很受欢迎。
其中一件很烦人的事情是你会发现,你会发现的一些图像,比如说心室,你会发现这个分割得很好的区域,然后你会发现这个小卫星心室,图像会选择,所以你会得到这个,你知道的,问题是这种像素级分类往往是一个问题。
人类永远不会犯那样的错误,但这听起来像是,它是它在,这是一种常见的张力,这种专注于相对有限的规模最终会有问题,当谈到拿起全球,一种全球架构,所以在文献中有很多不同的解决方案,我只是强调了。
其中一些来自谷歌不久前发表的一篇论文,捕捉到的东西之一,这些想法和膨胀的卷曲,所以你想象你有某种卷积,建立在卷积上,所以最终你会有一个更大的接收场对这一层来说,尽管你没有真正增加你必须学习的参数的数量。
所以有一些,好像有很多,这不仅仅是我们的问题,但对这个领域的许多人来说是一个问题,所以我们需要多一点冒险精神,在尝试这些其他方法方面,我们确实尝试了一点,但没有发现巨大的收益。
但我认为最终还需要做更多的工作,好的,所以在开始工作之前,我要说的最后一件事,图像配准的想法真的是,所以我谈到了有时有些技术是有局限性的,在空间分辨率或时间分辨率方面,这是一个PET扫描。
这里的这种红光,在背景中,我们有一个心脏的猫扫描,很明显,这是一张注册不良的图像,PET扫描就在这里,当它真的应该在这里排队的时候,所以你有一些注册更好的东西,也提到了这个问题,但最终加廷。
如果你有一张从不同心脏周期的不同部分拍摄的图像,你必须以某种方式将它们对齐,所以这是一个非常听起来像是计算机视觉世界中一个非常成熟的问题,我们在这个空间里什么也没做,但最终它已经存在了几十年。
以为我至少会摸摸它,触摸它,所以这是一种老派的方式,然后现在人们开始使用有条件的,能够学习几何变换的变分自动编码器,这是普林斯顿的西门子集团,又有这篇论文,没有什么我要关注的。
只是想把它作为一个仍然感兴趣的领域提出来,好的,所以我想我们做得很好,但是你说四三五五,好吧,好吧,打断一下,请打断一下,好的,我希望我没有讲得太快,好的,所以我要谈谈,你知道吗,正如大卫所说。
这不是我的领域,但越来越多的人对参与其中感兴趣,部分原因是我对临床医学的挫折,所以这是我对临床医学的挫折之一,所以心脏病学并没有真正改变,它失败的原因之一就是,早发疾病,所以这里是这里是一个。
这里有一种典型的个人资料,有点滑稽,所以像我这样四十出头的人已经开始有一些问题,用其中的一些数字,所以我喜欢开玩笑说,自从我从加州回到哈佛系统,我的血压上升了十分,不幸的是,这是真的。
但是这些变化已经开始发生了,没有人对此采取任何措施,这样你就可以去看医生了,你知道你也在说不,我不想吃任何药,他们就像不,否,否,你不应该吃任何药,所以你就哼哼唧唧,十年过去了,十五年过去了。
最后你说好吧,看起来至少我的同事在吃药,所以也许我愿意这么做,所以我们有很多东西可以治疗,但往往很难,你在医生层面上看到了这一点,我也是,是的,对于上坡的价值,个人偏差有多大,用于。
所以最佳值是和是就像一个参考值,你可以离开,所以血压,这么说吧,所以人们认为最优的是小于120,两百人中不到八十人,人们在,你知道的,所以你会在两个,但是一百四十年代会有很多人,和一百五十。
在一段时间内,对此会有一定程度的虚无主义,我的病人会说,哦,我和停车管理员打架了,哦我,你知道的,我只是,你知道的,我有一个非常糟糕的电话,我是说,你知道有无数的理由,一个人不应该开始服药。
这种情况会持续很长时间,是呀,蕾妮,你如何评估血压的风险,因为我喜欢噪音,国家肯定会去看一次医生,是啊,是啊,所以好吧,所以这是一个很好的观点,如此如此,哦,是啊,是啊,所以所以问题是,就是,那个。
我们看到的许多风险因素,对它们来说有固有的可变性,血糖是这些事情的另一个很好的例子,那么那么你好吗,如果你要有一个单点估计,在一次诊所就诊中出现的,你有多相信,所以有几件事与此有关,所以其中一个是。
那就是人们可以带着监视器被送回家,他们可以在欧洲有两个四小时的监视器,这比在这里做得更多,然后你知道问题是他们经常,你知道他们会说,然后你去看连续六次的访问,他们都有提升的东西,但这是真的。
所以这些是有一个噪声点估计,人们已经表明,平均往往做得更好,但同时,如果这就是你的全部,你知道吗,偏见很有趣,因为偏见来自某种程度的压力,但是我们在生活中有很多压力。
我希望我不是病人生活中压力最大的部分,所以我认为最终会有所以我的意思是,这是一个,问题是这是一个,这是一个很好的理由,有人说服你放弃他们,让他们做任何事情,这就是最终发生的事情。
所以这可能是一段很长的时间,我想这没关系,所以这是可怕的部分,好的,结果发现一旦出现类似心力衰竭的症状,所以五年后50%的死亡率,有人因第一次心力衰竭住院,通常症状就在那个时候,所以很不幸。
这些事情往往是在背景中发生的不可逆转的变化,基本上你直到比赛后期才真正有任何症状,所以我们遇到了一个问题,我们有一个巨大的延伸,我们知道有风险因素,但我们有很大的延伸,在那里没有人对他们做任何事情。
然后在那之后,我们的事情就会相对较快地走下坡路,不幸的是,你知道,我会提出一个理由,可能反应可能是最好的。
在那边的这个阶段,费用真的到处都是,所以我们真的很想找到,这是我认为医学上缺少的,我稍后会再来讨论这个问题,但我们真的想有这样的,你知道的,如果你要在这个无症状阶段做什么,最好便宜点。
你不会每天或每年都得到核磁共振成像,对于有这些的人来说,你知道没有症状,我是说,系统就会破产,你有那个,所以我们需要这些低成本的指标,可以告诉我们在个人层面上,不仅仅是如果我们有一千个像你这样的人。
有人会受益,但真的,这是我的病人会说的,他们会,他们会对他们的心电图或回声每年都在做感到非常兴奋,因为他们想知道,与去年相比情况如何,他们想在他们的水平上进行一些比较。
不仅仅是一些关于某某的公共卫生报告,你知道这对一百个像你这样的人来说是一个好处,所以它应该是一种低成本,应该对某事进行反思,个人层面,应该相对特定于疾病过程,在某种程度上有表现力的。
通过治疗应该会好起来。
我认为这是非常重要的事情之一,如果有人做了你要求他们做的事情,希望那会更好看,然后我们激励,我想这就是人们被激励的方式,他们得到的回应,所以我会提出一个理由,即使是简单的事情,就像超声波。
我在这里展示了一个确实捕捉到了其中的一些东西,不是所有这些,但他们有一些这样的东西,所以所以你有,例如,在高血压的情况下,左心室肿块开始增厚,这是一种定量的连续度量,它只是随着时间的推移而变厚。
心开始改变,泵送功能会随着时间的推移而变得更糟,左心房就是这里的这个结构,这个薄壁结构太神奇了,从某种意义上说,它几乎是心脏压力的晴雨表,这是一个可怕的参考,好的,所以说,但它,但它往往会变得越来越大。
以一种非常微妙的方式,在任何症状发生之前,所以你有这个,这只是一个观点,对呀,这是从超声波上获得的简单视图,在个人层面上捕捉其中一些东西。
所以这就引出了我的一些想法,我们可以想象自动解释,如此受益,如果你想想想你不太可能在哪里,所以用这些非常,非常困难,结束阶段或复杂的决定,在那里你有一个超级熟练的人,甚至一开始就收集数据,他们经过训练。
他们很有经验,你有一个非常昂贵的硬件用来收集数据,你有专家解释,这是在病程后期进行的,你必须做出非常艰难的决定,所以你可能不想把它搞砸,所以可能不是尝试在那里安装自动化系统的好地方,但什么会吸引人。
就是试图使那些甚至根本没有做过的研究成为可能,所以转移到初级保健环境,使用低成本手持设备,所以即使是现在,也有公司开始尝试自动化,数据的获取,通过帮助人们收集它。
并引导他们在疾病过程的早期收集正确的观点,这里没有真正的症状,决策支持就在附近,你是应该开始一些药物还是加强它们,低负债,低成本,所以这是一个我们想关注的地方。
在这个领域引入某种创新,嗯好吧,所以这又回到了这种幻灯片,我说过你可以想象这些东西很低,挂果,但也许这些不是我们应该关注的,相反,我们应该专注于以低成本实现更多数据,从我们收集的数据中获得更多。
一开始就帮助人们获得它,所以这是一类事情,这就是我在上一张幻灯片中突出显示的,你可以想象在医院系统级别的后台运行的东西,只是想看看是否有人在某些方面被遗漏了,然后分诊,我将在下一张幻灯片中讨论。
我们会回来的,然后真的,这也是我进入这个行业的原因之一,我们想做一些超越练习的事情,只是简单地重复我们已经做过的事情,所以这种对中间状态的定量跟踪的想法,疾病亚类,这实际上是真正的原因。
我进入了这个空间,是因为想要增加数据的规模才能做到这一点,这是你可能想去的地方,所以,所以心电图的例子是一个有趣的例子,因为心电图自动判读系统已经存在了四五十年,他们真的开始了,嗯,大约两千年初。
当人们意识到这一点时,所以有一个结构,有一个,有一种模式叫做圣海拔,我不知道你们有没有谈过,这是流向心脏的血液完全停止的标志,所以肌肉开始死亡,在2000年初,有一个质量衡量标准,一种品质,那种运动说。
一旦有人看到,你应该在一个半小时左右的时间里找到有人在做什么,所以问题是过去的日子和做这件事的旧方法,甚至你也知道,这大约是,我是住院医生,你就会,嗯,你得先打电话给心脏病专家,把他们叫醒,他们会来。
你会给他们发一张图像,他们会看着它,他们会决定是否,这就是他们看到的模式,然后他们会激活实验室,导管室,他们会进来,你损失了大约一个小时,在这个过程中一个半小时,因此,他们决定自动化系统可以用来。
你知道的,使救护人员或急诊室医生,所以非心脏病专家可以说,嘿看,这就是我们认为正在发生的事情,让我们把团队带进来,所以人们会被动员起来,人们会来医院,在有人证实之前,没有人会做任何事情来开始这个案子。
但整个轮子已经转动起来了,所以你有这样的分诊系统,你在那里做出决定,你还没有最终决定,但你在加速事情,所以这是一个例子,在那里你可以想象试着把它转移到一些东西上是很重要的,所以这是一个例子,会有假阳性。
人们会嘲笑急诊室的医生,嘲笑救护车司机说啊,你知道的,他们不知道自己在做什么,你知道他们没有经验,但最终人们会死去,因为他们在等心脏病专家来读这个,读心电图,所以你必须从事情的角度来考虑这些。
可能会有延误成本的地方,好的,所以回到回声,好的,那么为什么回声研究,因为这可能不是典型的,它是一种视频的汇编,大约有70个不同的视频,通常在我们所做的研究中,我们所在的中心。
它们被多个循环和多个不同的观点所占据,通常需要相当熟练的人来获得这些观点,他们需要大约四五分钟到一个小时来收集数据,多个不同的视图,速记员会改变深度来放大给定的结构,所以你可以理解。
已经有人在这个过程中非常有经验,甚至收集数据,这是个问题,因为你需要把他们从画面中剔除,因为做这些事情很贵,嗯,所以我们在做,1万2至1万5千瑞士法郎,布林厄姆可能在三十到三十岁的时候更忙一点。
五千医疗保险,在2011年有700万这样的表演,可能有数亿份这样的档案,这么多数据,所以我们我们去年发表了一篇论文,试图自动化围绕这个的所有主要过程,也是做这一切的部分原因。
让一点点自动化对你没有帮助吗,因为在一天结束的时候,如果你必须让心脏病专家做其他一切,作为一个摄影师,做其他一切,你走了一小步,真正节省了什么,所以这里的目标是从原始研究开始,直接从机器上下来。
试着做所有的事情,所以这涉及到对所有这些不同的视图进行排序,用它来做经验性的质量评分,分割我们使用的五个主要视图,直接检测某些疾病,然后计算所有标准质量和体积类型的测量结果。
所以我们想做这一切,这是一个,你知道的,我觉得,在算法中使用了惊人的独创性,但同时,对社区里的任何人来说,试图承担这个责任都是非常大胆的,当然,总的来说,你能想象到的所有反弹,当你试图做这样的事情时。
我还在听,但是但是但是有兴奋,当然在行业方面,那真的很令人兴奋,这是可行的,所以我在2006年左右经营着一个生物实验室,然后决定这样做,我表弟的丈夫是宾夕法尼亚大学的工程系系主任,我给他发了电子邮件说。
你知不知道,伯克利的任何人,我住在那附近,我通勤时间很长,所以我你知道,我就像更接近,有有,你认识的人在那里,所以他就像,是啊,是啊,我知道我在那里认识Rujabashi,她以前在宾夕法尼亚大学。
我知道阿廖沙·埃弗罗斯,所以他只是,你知道的,他只是给他们发了电子邮件说,你能这样见面吗,实际上也做苔原马利克,所以我遇到了他们中的一些人,然后我试着找一些愿意工作的人,所以我每周在那里呆一天。
持续了大约两年,只是写代码,试着让这种项目开始,所以我们有几个不同的机构,jeff sang是伊利诺斯州大学的一名大四本科生,现在作为一名研究生,这很有趣,因为很难毕业,学生级别的人对事情感到兴奋。
那是现有算法的应用,嗯,但他们很乐意建议,我想我认为这是如此,我最后不得不自己写很多代码,但是本科生当然很兴奋做这些事情,因为它比家庭作业好,我可以付钱,但是。
但我认为最终试图找到那个甜蜜的地方是很有趣的,并找到最终可能,从算法的角度来看可能很有趣,我也是,你知道,我这些天想做更多这样的事情,好吧我们不是第一个对视图进行分类的人。
所以有人已经发表了一些东西,但我们希望它比这更细致入微,我们希望能够区分,比如说,这个结构是不是,左心室被切断,因为我们不想测量它,如果它被切断,我们不想测量中庭,如果这里完全切断了。
所以我们希望能够有一个分类器,能够区分其中一些东西,这不是一件容易的事,你知道,很多标签都是我,我在漫长的通勤中乘火车,从加州东湾到加州大学旧金山分校,所以我做了很多标签,我做了很多分割,我也是。
所以我撒了很多谎,这是另一件有趣的事情,你经常需要做繁重的工作,你可能需要一个相当专业的人来做这件事。
也可以,但是但是是的,所以大部分时间都是我,所以我追踪了很多这些图像,然后我你知道我得到了一些其他人的帮助,但你不会让一个计算机科学的本科生为你追踪艺术结构,你也不会让他们对做任何事情感到兴奋。
所以我们最终没有那么多数据,我想我们可能会做得更好,但我们有五个主要的观点,我们实现了一种改进版本的单元算法,我们没有,我们施加了一点惩罚来保持这种问题,比如说,一点杂乱的心室在外面,我们罚了说好。
如果那离中心太远了,然后我们会有损失函数,考虑到这一点,这有点帮助,嗯,但这是我们的方法,这是一个,这是一笔相当可观的交易,能够做所有这些事情,那通常会很乏味,结果,当我们开始分析事物时。
我们可以分割每一个视频的每一帧,典型的回声阅读器会取两帧并跟踪它们。
就是这样,这就是你得到的一切,所以我们可以在每一个心脏周期中做任何事情,因为从一个节拍到另一个节拍有惊人的可变性,所以你知道,认为这应该是金本位制有点傻,但这是金本位制,嗯,所以我们有。
你知道成千上万的回声,所以这是另一件事,事实证明,几乎不可能进入回声,所以我在前端写了一个击键编码器,只是模仿我进入学习并下载它们,所以这是我唯一能得到的方法。
所以我在一年多的时间里积累了大约3万份研究,但是没有办法进行批量下载,又是这样,你得做一些基础工作,愿意在这个空间里玩,所以我们有一个,你知道我们可以用相当多的研究来测量,你知道体面的价值观,我是说。
我认为思考一个人能有多好是很有趣的,一个人能靠多近,我们发现的一件事是,当出现很大的偏差时,这些都是平淡无奇的奥特曼情节,手动的几乎总是错的,哦好吧,所以好吧,奥特曼的情节如此平淡无奇。
我不喜欢在医学领域使用相关性,安东·奥特曼大约三十年前在《柳叶刀》上发表了一篇论文,抱怨相关性和相关系数最终不好,度量,因为你可能会有一些实质性的偏见,你真的想知道,如果这是金本位制,你需要得到那个值。
所以这真的只是看看,假设参考值和,假设自动值,然后根据两者的平均值来策划,原来如此,我在这里按百分比做的,但最终只是,所以你有,你只是把,假设左心室容积,你有一种自动化的手段,与手动测量的类型相比。
然后你比较一个减去另一个的差异,所以你会站在一边或另一边,所以理想情况下你会完美地坐在这条线上,然后你会看到,不管你是不是聚集在一边或另一边,所以这只是一种,人们试图避免相关系数的典型事情。
因为他们认为他们并没有真正告诉你,你是否知道真的有一个金本位制,这里真的有价值,你想接近那个值,所以这是一种,这是查看诊断比较的标准,所以我们有大约八千件东西。
所以当你知道评论者给了我们一个艰难的时间在这里的空间,这里没有那么多研究,但最终还是有一些,当我们手动查看一堆它们时,他们总是手动的,只是错了,不是有错别字之类的,所以这让人放心,但我们有时大错特错。
所以有时候,你会发现我们错的地方,会是这些复杂得可笑的先天性心脏研究,我们从来没有,你知道我们以前从来没有举过这样的例子,所以我是说这是一个需要吸取的教训,有时你会在这种方法中非常偏离,你得想一想。
我们最终做的是循环错误,在那里我们可以识别这些并反馈给它们,然后继续这样做,但这仍需改进,好的,所以再次发挥作用,有几个度量函数,你知道我们是如此,有几个,有一家公司有一些东西。
在这个领域得到了FDA的批准,因为它有一个自动弹射分数,所以我认为我们总体上比他们的数字要好,但是是的,我想那只是其中之一,那种期望能够做到的,然后我们遇到了一个问题,所以说,所以我们在比较现状。
就像我说的,一个人追踪两个图像,并将它们进行比较,就是这样,所以我们每次研究可能会处理两三百张不同的帧,和竞争的中值平滑,我们做的远不止这些,那么我们怎么,在金本位制方面,我们该怎么办。
如果你只考虑到可观察到的可变性,你会有8%到9%的绝对值,将其与参考的60%进行比较,所以这太可怕了,那么你应该怎么做,我想人们做的一件事是,他们收集多个读者,并要求他们这样做,但这就像。
你会找一群心脏病专家做,你知道有一千个研究给你,很难想象有人会这么做,你可以把它和另一种形式进行比较,所以我们还没有做这个,但你可以,比如说,把它和核磁共振比对说,你是否更符合另一种情态。
然后这是一种间接的,但你可以在试验中看到类似的结果,看看你是否做得更好,所以你可以做一些事情,我们决定做的一件事,就是在研究本身中寻找结构的相关性,然后说,嗯,嗯,质量,你知道所以,所以我们知道。
比如说,增厚的心脏导致更大的压力增加和左心房增大,所以我们可以寻找这些东西之间的相关性,看看我们是否做得更好,在大多数情况下,我们与那里的一切都不相上下,所以我不认为我们更好。
有时我们比事情更糟的时候更好,我想在很大程度上,这是另一种尝试,因为我们被困住了,我是说,你怎么,你如何用一个黄金标准来工作,最终,我不知道,我不认为有人真的把信任作为金本位。
这是一个必须不断出现的问题,这只是一个例子,你可以促进,这种在护理点低成本串行成像的想法,所以这些是正在接受化疗的病人,所以赫赛汀还是知觉,赫赛汀,就像盗梦空间,有一个是一个是一个嗯。
所以人们得到了筛选回声,所以你可以想象,如果你让它更容易获得和解释,你要关心的只是功能和大小,所以你可以想象自动化,所以我们这样做只是为了证明概念,你可以想象做这样的事情,我最后想说的是。
所以我们还是对不起,这个空间里的最后一件事是,你也可以想象直接检测疾病,所以你不得不说,嗯,为什么这值得,是呀,好奇,我想是时光倒流,但是如果你把模型和人类地面的真相混合在一起,也许是生物基地,说实话。
一种粗鲁的方式,因为我们将摆脱心脏病专家的共识,而不是像你需要从核磁共振成像或其他东西中得到的,也许不一定是你说的话,有点基于潜在的生物学,或者这两个东西一般都是留着的,是啊,是啊,我是说。
我想这一切都是,这些都是早期,为了很多这个,我想任何时候你做任何比,然后读者会给你一个艰难的时刻,但你可以想象,尤其是你可能想调整一些东西,以便能够更接近于这样的东西,所以是的,我觉得。
我觉得不幸的是人们对于如何解释,但这确实有道理,你可能知道一些事情,理想情况下,你希望能够拥有一些有用的东西,可能和模仿人类所做的不完全是一回事,否,我想一个好主意,我认为这将是。
下一波浪潮会更多地考虑这个问题,就喜欢而言,我们如何改进那边发生的事情,而不是简单地把它拖回那个,所以有多种罕见病,我以前有个诊所专门治疗这些,他们往往在中心被错过,看不见他们的人。
通常你可以想象的一个地方是,你可以专注于试着把它们捡起来,你可以想象这可能只是监视,在后台奔跑,它不一定是一种实时识别,所以有一些疾病,做这些事是很有道理的。很明显,所以这是一种叫做肥厚型心脏病的疾病。
我以前在诊所里看到,所以异常增厚的心脏,年轻运动员猝死的主要原因,所以雷吉·刘易斯,感谢上帝,我是说,有一群人突然死于这种情况,心律不稳定,猝死,心力衰竭,它是家族遗传的,如果你识别出它。
你可以做一些事情,所以这实际上是一个相当容易的任务,从某种意义上说,这往往是非常明显的,所以我们围绕这个建立了分类模型,我们试图理解它在做什么,所以我们试着做一些这样的关注或突出类型的事情。
他们在一定程度上很不满意,因为我认为你的整个形象有很多不同的特征,所以你只是得到这个斑点,但我想也许我们只是没有正确地实施它,我不是很确定,但你很棒因为,你知道左心房变大了,心越变越厚。
我是说图像上有太多的变化,就这一点而言,这有点不令人满意,所以我们做了一些简单的事情,然后取概率的输出,并将其与我们实际了解的一些简单的事情进行了比较,并发现有一定程度的相关性,但我想让它变得更好一点。
心脏淀粉样蛋白,一种非常流行的疾病,现在有治疗方法,所以制药公司对识别这些人非常感兴趣,他们真的以相当高的速度被错过,所以我们为此建立了另一个模型,通常我们每样东西都有250到300箱。
也许有几千个控件,然后这个有点有趣,这是二尖瓣脱垂,所以这个所以这个,嗯,这就是瓣膜脱垂的样子,所以如果你想象一下阀门的平面,它向后扣,所以它这样做,那样做是不正常的,这是一个正常的元音。
所以你注意到它不会扣回去,所以这有点有趣,心脏周期真的只有一部分,这将真正突出这种异常,至少是这样,所以从临床上看,人们在等待,心脏周期的这一部分被扣回了,他们画了一条假想的线,他们测量那里的位移。
所以我们建立了一个合理的聚焦模型,所以我们对这些图像进行了分相,并选择了心脏周期的部分,相关的,都是以自动化的方式,并围绕它建立了一个模型,就能够做到这一点而言,这是相当好的,就能够检测到这一点而言。
嗯是的,在特定的时间,图像上的模型也是如此,或者喜欢,你能不能回到,因为很明显你在视频上做得不好,所以我们把整个视频,我们在分割它,我们在分阶段,弄清楚,你知道什么时候结束很傻吗,然后用这些作为。
所以用一堆这些来分类,你怎么知道时间点,嗯,这就是我要说的,所以我们用体积的变化,是啊,是啊,是啊,是啊,是啊,是啊,正是因为,因为你知道典型的回声会有一个心电图来检测,但手持设备没有,所以说。
我们想远离那些涉及幻想的事情,所有的铃铛和哨子,我们试图单独使用图像,能够判断心脏周期,我们就是这样做的,既然你提到了手持设备会告诉我们与这些有点不同,你觉得他们长得很像吗,我是说我们有一些。
我们得到了我们得到了一些,我是说就图像质量而言它们看起来很相似,你可以获得同样的观点,所以我想我们还没有证明我们可以做到这一点,部分原因是没有足够的训练数据,但它们看起来很漂亮。
我知道我是说在加州大学旧金山分校和布里格姆,所有的伙伴都在用,它看起来几乎是一样的,传感器有点相似,图像质量很好,分辨率很好,帧率可能不一定会上升到那么高,但在大多数情况下,我不认为这有什么不同。
这就是下一个空间,是呀,你能评论一下,所以你提到了这三个例子中的每一个都可以在监视算法中使用,是啊,是啊,你能评论一下,伴随着这种真正的正的假的正的权衡,你就会,你实际上会很现实地使用,是啊,是啊。
是啊,是啊,这是一个很好的观点,我想我想每一个都会有所不同,你真的想有一些成本,所以我会,我通常会站在更高灵敏度的一边,让你知道把它交给心脏病专家,所以我会工作,你知道的。
但我想我的意思是你必须选择一些,让我们看看,假设你是一个项目,你是产品经理,从这三个中选择一个,也许好吧太久了,是的这是一种非常罕见的疾病,所以就这些人而言,你的前科很低,啊,所以我,你知道的。
我想你可能会想沿着这条路的某个地方播出,这种,你知道的,这个区域,所以只是在做什么,所以,你可能仍然会有相对较高的假阳性率,即使是那个空间,但如果你知道我会争辩说这需要治疗心脏病的医生。
可能只有几分钟的时间来再次查看这项研究,如果你接了其中一个病人那将是一个巨大的胜利,你知道的,所以我想成本可能不会那么高,你只需要证明这一点,我想我认为最好的淀粉样蛋白治疗,比如说,用这些。
我是说这是一种很好的尖锐的向上划水,在那里,外面有新药,他们在乞求病人,他们真的很难识别他们,所以你可以再想象一次,这是一种基于好处的计算,为了那个身份,你给我带来了什么负担,个人必须过度阅读一些东西。
你可能会调整它,取决于,疾病是什么,你在向谁推销它,但如果是,你说的对,你会把人压垮的,如果一百个最终是一个真正的积极因素,那你就不会有很多粉丝了,你能评论一下从基础上抓狂,你能很好地预测的,举个例子。
为什么你不能输,不管是什么区别,那些你很好,嗯,那是件好事,所以这是一个很好的观点,我也不,我真的不知道,我不知道,从某种意义上说,我没有仔细看过,但我猜它们很厚,很明显,在那种意义上。
所以我们有一个心电图模型可能会早期发现这一点,我的意思是你想要的东西是修复它,当它是可以治疗的,没有一些可笑的夸张的东西,所以你可能需要多种模式,其中一些比其他的更敏感。
可以感染早期疾病的人能够做到这一点,所以关于这种疾病有一些有趣的事情,特别是,所以白内障有时会发生在,所以理想情况下,你这样做的方法是,你知道吗,我实际上是在咨询这样的事情,你最好混合电子健康记录。
其他发现中的一些东西,镜像发现,眼部发现,再加上一些心脏的东西,并有一些理想的在最理想的治疗状态下感染疾病的东西,也许回声不是最好的,我想我们会回到这个问题上,最后我们有一点时间,好的。
UCSF正在提交,我不知道,我不认为这实际上是可以申请专利的,但他们正在申请专利,我今天只是在填写文件,我不知道,但我的代码都是免费的,所以说,用于学术非营利用途,我们只是想让它变得更好,我是说。
我想作为一个学者,我在这里的最终观点是试图展示什么是可能的,然后你知道如果你想买一个商业产品,那么你需要有人站在行业的一边做出漂亮的东西,并使其可用等等,但我想最终我只是想表明嘿。
如果我们能以可扩展的方式做到这一点,并发现一些新的东西,然后你们就可以赶上并做一些最终可以部署的事情,有趣的是,我在新西兰有一个合作者,他们资源匮乏,所以他们积压了大量的病人,他们没有足够的速记员。
他们没有足够的心脏病专家,所以他们试图实施这种超级快的五分钟研究,然后有自动化,所以他们希望我们的精确度更高一点,但我想他们已经准备好推出了,如果我们能得到一些可能有更多训练数据的东西,是的。
你是新西兰人吗?否,我想他开始谈论这件事了,在,我在学术界也能看到,我感觉到我们总是在追求完美的准确性,是啊,是啊,就像你说的,你不会在诊断中摆脱心脏病专家,所以我有一个哲学问题,你追错东西了吗。
我们应该追求完美的准确性,嗯一点点,是的,所以问题就在附近,我们的目标应该是什么,我认为这是一个,这是一个,你知道,所以我们应该,应该是,我们应该追求一定的精确度吗,很难达到。
尤其是如果从来没有一个场景,没有临床医生参与的地方,我们是否应该考虑一些足够好的东西来进行下一步,我认为这是一个很好的观点,还有田野,有趣的是,从行业方面来看也很有趣,字段是从模仿模式开始的吗。
因为改变练习要困难得多,直接把东西放进去要容易得多,说嗨,我知道你必须做这些测量,我帮你做吧,你可以看看他们,看看你是否同意,心电图就是这么做的,所以现在没有人在测量QRS的宽度,没有人这么做。
我是说还没结束,你得到了一个荒谬的数字,你会改变它,但在大多数情况下,你就像,已经够近了,但你几乎必须从这个开始,很难做到这一点,所以我觉得我和大卫谈过,这有点像,那种,主机界面令人着迷。
我们如何一起想出更好的办法,但要被收养要困难得多,因为它需要以一种不同的方式购买,你为我做我的工作,但更多的是我们走到一起做更好的事情,我认为这会很有趣,关于如何解决这个问题,好的,所以几个沉思。
然后我要谈谈一个勇敢的想法,如果我们有时间,或者我可以拿,我会停下来回答问题,嗯,因为这有点像生物学上的冒险,好的,所以我觉得我们真的应该看看当人们问,周围的人让我很难过,回声和我很好,嗯。
心电图已经存在很长时间了,那里有自动化,所以让我们想想它在那里是如何使用的,然后看看是不是,你知道这并不像人们想象的那样古怪,所以说,我觉得,许多常规测量都将以自动化的方式进行,然后你就可以。
我是说已经在我们的软件里了,你可以放一张小图片,把分割覆盖在原始图像上,说它看起来有多好,所以这很容易,所以你可以这么做,然后这种关心点的想法,自动化诊断在一些紧急类型的情况下是有意义的。
所以也许你需要快速检查一下功能,也许你想知道他们的心脏周围是否有很多液体,你不一定想等,所以这些地方可能会有一些创新,快点把事情做完,然后你总是有人在后面检查背景,就像我给你看的心脏病发作一样。
我认为这个问题和回声在那里,所以如果你有这样的,如果你首先需要有技能的人能够获取数据,你被困住了,因为他们能很好地读懂回声,我是说一个很好的速记员可以帮你读整个研究,所以如果你已经有那个人参与了管道。
那么真的很难引入一个大的进步,所以你需要弄清楚如何让初级保健医生离开街道,把一台机器放在他们手里,让他们得到图像,然后为他们自动化所有的解释,所以直到你能把任务转移到那个空间,你还是太高了,技能水平。
所以现在有这些公司在这个领域,我是说有一些人试图,我是说你知道很容易想象,如果你能训练一个神经网络来分类视图,你可以让它识别,我是说这有点像注册的想法,如果你偏离了10度,你就能认出来一点。
或者如果你需要翻译,我是说你可以训练一个模特来做到这一点,所以我想现在已经发生了,所以这是否会被采纳是个问题,但我认为最终你想转向,技能较低的人员,你需要在那个空间里做点什么,好的。
所以这是它变得更难的地方,就是思考如何制造东西,提升医学,超越我们正在做的,这又回到了这个问题上,我提到过,在一天结束的时候,你不能,你找不到回声的新用途,除非数据已经存在,为了你。
能够证明有更多的价值,现在有一种鸡和蛋的东西,在某种意义上如此如此,我想介绍的是,我们可以得到更大的数据集,它们不一定是一百个视频数据集,它们可以是三个视频数据集,但我们希望能够弄清楚。
如何使越来越多的这些研究,所以你可以想象学习更复杂的东西,你想随着时间的推移跟踪人们,你想看看治疗反应,所以你得看看人们在哪里,钱已经在哪里,看看谁能做到这一点,所以制药公司对。
因为他们有第二阶段的试验,他们可能只有三个月或六个月的时间来显示一种药物的一些好处,然后他们真的很有兴趣看看一个月后是否有差异,两个月,三个月,四个月,所以那可能是一个你得到,他们很节俭,但他们有钱。
所以你可以想象如果你能在那里引入这种管道,只需手持简单,快速获得更多的频率,你表现出治疗反应,因为你可以想象它可以在实践中推广,在那之后,你需要有人资助,从这个开始,然后你可以想象一旦你有了一个用例。
然后你可以想象它会变得更多,这种监视的想法,你可以想象那是非常可行的,你可以有一些,我是说,问题是你连档案里的数据都拿不到,但假设你能得到,你可以让这个系统寻找淀粉样蛋白,寻找任何东西,那将是一场胜利。
我也是,就是能够想象做这样的事情,它不会给临床工作流程带来任何压力,这不会让任何人难堪,我想最终它只是想弄清楚,如果那样的话,也许在寻找,有人可能看起来很糟糕,我想如果他们错过了什么,但是但是是的。
我认为它只是试图识别个体,嗯,所以这是一个区域,我想那很难,嗯,所以这种想法,这就是我开始的地方,这种疾病分类和风险模型的思想,所以这就像,这比我们正在做的任何事情都复杂,我想我们在这种事情上很粗鲁。
挑战之一是人们对新的类别或新的风险模型不感兴趣,如果他们没有办法改变练习,这变得更加困难,因为你不仅需要介绍模型,你需要展示如何以某种方式结合这个模型,能够识别对那里做出反应的人,我的意思是它总是。
在一天结束的时候,它总是归结为治疗,所以你能告诉我一些亚类的人谁会在这种药物上做得更好吗,这意味着你必须有试验数据,所有那些拥有所有数据的人,不幸的是,因为回声太贵了。
像布里格姆这样的地方每个回声收费3000美元,那么在审判中只有一百个人有回声,或者三百个人在回声,你有一个5000人的审判,其中5%有回声,所以你需要改变完成的方式,因为你的力量严重不足。
无法探测到任何东西,那是那种工作中的一个子组,嗯,所以是的,不幸的是,事物的研究速度在空间上超过了实践的变化,直到我们能够进行更多的数据收集,所以我可以停在那里,我本来想谈谈幻灯片上的血细胞,但是是的。
是啊,是啊,是啊,是啊,好的,我们为什么不那样做呢?看到一些文件,人们说好,我们大致知道解剖学需要什么,这样我们就可以填补缺失的细节,在那些日子里,切片比较远,所以他们会产生幻觉,是啊,是啊,当然。
这样做的好处是给你一个更好的模型,但也有风险,你们试着把它留给一些,是啊,是啊,这是一个伟大的观点,如此如此好吧,所以问题是如此的,你知道,心脏成像有很长的历史,所以有一段时间。
在那里有这些活跃的心脏形态建模者,所以人们有了这些模型,围绕着心脏应该是什么样子,从很多很多,许多研究,他们当时正在使用它,当你用这些相对粗糙的多层扫描仪做CT时,他们将重建心脏的三维图像。
基于一些预先存在的心脏应该是什么样子的几何模型,当然,这对一些风险是有好处的,从某种意义上说,某人可能在缺失的空间里非常不同,你可以,所以问题是这些前科是否可以以某种方式引入,如何做到这一点并不简单。
但我的意思是,那是,每当你看到这些糟糕得离谱的分段时,你就像,这太白痴了,我们应该能够引入一些,我见过人们,比如说,放一个自动编码器,我是说那不是,这不完全是得到它,但它实际上得到了一些。
这些粗糙的特征,但没有,我认为就使用某种程度的几何先验而言,我想我可能在那个空间里看过一些文学作品,我们在那里什么都没试过,我们没有任何数据可以做到这一点,不幸的是,我怀疑,嗯,是啊,是啊。
我只是不知道这有多难,我是说,你提到不想看到一个小的额外中庭,是的,还有距离,所以这是一种积累知识的方式,耶不,我来吧,我记得当我在这个空间开始的时候,我就像这是耳部,为什么我们不能这样做。
为什么我们没有办法做到这一点呢?我们当时找不到,任何简单的架构都可以做到这一点,但我肯定在那个空间里有什么东西,嗯,我们自己也没有这些祈祷的数据,我是说,这种东西有很长的历史,现有的从头开始的心脏模型。
来自牛津和新西兰集团,就那件事而言,他们一直在做这种多尺度建模,我肯定会有的,我是说,会很有趣的,是否有人在那个空间里向前推进,还是只是更多的数据,我想这总是那种紧张,我能问问超声波吗,是啊,是啊。
你没有给我们看超声波,对呀,是啊,是啊,你做了,是啊,是啊,是啊,是啊,回声和所有,哦,但是好吧,但那真的很贵,超声,就像那里,更便宜的超声波,你可以想象你一直做对,是的,所以,所以有一个,嗯。
有一家公司刚刚推出了一款价值2000美元的手持产品,超声与订阅模型,啊是的,所以我想所以所以,菲利普斯有一个大约8000美元的手持设备,两千块左右已经很便宜了,所以我认为这就是手持设备的空间。
我们说的是资源,发展中国家的贫穷国家,在那里,每个人口的医生可能很少,那种东西,什么样的成像可能有用,我们可以应用计算机视觉算法,我仍然认为超声波是最佳选择,它有多功能性,它的成本大约是,和。
我敢肯定那些公司以更低的成本出租,在那种地方,我也是,所以我们把,或者我把,其实,它可能没有得到资助,我不太确定,但是,但看看撒哈拉以南非洲,与布里格姆的一名医生合作,他去撒哈拉以南非洲旅行。
并试图建立一些自动检测类型的东西,在那个空间里,所以没有,我想肯定有人对此感兴趣,可能会有更大的胜利,然后我提议的那种东西,但是是的,否,我认为这是一个很好的观点,那将是,它也是便携的。
你可以有一个基于电话的东西,所以它其实是,从这个角度来看,它很有吸引力,五分钟好的,我觉得我在实质性地改变话题,但不是完全好,这就是那张幻灯片,我展示了,嗯,我投球的方式,试图激励你思考超声波。
但我不确定超声波真的能实现所有这些,我不认为这是最好的生物工具,潜在的疾病途径,这些事情中的一些可能会迟到,就像大卫说的,也可能不是那么可逆,所以我们得到了一个勇敢的想法。
现在八千五百万美元来在一种特定的疾病上取得一些进展,所以冠心病,冠心病,是那种傲慢的技术,你只是把很多钱扔在某个地方,以为你会解决所有的问题,我很乐意接受,但我觉得有一些问题所以这就是我想做的。
所以我想在过去的五年里一直这样做,六年前,我甚至开始在这里,这在一定程度上激励了我很长一段时间。
这就是我们的问题,所以我们在研究心脏病,所以冠心病或冠心病是心脏中的动脉,你不能得到那些,所以你不能做任何生物学,你不能做这些事,癌症患者,你不能活检,那个,你在那里什么也做不了,所以你被困住了。
你想要得到的东西是无法访问的,我谈到了很多成像是多么昂贵,但其他那些组学的东西真的很贵,我也是,所以这对他们来说并不是不可能的,你就不能做麦片了,1000美元的蛋白质组学,这不会很快发生,然后,嗯。
我所说的一切,我们在样本量方面严重不足,尤其是如果你想描述潜在的复杂生物过程,所以我们预计我们需要高维数据,我们需要大量的样品,弗拉基米尔<尼克在那边,然后这里还有一个问题。
所以这些东西需要时间,这些疾病需要时间,所以如果我现在引入一个新的测试,我要如何证明这些都是有益的,因为这种疾病发展了十到二十年,所以我不打算谈论解决这个问题的方法,好的,所以很多数据的一个问题是。
不是特别有表现力,很多都是临床上的东西,同样的成像材料,所以所有这些大的研究,这些耗资数十亿美元的大型研究最终只有回声和核磁共振,你知道,也许有一点遗传学,但他们真的没有东西。
这是一种低成本的表达生物的东西,我们理想中希望能够做到的,所以这真的很贵让八千五百万美元看起来像个笑话,就复杂性而言,它并不那么丰富,所以我们想做一些不同的事情,所以这是疯狂的事情,嗯。
我们关注的是循环细胞,所以这是一种妥协,他们的参与有一个相当好的理由,如此如此,有很多数据表明,这些是冠状动脉疾病或冠心病的因果介质,所以你可以在牌匾里找到它们,有这么多患有自身免疫性疾病的病人。
肯定有加速形式的耳硬化症,有,所以有一种叫做Connecinemab的药物,抑制巨噬细胞分泌Isone-β,这对podisease的死亡率有好处,白细胞群本身就有突变,与早期心脏病发作有关,所以有一个。
那里有很多,这一直在发生,有很多老鼠模型表明,如果你进行突变,只有在白细胞室里你会完全改变,疾病本身就很好,大量的数据表明有一个信息丰富的,那里的细胞类型,它是可访问的,嗯,已经有很多预测模型了。
他们可以用这些来做,它们表达了许多与,在许多这些生物过程中都有一个窗口,所以我们专注于计算机视觉方法来处理这些数据,所以我们决定,如果我们不能做组学的东西,因为它太贵了,我们将拍摄幻灯片。
每个人有数万个细胞,然后我们可以引入荧光染料,可以集中在许多不同的细胞器上,然后我们可以潜在地扩大表型空间,通过添加各种扰动,它可以揭开人们的属性,甚至可能在基线时相对不存在,我得到了。
我想我被计算机视觉的体验赋予了力量,为了回声的东西,我说嘿,我能做到,我可以训练这些模特,如此如此,所以我们,我们现在所处的位置,我们可以在哪里,你知道这东西每人要花几美元,它很便宜,你可以。
你知道你可以继续扩大表型空间,你可以把带进来,你可以在这里拿任何你想要的东西,你还在这种年龄,你可以,所以我们只是背着,我们只是在周围盘旋,只有几个研究助理在诊所里徘徊,我们一个月可以做成千上万的病人。
所以每年有成千上万的病人,所以我们可以在这里进入深度学习样本量,所以我们希望这些初级分析成本低,可重复性,富有表现力的,对治疗有理想反应,所以这就是这里的空间,我们有很多东西。
我们有所有这些人的医疗记录数据,我们可以有选择地做体细胞测序,我们和基因组协会,我们有所有的心电图数据,我们有选择性正电子发射数据,所以它有很多额外的拇指,我们希望能够走我们便宜的化验。
对那些更贵的东西,但对此有更多的历史数据,所以这就是我这些天的生活,时间问题已经解决了,因为我们在MGH找到了一个合作者,他有350万张这样的记录,在细胞计数和细胞计数据方面,可以追溯到大约三年前。
所以我们应该能在那段时间里举办一些像样的活动,我需要为350万条记录建立一个文档分类模型,来决定他们是否患有冠心病,但听起来是可行的,我们在这个空间里无所畏惧,然后他们还有1300万张图像。
所以成千上万的人用幻灯片的文字,这样我们至少可以得到合适的重量来转移,从这些数据中学习,我们这样做是为了急性心脏病发作的病人,如此如此是的,所以这是我最终要做的,所以它是现有成像之间的桥梁。
现有常规医学数据,这种低成本的表达系列类型的东西,最终希望扩大表型空间并降低成本,我认为我从处理昂贵的图像数据中得到的所有教训,促使我在这个空间周围建造一些东西,所以这是我的,它现在是我的孩子。
你们很多人都知道,很多事情要人们参与,如果他们想,这些是一些资金来源,所有的权利。
P11:11.Differential Diagnosis - 大佬的迷弟的粉丝 - BV1oa411c7eD
所以我只是引用维基百科,诊断是对某一现象的性质和原因的鉴定,鉴别诊断是对某一特定疾病或状况的鉴别,与其他表现出类似临床特征的人,所以当医生面对病人时,他们通常会谈论鉴别诊断。
他们列出了这个病人可能有的问题,然后他们经历了一个过程,试图找出它到底是哪一个,这就是我们今天要重点讨论的,现在,只是为了吓唬你,这是一个可爱的人体循环生理学模型,我不会让你对这个模型的所有细节负责。
但这很有趣,因为这至少是20年前的事了,人们如何理解循环系统中发生的事情的最新技术,它有各种控制输入来决定你的激素水平如何变化,心血管系统的各个方面,以及有氧运动不同成分之间的相互作用。
心血管系统相互影响,所以原则上,如果我能把这个模型调到自己身上,然后我就可以做出各种很好的预测,你知道吗,如果我增加全身血管阻力,下面是将要发生的事情,随着系统的其余部分调整,如果我冠状动脉堵塞。
那么我的心输出量会发生什么,还有各种其他的东西,所以这将是非常棒的,如果我们有这种模型,不仅仅是心血管系统,但是整个身体,然后我们会说好,我们很好地解决了医学问题,对于大多数系统,我们没有这种模型。
还有一个小问题如果我给你这个模型,这与特定的病人有什么关系,你怎么知道,它有数百个微分方程,由这张图表示,它们有数百个参数,所以你知道当我们开始使用这个模型时,我们是在开玩笑,你真的必须杀死病人。
为了做足够的测量,能够调整这个模型以适应他们特定的生理,当然,这可能不是一个很好的实际方法,我们通过开发更多的产品而变得更好,测量这些东西的非侵入性方法,但这进展得很慢,我不指望我。
或者你们中的任何一个人都能活得足够长,这种进行医学推理和医学诊断的方法实际上会发生,所以说,我们今天要看的是,什么是,诊断推理有哪些更简单的模型,和,我要冒昧地,给你带来一点历史,因为我觉得有趣的是。
这些想法是从哪里来的,所以第一个想法是建立流程图,哦,顺便说一句,我忘记了的体征和症状,如果我们在课堂上讨论过这个,所以征兆是医生看到的东西,症状是病人经历的,所以一个标志是客观的。
它是可以在你的身体之外说出来的东西,症状是你感觉如此,如果你感到头晕,那就是症状,因为这对你以外的人来说并不明显,你头晕,或者你有痛苦之类的事情,嗯,通常我们谈论的是表现或发现,这是一个超级类别。
所有关于病人的事情都是可以确定的,所以我们来谈谈,那么你是否试图诊断一种单一的疾病就会有一些问题,或多种疾病,这使得模型更加复杂,不管你是想做概率诊断还是明确的或明确的,然后我们将讨论一些实用理论方法。
我只想提到一些基于规则和模式匹配的方法,所以这有点可爱,这是1973年的,如果你是一个女人,走进麻省理工学院的健康中心,并抱怨可能有尿路感染,他们会拿出这张纸,上面有很好的颜色编码,他们会检查一堆盒子。
你知道,如果你击中一个红色的盒子,代表一个结论,除此之外,它给了你关于进一步测试的建议,这基本上是一个分诊仪器,上面说,这位女士是否有需要立即关注的问题,所以我们要么叫救护车送他们去医院。
或者我们可以告诉他,第二天回来看医生,或者它实际上是某种自我限制的东西,我们说,你知道,吃两片阿司匹林,它就会消失,所以这就是现在这里的尝试,有趣的是,如果你看看这个项目的历史。
在贝斯以色列医院和林肯实验室之间,它一开始是一个电脑辅助工具,所以他们正在建造一个计算机系统,应该这样做,然后,但你可以想象在20世纪60年代末,二十世纪七十年代早期的计算机相当笨重,你知道的。
那时个人电脑还没有发明出来,所以这就像主机,操作种类,它是,它很难使用,所以他们说,嗯,你知道的,这是一个足够小的程序,我们可以把它减少到大约20个流程表,二十张这样的床单,他们开始打印,我被逗乐了。
因为在大约180年,一天晚上我在办公室工作,头痛欲裂,我去了麻省理工学院医疗中心,果然,护士拿出了一张头痛的床单,和我一起经历,并决定,你知道,几片泰诺应该能治好我,但很有趣,所以这真的用了一段时间。
现在像这样的方法的困难,其中有许多,很多,医学界的许多人认为它们非常脆弱,它们非常具体,在达成共识以建立这些东西方面有很多努力,然后它们不一定在很长一段时间内有用。
所以麻省理工学院在我头痛后不久就停止使用它们了,但如果你去医院,你在书架上看,你仍然会发现看起来像这样的手册,说我们如何应对热带疾病,对呀,所以你问了一堆问题,然后根据流程图的分支逻辑。
它会告诉你这是否严重,原因是如果你在波士顿接受医学培训,你不会看到很多热带疾病,所以你没有经验基础,在此基础上,你可以学习并成为做这件事的专家,所以他们用这个作为一种备忘单,好的。
我提到疾病和症状之间的联系是诊断的另一个重要方法,我向你发誓,在20世纪60年代有一份报纸,我想这实际上是提议的,所以说,如果你们中有人在古代图书馆闲逛过,图书馆过去有卡片目录,是物理纸片,硬纸板。
他们用这些做的一件事是,每张卡片都是一本书,然后边缘有一堆洞,并取决于书的分类,沿着不同的维度,就像它的杜威十进制数,或者是它的顶部数字,国会图书馆的号码什么的他们会在边界上打洞。
这让你可以很容易地对这些书进行分类,所以如果你在人们还书的时候把一堆卡片放在一起,你把它拉到一堆纸牌上,你想让它找到所有的数学书,所以你要做的就是把针穿过这个洞,代表数学书籍,然后你摇晃那一堆。
所有的数学书都会掉下来,因为它们被打了一拳,所以有人认真地提出这是一种诊断算法,事实上,并实施了它,甚至试图从中赚钱,我认为这是一次商业冒险的尝试,他们将向医生提供这些代表疾病的图书证。
这些洞现在代表的不是数学和文学,但它们代表了呼吸急促和左脚踝疼痛,一次又一次,当人们进来抱怨一些情况时,你会把针穿过那种情况,你摇一摇,就会出现有这种共同条件的牌,所以这种方法的一个明显问题是。
如果你有两件事不对劲,对吧,那么你很快就会没有牌,因为,嗯,你知道的,什么都不会从堆里掉出来,所以这没有去任何地方,但有趣的是,即使在二十世纪八十年代末,我记得新英格兰医学杂志的董事会问我。
来参加一个会议,他们得到了一个推销,从一个提出这个诊断模型的人那里,除了现在在计算机上实现,而不是在这些图书卡上实现,他们想知道这是不是他们应该支持的事情,并投资于,和我。
我的一群同事向他们保证这可能不是一个好主意,他们应该远离它,他们做到了,嗯,一个更复杂的模型是类似于天真的贝叶斯模型的东西,它说,如果你有病,我的光标在哪里,如果你有病。
你有一系列的表现可能是由疾病引起的,我们可以做一些简化的假设,说你一次只会得一种病,这意味着该节点的值,d形成一套详尽无遗和相互排斥的价值观,我们可以假设这些表现是条件独立的,只取决于你所患疾病的观察。
但不是在彼此身上,也不是在任何其他因素上,如果你做了这个假设,然后你就可以应用好的老托马斯贝叶斯规则,顺便说一句,这是贝叶斯牧师,你们知道他的历史吗,所以他在英国是一个不墨守成规的部长,他不是数学家。
除了你知道,我是说他是个业余数学家,但他决定向人们证明上帝的存在,所以他发展了贝叶斯推理来证明,所以他的论点很好,假设你完全不相信,所以你有50%的几率认为上帝存在,然后你说,让我们看看奇迹,让我们问。
这个奇迹发生的可能性有多大?如果上帝存在,如果上帝不存在,所以通过创造一堆奇迹,你可以让人们越来越相信上帝一定存在,因为否则所有这些奇迹都不可能发生,所以他有生之年从来没有出版过这个,但在他死后。
他的一位同事在英国皇家学会发表了一篇论文,所以,贝叶斯一举成名,作为概率推理概念的创始人,至少是相当简单的情况,就像他的情况一样,上帝的存在或不存在,或者在我们的情况下是某种疾病的原因,某些疾病的性质。
所以你可以画这些树和贝叶斯规则很简单,我相信你们都看到了,再次与医学接触的一件事,很多时候,你不仅仅对一个可观察到的对你的概率分布的影响感兴趣,但你对一系列观察的影响感兴趣,所以你能做的一件事是。
你可以说好,这是我的一般人口,假设第二种疾病有百分之三七的患病率,疾病1有12%等,现在我做了一些观察,我应用贝叶斯规则,所以这相当于找到了一个较小的患者群体,他们都有任何答案,我得到了第一个症状。
然后我就一直这么做,这就是贝叶斯规则的顺序应用,当然这取决于所有这些症状的条件独立性,但在医学界,人们不喜欢做数学,甚至算术多,他们更喜欢做加法而不是乘法,因为这样更容易,所以他们所做的是,他们说好。
而不是在概率框架中表示所有这些数据,让我们用赔率来表示,如果你用赔率来表示,一些疾病的几率给出了一系列症状,考虑到独立性假设只是疾病的先验几率,你观察到的每个症状的似然比,所以你只要把这些相乘在一起。
然后因为他们喜欢加法而不是乘法,他们说,让我们把两边的对数都取下来,然后你就可以把它们加起来了,所以如果你还记得我在谈论医疗数据的时候,比如格拉斯哥昏迷评分或阿帕奇评分。
或者衡量病人做得有多差或多好的各种措施,这通常涉及到将对应于不同条件的数字相加,他们所做的正是这样,他们在应用顺序贝叶斯规则,有了这些独立性假设,以原木的形式,而不是乘法,对数赔率,他们就是这么做的。
好的,呃,很快,嗯,在之前的一次演讲中,有人想知道接收器运算符特征曲线,我只是想给你一点关于这些的见解,所以如果你在两组病人身上做一个测试,红色的是病人,蓝色的不是病人,你做一些测试,你所期望的是。
测试的结果将是一些连续的数字,它将被分发,类似于井病人的蓝色分布,像病人的红色分布,通常我们选择一些阈值,我们说好,如果你选择这个作为预测生病或健康之间的门槛,那么你会得到的是。
蓝色分布中右边的部分是假阳性,红色分布中左边的部分是假阴性,好的,而且经常,人们会选择这两条曲线相交的最低点作为阈值,但现在当然不一定是这样,如果我给你一个更好的测试,像这样的一个,那太棒了。
因为基本上没有重叠,极小的假阴性和假阳性率,正如我所说的,你可以选择把门槛放在不同的地方,取决于你想如何权衡敏感性和特异性,我们通过接收器操作员特性曲线来测量这一点,它的一般形式是。
如果你得到这样的曲线,这意味着敏感性和特异性是有确切权衡的,如果你在抛硬币,好的,所以它是随机的,当然如果你能撞到顶角,这意味着两个分布之间不会有任何重叠,你会得到一个完美的结果。
所以通常你会得到介于两者之间的东西,所以通常如果你做一个研究和你的AuC,这个接收器操作员特性曲线下的面积刚刚超过一半,你几乎一文不值,而如果它接近一个,那么你就有了一个很好的方法来区分这些类别的病人。
好的,下一个话题,理性意味着什么,对不起,圆周率是非理性的,但那不是我说的,嗯好吧,所以有一个理性的原则,上面写着,那个,你想做的是以这样的方式行事,以最大化您预期的效用,例如,如果你是个赌徒。
在扑克游戏中,你可以选择各种下注方式,或者如果你是一个完美的计算器,得到一个,你知道下一次抽奖有一个女王,然后你就可以做出一些理性的决定,是多赌还是少赌,但你也必须考虑到。
我怎样才能使我的对手相信我不是在虚张声势呢,如果我在虚张声势,我怎样才能使他们相信我在虚张声势呢?如果我不是在虚张声势,等等,所以那里有一个复杂的模型,但尽管如此,这个想法是你应该以一种方式行事。
这会给你最好的预期结果,所以人们开玩笑说这是经济人,因为经济学家假设这就是人们的行为方式,我们现在知道这不是人们真正的行为方式,但这是他们行为的一个很常见的模型,因为它很容易计算,它有一些合适的特点。
所以正如我提到的,每一个行动都有成本和效用措施,某种结果的价值或好处,也就是你赢了多少钱,无论你是死是活,或质量调整寿命年,或其他各种效用措施,你知道你住院要花多少钱吗?所以让我给你举个例子。
这实际上来自新英格兰医学中心的决策分析服务,塔夫茨医院在二十世纪七十年代末,这是一位上了年纪的中国绅士,他的脚长了坏疽,坏疽是一种感染通常血液循环不良的人会感染这些,他面临的是是否截肢。
或者试图对他进行医学治疗,对他进行医学治疗,意味着向系统注射抗生素,希望血液循环足够好让他们到达感染区域,嗯等,嗯,选择变得有点复杂,因为如果医疗失败,然后呢,当然病人可能会死。
或者你现在可能要截肢整条腿,因为坏疽已经从他的脚蔓延到脚上,现在你要砍掉他的腿,那么你应该做什么,你应该如何推理,所以帕克的工作人员想出了这个决策树,顺便说一句,在这本书中,在这篇文献中。
决策树的意思与决策树不同,像C4。5,所以你在这里的选择是截肢或开始医疗护理,如果你把脚截肢,假设病人有百分之九十九的机会活下来,有百分之一的可能性,你知道的,也许麻醉会杀死他们。
他们估计有百分之七十的机会完全康复,他有25%的机会病情恶化,如果他的病情加重,有百分之五的可能会死亡,你现在面临着另一个决定,我们是截肢整条腿还是继续用药,再一次,有各种各样的结果。
有各种各样的估计概率,现在,这个小组推动的关键是,这些决定不应该基于医生的想法,对你有好处,它们应该基于你认为对你有好处的东西,所以他们非常努力地试图引出,你的脚被截肢值850分,在一千的尺度上。
健康是1,死亡是0。
好的,现在你可以想象这个数字对不同的人来说会有很大的不同,你知道的,如果你问勒布朗·詹姆斯,如果你的脚被截肢,他可能会认为这比我想象的要糟糕得多,因为你知道把我的脚截肢会很痛苦。
但我仍然可以做我专业做的大部分事情,然而,作为一个篮球明星,他可能做不到,那么你如何解决这样的问题,嗯,你说,好的。
在每一个机会节点,我可以计算出这里发生的事情的期望值,所以这里是点6乘以995点4乘以零,这让我对这个决定有了一个价值,在这里做同样的事情,我比较这里的值,选择最好的一个,这给了我这个决定的价值。
所以我把这个决策树折回,我的下一张幻灯片应该是,是啊,是啊,这些是你得到的数字,你会发现尝试医疗的效用更高,比立即截肢的效用,如果你相信这些数字和那些公用事业,这些概率和那些效用。
现在的困难是这些数字变化无常,所以你想做一些敏感性分析,你说,比如说,如果这位先生用一只截肢的脚把他的生活估价为九百英镑呢,而不是八百五十,现在你发现截肢看起来是一个稍微好一点的决定,比另一个。
所以这其实是,在临床医学中的应用,现在有成千上万的医生接受过这些技术的培训,试着和个别病人一起解决这个问题,当然啦,当人们观察大量人群时,它更多地用于流行病学基础上,呃,他们,呃。
所以做研究的服务会阅读文献,他们会在数据库中查找,他们会试着估计这些概率,我们今天可以比他们当时做得更好,因为我们有更多的数据可以查看,但你可以说,对人们来说还好,你知道的,这个年纪脚坏疽的男人。
他们中有多少人有以下经历,这就是这些是如何估计的,你知道其中一些对我来说就像百分之五,好的,所以我才这么说,然后你从哪里得到这些实用程序的问题是一个棘手的问题,嗯,所以一种方法是做标准的赌博,上面写着。
好的,你知道,索洛维奇先生,我们要玩这个游戏,嗯,我们要滚一个,嗯,公平的死亡,或者一些会得出零到一之间的连续数字的东西,然后我要玩游戏,我把你的脚砍下来,或者我掷这个骰子,如果超过某个阈值。
那我就杀了你,所以现在如果你发现我漠不关心的地方,如果我说好,八点,你知道那是百分之二十的死亡机会,好像很多,但也许我会去九个,现在,你已经说好了,这意味着你重视九岁时没有脚的生活,健康的价值。
所以这是一种方法,这通常是这样做的,也不稳定,所以人们做了一些实验,让别人给他们这样的数字,作为一个假设,然后当那个人最终,实际面临这样的决定,他们将不再遵守这个数字,所以当情况真实时,他们会改变主意。
但它很好,因为它太深了,所以你可以跑六个,他们实际上并没有这么做,它是,这是假设,下一个节目我想再告诉你一次,这项技术是作为博士论文开发的,1967年在麻省理工学院,所以这是刚出炉的。
但它仍然使用这种想法,这是一个发表在《美国医学杂志》上的项目,这是一本高影响力的医学杂志,我想这实际上是第一个计算程序,那本杂志曾作为医学杂志出版过,并讨论了急性少尿症的诊断问题,肾功能衰竭。
少尿意味着你尿得不够,肾是你的肾,你的肾脏出了问题,你没有产生足够的尿液,好吧,现在这是一个很好的问题,可以用这些技术来解决,因为如果你出了什么事,突然,很可能只有一个原因,如果你已经85岁了。
你有一点心脏病,还有一点肾病,一点肝病和一点肺病,不能保证你有什么地方出了问题,导致了这一切,但如果你昨天没事,然后你就不再撒尿了,很可能有一件事出错了,所以这是这个模型的一个很好的应用。
所以他们说有14个潜在的原因,这些都是详尽无遗的,相互排斥的,有两个,两个,与差分有关的七个测试、问题或观察,这些都是廉价的测试,所以他们不涉及做任何昂贵或对病人危险的事情。
它在实验室里测量东西或问病人问题,但他们不想问他们所有人,因为那很乏味,和,所以他们试图尽量减少他们需要收集的信息量,以便作出适当的决定,现在在真正的问题上,有三种侵入性测试既危险又昂贵。
然后是八种不同的治疗方法,我只想告诉你们这个问题的第一部分,这篇1973年的文章向您展示了程序的样子,是你知道的,计算机终端,它给了你选择,你会输入一个答案,这就是当时最先进的技术。
但我要做的是上帝的意愿。
我将演示我对这个程序所做的重建,所以这个,这些家伙是停下来撒尿的潜在原因,急性肾小管坏死,功能性,急性肾功能衰竭,尿路梗阻,急性肾炎,等等,这些是先验概率,现在我得警告你,这些数字实际上是由人们估计的。
把他们的手指伸向空中,弄清楚风是朝哪个方向吹的,因为你知道,一九七三年,没有很好的数据库可以求助,然后这些是可以问的问题,以及您在第一列中看到的,是概率分布的期望熵,如果你回答了这个问题,好的。
所以这基本上是在说,如果我问这个问题,根据我的疾病分布概率,每个可能的答案的可能性有多大,然后对于这些答案中的每一个,然后我用得到答案的概率来衡量结果分布的熵,这让我得到了问这个问题的预期熵。
这个想法是期望熵越低,这个问题就越有价值,所以如果我们举个例子,最有价值的问题是老尿症发作时的血压是多少,这个彩色的小图表向你展示的是,如果你看初始概率分布,急性肾小管坏死约2例,百分之五。
已经下降到很小的数量,而其中一些其他的重要性已经大大增加,好的,这样我们就可以回答更多的问题,我们可以说一个,让我们看看,什么程度,有蛋白尿吗,尿液中有蛋白质吗,我们说不,没有,我们说不,没有零,对呀。
然后它说下一个最重要的是肾脏的大小,我们说肾脏大小正常,所以现在突然功能性急性肾衰竭,顺便说一句,是这些有趣的医学类别之一,说它不好用,不能向你解释为什么它不能很好地工作,但这是一种普通的东西,果然。
我们可以继续回答关于,你知道的,你产生的尿液少于50毫升吗,这是一个很小的量,或者在五四百之间,记住这是给那些生产不够的人的,所以通常你会超过四百岁,所以这些是唯一的选择,所以让我们说它是中等的。
所以你可以看到概率分布一直在变化,在最初的程序中,他们有一个任意的阈值,说。
当这些疾病原因之一的概率达到95%时,然后我们切换到一个不同的模式,现在我们实际上愿意考虑,做昂贵的测试和昂贵的治疗,我们建立一个决策树,正如我们所看到的,在坏疽脚的情况下,找出其中哪一个是最佳方法。
所以这里的想法是,因为构建一个包含两个七个潜在问题的决策树变得非常繁忙,我们用启发式说,信息最大化或熵约简,是一种合理的方法来关注这个病人的问题,然后一旦我们很好地专注于,然后我们就可以开始对剩下的。
现在可用的更重要、更昂贵的测试,这个程序运行得不太好,因为,他们的决策分析部分的实用新型特别可怕,它并没有真正反映现实世界中的任何东西,他们有一个递增的实用新型,说病人要么好转。
或者保持不变或者变得更糟,按照效用的顺序,但它们与他好转的程度不一致,或者他变得更糟了,所以它不是很有用,所以尽管如此,在二十世纪九十年代,我在一个医学信息学会议上教教程,观众席上有一群医生。
我给他们看了这个节目,一个医生后来走过来说,哇哦,它的想法和我一样,我不这么认为,但很明显它,你知道它在做一些与他思考这些案件的方式相对应的事情,所以我想这是件好事,所有的权利,嗯。
如果我们不能假设只有一种疾病会发生什么,潜在的人的问题,如果有多种疾病,嗯,我们可以建立这种二部模型,说我们有一个疾病列表,我们有一系列的表现,疾病的某些子集可能导致,表现的症状。
所以表现只取决于存在的疾病而不是彼此,因此,我们有条件的独立,这是一种无法解决的贝叶斯网络,我马上给你看的一个程序,你知道四五百种疾病和成千上万的表现,以及这些网络精确解技术的计算复杂性。
随着网络中无向循环的数量呈指数级增长,当然,在这项工作中有很多无方向的循环,像这样,嗯,所以在,最初是在二十世纪七十年代初,叫做对话,然后他们被起诉了,因为有人拥有这个名字,然后他们称之为内科医生。
他们被起诉是因为有人拥有这个名字,然后他们称之为QR,代表快速医学参考,没有人拥有这个名字,所以在1982年左右,这个项目有大约500种疾病,他们估计大约有70到70个,内科主要诊断的5%。
大约三千五百种表现形式,它花了大约15个人年的时间,坐在那里阅读医学教科书和期刊文章,查看他们医院的病人记录,这项工作是由匹兹堡大学的一位计算机科学家领导的,和UPMC的医学主管,匹兹堡大学医学中心。
他只是个狂热分子,他让所有医学院的实习生,到1997年,花了几个小时来开发这些数据库,他们通过一家公司将其商业化,该公司购买了它的版权,他们有,那家公司已经把它扩大到大约750个诊断。
和大约五千五百个表现形式,所以他们把它做得更大,我试着在所有的幻灯片上加参考资料,下面是QR中每个诊断的数据,有一系列与唤起强度和频率相关的表现,所以我平均一分钟就能解释清楚。
每种疾病大约有75种表现每种表现,除了你在这里看到的数据,还有一个重要的衡量标准说,解释这种特殊的症状或体征有多重要,或最终诊断中的实验室价值,例如,如果你头痛,这可能是偶然的,解释它并不那么重要。
如果你的胃肠道系统出血,解释这一点真的很重要,你不会指望那个病人的诊断,这并不能向你解释他们为什么会有这种症状,然后这里有一个例子,酒精性肝炎,这里的两个数字是所谓的唤起强度和频率,这两个都在秤上很好。
唤起力量的等级是0到5,频率是一到五,我会告诉你那些是什么意思,例如,这说明如果你有厌食症,这不应该让你想到酒精性肝炎有这种病,但你应该预料到,如果有人患有酒精性肝炎,他们很可能有厌食症,这是频率数。
这是唤起力量数,你看有各种各样的,那么多,多年的努力,想出这些清单,想出这些数字,这是天平,所以唤起强度为零表示非特异性,五表示它是单性的,换句话说,仅仅看到症状就足以让你相信病人一定得了这种病。
相似频率,一个意思是它很少发生,和五意味着它基本上发生在所有情况下,缩放值介于两者之间,这些有点像赔率比,他们把它们加起来,就好像它们是对数似然比,所以有很多关于,试图弄清楚这些数字到底意味着什么。
因为对你没有正式的定义,数这个的数,除以那个的数,这给了你正确的答案,这些是印象主义的数字,系统中的逻辑是,嗯,呃,你会来的,并给它一个案件的表现清单,以他们的信用,他们追查非常复杂的案件。
所以他们把新英格兰医学杂志上的临床病理学会议案例,这些是被选择的足够困难的病例,医生愿意阅读这些,他们通常在MGH的大回合中由某人展示,他经常被案子难倒。
所以这是一个观察人们对这些事情进行互动推理的机会,嗯和所以嗯,你从给定的表现中唤起具有很高唤起强度的诊断,然后你根据这些数字进行评分计算,这个细节可能都是错的,但他们就是这样做的。
然后你在最高分的诊断周围形成一个差异,现在这实际上是一个有趣的想法,这是一个启发式的想法,但这是一个工作得很好的,所以假设我有两种病,D一个可以导致1到4的表现,D两个可以导致3到6的表现。
那么这些是在竞相解释同一案件吗,或者它们能很好地互补,直到我们知道病人实际上有什么症状,我们不知道,但让我们追溯一下,所以假设我告诉你病人有第三和第四种表现,好的,嗯。
你会说没有理由认为病人可能同时患有这两种疾病,因为他们中的任何一个都可以解释这些表现,所以你会认为他们是竞争对手,嗯,怎么样,如果我加我一个,所以这里变得有点冒险了,现在你更有可能认为这是一个。
但如果它能解释所有的表现,D 2仍然可以作为竞争对手查看,另一方面,如果我也加M6,现在这两种疾病都不能解释所有的表现,所以更有可能存在两种疾病,所以内科医生有一个有趣的启发式,也就是说。
当你得到那种赞美的情况时,你在排名靠前的假设周围形成一个微分,换句话说,你保留了所有与这个假设竞争的疾病,这定义了一个子问题,看起来像急性肾衰竭问题,因为现在你有一组因素,你试图用一种疾病来解释。
你把所有其他的表现都放在一边,和所有其他潜在互补的疾病,你暂时不用担心他们,把注意力集中在这一堆竞争的东西上,来解释一些表现的子集,然后有不同的提问策略,所以根据这些东西的分数。
如果其中一种疾病得分很高而其他疾病得分相对较低,你会选择一个追求策略,说,好的,我有兴趣问问题,这更有可能让我相信这个假设是正确的,那个主要假设的,所以你寻找它强烈预测的东西。
如果你在微分中有一个非常大的列表,你可能会说我要试着缩小差速器的尺寸,通过寻找一些不太可能的假设中可能的东西,这样我就可以排除他们,如果那个东西不存在,所以不同的策略,我几分钟后再来讨论这个问题。
他们的测试,当然啦,根据他们自己的评估很棒,它做得非常好,这篇论文发表在《新英格兰医学杂志》上。这是一个难以置信的突破,有一个人工智能项目,新英格兰杂志的编辑们认为很有趣,嗯,现在不幸的是。
它没有坚持得很好,于是Eberner和她的同事们发表了一篇论文,在一九九四年,在那里他们评估了QMR和其他三个项目,d解释在结构上与QMMR非常相似,伊利亚特和奖章是贝叶斯网络还是贝叶斯几乎幼稚。
其他小组开发的贝叶斯模型类型,他们寻找结果,即覆盖面,所以在这些真正的诊断中,他们选择测试的零五个案例,这些程序真的能诊断出,所以如果程序不知道某种疾病,那么很明显它不会做对,然后他们对项目的诊断说好。
专家们认为哪个分数是正确的,正确诊断的等级顺序是什么,在该程序给出的诊断列表中,专家们被要求列出这些病例中所有可信的诊断,其中有多少人出现在节目的前20名中,然后这个项目有什么附加值吗。
专家们没有想过的事情,但当他们看到他们时,他们同意了,对这个案子有合理的解释,结果如下,你看到的是,诊断,这零五测试案例中的诊断,嗯,其中91%出现在DE解释节目中,但例如,QMMR项目中只有73个。
所以这意味着马上,它缺少了大约四分之一的可能病例,然后如果你看正确的诊断,你看到的数字是69点,六十一,点,七十一,等等,所以这些是,你知道吗,就像唱歌的狗,但唱得很对,它竟然会唱歌,真是了不起。
但这不是你想听的,在这个项目中正确的诊断是12或10或13个左右,所以它是前二十名,但它不在前二十名之首,所以结果有点令人失望,取决于你把截止点放在哪里,你得到正确诊断在前N以内的病例比例。
你看到二十岁的时候,在大多数这些节目中,你都在五点多一点,如果你把列表扩展得越来越长,情况就会变得更好,当然啦,如果你把名单扩展到数百个,然后你就会达到百分之百,但它实际上不会很有用。
为什么他们把它和人类相提并论,好吧,所以,首先呢,他们认为他们的专家是完美的,所以你知道,他们是金本位制,所以他们在某种程度上把它和人类进行了比较,好的,所以底线是,尽管敏感性和特异性并不令人印象深刻。
这些程序可能很有用,因为它们有与疾病相关的体征和症状的交互式显示,它们可以给你各种诊断的相对可能性,他们得出结论,他们需要研究,像这样的程序是否真的帮助医生更好地执行药物,所以你知道,这里有一个例子。
我重建了这个程序,这是一种探索,你可以这么说,如果你点击引擎,胸肌,以下是与之相关的发现,所以你可以浏览它的数据库,您可以键入示例案例或选择示例案例,所以这是一个临床病理会议案例。
然后是存在和不存在的表现,然后你可以得到一个解释说,好的,这是我们的差速器,这些是互补的假设,因此,这些是,而这些是由这一系列疾病解释的,所以你可以看看程序是如何推理的,然后斯坦福大学的一个小组来了。
当信仰网络或贝叶斯网络被创建时,他们说嘿,我们为什么不把这个数据库当作一个贝叶斯网络来对待呢,看看我们能不能这样评价事情,所以他们不得不填写很多细节,他们最终使用了QMMR数据库和二进制解释。
所以一种疾病存在或不存在,一种表现存在或不存在,他们使用因果独立性,还是漏水的嘈杂,或者我想你在其他情况下也见过,所以这只是说,如果某件事有多个独立的原因,发生的可能性有多大。
取决于其中哪一个存在或不存在,有一种简化的计算方法,这对应于某种因果独立性,并且计算速度相当快,国家卫生统计中各种诊断的估计先验,因为原始数据没有先前的数据,他们最终没有使用唤起的力量。
因为他们在做一个相当直的贝叶斯模型,你只需要先验和条件,他们把频率作为一种缩放条件,然后在此基础上建立了一个系统,我将向你们展示结果,所以他们拿了一堆科学的美国医学案例说。
这23个病例的参考诊断的等级是什么,你看,就像在第一个案例中,QMR将正确的解决方案排在第六位,但他们的两种方法,结核病和迭代结核病,排名第一,然后这些是做一种扁平分析的尝试。
看看这个程序的工作效果如果你去掉它的各种聪明的功能,但你看到的是它工作得相当好,除了少数情况,所以第二个案子,三个,程序的所有变体都做得很差,然后他们为自己辩解说,嗯,实际上,在科学的美国医学结论中。
对这种疾病有一个概括,程序确实发现了,所以这将是第一位的,所以他们可以做一种手,挥舞着它真的做对了的论点,所以这些都很好,所以这验证了使用这个模型的想法。
嗯,以那种方式,今天你可以去你最喜欢的,你知道的,谷歌应用商店或苹果的应用商店,或者任何人的应用商店,下载成吨成吨的症状检查器,好的,所以我想给你一个演示,如果,所以我早些时候玩的时候腹痛和头痛。
所以让我们开始一个新的,所以输入你今天的感受,我们应该因为腹痛而咳嗽吗,发烧,喉咙痛,头痛,背痛,疲劳,腹泻或痰。
痰就像咳嗽,喉咙里有屎,幸运的是他们把它想象成,对呀,告诉我你的贫民窟,什么时候开始的,i,以保罗的身份登录,因为我不想和这些数据联系在一起,痰也是,血样或脓样,或者水汪汪的,或者以上都没有。
以上都没有,那是什么感觉,我不知道,是不是,这些颜色中的任何一种。
它发生在早上吗,中午晚上,夜间,或者一年中的特定时间,躺下或体育活动会让情况变得更糟吗,这通常是身体上的,体力活动,这个问题多久出现一次,我不知道一周几次,也许,吃了可疑的食物会引发痰吗,我不知道。
我不知道什么是可疑的食物,是啊,是啊,这会消磨我大部分的时间,嗯,它是,呃,呃,它在改善吗,当然可以,情况正在好转,我能想到另一个相关的症状吗,否,我把你的病例和66岁到72岁的人比较。
类似案件的数量得到更多的完善。
我呼吸急促吗,否,那很好,所有的权利,我流鼻涕吗,是啊,是啊,我肯定流鼻涕,嗯嗯,它是,它是,呃,我不知道流鼻涕。
好吧,我要停下来,因为它只需要,经历这些需要太长时间,但你明白了,所以这实际上是在运行一个算法,这是我展示给你们的急性肾衰竭算法的一个表亲,所以它试图优化它提出的问题,它现在正试图得出一个诊断结论。
为了不惹上像FDA这样的麻烦,它最后退缩了,上面写着,你知道的,如果你感觉很不好,去看医生,但尽管如此,这些事情现在正变得真实,它们正在变得更好,因为它们基于越来越多的数据,嗯,我走不到尽头。
因为我们才三点,六,是啊,是啊,这里,所以说,英国医学杂志对一系列症状检查器进行了测试,两个的,大约四年前的三个症状检查,他们说好,能把它放在四五个标准化的病人小插曲上吗,它至少能找到合适的紧急程度吗。
建议你是否应该去急诊室,得到其他种类的照顾,或者只是照顾好自己,然后目标是,如果诊断是由程序给出的,它应该在名单的前二十名,它给你的,如果进行分诊,那么它应该是正确的紧急程度。
正确的诊断是三个中的第一个,百分之四的病例,前二十和五十名之内的是什么,百分之八的病例,正确的分诊是五个,七,五个,百分之七的准确率,但请注意,在紧急情况下,这更准确,这是很好的。
因为那些是你真正关心的。
所以根据他对我的评价,我有百分之五十的可能性有上呼吸道感染,我可以问,嗯,你知道下一步该做什么,注意疼痛等症状,喉咙和发烧,医生经常进行体检,探索大多数病例的其他治疗方案和康复。
就像这是几天到几周的事情。
我可以回去说好吧,我可能得了流感,或者我可能有过敏性鼻炎,所以这实际上是合理的,我不知道你到底怎么说我的,但是,做同样人口统计的病人,是啊,是啊,我不知道不到50是什么意思,一开始是十几万,哦。
所以这是基于一小部分病人。
那么发生了什么,当然啦,当你把一个人口切片切丁时,它变得越来越小,这就是我们所看到的,所以还有两个话题我要匆忙通过,一个是,正如我在早期的一张幻灯片中提到的,每一个行动都有代价,至少需要时间。
有时它会导致潜在的坏事发生在病人身上,所以人们很久以前就开始学习了,在资源约束下理性而不是理性意味着什么,就在这个经济人模型中,所以埃里克·霍维茨,他是微软公司的研究主管。
但以前只是斯坦福大学的一个卑微的研究生,呃,当他开始做这项工作的时候,效用不仅来自病人身上发生的事情,也是从推理过程中,从计算过程本身,所以考虑到你们看MacGyver,这已经过时了。
所以你知道如果MacGyver在拆除炸弹,它在滴答滴答地归零,他没有时间了,然后他的公用事业在那一点上急剧下降,所以这就是这项工作的真正意义,我们能做什么,当我们没有世界上所有的时间来进行计算时。
也必须努力最大化对病人的效用,和丹尼尔·卡尼曼,他几年前获得了诺贝尔经济学奖,对于有限理性的概念,这表明我们想要理性的方式实际上并不是,我们的行为方式,他写了一本很受欢迎的书,我真的很喜欢。
书名叫《思考快与慢》,如果你想知道该买哪栋房子,你有很多时间做这件事,所以你可以仔细考虑并列出所有的优点和缺点,不同房子的成本等等慢慢来做决定,好的,当你过人行横道时,如果你看到一辆汽车向你疾驰而来。
你不停下来说好,让我弄清楚向左移动的利弊,或者向右移动,因为当你想明白的时候,你死了,所以他,他声称,人类以一种方式进化,我们有一种本能,非常快的响应,审议程序现在很少被援引,他哀叹这个事实。
因为他声称人们做出了太多的决定,他们应该考虑,基于这些直觉,比如说,我们的现任总统,埃里克和他的同事们正在做的是试图观察,这种元层次推理是如何,关于有多少推理。
什么样的推理是值得做的在决策过程中发挥作用,所以说,计算期望值是反映替代推理策略的基本组成部分,例如,我提到QMMR有这些替代提问方法,取决于它正在工作的差速器的长度,这是一种心理层面推理的例子。
一种提问策略可能比另一种提问策略更有效,细化的程度,人们谈论像及时算法这样的事情,如果你没有时间更深思熟虑地思考,你可以选择你现在能得到的最好的答案,因此,利用信息的价值,计算的价值和实验的价值。
在做这种元层次推理时,想出最有效的策略是很重要的,所以他举了一个时间紧迫的决策问题的例子,你有一个病人,重症监护室里一位75岁的老妇人,她突然呼吸困难,好的,那么你是做什么的,嗯,这是个挑战对吧。
你可以很深思熟虑,但问题是她可能会死,因为她呼吸不好,或者你可以冲动地说,嗯,给她上呼吸机,因为我们知道这会防止她在短期内死亡,但那可能是错误的决定,因为这有不好的副作用,她可能会感染。
得了肺炎就这样死了,你当然不想让她冒这个险,如果她不需要冒这个险,说得好,这就是你要做的决定,他们用影响图建模,所以这是一个贝叶斯网络,随着决策节点和价值节点的增加。
但是你在这里使用贝叶斯网络技术来计算最优决策,然后呢,这是我们所理解的背景知识,关于重症监护室里不同事物之间的关系,这是一个元推理的表示,它说你知道,我们应该使用哪种实用新型,我们应该使用哪种推理技术。
等等,他们建立了一个架构,集成了这些不同的方法,然后在我最后的两分钟里,我只想告诉你一个有趣的,这是一个现代的观点,不是历史的,这是上次欧洲会议上提出的一篇论文,也就是说你知道我们一直在谈论的那种问题。
比如急性肾衰竭问题,或者像其他任何一个,我们可以把它重新表述为一个强化学习问题,所以这个想法是,如果你把所有的活动,包括你知道的,给某人上呼吸机,或得出诊断结论,或者问一个问题。
或者我们考虑过的任何其他事情,如果你以统一的方式对待这些,并说这些是行动,然后我们把宇宙建模为马尔可夫决策过程,每次你采取这些行动,它改变了病人的状态或者我们对病人的了解,然后你做强化学习。
找出在所有可能的状态下应用的最优策略是什么,以最大限度地取得预期成果,所以这正是他们正在采取的方法,它的状态空间是一组积极和消极的发现,动作空间是询问一个发现或得出一个诊断。
奖励是正确或不正确的单一诊断,所以一旦你得到诊断,这个过程停止了,你得到了你的奖励,它是有限的视界,因为他们对问题的数量有限制,如果到那时你没有得到答案,你就输了,你得到负1的奖励。
奖励越远对你的价值就越小,它鼓励更短的问题序列,他们使用一个相当标准的Q学习框架,或者至少是使用双深度神经网络策略的现代Q学习框架,然后是两片神奇的酱汁让它变得更好,其中之一是他们想鼓励提出问题。
可能有积极的答案而不是消极的答案,原因是在他们的世界里有成百上千的问题,当然,大多数病人并没有这些发现,所以你不想问一大堆问题,答案是不不不不,否,否,否,不不,因为这并不能给你很多指导。
你想问答案在哪里吗,是呀,因为这有助于你了解到底发生了什么,他们实际上有一个很好的证据证明他们做了这件事,他们称之为奖励塑造,这基本上为提问增加了一些增量奖励,会有一个肯定的答案。
但他们可以证明从奖励函数中学习到的最优策略也是最优的,对于不包括它的奖励函数,所以这有点酷,然后他们做的另一件事是试图识别缩小的发现空间,通过他们所说的特征重建,这本质上是一种降维技术。
他们在那里共同训练这种双重网络架构,他们在共同训练政策模型,那是,你知道的,这当然是一个神经网络模型,这是两千十,所以他们产生了一个序列,产生输出的深层神经网络集,也就是M个问题和N个可以得出的结论。
我认为它比这些做了一个软麦克斯,为任何特定情况提出正确的政策,但同时,他们共同训练它,为了预测所有的表现,从他们以前观察到的,所以它在用,它正在学习一个概率模型,如果你用以下方法回答了以下问题。
以下是你对其余表现形式可能给出的答案,他们能这么做的原因是,当然是因为他们真的不是独立的,它们经常是共同变化的,所以他们学会了协方差,因此可以预测哪些答案会得到肯定的答案,哪些问题会得到肯定的答案。
因此,他们会把学习偏向于我们正在做的事情,所以这个系统叫加油,它已经在模拟数据上进行了测试,六百五十种疾病和三百七十五种症状,他们展示的是红线是他们的算法,黄线只使用这个奖励重塑。
蓝线只是一种直线强化学习方法,你可以看到他们做得好多了,在这方面的训练时间要少得多,现在对此半信半疑,这都是假数据,对呀,所以他们没有真正的数据集来测试这一点。
他们得到了关于哪些疾病是常见的以及这些疾病中哪些症状是常见的统计数据,然后他们有一个生成模型来生成这些假数据,然后他们从生成模型中学到,所以当然用真实的数据重做研究是非常重要的,但他们没有那样做。
这是几个月前刚刚出版的。
这就是我们目前的诊断和鉴别诊断,我想先从历史的角度来介绍这些想法,但这意味着有大量的论文,你可以想象,自二十世纪九十年代和八十年代以来写的,我给你看的,基本上是对相同主题的阐述,只是在过去的十年里。
这些神经网络模型的出现,人们已经改变了,所以不是学习显式的概率,比如说,就像你在贝叶斯网络中所做的那样,你只要说好,这只是一个预测任务,所以我们会像预测其他一切一样预测,用神经网络模型。
我们建立一个CNN或RNN或一些东西的组合,或者一些注意力模型什么的,我们把它扔向它,它通常做得稍微好一点,比我们以前通常使用的任何学习方法都要好,但并不总是好的。
P12:12.Machine Learning for Pathology - 大佬的迷弟的粉丝 - BV1oa411c7eD
所有的权利,每个人,所以我们很高兴安迪今天回来做我们的特邀演讲者,有着非常独特的背景,他既受过计算机科学家的训练,又受过临床医生的训练,专业是病理学,当他还是斯坦福大学的学生时。
他的论文是关于如何使用机器学习算法,真正了解当时的病理数据集,使用更传统的回归风格的方法来理解,这笔交易现在被称为计算病理学,但他的工作真的走在了这个领域的最前沿,从那以后他就来波士顿了,在最近几年。
她经营着一家叫Path AI的公司,这是我的,依我看,医学界最令人兴奋的人工智能公司之一,他是我最喜欢的受邀演讲者,每次演讲,我想你会对他要说的话很感兴趣,非常感谢,谢谢你邀请我,是啊,是啊。
我真的很兴奋能在这门课上发言,就像耶,对于机器学习和病理学来说,这是一个超级激动人心的时刻,如果你有任何问题,请随时询问,所以关于什么是病理学的一些背景,嗯,这就像,如果你是病人,你去看医生。
你知道我可以应用在整个轨迹的任何方面,我会在病理学上具体谈谈,但你去看医生,他们从你那里拿走一堆数据,就像你和他们说话一样,他们会有体征和症状,通常如果他们关心,可能是结构上的改变。
仅仅通过抽血是无法获得的,就像癌症一样,这是他们会送你去放射科的最大的事情之一,他们想去的地方,你知道的,放射学是获取数据寻找大的结构变化的最佳方法,所以在放射学中你看不到单个细胞,但你可以看到。
你知道在身体里,看到一些正在改变的大东西,为它做出评估,就像如果你咳嗽,你在看肺癌吗,还是说你得了肺炎放射科只能让你走这么远,人们对将人工智能应用于放射学感到非常兴奋。
但我想他们经常忘记的一件事是这些图像的数据并不丰富,与你知道的核心数据类型相比,我是说,这是我对病理学的偏见,但是放射学给了你一些方法,在那里你可以分诊正常的东西,放射科医生会对他们所看到的有一些印象。
通常这就是放射学报告的底线,你知道的,对癌症的关注,或印象可能是良性的,但不确定或印象完全良性,这也将指导随后的决定,但如果有人担心有什么严重的事情发生,病人经历了一个相当严重的手术,也就是组织活检。
所以病理学就像需要组织做什么,我要谈谈,也就是外科病理学,需要组织标本,也有基于血液的东西,但这是你知道你的诊断,你想说的是癌症不是癌症,这份报告本身可以真正指导随后的决定,这不可能是进一步的治疗。
或者你知道一个大手术,或者关于化疗和放疗的重大决定,所以这是你真正想要以最有效的方式合并数据的一个领域,减少错误,提高标准化,并真正为每个病人提供最佳治疗决定。
根据他们疾病的特点,病理学很有趣的一点是它是超级视觉的,这就像是一种随机抽样,病理学家每天看到的一些不同类型的图像,我认为这是吸引人们到专业的一件事,就是,你知道吗,我在放射学上说。
你看到的是可能发生的事情的印象,基于,你知道的,发送不同类型的图像并获取数据,试图估计发生了什么,而在这里,你实际上是在给组织碎片染色,用眼睛看,实际单个细胞,你可以在细胞内查看。
你可以看看细胞的数量是如何组织的,对于许多疾病,这仍然代表了定义正在发生的事情的核心数据类型,这是你知道的吗,预后严重的东西,需要,说手术,还是这完全是良性的,所有这些都是良性过程的不同方面。
所以正常的人体就会创造出所有这些不同的模式,然后有很多疾病的模式,这些都是不同的类型,具有不同形态的疾病亚型,所以有一种令人难以置信的丰富的不同的视觉图像,病理学家必须将其纳入诊断,然后在上面。
比如特殊的污渍,可以为传染病的特定生物体染色,基于药物靶点表达的亚型疾病蛋白质表达或特异性模式,这更增加了工作的复杂性,所以多年来,尝试应用人工智能真的没有什么新鲜事,或者机器学习或计算到这个领域。
它实际上是一个非常自然的领域,因为它是基于实验室的,这一切都是关于你作为输入的数据处理,像图像这样的东西并产生输出,什么是诊断,所以人们一直在尝试这个,你知道的,四十多年了,这是最早的研究之一。
试图看到,我们能训练一台计算机来识别癌细胞的大小吗,通过一个他们称之为形态测定的过程,然后我们能不能用癌细胞大小的测量,在一个非常简单的模型中预测结果,在这项研究中,他们有一个学习集,他们正在学习。
然后是一个测试集,他们表明他们的系统,正如每一篇发表的论文所表明的那样,你知道,比两种相互竞争的方法要好,尽管即使在这种最好的情况下,从学习到测试有显著的退化,所以一个是超级简单的。
它使用非常简单的方法,数据集很小,你知道,三八学习案例,40个测试用例,这发表在,你知道,柳叶刀,它是今天领先的生物医学杂志,然后人们对人工智能感到兴奋,这种人工智能建立在简单的方法上,回到1990年。
人们认为人工神经网络对定量病理学非常有用,出于显而易见的原因,但当时,真的没有办法以任何规模将东西数字化,这个问题最近才得到解决,但大概有两千人首先想到的是,你知道吗,一旦幻灯片是数字化的。
然后你可以应用计算方法,但什么都没变,在很大程度上仍然没有改变,我将谈到病理学的优势,但是正如前面提到的,我是第一批研究的一部分,真正采取更机器学习的方法来解决这个问题。
我们所说的机器学习与先前的方法是什么,就是使用数据驱动的分析来找出最好的特征,现在你可以用机器学习以更明确的方式做到这一点,但是从测量一两件事开始,在非常小的数据集上以非常乏味的方式,所以我会这样说。
我们正在使用一些传统的基于回归的机器学习来测量更多的特征,然后用这些联想之类的东西,将您的分析集中在最重要的特征上,这里具有挑战性的机器学习任务,病理学的核心任务之一是图像处理,那么我们如何训练计算机。
任何病理学家都想要的关于正在观察的东西的知识,你想训练计算机做一些基本的事情,也就是,比如说,确定癌症在哪里,间质在哪里,癌细胞在哪里,成纤维细胞,等,一旦你训练了一个基于机器学习的系统来识别这些东西。
然后你可以从图像中提取大量的定量表型,这都是利用人类,设计特征来测量正在发生的事情的所有不同特征,在图像中,机器学习在这里被用来创建这些功能,然后我们使用其他基于回归的方法将这些特征与临床结果联系起来。
在这项工作中,我们表明,通过采取数据驱动的方法,你开始关注肿瘤里发生的事情,微环境,不仅仅是在肿瘤本身,在过去的十年里,理解肿瘤与肿瘤微环境相互作用的方式,有点像癌症中最重要的事情之一。
像免疫肿瘤学这样的领域,是癌症治疗的最大进展之一,我们本质上只是调节肿瘤细胞啊,与周围的细胞相互作用,用传统的病理学方法是完全无法获得这种数据的,真的需要机器学习的方法来提取一系列特征,让数据自己说话。
这些特征中哪一个对生存最重要,在这项研究中我们展示了这些东西与生存有关,我不知道,如果你们在这里做了很多卡普兰·迈尔的阴谋,我们看过一次,但是好吧,带我们慢慢地经历它从来都不是,是啊,是啊,所以这些是。
我觉得有一种情节需要知道,对于大多数生物医学研究,可能是这个,而且非常简单,所以它实际上只是一个病人随着时间的推移如何做的实证分布,x轴就是时间这里的目标是建立一个预测模型。
我希望我在这里有一个预测性的,但我们可以谈谈那会是什么样子,但是一个预后模型,医学上任何疾病的任何预后测试,就是尝试创建显示不同生存结果的亚组,然后暗示他们可能从不同的治疗中受益,他们可能不会。
这并没有回答这个问题,但它只是告诉你,如果你想做一个估计,一个病人五年后会怎么样,你可以把它们分成两组,这是一种形象化的方式,你不需要两组,你甚至可以用一组来做到这一点。
但它经常被用来显示两组之间的差异,所以你会看到这里,有一条黑线和一条红线,这些是一组没有使用模型的患者,在这些情况下没有接受过训练,被训练来区分高风险患者和低风险患者,我们这样做的方式是。
我们对不同的数据集进行了逻辑回归,试图对诊断后五年活着的病人进行分类,与五年诊断死亡患者的比较,我们建立一个模型,我们把模型固定好,然后我们将其应用于大约250个案例的数据集,然后我们就问。
我们真的有效地创造了两组不同的患者,他们的生存分布明显不同,这个p值告诉你的是,这两条曲线来自相同底层分布的概率,或者这两条曲线在所有时间点上都没有差异,我们在这里看到的是,你知道的。
黑线和红线似乎有区别,在哪里说,十年,低危组的存活率约为百分之八十。在高危人群中,超过60%,总的来说,p值很小,因为这两条曲线之间有差异,所以这有点像,一个成功的卡普兰·迈尔情节会是什么样子。
如果你试图创建一个将病人分成小组的模型,不同的生存分布,然后呢,对于这些类型的事情,在多个数据集上尝试它们总是很重要的,在这里我们展示了,应用于不同数据集的相同模型。
在将患者分成两组时显示出非常相似的总体有效性,那么你为什么认为这样做可能有用,我猜,是啊,是啊,任何人,因为实际上,我认为这种类型的曲线经常与实际上非常有用的曲线混淆,我会说,是啊,是啊,你一定要等。
所有的权利,可能喜欢如果你用这个喜欢,有点像病人,有高风险的病人可能在五年后,如果病人有高风险,可能真的可以喜欢,做或重复跟进,你是对的,准确地说,是啊,是啊,是的,所以这将是一个很大的用处。
会是个问题,所以它在说,就像,如果有人在,如果你知道某人在五年前发生事件的风险很高,一个事件是当曲线下降时,所以红色组肯定是你知道的40个,你知道几乎是双倍什么的,黑人群体的风险。
所以如果你有某些干预措施,你可以做些什么来帮助防止这些事情,例如给予额外的治疗或更频繁地监测复发,比如如果你能做一个后续扫描一个月比六个月,你可以通过数据驱动的方式做出决定,知道病人是否在。
红色曲线或黑色曲线,嗯,所以是的,完全正确,它帮助你做出治疗决定,当你有一堆事情可以做的时候,要么给予更积极的治疗,要么对疾病进行更积极的监测,取决于它是侵袭性疾病还是非侵袭性疾病,另一种类型的曲线。
我认为经常与这些混淆,挺有用的,嗯,是一个直接测试干预的,所以本质上你可以做一个有用的试验,该算法的临床实用性,一方面你对每个人都做出预测,不要做任何不同的事情,另一个是你对病人做出预测。
你实际上用它来做决定,比如更频繁的治疗或更频繁的干预,然后你可以做一个曲线,说着,就像在高危患者中,我们实际上对其采取了行动,你知道那是黑色的,如果我们不采取行动,它是红色的。
然后如果你用正确的方式做实验,你可以推断你实际上防止了50%的死亡,如果你在做,如果干预导致黑对红,这里,我们没有做任何因果关系的事情,我们只是在观察病人随着时间的推移会有什么不同。
但你经常看到这些是这样的,这个图形,随机对照试验的关键人物,唯一不同的是,两组病人之间唯一不同的是干预,这真的让我做出了一个强有力的推论,改变了,应该注意什么,这个你就像OK。
也许我们应该做些不同的事情,但不太确定,但这是有直觉意义的,但如果你真的有随机对照试验中的东西,或者其他可以让你推断因果关系的东西,像这样是最重要的人物,你可以推断有多少人被拯救了,或者通过做某事。
但这次不是关于干预,它只是观察病人随着时间的推移是如何做的,这是八年前的一些工作,你知道,这些在实践中都没有真正改变,诊所里每个人都还在使用玻璃片和显微镜,研究是一个完全不同的故事。
但仍有99%的诊所在使用这些老式技术,你知道的显微镜,十八世纪中期的技术突破,18世纪晚期的染色突破,就像H和E染色是关键的染色,所以病理学方面根本没有进展,这有相当大的后果,这里有几种类型的数字。
可以让你看到,什么问题的原始数据,观察者间变异性,真的是在临床实践中,这只是另一个,我觉得真的很好,查看原始数据的经验方法,那里有一个基本的真理,专家们的共识,他们决定了这70个左右的病例是通过什么。
你知道专家总是知道正确的答案,对于这七十个人来说,他们都被称为ATA的范畴,这里用黄色表示,然后他们拿了所有这70个专家说是阿提亚的病例,把它们送到全国数百名病理学家那里。
为每一个人绘制了他们收到的不同诊断的分布,而且相当惊人,这发表在《美国医学会杂志》上,大约四年前的一本很棒的日记,现在他们显示了每个病例中不同诊断的惊人分布,所以这就是为什么你可能需要一种计算方法。
你知道应该有相同的颜色,这应该只是一个大颜色,或者是一些离群值,但几乎在任何情况下都有很大一部分人认为这是正常的,是黄色还是抱歉的棕褐色,然后是不典型的黄色,然后实际上是癌症,它是橙色的还是红色的。
非典型是什么意思,是啊,是啊,完全正常和癌症之间的边界是如此不典型,病理学家说不是,哪一个实际上是最重要的诊断,因为癌症通常什么都不做,你知道有很好的协议来做什么,乌托邦,他们经常过度对待。
这就是医学上的一种偏见,总是假设最坏的情况,我们得到了一定的诊断,所以ATIA有癌症的核特征,但它并不完全,你知道的,可能会得到十个标准中的七个或五个标准中的三个,它与原子核有关,看起来比预期的大一点。
更奇怪一点,但还不够,病理学家觉得称之为癌症很舒服,这也是为什么这几乎是一个掷硬币的原因,在那些,专家们称之为小费,只有48%的人在社区中得到同意,研究显示的另一个有趣的事情是内部观察者。
可变性和观察者之间的问题一样大,所以一个人不同意自己,八个月的观察期后的八个月,就像他们不同意别人一样,所以另一个,你知道,为什么计算方法有价值,为什么这真的是一个问题。
同一个研究小组显示了非常相似的结果,这篇文章发表在《英国医学杂志皮肤活检》上,这是另一个非常重要的领域,又在哪里,它们具有相同类型的数据可视化,他们有五种不同程度的皮肤损伤,从完全正常的良性痣,就像。
我肯定我们,我们很多人的皮肤上也有,就像黑色素瘤,它是一种严重的恶性肿瘤,需要尽快治疗的,这里的白色是完全良性的,深蓝色是黑色素瘤,他们再次表现出很多不和谐,和乳房活检一样糟糕,又在这里。
在八个月的观察期内,介绍观察者的变异性约为三个,所以人们有三分之一的时间不同意自己的观点,然后这些不像是完全异常的案例或一个研究小组,美国病理学家学院对116项研究做了一个大总结,总体得了18分。
所有研究的中位差异率为3%,和六大差异率,这就像是一个重大的临床决定,是错的,比如手术,不做手术,等等,那些在棒球场上,同意先前发表的调查结果,所以有很多悲观的理由,但你知道。
非常乐观的一个原因是人工智能不是,那个,或者可能是人工智能不完全的两三个区域中的一个,炒作是远见,就像视觉真的开始很好地工作,因为我不知道你是否上过这门课,但是在2012年有了像深度卷积神经网络。
然后所有的小组都一年比一年好,现在这就像是一张2015年的旧图表。
但是方法有了巨大的发展,即使从二十五年开始,在你知道的地方,现在,我想我们真的明白这些方法的优点和缺点,病理学有很多优势,定义得非常好,非常集中的问题,我认为无论你尝试什么更普遍的东西,都会有很多失败。
但对于你确切知道自己在寻找什么的任务类型,你可以生成训练数据,这些系统可以很好地工作,所以这是我们关注的很多道路,艾是,我们如何从病理图像中提取最多的信息,真正做两件事,一个是理解图像内部的内容。
第二个是使用深度学习直接,试着推断病人的水平,直接来自图像的表型和结果,我们使用传统的机器学习模型来解决某些问题,比如,特别是在病人层面上做出推断,其中n通常很小。
但是任何直接作用于图像的东西几乎都是某种变体,总是深卷积神经网络,这确实是图像处理的最新技术,我们有很多关于冷漠症的想法,我认为对于医学来说,毫升的这一领域真正重要的是什么,正在生成正确的数据集。
然后使用像深度学习这样的东西,以数据驱动的方式优化所有特性,然后真正思考如何智能地使用这些模型的输出,并以一种健壮的方式真正验证它们,因为有很多方法可以被文物和其他东西愚弄,所以只是一些不赘述的要点。
但是为什么这些方法在这个应用程序中真的真的很有价值,它允许你详尽地分析幻灯片,所以一个病理学家,他们犯这么多错误的原因,他们只是有点不知所措,我是说有两个原因,一个是人类不擅长解释视觉模式。
我其实认为这不是真正的原因,因为人类很擅长这个,有困难的事情,人们可以不同意,但就像当人们专注于小图像时,经常,他们同意,但这些图像是巨大的,人类只是没有足够的时间仔细研究,每张幻灯片上的每个单元格。
而计算机在一个真正的方式,可以被迫详尽地分析每张幻灯片上的每个单元格,这是一个巨大的区别,这是定量的,我是说这是电脑绝对更擅长的一件事,能计算出巨大的分子,巨大的分母和精确计算的比例。
而当一个人看着幻灯片时,他们真的只是盯着一些百分比,基于极少量的数据,超级高效,所以你可以分析整个过程是大规模并行的,所以你几乎可以想滑多快就滑多快,根据你愿意在上面花多少钱。
它不仅允许你完成所有这些自动化任务,穷尽,定量和有效地,也从数据中发现了很多新的见解,我想我们早在八年前就这么做了,当我们有人类提取的特征,将这些与结果联系起来,但现在你可以用机器学习来监督整个过程。
你如何从图像的组成部分到病人的结果,学习新的生物学,你知道你不知道进去,每个人都喜欢,嗯,你只是要取代病理学家,我真的不认为这是任何方式,几乎每个领域的未来,这有点像,嗯,自动化变得非常普遍。
对这方面专家的需求正在增加。就像飞机飞行员一样是我今天刚学的一个,就像他们,你知道他们只是做了一件与20年前完全不同的事情,现在这一切都是关于这个大系统的任务控制,了解所有的飞行管理系统。
了解他们得到的所有数据,我认为工作并没有变得更简单,但他们更有效,他们做着不同类型的工作,我不认为病理学家会从某种程度上,盯着显微镜,把非常短视的注意力集中在一件非常小的事情上,更像是医生的顾问。
整合了许多不同类型的数据。
人工智能真的不擅长很多关于具体情况的推理,然后向医生提供指导,所以我想这份工作看起来会有很大不同,但我们在未来从来没有像过去那样真正需要更多的诊断学家,所以一个例子,我想我们已经发出了关于这个的读数。
乳腺癌转移的概念是机器学习的一个很好的用例吗,这就像一个病人的例子,所以发现了一个原生质量,所以说,当原发肿瘤预后的一个重要决定因素是,扩散到淋巴结了吗,因为那是肿瘤首先转移到的区域之一,嗯。
以及肿瘤是否转移淋巴结的诊断方法,做一个活检,然后评估这些是否存在癌症,不该在的地方,这是一项任务,你知道的,非常定量,非常乏味,所以国际生物医学成像研讨会组织了这次挑战,叫做变色龙十六挑战赛。
在那里他们制作了近300张训练幻灯片,和大约130张测试幻灯片,他们要求一群团队建立基于机器学习的系统,嗯,自动评估测试幻灯片,两者都能诊断幻灯片是否含有癌症,以及在幻灯片中确定癌症的位置。
这是一个很大的机器学习挑战,为什么你不能把它扔进一个,你知道的,现成的或类似的网络上的图像分类工具是一种,图像太大了,你知道,把整个图像扔掉是不可行的,嗯进入任何类型的神经网络,因为他们有。
它们可以在一边有2万到20万像素,所以它们有数百万像素,嗯,为此,你知道的,我们做这个过程,从一个标记的数据集开始,那里有这些非常大的区域,要么标记为正常,要么标记为肿瘤,然后我们建立程序。
这实际上是让机器学习良好工作的关键组成部分,对图像的补丁进行采样,并将这些补丁放入模型中,和,这个采样过程实际上对于控制系统的行为非常重要,因为你可以用各种不同的方式取样,你永远不会详尽地取样。
仅仅因为有太多可能的补丁,所以思考正确的例子,展示系统,对系统的性能和通用性都有巨大的影响,你在建造,我们学到的一些见解是,如何最好地进行采样,但是一旦你有了这些样本,都是数据驱动的。
一定要多谈谈抽样策略,是啊,是啊,所以从高层来看,嗯,你想从随机抽样,这是一件合理的事情,在了解计算机需要了解更多信息的基础上进行更智能的采样,我们做了一件事,所以这有点像计算它,所以第一步很简单。
你可以随机抽取,但第二部分更难弄清楚示例是做什么的,您想丰富您的培训集,以便使系统性能更好,你可以为此优化不同的东西,所以这有点像整个取样,实际上,成为机器学习过程的一部分是非常有用的,你不只是要取样。
一旦你可以在上面迭代并继续提供不同类型的示例,例如,如果您了解到它缺少某些类型的错误,或者它还没有看到足够的确定,有很多种方法可以得到它,但就像,如果你知道它在你的训练集中没有看到足够多的例子。
你可以多取样,或者如果你看到你知道你有一个混乱矩阵,你看到它在某些类型上失败了,你可以试着弄清楚为什么它在这些方面失败了,并改变取样程序以丰富其内容,你甚至可以为人类提供输出,你能认识谁。
指出它犯错误的地方,因为你通常没有详尽地标记,在这种情况下,我们实际上已经详尽地标记了,嗯幻灯片,所以它更容易,但你可以看到,在不同的阶级中甚至有很多异质性,所以你可能会做一些聪明的把戏来弄清楚。
红色阶级的类型是什么,我该如何通过提供更多的例子来解决这个问题,所以我认为这是更容易控制的事情之一,而不是试图调整别人,你知道的,这些超复杂网络中的参数,根据我们的经验,只是玩训练取样,训练的抽样件。
它几乎应该被认为是优化的另一个参数,当你处理一个有巨大幻灯片的问题时,你不能使用所有的训练数据,几十年前,我遇到了一些病理学家,他们正在研究宫颈癌筛查,他们认为你可以检测到IA度的梯度。
所以不是训练时间,而是一个考验的时刻,他们试图做的是遵循这个梯度,为了找到最正确的部分,是的,这仍然被认为是真的吗,是的,这是一个连续体,是啊,是啊,是啊,是啊,肯定是你的意思是在样品中,它是,是啊。
是啊,我是说,你知道的,我是说像利用我这样一个连续的侵略性,是啊,是啊,我认为这是一个连续体,我是说这更像是一个二元任务,但癌症内部会有等级的连续体,我是说这是另一个层次的增加。
如果我们想把这和结果联系起来,这样做肯定是有价值的,不仅仅是说定量肿瘤的体积,而是要估计每一个细胞核的恶性程度,我们也可以这样做,所以你实际上可以分类不仅仅是肿瘤区域,但是你可以对单个细胞进行分类。
你可以根据恶性肿瘤对它们进行分类,然后你可以得到种群中的梯度,在这项研究中,它只是一个基于地区的,不是基于单元格的,但你绝对可以做到,绝对是一个,这是一个光谱,我是说这有点像是。
生物学中的一切都像是在一个光谱上,从正常到不典型再到低度癌症,中度癌症,高级癌症,这些方法确实允许你,更精确地估计你在这个连续体中的位置,这是基本的方法,你知道吗,我们得到了整个网站的大图像。
我们知道如何从不同的区域取样,在训练时间和测试时间优化模型的性能,只是我们拍了一个大的整个侧面的图像,我们把它分成数以百万计的小补丁,单独发送每个修补程序,我们实际上并不。
你可以潜在地使用空间信息来了解它们之间的距离,这将降低这一过程的效率,我们不那样做,我们只是把他们单独送进去,然后将输出可视化为热图,所以说,我想这不在我发送的参考资料中,所以我送的那个。
展示了如何结合深度学习系统的估计,与人类病理学家的估计,使人类病理学家的错误率降低85%,喜欢一个不到百分之一,有趣的是,这些系统是如何随着时间的推移而变得更好的,他们可能过度适应竞争数据集。
因为我想我们可能提交了三次,不是很多,但是嗯,在喜欢的过程中,人们不断竞争,使系统变得更好,实际上,这个数据集上的全自动系统实现了不到1%的错误率,按最后提交日期排序,这明显优于病理学家和竞争对手。
这是我相信在最初的档案文件中引用的错误率,他们还拍了同一套幻灯片,并把它们送到临床实践中的病理学家那里,嗯,他们的错误率明显更高,主要是因为,他们在临床实践中比在比赛中更受时间限制。
他们犯的大多数错误都是假阴性,简单地说,他们没有时间关注转移的小区域,在这些巨大的千兆像素中,在报纸上你说你把机器输出和病理学家结合起来,但是是的,他们已经会说如何耶,热图的数据,或者没有任何组合。
是的,我知道这是个很好的问题,所以今天我们就这样做,这就是临床实践中的方法,我们正在建造它,病理学家会检查两者,然后根据两者的结合为比赛做出诊断,他们在那里很简单,组织者真的做到了。
他们独立地解释了它们,所以病理学家只是看了所有的幻灯片,我们的系统做出了预测,它实际上就像幻灯片包含癌症的概率的平均值,这成为了最后的分数,然后Auc从任何东西中获得了99%,综合这两个分数是92%。
它们使不相关,几乎没有什么不相关的,尤其是因为病理学家往往有几乎所有的假阴性,和深度学习系统,你知道的,往往会被一些东西愚弄,比如艺术品,他们确实会犯不相关的错误,这就是为什么性能有很大的提升。
所以我提到了这个,但是这些计算数据集中的任何一个都是相对容易得到的,人们已经证明,你实际上可以建立模型,只预测一个数据集,比如使用深度学习,像深度学习,几乎太擅长寻找某些模式了,可以找到神器。
所以这只是一个警告要记住,我们在许多现实世界中做实验,像这样的方法的测试,在许多实验室里,有许多不同的染色程序和组织准备程序,等,评估鲁棒性,但这就是为什么比赛结果,即使是金雀花王朝也总是需要半信半疑。
然后我们但我们认为这将是巨大的价值,我是说很难说,因为这是一个很大的形象,但这是今天病理学家在显微镜下观察的,很难看到任何东西,用一个非常简单的可视化,人工智能系统的输出只有一部分是红色的,癌症。
看起来是的,这显然是一张很好的地区地图,他们需要确保专注于,这是本例中的真实数据,这个鲜红的区域,事实上,它含有转移性乳腺癌细胞的微小边缘,很容易错过,没有那个助手只是给你指正确的地方看。
因为这是一套很小的,你知道的,在一大堆正常淋巴细胞中的20个细胞,这是另一个,现在你可以从低功耗上看到,就像卫星图像一样,或者你可以立即专注于这个红色的小区域,这又是一个小口袋,就像十个癌细胞。
在成千上万的正常细胞中,现在可以从低功耗中看到,这是我们正在开发的一个应用程序,临床用例将在哪里,你知道今天人们只是在没有任何机器学习帮助的情况下看图像,他们只需要选择一些补丁来专注于,没有指导。
所以有时他们专注于正确的补丁,有时他们不,但很明显,他们没有时间在高倍率下看这一切,因为那要花一整天的时间,如果你想把整个图像放大4倍,所以他们用直觉来集中注意力,因为这个原因,他们最终。
因为我们已经看到犯了大量的错误,它是不可复制的,因为人们关注图像的不同方面,这是相当缓慢的,他们面临着这份空洞的报告,所以他们必须在报告中总结他们所看到的一切,比如诊断是什么,尺码是多少?就像。
假设这里有癌症,这里有癌症,他们必须手动添加这两个区域的癌症距离,然后他们必须把这个放进一个分期系统,包括有多少转移区域以及它们有多大,就像所有这些事情都是自动化的,这就是我们正在建造的东西。
系统将突出显示的地方,它看到癌症的地方,告诉病理学家把注意力集中在那里,然后根据AI系统的输入,病理学家的输入可以总结所有的数据,定量的和诊断的,以及总结阶段之类的。
然后病理学家把这作为他们报告的第一个版本,他们可以编辑它,确认一下,把它签了,数据回到系统中,将来可以用于更多的训练数据,箱子签好了,所以它要快得多,更加准确和标准化,你知道的。
一旦这个东西完全开发出来,现在还不是,所以这是人工智能的一个很好的应用,因为你真的需要,你确实有大量的数据,所以你需要做一个详尽的分析,有很多,这是一项任务,在补丁中的本地图像数据。
这正是当前一代深度CNN真正擅长的,就足够了,所以我们在细胞水平上观察事情,放射学实际上可能更难,因为你经常想在这里总结更大的区域,你真的经常在补丁中有突出的信息,在当前的ml系统中确实是可伸缩的。
然后我们可以解释模型的输出,所以真的不是,即使模型本身是一个黑匣子,我们可以在图像顶部可视化输出,这给了我们难以置信的优势,在模型做得好的可解释性方面,他们做得不好的地方,这是病理学的一个专业。
百分之八十还不够好,我们想尽可能接近100%,嗯尽可能,这是一种诊断应用程序,我要举的最后一个例子,与精准免疫治疗有关,我们不仅试图确定诊断是什么,但实际上亚型患者,预测正确的治疗方法。
正如我前面提到的,免疫治疗真的很重要,也很令人兴奋,相对较新的癌症治疗领域,这是2012年的另一个大进步,大约在你知道的同一时间,深度学习问世,最初的研究表明,靶向一种蛋白质,主要是肿瘤细胞。
也对免疫细胞,pd蛋白或pd l蛋白,当蛋白质打开时,它的作用是抑制免疫反应,但在癌症的背景下,免疫反应的抑制实际上对病人不利,因为免疫系统的工作是真正努力抵抗癌症。
所以他们意识到了一个非常简单的治疗策略,只要有抗体,与这种抑制信号结合,可以释放病人自己的免疫系统,最终治愈非常严重的晚期癌症,右上角的图像,有点像这个病人有一个非常大的黑色素瘤。
然后他们就用这种抗体来靶向,重新激活他们的免疫系统,然后肿瘤真的缩小了,也是评估的主要生物标志物之一,患者将从这些治疗中受益的是肿瘤细胞,或者表达这种药物靶点的免疫细胞,PD一还是PD一。
他们测试的是PDL一号,它是PD-1受体的配体,所以这通常是决定谁接受这些治疗的关键数据,事实证明,病理学家很不擅长评分,毫不奇怪,因为这很难,每个病例可能有数百万个细胞。
他们显示出观察者之间的一致只有8。6分,在肿瘤细胞上打分,这还不错,但在免疫细胞上得分第二分,这是非常重要的,所以这是一个我们试图测量的药物靶点,哪些病人可能会得到这种救命疗法,但我们的诊断很难解释。
因此一些研究显示了关于它有多有价值的喜忧参半的结果,在某些情况下,它似乎很有价值,在其他情况下,似乎不是这样,所以我们希望看到。
你知道的,这可能是我们可以使用机器学习的一个很好的例子吗,对于这种类型的应用程序,这真的很难,我们希望能够应用它,不仅仅是一种癌症,但就像20种不同的癌症,所以我们在Path AI建立了一个系统。
用于大规模地生成大量的训练数据,这是像比赛一样的比赛不会让你得到的东西,就像那个比赛的例子有300张幻灯片,你知道他们每年做一次,但我们希望能够建立这些模型,你知道每周什么的。
所以我们现在有大约500名病理学家登录我们的系统,我们可以用来为我们标记大量的病理数据,快速高质量地建造这些模型,所以现在我们在系统中有超过250万个注释。
这使我们能够建立组织区域模型,这是癌症的免疫组织化学,在那里我们训练了一个模型来识别所有红色的癌症上皮,绿色的癌症间质,所以现在我们知道了蛋白质在上皮中的表达位置,或者在间质里。
然后我们还训练了细胞分类,所以现在对于每一个细胞,我们把它归类为细胞类型,是癌细胞吗,或者纤维爆炸,或者巨噬细胞或淋巴细胞,它是根据蛋白质的棕色程度来表达蛋白质的吗。
所以虽然病理学家会试着对整个幻灯片做出一些估计,我们实际上可以计算每个细胞,然后计算出哪些细胞表达这种蛋白质的精确统计数据,哪些病人可能是治疗的最佳候选人,然后问题是,你知道的。
我们能识别出PDL之外的其他东西吗,一种预测免疫治疗反应的蛋白质表达,我们已经开发了一些机器学习方法来做到这一点,它的一部分是做事情,比如在H和E图像上量化不同的细胞和区域。
目前在病人分型中根本没有使用,但我们可以做分析,在这里提取新的特征,并询问,尽管对这些图像和免疫治疗反应一无所知,我们能在这里发现新的功能吗,这将是我们现在可以量化的特征类型的常规例子。
使用深度学习在任何情况下提取这些特征,这有点像你能想象到的每一种病理特征,然后我们将这些与药物反应联系起来,并可以将其作为一种发现工具来识别病理学的新方面,预测性的,其中患者反应最好。
然后我们可以将这些特性组合成模型,这是一个可笑的例子,因为它们是如此不同,但这将是一个例子,其中模型的输出,这完全是假数据,但我想说重点就在这里,颜色表示处理,绿色是免疫疗法,红色是传统的治疗方法。
目标是建立一个模型来预测哪些病人从治疗中真正受益,所以这可能是一个简单的问题,但如果模型起作用了,你觉得呢,右边图表的标题和左边图表的标题是什么,如果我们,这些是用我们的模型对病人进行分类的方法。
分类将是响应者类或非响应者类,颜色表示药物,这是正确的,但是模型的输出是什么,但你是对的,对这些图表的解释是工作,不管用,这是个棘手的问题,是的但我们的模型试图预测,这个人到底会不会死,或者看起来像。
你知道可能性,死亡只是在右边没有那么高,我认为这两张图上的总体可能性是一样的,右对左,你不知道每只手臂上有多少病人,但我认为其中的一部分,所以绿色是实验性处理,红色是常规治疗,也许我已经说过了。
所以在这里,这有点像一个读心术式的问题,但在这里,模型的输出将是对药物的反应,会是合适的病人,左边的分类对药物没有反应,所以你实际上并没有说任何关于预后的事情,但你是说,我预测。
如果你在合适的病人群体中,你会从蓝色药物中受益,然后你实际上看到在这个正确的病人群体中,蓝色的药效果很好,然后红色药物是我们认为我们预测会从药物中受益的病人,但因为这是一个实验。
我们没有给他们正确的药物,事实上,他们做得更糟,而左边的那个,我们是说你没有从药物中受益,他们真的没有从药物中受益,所以这是使用模型输出来预测药物反应的方法,然后想象它是否真的有效。
这有点像我之前谈到的例子,但这里就像它的真实版本,你可以直接用机器学习来学习,我想找到真正从药物中受益最大的病人,然后我们如何验证我们的模型是正确的,我是说我们有两种不同的方法,一个是做这样的事情。
所以我们建立了一个模型,你知道的,对药物的反应,对药物没有反应,然后我们绘制帽迈拉曲线,如果它的图像分析,我们要求病理学家手工标记许多细胞,我们把病理学家的共识作为我们的基本真理,从那里开始。
你呈现它的方式,它是这样的,听起来好像所有的数据都来自技术图像,或者你知道的各种临床数据,那么你怎么,是啊,是啊,我是说,病理数据的美妙之处在于,它总是可用的。
所以这就是为什么我们做的很多事情都集中在这一点上,因为像每个临床试验病人一样,都有治疗数据,结果数据和病理图像,所以我们真的可以很快地大规模地做到这一点,很多其他的东西是像基因表达,很多人都在收集它们。
比较这两个基线或将它们集成是很重要的,我的意思是两件事,一个是将其与基线进行比较,就反应者而言,我们能预测什么,无应答者,只使用病理图像,与只使用基因表达数据相比,与组合它们相比。
这只是增加了输入功能空间,部分输入特征空间来自图像,一部分来自基因表达数据,然后你使用机器学习来关注最重要的特征并预测结果,另一个是如果你想优先考虑,比如用病理学作为基线,因为每个人都有。
但就像一个辅助测试,又要花一千块钱,可能还需要两个星期,比如这给预测增加了多少,嗯,这将是另一种方式,所以我认为这很重要,但是我们平台上的许多技术开发都集中在,我们如何最有效地利用病理学。
当然可以添加图像基因表达数据,我实际上要谈谈下一个做这件事的方法,因为这是一种非常自然的协同作用,因为它们告诉你非常不同的事情,就像这里的一个集成的例子,就和这个问题有关。
基因表达数据与癌症基因组恶意的图像数据,这都是公开的,所以他们有病理图像,rna数据,临床结局,他们没有最好的治疗数据,但它是方法开发的好地方,用于癌症的um ml,包括病理类型分析。
所以这是一个黑色素瘤的病例,我们训练了一个模型来识别癌症、间质和所有不同的细胞,然后我们提取出你所看到的数百个特征,然后我们可以根据这些特征与存活率的相关性对它们进行排名。
所以现在我们从病理图像到结果数据,我们发现以一种完全数据驱动的方式,有一些小的15个特征与生存密切相关,其余的都不是,排名第一的是免疫细胞特征,与存活率增加有关的基质浆细胞面积增加,这是一个分析。
真的只是把图像和结果联系起来,然后我们可以好好问,这种病理背后的基因是什么,所以病理学告诉你细胞和组织。
rnas告诉你实际的转录景观,下面发生了什么,然后我们可以对基因组中的所有基因进行排名,仅仅通过它们与我们测量的数量表型的相关性,病理图像上,这里是所有从零到两万的基因,我们再次看到一个小集合。
我们正在阈值,以第四点的相关性,与我们测量的病理表型密切相关,然后呢,我们发现了这些已知高度富集的基因,在免疫细胞基因中,某种程度上,这是我们正在测量的某种形式的验证,我们认为我们在测量什么。
但这组基因也是潜在的新药靶点,新诊断,从临床结果到病理数据,到底层RNA签名,然后是我们正在研究的方法的美妙之处,它是超级可扩展的,你知道,理论上,您可以将其应用于所有TCGA或其他数据集。
并将其应用于癌症类型,做一些事情,比如找到,自动,在所有幻灯片中找到工件,嗯,在百老汇这样做,然后最有趣的部分,潜在地分析模型的输出,以及它们如何与药物反应或潜在的分子图谱相关联。
这就是我们正在努力的过程,我们如何从图像到测量疾病的新方法,病理学,总而言之,我认为今天最重要的许多技术开发,让ML在现实世界中很好地工作,用于医学应用,很重要的是要非常体贴,关于构建正确的训练数据集。
以及如何以可伸缩的方式做到这一点,甚至以一种结合机器学习的方式,这就是我之前说的,就像聪明地挑选补丁,但这种概念在任何地方都适用,所以我认为几乎有更多的创新空间,在定义训练数据集方面比在预测建模方面。
或者我想,然后把两者放在一起是非常重要的,嗯,对于我们正在做的工作,图像处理已经有了很大的进步,这在很大程度上是关于工程和可伸缩性的,以及严格的验证。
然后我们如何将它与潜在的分子数据以及临床结果数据联系起来,而不是试图解决许多核心视觉任务。
在过去的几年里,已经取得了令人难以置信的进展,在我们的世界里,我们经常思考的事情,不仅仅是技术和把正确的数据集放在一起,我们如何为合作伙伴提供强有力的商业案例,我们正在与,真正改变他们正在做的事情。
结合一些新的方法,真正给病人带来好处。
他们诊断的质量和准确性,所以总而言之,我知道你四分钟后就要走了,这一直是个老大难问题。尝试将人工智能应用于诊断或视觉任务并不新鲜,但在过去的五年里有一些非常大的不同即使在我的,短暂的职业生涯。
我看到这个领域发生了翻天覆地的变化,一个是数字数据的可用性,现在按比例生成大量图像要便宜得多,但更重要的是,我觉得,是最后两个,即访问大规模计算资源,对于任何可以访问云计算或大型计算资源的人来说。
它都是一个游戏规则的改变者,只是我们都可以访问一种任意的计算,今天和十年前,这是这个领域的一个巨大限制,以及这些真正重要的算法进步,尤其是在深度CNN中,总的来说,人工智能工作得非常好。
当可以定义问题以获得正确类型的训练数据访问时,大规模计算,以及实现像深度CNN这样工作得很好的东西,它在其他地方都失败了,这可能是你知道98%的事情,但如果你能在算法实际工作的地方制造一个问题。
你可以有很多数据来训练,他们可以很好地成功,这种基于视觉的人工智能病理学,它广泛适用于病理学中所有基于图像的任务,它确实支持与组学数据等东西的集成,基因组学,转录组学,剪断,数据,等等,嗯。
在不久的将来,我们认为这将被纳入临床实践,即使在今天,它也是许多研究工作的核心,嗯,它将以1987年的一句名言结束,在未来人工智能有望成为病理学实践的主要内容,我想我们比三十年前更亲密了。
我想感谢Path AI的每一个人,还有亨特,他真的帮助制作了很多这些幻灯片,我们确实有很多机会给机器学习工程师,软件工程师,在艾路等,所以如果你有兴趣了解更多,一定要联系,如果你有时间。
我很乐意回答你的任何问题,所以谢谢你,是啊,是啊,所以我认为通常都很有侵略性,我想知道这些系统是如何喜欢物理练习的,fda,或者是的,什么是这样我的意思是,实际临床实践,大概二二十个。
就像20世纪20年代中期,嗯,我的意思是,今天它在临床研究中非常活跃,所以像临床试验等等,确实涉及病人,但它是在一个更明确的设置中,但是第一个临床用例,至少我们正在建造的东西类型将是,我想一年后。
我想它会从小开始,然后逐渐变大,所以我不认为会一下子什么都有,在临床上的转变,但我确实认为我们会开始看到第一批申请,他们会去,他们中的一些人会通过食品和药物管理局,会有一些实验室开发的测试。
我们的将通过食品和药物管理局,但是实验室本身实际上可以自己验证工具,那是另一条路,你一直在使用观测数据集吗,你举了一个例子,你试图,随机对照试验的数据,或者会尝试使用不同疗效的不同治疗方法。
这门课的下一个主要部分是什么,大约两周后开始,将是关于因果推断,观测数据,是啊,是啊,我想知道艾有什么事情要做吗?到目前为止,你的发现是什么,所以我们把注意力集中在随机对照试验数据上,并为此开发了方法。
这简化了问题,让我们可以做,关于如何生成这些类型的图表,我认为很聪明的事情,我在展示你真正可以推断的地方,治疗正在起作用,我们做的要少得多,我对此超级感兴趣,我认为rts的优点是。
人们已经投入巨资建立这些精心策划的数据集,包括图像,分子数据,可用时,治疗和结局,就像,这是因为他们投资于临床试验,他们投资了给我生成数据集,观测方面的巨大挑战,有几个我对你们正在做的事情感兴趣。
并了解它是获取数据并不容易,对呀,比如结果数据没有将病理图像与结果数据联系起来,在我看来,甚至在观察的方式上比在RCT上更难,因为他们实际上是在做这件事,为它付费,并在RTS上收集它。
没有人真的把TCGA做得很好,会是个玩的好地方,因为那是观测数据,我们也想把重点放在可操作的决定上,在RCT中是完美的设置,就像我给药物X还是不给,所以我想如果你把正确的数据集放在一起。
并以某种方式使结果可操作,它可能真的真的很有用,因为有很多数据,但我认为仅仅收集结果并将它们与图像联系起来实际上是相当困难的,讽刺的是,我想观察起来更难,而不是随机临床试验,他们收集它。
我想一个例子会像护士的健康研究,或者这些大的流行病学队列,他们可能在收集数据并组织它,但你在想什么,你做任何与病理学有关的事情,从观察数据中推断因果关系,我想你喜欢护士学习的例子或者弗雷明汉。
在那里你跨时间跟踪病人,他们得到了不同的干预,因为这项研究的设计方式,事实上,随着时间的推移,甚至有好的结果变化,所以测量的问题不会发生在那里,是的,但是假设您要从文件库获取数据,做病理。
现在你得到样本,然后你可以问一下嗯,不同的干预或治疗方案对结果的影响是什么,是啊,是啊,非常强的推论的挑战,有偏见和做食物,不想治疗,是啊,是啊,这就是我们在课堂上谈到的技术的方块,会变得非常重要。
但是是的,我想我很感激你提到的挑战,我认为它非常强大,我想我想到的另一个问题是治疗方法随着时间的推移变化如此之快,所以你不想过度适应过去,你知道就像,但我觉得,在某些情况下,今天的治疗决定与过去相似。
还有其他领域,如免疫肿瘤学,在那里没有历史可以借鉴,所以我想这取决于好吧。
P13:13.Machine Learning for Mammography - 大佬的迷弟的粉丝 - BV1oa411c7eD
好的,伟大,嗯,谢谢你的伟大设置,所以对于这一节,我要谈谈我们在口译方面的一些工作,接下来我们将讨论我们对乳腺癌风险的技术方法,最后是一个特写,还有很多很多不同的搞砸方式,事情可能会出错。
波兰是如何计算的。
所以说,让我们更仔细地看看,实际乳腺癌筛查工作流程的数字,就像坎耶一样,他们说,你可能,你知道,看到大约一千个病人,平均在那一千人中,可能是一百个,打电话回来对那一百个进行额外的成像。
大约20个人会被活检,你最终可能会被诊断出五六次乳腺癌,所以你看到的一件非常清楚的事情是,你知道的,当你看这个漏斗时,问题是这样的,你在一天中看到的99%以上的人,全部无癌症,所以你的实际发病率很低。
所以有一个很自然的问题会出现,在建模方面你能做什么,如果你有,你知道一个甚至可以的癌症检测模型来提高这个人群的发病率,但我实际上读到了一部分人口是健康的,所以每个人都遵循这个宽泛的想法,点头够了。
所以这里的大致想法是训练一个癌症检测模型,试图找到,不能像我们一样好,鉴于我们要试着说,开发集的门槛是什么,这样我们就可以说低于门槛,没有人得癌症,如果我们在测试时使用它来模拟临床计算,那会是什么样子。
我们真的能通过做这种过程做得更好吗,以及我将如何谈论这件事的大致计划,我也要为下一个产品这样做,首先我们要谈谈数据收集的类型,以及我们如何思考什么是好数据,我们怎么知道,接下来想想那个。
实际的方法和进入一般的挑战,特别是在癌症中,也很明显有风险,最后,我们是如何思考分析和一些目标的。
所以要潜入其中,我待会儿再来实际上这很重要,这是从大约二十八万种癌症开始的,一旦我们过滤了至少一年,跟进,我们最后得到了这个,你知道的,大约两万六千英镑用于开发和测试,我们拥有一切的方式是说。
你知道这是不是阳性克,我们没有看放射科医生发现了什么癌症,会说你知道什么是癌症在一年内以任何方式被发现,我们希望通过放射学,人力资源和合作伙伴,五家医院登记处,然后我们试图拯救一个癌症。
如果我们能告诉癌症发生了,让我们这样标记吧,不管核磁共振或后期捕捉到了什么,所以我们在这里要做的就是模仿,你知道我们试图抓住癌症的现实世界吗,最后,在重要的细节上,我们总是按病人分开。
这样你就不仅仅是你的结果,不仅仅是记忆。
这个特定的病人没有癌症,所以你有一些重叠,这和糟糕的购买,好的,现在很简单了,让我们进入建模,这将遵循两大块,一大块是关于一般挑战的,它在各种项目之间共享。
接下来将对这个项目进行更具体的分析,所以你可能会问一个一般性的问题,你知道,我有一些形象,我有一些结果,很明显这个,只是图像分类,怎么不一样,Magenet,嗯,很相似,大多数课程都是分享的。
但有一些关键的区别,所以我你知道,我举两个例子,其中一个是我厨房里的一个场景,有人能告诉我这个物体是什么吗,这不是一个特别难的问题,对耶,几乎是所有这些东西,那是我的狗,最好的狗,好的,所以谁能告诉我。
你跟康妮训练过,嗯,确实如此,这是这个,这是不公平的,有几个原因,但让我们来看看为什么这很难。
这在一定程度上是不公平的,因为你知道你没有受过训练,但这实际上是一个更难学习的信号,所以首先,让我们深入研究一下,在这种任务中,图像真的很大,所以我们有一个三千二百乘两千六百像素的图像,在这一点上。
真正的癌症,一致性可能是五十乘五十像素,所以直觉上你的信噪比是非常不同的,而我的狗就像整个图像,她在现实生活中是个大人物,在那张照片中,图像本身要小得多,所以你不仅有更小的图像,但你有点像相对大小。
里面的物体要大得多,这是一种进一步的复合困难,所以如果你看到那个图案,所以你真的很关心在这种全球背景下,它会在哪里出现,你会有这种非刚性的图像变形,那就更难建模了,而那是一只或多或少独立于上下文的狗。
你看到那种框架,在任何你知道的地方,它是一只狗,所以在传统的计算机视觉环境中学习要容易得多,所以这里的核心挑战是图像太大和太小,所以如果你看看我们有的癌症的数量,这将是,大约7%的图像有癌症。
所以即使在这个数据集中,从2016年开始,一个巨大的成像中心,在这一切中,我们仍然会有不到两千个癌症,与常规对象分类数据集相比,这是非常小的,这是你知道的,看着超过一百万张图像。
如果你看看考试的所有四个视图,同时它也太大了,所以即使我没有所有这些图像,我一个GPU只能容纳三个,所以这种限制,我可以使用的批量大小,而那种可比的,如果我只拿普通的图像净大小,我可以装128个批量。
轻松快乐的日子,做所有这些Parization的事情,而且玩起来容易多了,最后,实际的数据集本身相当大,你必须做一些,在这方面有麻烦要处理,只需设置服务器基础结构以处理。
这些海量数据集仍然能够有效地训练。
所以你知道所有这些任务的核心挑战是,我们如何让这个模型真正学习,核心问题是我们的信号很低,所以训练最终很不稳定,有一种,你知道的,我们可以玩几个简单的杠杆第一个杠杆通常很深,学习初始化。
接下来我们将讨论优化或架构选择,这与社区中人们经常做的事情相比如何,包括在昨天最近的一篇论文中,最后我们要讨论一些更明确的东西,对于分诊的想法,我们如何实际使用这个模型,一旦训练好,好的。
所以在我讨论我们是如何做出这些选择之前,我只想说我们选择给他们什么,在我潜入之前给你背景,所以我们遵循一些像图像初始化,我们用一个比较大的蝙蝠大小,两个四个,我们这样做的方法是只拿四个GPU。
在执行优化步骤之前,只需单步执行几次,所以你做了几轮背部支撑,首先在进行优化之前积累这些梯度,你在训练时取样平衡批次,和主干网架构,我们用Resnet十八,这只是一种相当标准的,好的,但就像我之前说的。
第一个关键决定是,您如何考虑您的初始化,其中一个所以这是,这是一个图像泛化与随机化的图,这不是什么特别的实验,我只是我已经做了很多很多次了,总是这样,在哪里,如果使用图像泛化,你的损失立即下降。
列车损失和发展损失,你真的学到了一些东西,而当你做随机可视化时,你什么都学不到,和你的损失,在它找到一些区域之前,它在顶部绕了很长时间,在那里它很快开始学习,然后在快速开始学习之前又稳定了很长时间。
给出一些背景,给出大约十五个时代,大约15到16个小时,所以要等足够长的时间来看看随机化是否也能发挥作用。
超出了我的耐心,只是花了太长时间,还有其他实验要做,所以这更像是一个经验观察,图像概括立即学习,有一些你知道的问题,这是为什么,我们对此的理论理解并不那么强,我们对为什么会发生这种情况有一些直觉。
我们不认为这是关于你知道,这种狗的特殊过滤器对乳腺癌真的很好,那是不可能的,但如果你调查了很多早期的研究,就正确的随机化而言,对于像Relu网络这样的东西,很多焦点都集中在,激活模式不会爆炸。
当你走得更远的时候,尝试从预先训练的网络开始的好处之一,很多这样的动态都是为特定的任务而设计的,所以从那里转移到其他任务似乎并不那么具有挑战性,另一个可能的解释领域实际上是在批处理规范统计中。
所以如果你还记得的话,我们每个GPU只能容纳三个图像,以及在每个深度学习库中实现批量规范化的方式,据我所知,它是按GPU独立计算的,最小化这种GPU通信,所以它也不太稳定,选择从头开始猜测。
但是如果您从Net的批处理规范统计信息开始,慢慢地移动它也可能会导致一些稳定,福利,但总的来说就像一个真正的深度,你还在逃避我们,这是我可以给出太多结论的事情,不幸的是,好的,所以这是概括。
如果你没做对,在很长一段时间内什么都不起作用,所以我只是如果你要在这个空间开始一个项目,下一个试试这个,另一个重要的决定,如果你不做那种休息,您的优化体系结构选择是什么。
就像我之前说的,稳定性的一个核心问题,这里有一个想法,我们的信号对噪声显示非常低,所以一个非常常见的方法,很多之前的工作和事情,其实我以前也试过,就是说,好的,让我们把这个问题分解一下。
我们可以在补丁级别上训练,首先,也许这个小边框,对放射学发现进行注释,如,但是线质量或分类,诸如此类的事情,我们将就这项任务进行预先训练,有这种像素级的预测,一旦我们完成了,我们要微调一下。
整个图像的初始化模型。
所以你可以有两个阶段的训练程序,实际上昨天刚刚发表的另一篇论文,完全相同的方法,有些细节略有不同,所以我们想调查的一件事是,如果你只是,哦,然后基础体系结构总是用于此。
有相当多的有效选项可以在imagenet中获得合理的性能,像VGG这样的东西,在我的经验中,广泛的重启和重启都表现得相当相似,所以这是一种速度利益的权衡,使用完全卷积的体系结构有一个优势。
因为如果你有完全连接的层,假设特定的维度,你有,只需将它们转换为卷积层,但它们只是更方便开始,具有分辨率不变的全卷积架构。
是呀,在最后一张幻灯片中,当你做补丁的时候,是呀,你如何给每一个,它们只是使用全局标签来标记吗,还是你必须真正地观察并弄清楚什么是如此正常,你要做的是取样,你有标记为阳性的贴片,然后随机抽取所有补丁。
以便从注释中,所以说,比如说,很多人在公共数据集上这样做,比如佛罗里达DSM数据集,它有一些注释,如下所示,良性肿块,良性,calx,Lian和Callux等,人们所做的就是把这些注释。
他们会随机选择其他补丁,并说如果它不在那里,这是负面的,我要称之为健康的,然后他们会说这个粘合盒是否与补丁重叠,通过一些边缘,叫它是同一个标签,所以启发式地这样做,和其他专有数据集。
一般也会玩类似的把戏,他们实际上并没有相应地给每一个像素贴上标签,但是人们在做这件事的方式上有相对较小的差异,但也有相当相似的,不管,是呀,当您从补丁级别到完整图像时,如果我没理解错的话。
建筑没有太大变化,因为卷积结束了,正是这样,最后的事情,就在我们做预测之前,预测通常是重启的,比如说,全球平均池通道,整个特征图的智慧,所以他们只是过去水平的第一个,他们拍了一张250乘250的照片。
做全球平均池来做出预测,当它们上升到全分辨率图像时,现在你拿一个全球平均池,超过3000乘2000做,可能会有一些缩放问题,你可能需要调整才能做到这一点,或者你只是一直以完全的分辨率输入。
所以你只要我做,你明白我的意思了,所以你只是在,你在收割庄稼,所以分辨率没有改变,所以同样的过滤器映射应该能够相应地缩放,但是如果你做一些事情,比如平均池,然后你有点你知道。
任何一个活跃度很高的东西平均下来都会更低,例如,在我们的工作中,我们使用最大池来解决这个问题,任何其他问题,但如果看起来不那么复杂,我没有担心,因为我们实际上认为这完全没有必要,这是下一张幻灯片。
对你这么好,就像我之前说的这种信号对噪声的问题是什么,所以要考虑的一件显而易见的事情是,好吧,也许用三个的基本尺寸做SGD,当病变也是图像之一时,这是一个坏主意。
如果我只是通过增加我的批处理大小来减少噪音梯度,这只是意味着使用更多的GPU,在进行权重更新之前采取更多步骤,我们实际上发现这样做的必要性实际上完全消失了,这些是我不久前在公开可用的数据集上做的实验。
在我们弄清楚这件事的时候,如果你把这种建筑的补丁和微调,或者二四十六个的批量,把它比作一个阶段的训练你从一开始就完成任务,一个Imagenet,只需使用不同的批量大小。
你很快就开始缩小你所看到的发展的差距,所以对于我们广泛做的所有实验,我们发现我们实际上通过使用一批来获得相当稳定的训练,二十岁及以上,这归结为,如果使用批处理作为一个,它只是特别不稳定和其他细节。
我们总是取样平衡批次。
因为否则你要取样20批,在你看到一个阳性样本之前,你什么都学不到,所以这就像,如果你这样做,你不做任何复杂的事,你不必做任何花哨的种植,或者类似的东西,比如处理区域注释,我们发现实际的。
在此任务中使用再生符号实际上没有帮助,好的,没有问题,是呀,所以随着批量的增加,是啊,是啊,不要使用放大的补丁,我们不,我们从一开始就把整个图像,假装你喜欢,您只需假设注释是整个图像。
一年内不到喜欢的癌症,这是一个简单得多的设置,我不明白,这和你说的一样,由于记忆的原因,你不能做,哦,所以你只是而不是那么正常,当你这么做的时候,你要训练网络,最常见的方法是步调一致。
如果你只做几次后支撑,你在积累渐变,至少在Pytorch中,然后你可以之后再做,这样你就可以,而不是一次做整批,你应该连续地做,所以你只是在用时间换空间,最小,尽管每个GPU至少必须适合一个图像。
在我们的情况下,我们可以容纳三个,但是为了使这个真正的规模,我们一次使用四个GPU,是呀,与时间的权衡是多少,所以如果我想让我的批量拖车更大,我通常会递增,就十二点吧,因为这是我能容纳的。
同时像一组GPU,而是为了控制实验的规模,你希望每个实验有相同数量的梯度更新,所以如果我想用最好的四八,都是我的实验,而不是花大约半天的时间,大约需要一天的时间,所以当你前进的时候。
就会有一种自然的权衡,所以我在最后提到的一件事是,我们正在考虑一些,比如对抗性的方法,唯一的一件事是,如果我有五个鉴别器步骤,我的天啊,我的经验是,我每次实验花三天时间,你的渐变更新。
有人试图设计一个更好的模型,变得非常慢,当顾客花了这么长时间,是呀,所以你说注释对训练没有帮助,是因为实际的结合,实际的癌症本身和密集的问题没有很大的不同,而地点很重要,而不是实际的,的粒度。
那是什么意思,所以总的来说,当事情对你没有帮助时,总是有两种可能性,一件事是整个图像信号包含了较小尺度的信号,或者有更好的办法,我没发现那会有帮助,然后这件事一直到现在都很难。
所以我们要完成的任务是对整个图像进行分类,在这个任务中,环境和上下文有可能,所以当你做一个充满激情的注释时,你有点失去了上下文,出现在,所以有可能仅仅通过观察整个上下文,每次都一样好。
你不会从缩放盒中得到任何好处,然而,我们不是在评估一种选择的目标检测,评价指标类型,我们说我们抓住盒子有多好,如果我们是,我们可能更幸运地使用重新注释,因为你可能会知道有些级别是由,以及模型的能力。
这就是为什么我们可以做风险建模的部分原因,这将是演讲的最后一点,是呀,那么,在确定是否有癌症后,你会进行物体检测吗,所以到目前为止,我们不做物体检测,部分原因是我们把这个问题框定为分诊。
所以有相当多的工具包,但洞察力是,如果你知道,如果有一千件事可以看,看着你画的两千个东西,你知道的,每张图片有更多的框,这不一定是我们试图解决的问题,那里有相当多的努力,这是我们将来可能会研究的事情。
但这不是这项工作的重点,可能意味着不同的事情,但当你同时看到整个图像时,我会担心的,直觉上关于,卷积架构是否能够接收到这一点,或者是因为你在寻找一个非常小的癌症和一个非常大的图像。
然后你在寻找那个非常小的癌症的意义,在图像的不同部分,或者在图像的不同上下文中,我只是我的意思是,它是它的工作是一个惊喜,所以有两个部分可以帮助解释,所以第一个是。
如果你看任何给定的最后一个接受地图的接受域,在网络的尽头,每一个都通过这些卷积总结,图像中相当大的一部分,所以你有点像每个像素,最后变成了一个50乘50的图像,那是五十二个维度。
所以每个部分都很好地总结了当地的背景,当你在最后做最大平面时,你会得到一些不完美的,但是好的全局摘要,这个图像的上下文是什么,所以就像,假设我一些较低的维度可以总结,或者有点。
而他们中的任何一个都能告诉你,这个,这看起来像癌症,给我们当地的背景,所以你有一些水平的总结,都是因为终端的通道智慧格言,因为每一个点通过许多,许多不同步幅的卷曲会给你一些总结效果,好的很好。
我要向前跳,所以我们讨论了你知道如何让这个学习,其实没那么棘手,如果你只是小心地做和调整,我将讨论如何使用这个模型,实际上实现了这个分诊的想法,所以我的一些选择,图像网初始化会让你的生活更快乐。
使用更大的批处理大小和体系结构选择并不重要。
如果是卷积的,以及我们通过这项工作所做的整体设置,在许多其他项目中,我们根据图像独立培训,现在,这是一项更艰巨的任务,因为你实际上没有完整的,你没有采取任何其他观点,但这是出于更多的硬件原因。
我们将得到整个考试的预测,通过在不同的图像上拍摄最大值,所以如果我说这个乳腺癌得了癌症,考试得了癌症,所以你应该去看看,在每个发展时期,我们将评估模型进行分诊任务的能力,它实际上进入了一秒钟。
我想选最好的模特来做分诊,所以你总是有点像你的真实结束指标,是你在训练中测量的。
你要做模特选择,在此基础上进行了超辅助训练,我们分诊的方式,我们的目标是不要把很多人标记为健康,不会错过任何一个癌症,我们总是会如此直观地发现,通过服用所有被捕获的癌症,这些图像中癌症的概率是多少。
把它们放在那些,称之为阈值,这正是我们所做的,另一个非常相关的细节,通常是如果你想让这些模型输出一个合理的概率,像这样是癌症的概率,默认情况下,你对50个抽样批次进行训练。
你的模型认为平均发病率是50%,所以一直都是疯狂的自信,所以为了校准一个非常简单的技巧是你做一个叫做格子方法的东西,你基本上就像一个双参数乙状结肠一样适合,这是一个规模和转变,只是在开发集。
使它以这种方式真正适合分布,你期望实际符合发生率的平均概率,如果你不把这种疯狂赶走。
平顺概率,好吧,所以分析,我们在这里尝试做的目标在所有项目中都是相似的,1。这东西还能用吗?第二,这件事对所有应该为之工作的人都有效吗,所以我们做了一个亚组分析,首先我们看了这个模型的AUC。
所以辨别癌症的能力不是,我们是跨种族的,我们有MGH,年龄组和密度类别,最后,这与径向评估有何关系,如果我们在测试时在测试集上使用这个,会发生什么,在完全临床实施之前的模拟。
所以我们这里的总AuC是82,用一些,你知道从80岁到85岁的自信吗,当我们按年龄进行分析时,我们发现每个年龄组的表现都很相似,这里没有显示的是置信区间,例如,但这里的关键核心是,就年龄组而言。
没有明显的差距。
我们按种族重复了这个分析,我们又看到了同样的趋势,表演一般在82岁左右,在差距较大的地方,由于样本量较小,公正置信区间相应较大。
因为MGH 80%是白色的,我们看到了完全相同的密度趋势,但在测试集上只有大约一百个,所以这个会议实际上从60岁到90岁,据我们所知,其他三个类别,这是非常紧密的置信区间,在82年左右再次非常相似。
好的,所以我们有一个不错的想法,这个模型似乎至少在一个群体中,MGH I实际上为相关人群服务,你知道,据我们所知,这是存在的,下一个问题是,这怎么,模型评估如何,与放射学评估有关,所以看看那个。
我们在试验场上看了看,如果你看看读者真正的积极因素,真阴性假阴性,它们在类似百分位风险的模型分布中处于什么位置,如果低于阈值,我们要给它上这种青色,如果超过阈值,我们要给它上这个紫色,所以这是一种分诊。
不是分诊,首先注意到的是真正的积极因素,有一个很陡的落差,所以只有一个真正的阳性低于阈值,在两万六千次考试中,所以在向上的过程中,这种差异在统计学上是显著的,他们中的绝大多数都是前十名。
但你会看到这里有一个明显的趋势。
它们会堆积在更高的百分比上,当你看到评估的思想部分时,这个趋势要弱得多,所以你仍然可以看到有像,你知道一些相关性,会有更多的假阳性,较高的金额,但更不明显,这实际上意味着很多RA的假阳性。
我们实际上把它放在门槛以下,所以因为这些评估是完全一致的,我们不仅仅是在模拟其他人会说的话,我们得到了一个预期的好处,实际上大大减少了假阳性。
因为重量不同意,最后,进一步帮助了这一点,如果你看看真正的负面评价,在它属于这个范围的地方之间没有太多的趋势,所以这表明他们在不同的事情上有所了解。
他们不同意的地方给了我们需要改进的错误和一些附带的好处。
因为现在我们可以产生假阳性,这直接导致模拟撞击,所以我们做的一件事我们只是说,好的,如果人们在我们真正插入之前回顾测试集作为模拟,如果人们的阅读量没有低于分诊阈值,这样我们就不能再得癌症了。
但我们可以减少假阳性,会发生什么所以在顶部我们有原始的表演,敏感性为96,特异性为93,在模拟中,灵敏度没有明显下降到91点。但显著提高到93。7。
所以这就像是有希望的初步数据,但要重新评估这一点,并推进我们的下一步,看看我是否,哦,我马上就说,我们的下一步是真正做临床,真正弄清楚,因为有一个核心假设,人们读它的方式是一样的。
但是如果你有这么高的发病率,那是什么意思,你能把注意力集中在更可疑的人身上吗,而且是做这件事的正确方法吗,只有一个不读的门槛,或者有一个双重结尾,这些分子很容易致癌,所以这里有相当多的爆炸说。
鉴于我们有这些工具,给我们一些癌症的可能性,那并不完美,但给了我们一些东西,我们如何才能做到这一点来改善今天的护理,所以作为一个测验,你能分辨出这些中的哪一个会被分诊吗,所以这不是樱桃,采摘。
有人能猜到左边还是右边,这不是分级测验,所以你知道,2。谁举手?向左举起你的手。
好的举起你的手向右,开始了干得好干得好。
好的,下一步就像我之前说的。
计算的种类,因为那是橡胶上路的地方,我们确定,他们有什么偏见没有发现吗,我们真的可以说我们能实现这个价值吗,所以下一个项目是评估乳腺癌的风险,所以这个是一样的,我之前给你看过了。
它在2014年被诊断出患有乳腺癌,其实是我的导师,雷吉诺是,你可以看到你知道在2013年,你看,它在那里二十二,看起来不那么突出,五年前真正关注乳腺癌风险,所以如果你能从一个健康的图像中看出。
很长一段时间以来,你真的试图建模,这个乳腺癌将来患癌症的可能性有多大,现在建立乳腺癌风险模型,正如真的说的,这不是一个新问题,这在社区里是一个相当大的研究,和更经典的方法,我们要看看。
其他类型的全球健康因素,人的年龄,他们的家族史,他们是否有更年期,以及任何其他类似的因素,我们可以说他们健康的标志,试图预测这个人是否有患乳腺癌的风险,人们以前认为图像包含了一些东西。
从61年到63年的改进是微不足道的。
和以前一样,我们要做的是数据收集。
数据集收集中的建模与分析,我们遵循一个非常相似的模板,我们再次从EHR获得结果,和合伙人登记处,我们不做基于种族的排除,或者任何类似的植入物,但我们确实排除了后续的底片,所以如果有人在三年内没有得癌症。
他们从系统中消失了,我们的计数是负的,我们在建模和分析中都有一些确定性,和往常一样,我们分开我的耐心来训练开发测试。
建模非常相似,这是同样的模板和教训,从分诊开始,除了我们用一个模型做了实验,这个模型只是图像,为了分析起见,一个模型就是图像,模型,我以前和你谈过,在最后一层与那些传统的风险因素连接并训练,加入我。
这对每个人都有意义,所以我们将把那个图像称为图像,加射频或混合,好的,酷,我们的分析目标,像以前一样我们想看到,这个模型真的为整个服务吗,全部人口,这会有跨种族的歧视吗,更年期状况及家族史。
这与传统的风险方法有什么关系,我们真的做得更好了吗,所以直接潜入,假设,没有问题,只是提醒你,就是这种设置,有一件事我忘了提,这就是为什么我在这里有幻灯片,提醒我的是,我们从第一年就排除了癌症。
从测试集,所以确实有一个阴性筛查人群,所以我们把癌症检测和癌症风险分开的方法。
好的,酷,所以轮胎球杆是最先进的模型,这是一个基于英国的模型,它们是由一个叫库西克爵士的人开发的,这个作品很常用,所以1的c是62,或者只有图像的模型在68年左右有一个问题,混合动力的空调是70。
所以你知道,当你使用风险模型时,这种ABC的东西给了你什么,它给你的是创造更好的高风险和低风险队列的能力,所以就观察高风险队列而言,我们最好的模型扮演了人口中大约30%的癌症,在前10%。
3%的癌症在最底层的10%,与以前的技术水平相比,18岁和5岁,所以这使你能够做的,如果你要说你知道,这10%实际上应该有资格接受核磁共振成像,你可以开始与大多数患癌症的人的问题作斗争,没有核磁共振。
大多数得到它的人不需要它。
关键是你的风险模型,把合适的人放进合适的桶里,现在,我们看到这种超越现有技术的趋势,跨种族举行,其中一件令人惊讶的事情是,尽管提乌斯是由白人妇女表演的,这是有道理的,因为它是在英国只使用白人女性开发的。
比随机更糟糕,我们的非裔美国妇女数据,所以这强调了这种分析的重要性,以确保您拥有的数据集反映了人口,你试图服务,实际上做相应的分析。
所以我们看到我们的模型适用于不同的种族,你知道的,我们从绝经前和没有家族史的人身上看到了这种趋势。
我们做了一件事,对性能进行了更详细的比较,我们看了一下,如果你看一下,就像风险一样,我们的模型和整个线索模型的三分之二,你看到的趋势是什么,或者哪一个是对的有点模棱两可的情况。
我应该在这些盒子里显示的是癌症发病率,在人口中的流行率,所以箱子的码头工人,发病率越高,在右手边,只是那些盒子里的箱子里的随机图像,这对每个人都有意义吗,所以你看到的一个明显的趋势是,比如说。
如果TV8称你为高风险,但我们称之为低,这比我们称之为中等的发病率要低,他们称之为低,所以就像你看到的这种直列模式,显示出歧视,确实遵循了深度学习模型而不是经典的方法,通过观察随机选择的图像。
以防我们不同意,它支持这样一个概念,即不仅仅是柱是最密集的,有一些更微妙的东西正在出现。
这实际上表明乳腺癌的风险,一种非常相似的分析,如原件所示,由俊,开发集,或者在测试集上,我们最终会看到同样的趋势,如果某人不是密集的,我们称之为高风险,他们比密集的人风险高得多。
我们称之为低风险,和以前一样,真正的下一步是让这个真正有价值和真正有用,实际上是在临床上实施的。
前瞻性地看到这一点,有更多的中心和更多的人口可以看到,这个行得通吗,它是否带来了我们关心和观看的那种好处,改变的杠杆是什么,一旦你知道某人是高风险的,也许核磁共振,也许你知道更频繁的筛查,就像。
这是在纸上有一个有用的技术之间的差距,到现实生活中实际有用的技术,所以我按计划行动,所以现在我们要谈谈如何搞砸。
其实挺有趣的,有很多方法,我自己也掉过几次,它发生了,有点跟着素描,你可能会在数据集收集中搞砸,这可能是迄今为止最常见的,你可能会在造型上搞砸,我现在正在做,这是非常可悲的,你可以在分析中搞砸。
这是真正可以预防的,所以在数据集收集中,丰富的数据集是你在空间中看到的最常见的东西,如果你发现一个公共数据集,更有可能是五五开的癌症,不是癌症,通常这些收集的数据集可能会有某种偏差,在它被收集的方式中。
所以你可能有来自较少中心的阴性病例,你有阳性病例,或者是不同年份的,实际上这是我们之前遇到的,在我们自己的工作中,从前,坎耶和我在上海,在那里开设癌症中心。
那时我们从毫克数据中得到了所有的癌症大约2000,但是玛姆格罗斯仍然每年被收集,从二千零一十二,从2009年开始,所以那时我们每年只有一半的底片,但是所有的癌症突然间我不得不喜欢,你知道吗。
我来自稍微复杂一点的模型,就像一个人经常做的那样,同时查看几张图像,我的ABC上升到95,我总是像从墙上弹下来一样,然后你知道有一些怀疑,等一下,这太高了,这太好了,我们很快意识到这些数字都是一个神话。
但这种程度的,如果你做这种案件控制的事情,你可以经常。
除非你非常小心它的构造方式,您很容易遇到这些问题,你的测试集不会保护你免受伤害,因此有一个干净的数据集,你知道吗,遵循光谱的类型,我们希望在自然分布Cuthrough例程中使用它,临床护理很重要。
它会像我实际想要的那样被使用吗,在第一原则中,你唯一能考虑清楚的是,但它强调了实际测试的重要性,和外部验证,试图查看,当我去掉数据集中的一些偏差时,这是否有效,对此非常小心。
仅仅根据年龄或密度来控制的常见方法是不够的,当模型能够捕捉到非常细粒度的信号时,如何在建模中搞砸,所以这是在这个空间里也有冒险,我最近发现的一件事是我,所以你看到了一堆来自不同机器的Maogram。
对模型有和预期的影响,所以实际的概率分布,模型对癌症概率的分布与设备无关,所以我现在正在经历的事情,我们真的遇到了这个,在计算的时候,就像这种有条件的对抗性训练,为试图纠正这一问题而设立的,这很重要。
所以根据第一原理,这很难抓住,但重要的是要想清楚,当你真的开始,你知道吗,演示你的计算,这会很容易出现这些问题,他们更难避免,最后,我想可能最重要的一点是分析混乱,所以这在这个领域的前一部分是很常见的。
是呀,用对抗性的,只是为了明白,是啊,是啊,你所做的,做一个鉴别器,预测机器,然后与之交易,所以我的答案是两部分,一个,它没有我想要的那么好,然而如此真的,谁知道呢,但就以前做过的事情而言。
最好的预感是,其他工作,特别是WSS信号,他们使用有条件的对抗性,所以你喂鉴别器,标签和图像赋值,你必须试着预测设备,试图删除不仅仅包含在标签发行版中的信息,事实证明,这对人们非常有帮助。
尝试基于WiFi进行睡眠状态检测,嗯,不是WiFi,但就像X型组的无线电波,但这似乎是我在文学中见过的最常见的推动,所以这是我很快要尝试的事情,我还没有实施,这只是GPU时间,有点等着排队做实验。
最后一部分是关于如何搞砸,这种分析,有一件事很常见,人们认为这有点像合成实验,和实现是一样的,就像人们经常做读者研究一样,很常见的是,当你做读者研究时,实际上不喜欢,你可能会发现计算机检测。
读者研究有很大的不同,这实际上表明它在现实生活中是有害的,重要的是要喜欢,做一些真实世界的实验,真正说明正在发生的事情,这给了他们我所期望的真正的好处,希望,现在不太常见的错误是。
人们往往排除一切不方便的情况。
所以昨天有一篇论文刚刚出版,癌症检测使用了一种贴片级架构,但如果你仔细阅读他们的细节,就像现代的便利,但这可能会对该人群中的亚洲女性产生不同的影响,所以他们没有对所有不同的种族进行亚组分析。
所以很难知道那里发生了什么,如果你的人口主要是白人,它在MGH,这些云发展的许多中心,报告平均GC不足以真正验证这一点,所以你可以有一个USTIC模型,比随机的更糟糕,对非裔美国妇女明显有害。
所以为了防止这种情况你可以根据第一原则做很多事情,但其中一些事情你通常会通过主动监测来发现,有没有我没有考虑过优先考虑的亚人群,可能会受到伤害的,最后,我们谈了很多临床部署。
我们实际上已经这样做过几次了,我们很快就会转到康妮身上,总的来说,你想做的是,你想让它变得尽可能容易,尽可能可信和可能,对于内部,IT团队使用您的工具,我们现在已经经历过了。
好像我不知道这取决于你怎么数,就像一次密度,然后同时三次,我花了很多时间坐在那里,到目前为止,我们设置的大致方式,就是,我们只是有一种doalized容器来管理一个Web应用程序,它保存着模型。
这个Web应用程序在处理工具包上有一个点,所以我们所有的部署都遵循的步骤,就像在一个统一的框架下,应用程序将从PAC系统中获取一些图像,它会把它送到应用程序,我们要把它转换成PNG,以我们期待的方式。
因为我们喜欢封装这个功能,运行模型,把它寄回,然后写回给人力资源部,我遇到的一件事是,他们实际上不知道如何使用像http这样的东西,因为在他们的基础设施中,这实际上是不正常的,因此认识到。
其中一些更像是技术标准,像这样的东西,请求和响应之类的东西在他们的基础设施内部不太标准,有点抬头,如何在,像C尖,不管他们的语言是什么让我们喜欢并阻止这些东西。
把它插上电源,对我来说就是这样,所以我要把它交回去,哦是的,所以你在IT应用程序中用C夏普编写东西,执行API请求,所以他们在写,我只是和他们见面告诉他们怎么写,是的,我看到了,就像有图书馆一样。
所以整个环境都在窗户里,窗户很差,对很多事情的支持,你会期望它有很好的支持,所以如果你想用多部分表单发送惠普请求,把图像放在那种形式,很明显,那就像有虫子在里面,就像窗户一样,不管他们今天用什么版本。
所以香草版不起作用,码头工人窗口,也有bug,我不得不为他们设置这种日志功能,就像容器内的自动表格块,它就是不起作用,窗户是问题,是啊,是啊,是啊,是啊,所以我们可以在最后讨论这个,我想把康妮交给。
是啊,是啊,如果你有任何问题。
P14:14.Causal Inference, Part 1 - 大佬的迷弟的粉丝 - BV1oa411c7eD
所以今天的课是关于因果关系的,谁在举手之前听说过因果关系,当你思考因果关系时,你听到的第一件事是什么,相关性并不意味着因果关系,相关性并不意味着因果关系,我想起了什么,这就是我想到的,我想起了什么。
所以到目前为止在这个学期里,我们一直在讨论纯粹的预测性问题,对于纯粹的预测性问题,有人可能会说相关性已经足够好了,对呀,如果我们的数据中有一些迹象可以预测一些有趣的结果,我们希望能够利用这一点。
不管是上游还是下游,因果方向性与此目的无关,虽然那也不完全是真的,对吧,因为我整个学期都在暗示,我整个学期都在暗示的人,有时你的数据会发生变化,例如,当你从一个到另一个,或者当你有非平稳性的时候。
在这些情况下,对数据有更深入的了解可能会让人建立额外的健壮性,到该类型的数据集移位,但也有其他原因,为什么了解底层数据生成过程非常重要,这是因为我们经常想回答的问题,当涉及到医疗保健时。
不是预测性的问题,它们是因果问题,所以我现在要做的是,我将举几个例子来说明我的意思,让我们从第四讲第二套习题集的内容开始,在那里我们研究了如何对第二型进行早期检测的问题,您下载的糖尿病。
你用杜鲁门市场扫描数据集,至,构建风险分层算法,用于检测谁将被新诊断为糖尿病,一至三年后,如果你想想如何部署这个算法,你可能,比如说,试着让病人去诊所得到诊断,但下一组问题通常是关于。
那么根据这个预测一旦确诊你会怎么做呢,你将如何干预,在一天结束的时候,有趣的目标不是你如何尽早找到它们,但是你如何防止他们患糖尿病,或者你如何防止病人出现糖尿病并发症,那些是关于因果关系的问题,现在。
当我们建立我们的预测模型时,我们反思了权重,我们可能注意到了一些有趣的事情,比如说,如果你看最高的负重,我不确定这是不是我们任务的一部分,但作为我研究的一部分,我做了一些事情。
你看胃旁路手术有最大的负面影响,这是否意味着你给一个肥胖的人做胃旁路手术,防止他们患二型糖尿病的手术,这是一个因果问题的例子,这是由这个预测模型提出的,但单看重量,正如我本周将向你展示的那样。
你不能正确地推断,有因果关系,所以我们要做的一部分是想出一种数学语言,为了思考,一个人怎么回答,这里有因果关系吗,这里有第二个例子,就在春假前,我们有一系列关于诊断的讲座,特别是从成像数据进行诊断。
种类繁多,不管是放射学还是病理学,通常问题是这样的,她得了乳癌,也许你也有相关的病理幻灯片,你想知道风险是什么,所以人们可以采用深度学习模型,一个人观察到的,所以在你的数据集中的病人中,你有输入,你有。
让我们说,生存时间,你可以用它来预测从确诊到死亡需要多长时间,基于这些预测,你可能会采取行动,比如说,如果你预测一个病人没有风险,那么你可能会得出结论,他们不需要接受治疗,但那可能真的,真的很危险,和。
我只举一个例子来说明为什么这会很危险,这些预测模型,如果你用这种方式学习它们,本案的结果,让我们说,死亡的时间会受到两者之间发生的事情的影响,例如,这个病人可能正在接受治疗,因为他们在两者之间接受治疗。
从确诊到死亡的时间,可能会延长他们的寿命,对于数据集中的这个病人,你可能已经观察到他们活了很长时间,但如果你忽略了两者之间发生的事情,你只需学会从x x作为输入来预测y,然后一个新病人出现了。
你预测那个新病人会活很长时间,说这是完全错误的结论,你不需要治疗那个病人,因为事实上,训练数据中喜欢他们的病人能活很长时间的唯一原因,是因为他们接受了治疗,所以当涉及到机器学习和医疗保健领域时。
我们需要仔细考虑这些类型的问题,因为我们将问题形式化的方式中的一个错误可能会杀死人们,因为这样的错误,现在其他的问题是关于我们如何预测结果,但是我们如何指导治疗决定,例如,随着病理学的数据越来越丰富。
我们可能会觉得,我们现在可以使用计算机来更好地预测谁可能受益于,一种比人类单独能做的治疗方法,但使用算法来做到这一点的挑战是人们对治疗的反应不同,用于指导治疗的数据是基于,对上一个问题。
我们可以问如果我们训练预测过去的治疗决定会发生什么,这将是试图使用数据来指导治疗决定的最幼稚的方法,所以也许你会看到大卫得到治疗,约翰接受B治疗,奎因接受治疗,你可能会问,然后呢,好的。
一个新病人进来了,这个新病人应该用什么治疗,如果你刚学会一个模型根据你对大卫的了解来预测,大卫可能得到的治疗,那么你能做的最好的事情就是做得和现有的临床实践一样好,所以如果我们想超越目前的临床实践。
比如说,认识到治疗反应存在异质性,然后我们必须以某种方式改变变化,我们要问的问题,我再给你们举最后一个例子,这可能是一个更传统的问题,x是否导致y,比如说,吸烟导致肺癌是一个主要原因吗。
你可能熟悉试图回答这种性质问题的传统方法,就是做一个随机对照试验,除了这不完全是你可以做随机对照试验的设置类型,对呀,但如果你是个吸烟者,有人走过来对你说你必须戒烟,因为我想看看发生了什么。
你会有什么感觉,如果你不吸烟,有人走过来对你说你得开始抽烟了,这既不可行,也完全不道德,所以如果我们想从数据中回答这样的问题,我们需要开始考虑,我们如何设计,回答这样的问题的方法,挑战是数据会有偏差。
因为谁决定吸烟谁决定不吸烟,所以说,比如说,最天真的方式,你可以试着回答这个问题,研究吸烟者患肺癌的条件可能性,在不吸烟者中得肺癌,但是那些数字,正如你将在接下来的几张幻灯片中看到的那样。
可能会很误导人,因为可能会有混杂的因素,因素,就会,比如说,两者都导致人们成为吸烟者并导致他们患肺癌,这将允许区分这两个数字,几分钟后,我们将有一个非常具体的例子,所以要正确地回答所有这些问题。
人们需要从因果图的角度来思考,因此,与机器学习中的传统设置不同,你只有,现在我们需要三胞胎,而不是有输入和输出,我们需要考虑输入,成果或产出,所以我们现在需要记住三个量,我们必须开始考虑。
这三者之间的因果关系是什么,所以对于那些上过更多研究生水平机器学习班的人来说,您可能熟悉贝叶斯网络等思想,当我上本科和研究生的时候,我学机器学习的时间最长,我以为因果推理必须与学习因果图有关。
这就是我认为关于你的因果推断,具有以下性质的数据,一零,零一圆点圆点,你知道吗,所以这里有四个随机变量,我在展示这四个二元变量的实现,每行一个,你有一个这样的数据集,好的。
我认为因果推理与像这样的数据有关,试图找出创建这些数据的潜在贝叶斯网络,是不是,x 1到x 2,到x3,二乘四,就在我说这是x 1的地方,x2,x3和x4,或者因果图是x 1,二x二,二三二四。
并试图区分这些不同的因果图和观察数据,是人们可以问的一种问题,你从传统机器学习中学到的一件事,就是有时候,你无法从你所掌握的数据中区分这些因果图,比如说,假设你有两个随机变量。
因为任何分布都可以用x的一次概率来表示,根据基数x 2给定x 1的概率,根据条件条件概率的公正规则,同样地,任何分布都可以表示为x的两次相反概率,概率x 1给定x 2,会是这样的,一个人会说。
如果你有涉及x 1和x 2的数据,你无法区分这两个因果图,x1导致sx2或x2,因果x一,通常另一种治疗会说好,但是如果你有第三个变量,你有一个v结构或者类似于x 1到x 2的东西,x 1到x 3。
你可以从这个,让我们说,链状结构,然后从这个哲学中得到因果推理的最终答案,会是这样的好,如果你在这样的环境中,一个x 1去导致x 2或x 2导致x 1,然后你做一些干预,比如你干预x 1。
这将帮助你解开这些因果关系的方向,这些都不是我们今天要讨论的,好的,今天我们要讨论最简单的,最简单的设置,你可以想象上面显示的图表,你有三组随机变量,这可能是一个向量,所以它是高维的。
单随机变量t和单随机变量y,我们知道这里的因果图,我们将假设我们知道方向性,我们知道,x和t可能导致y,我们唯一不知道的是边缘的强度,所有权利,所以现在让我们试着在前面的例子中思考这个问题,是啊,是啊。
确保T不会以任何方式影响正确的问题,这就是我们在这里要做的假设,所以让我们试着实例化这个。
所以让我们从这个例子开始,可能是你在诊断时对病人的了解,我不打算假设,就今天的课程而言,是在两种不同的治疗方案之间做出决定,我要简化世界的状态,我要说,这些治疗计划只取决于你在诊断时对病人的了解。
所以在诊断时你决定,我将在这三个月的间隔内给他们进行这一系列的治疗,或者其他一系列的治疗,也许四个月的间隔,你只是根据诊断做出决定,你不会根据你观察到的任何东西来改变它。
那么相关性的因果图是,根据你在诊断时对病人的了解,我要说x是一个向量,因为它可能是基于图像,你的整个电子健康记录,你有大量关于病人诊断的数据,在此基础上,你对治疗方案做出了一些决定。
我把它叫做T T可能是二进制的,两种治疗方法的选择,它可以是连续的,也许你在决定治疗的剂量,或者甚至可以作为今天讲座的载体,我假设t是二进制的,只涉及两个选择,但我将告诉你的大部分内容将概括为设置。
其中t也是非二进制的,但关键是,我要为今天的课做一个假设,你没有观察到两者之间的新事物,所以说,比如说,在这一整周的讲座中,不会发生以下情况,基于诊断,你让你决定治疗方案,治疗计划开始。
你会得到新的观察,根据这些新的观察,你意识到治疗计划不起作用了吗,它切换到另一个治疗方案等等,所以这个场景有一个不同的名字,这被称为动态处理制度或政策外强化学习,下周我们将了解,好的。
所以今天、今天和周四的讲座,我们会根据你对病人的了解,在这个时候你做一个决定,你真的得到了决定,你看到一些结果,好的,所以导致不是相反对吧,这很清楚,因为我们的方式,因为我们对这个问题的先验知识,对呀。
这并不是说治疗影响了他们的诊断,然后是结果Y,我们再一次假设病人的结果,也许生存时间,比如说,是他们接受什么治疗的函数,这就是我们所知道的因果图,但我们不知道,这种治疗对这个病人有什么影响吗。
这个病人是为了谁,这种治疗帮助最大吗,这些就是我们今天要回答的问题,背景清楚吗,好的,现在这些问题不是新问题,它们已经被研究了几十年,他们在其他领域学习的原因是因为,你没有能力干预。
人们必须试着从观测数据中回答这些问题,对呀,比如说,你可能会问U会怎么样,s,如果美联储提高U,s,利率1%,你上一次听说美联储做随机化是什么时候,控制试验,即使他们做了随机对照试验,比如说。
掷硬币来决定利率的走向,如果他们今天做了那个实验,那就无法比拟了,我也是,如果他们两年后做了那个实验,因为在那些年里,世界的状况发生了变化,让我们谈谈政治学,我在纽约大学有亲密的同事,看推特的人。
他们想问这样的问题,我们如何影响选举,或者选举是如何受到影响的,俄罗斯政府支持的人,在推特或其他社交媒体上发帖的人,你可能会问这个问题,这实际上影响了上次总统选举的结果吗,再次,在那种情况下。
这是我们所掌握的数据之一,世界上发生了一些事情,我们想知道这一行动的效果是什么,但我们不能回去重播做别的事情,对呀,所以这些都是出现在所有科学中的基本问题,当然,它们在医疗保健方面非常相关,但是是的。
我们在机器学习班的介绍中不教他们,我们在本科计算机科学教育中不教他们,我认为这是我们教育中的一个主要漏洞,这就是为什么我们花了两个星期的时间,在本课程中,还是不够。
但这些领域之间发生了什么变化对吗与医疗保健相关的是什么,嗯,在统计学中提出这些问题的传统方式,是你把大量的领域知识,首先,确保你正确地设置了问题,这将永远是重要的,然后思考所有可能影响治疗决定的因素。
称为混杂因素,传统的方法是写下10个20个不同的东西,并确保你做了一些分析,包括我将在今天和周四的课程中给你们展示的分析,用这十个或二十个变量,但这个领域的发展方向是现在拥有高维数据。
所以我谈到了如何为你提供成像数据,可能有整个病人的电子健康记录数据,以及统计界过去工作的传统方法,不再在这个高维度的环境中,所以事实上,这实际上是一个非常有趣的研究领域。
一个我的实验室开始在许多其他实验室工作,我们可以问,我们如何将机器学习算法用于处理高维数据,来回答这些类型的因果推理问题,在今天的讲座中,你会看到一个减少的例子,从因果推理到机器学习,在哪里。
我们将能够使用机器学习,来回答其中一个因果推理问题,所以我们首先需要一些语言,为了使这些概念正式化,所以我将在所谓的毁灭因果模型中工作,在那里我们谈论所谓的潜在结果,在这个世界或那个世界下会发生什么。
我们叫你零,它们通常被表示为y下划线零,有时它们会被表示为为什么括号为零,有时会表示为,y等于零,这三个符号都是等价的,所以Y零对应于这个人会发生什么,如果你给他们零治疗。
Y一个是这个人可能发生的事情的潜在结果,你给他们治疗了吗,因为你可以思考为什么一个人,你知道的,给蓝色药丸,Y零被给予红色药丸,一旦你能谈论世界的这些状态,然后人们就可以开始问什么更好的问题。
红色药丸还是蓝色药丸,人们可以用数学来形式化这个概念,在所谓的条件平均治疗效果方面,所以它将作为输入,我要表示的是,如你所知,你在个人基线时的数据,它是,是协变量,个人的特征,人们想知道。
对这个人来说是什么,以我们对他们的了解,给他们一次治疗和给他们零次治疗有什么区别,从数学上来说,这对应于期望的差异,这是对y 1和y 0的期望值的差异,现在,我之所以称之为期望,就是,因为我不会假设。
y 1和y 0是确定性的,也许有一些坏运气的成分,比如一种药物通常对这种人有效,但你知道,抛硬币,有时它不起作用,这就是我所说的随机性,当我谈论y的概率时,所以凯特看到了这两种期望的差异。
然后一个可以形成,人们现在可以谈论平均治疗效果是什么,这就是这两者的区别,所以平均治疗效果现在是预期的,我会说,凯特对人的分配的期望,x的p,在接下来的十分钟里,我们将通过四种不同的方式来讨论这个问题。
然后你们要在布置家庭作业的时候再复习5种方法,你们要在星期五的背诵课上再复习两遍,所以如果你还没有得到它,和我在一起,这周末你会收到的,现在,在你观察到的数据中,你所看到的都是一个人。
你所看到的只是在一次干预下发生的事情,例如,如果,如果数据集中的第i个人接受的治疗TI等于1,然后你观察到的,为什么我是潜在的结果,另一方面,如果数据集中的个人接受治疗TI等于零。
那么你对那个人观察到的是潜在的结果y零,对呀,所以这就是,这是观察到的事实结果,但人们也可以谈论,这个人会怎么样,对他们做了相反的处理吗,注意到我只是把每个ti换成了一个减去ti,以此类推。
现在这个领域的关键挑战是在你的数据集中,你只观察事实结果,当你想为反事实推理时,这就是你必须归咎的地方,这个未被观察到的反事实结果,这就是所谓的因果推断的基本问题。
我们只观察到数据集中任何个体的两种结果中的一种,让我们看一个非常简单的例子,个体只有一个特征,他们的年龄,这两条曲线,我给你看的,这个人的血压会发生什么的潜在结果,如果你给他们零治疗。
这是蓝色曲线与治疗曲线,也就是红色曲线,所有的权利,所以让我们把蓝色曲线挖得更深一点,我们看到接受控制的人,我所说的零治疗,他们的血压很低,如果对于低的个人,对于年龄较高的个人,但对于中年人来说。
他们接受治疗时的血压在更高的范围内,另一只手,如果接受治疗的个人,是红色的曲线,所以年轻人有更高的,让我们说,治疗一的血压,所以人们可能会问这两种潜在结果之间的区别是什么,也就是说,凯特。
条件平均处理效果,只是看蓝色曲线和红色曲线之间的距离,所以对于特定年龄的人来说,比如说一个年轻人或一个很老的人,零次治疗和一次治疗之间有很大的区别,而对于一个中年人来说,差别很小,例如。
如果治疗1比治疗0便宜得多,那么你可能会说“好吧,给治疗一个”,即使你知道它不如零治疗好,但它便宜得多,它们之间的区别也很小,我们就给另外一个,但为了做出这种政策决定。
一个人当然必须明白条件平均治疗对那个人的影响,这就是我们想要用数据来预测的事情,现在我们并不总是得到个性化治疗建议的奢侈,有时我们必须给出一个政策,比如,比如说,我从幻灯片上取了这个例子。
无论如何我都会给你的,联邦政府可能会出台一项指导方针,说所有五十岁以上的男人,我让它成为那个数字,需要每年进行前列腺筛查以进行前列腺癌筛查,这是一个非常广泛的政策决定的例子,你可能会问,什么是。
这项政策现在对整个人口的影响是什么,让我们说,减少前列腺癌死亡率,这将是一个询问平均治疗效果的例子,所以如果你平均红线或者平均蓝线,你得到这两条虚线,我在那里展示,如果你看看它们之间的区别。
这是给予和给予之间的平均治疗效果,红色干预或给予蓝色干预,如果平均治疗效果非常非常积极,你可能会说,平均来说,这种干预是一种很好的干预,如果很消极,你可能会说相反的话。
现在从观察数据中进行因果推断的挑战是,我们当然不会观察到那些红色和蓝色的曲线,相反,我们观察到的是数据点,这些数据点可能分布在各地,就像,比如说,在本例中,在数据中,蓝色的待遇碰巧更多地给予年轻人。
在数据中,红色的待遇碰巧更多地给予老年人,这可能有各种各样的原因,这可能是由于获得药物而发生的,这可能是出于社会经济原因,它可能会发生,因为现有的治疗指南说老年人应该接受治疗,年轻人应该接受零治疗。
这些都是为什么在您的数据中,谁接受了什么治疗可能会在某种程度上有偏见,这正是从x到t的边所建模的,但对那些人中的每一个人来说,你可能想知道如果他们接受了另一种治疗会发生什么,这是在问反事实。
所以这些虚线圈是这些观察的反事实,顺便说一句,你会注意到这些点不在曲线上,不在曲线上的原因是,因为,我想指出,结果可能有一些随机性,所以虚线是预期的潜在结果,圆圈是它们的实现,所有的权利。
大家拿出一个计算器,或者你的电脑,或者你的手机,我把我的拿出来,这不是上Facebook的机会,只是想说清楚,你想要的只是一个计算器,我的电话打不通,哦好的,它有一个计算器,好,所有的权利。
所以我们要做一点运动,左手边有一个数据集,每一行都是一个单独的,我们在观察他们的年龄,间隔,年龄,性别,他们是否经常锻炼,我说是1还是0,他们得到了什么治疗,在最右边的A或B,有没有观察到的糖,葡萄糖。
糖含量,让我们说,我们想吃什么,看起来是这样的对吧,所以我们想知道这个人的血糖水平会发生什么,他们是否接受了药物治疗,或者他们是否接受了药物治疗b,但是如果你看看以前的,上一张幻灯片。
我们观察到每个人都得到了A或B,所以我们只知道每个人的一列,所以第一排,比如说,这个人接受了治疗,所以你会看到,我测量了那个人的血糖水平,由于他们接受治疗,观察到的水平代表潜在的结果y a或y 0。
好的,这就是为什么我有一个6,它在y 0下面用粗体表示,我们不知道他们的,那个人会怎么样,他们是否接受了治疗,如此,在这种情况下,一些神奇的生物来找我,告诉我他们,他们的糖含量应该是5。5。
但我们实际上不知道这不在数据中,让我们看看下一行,只是为了确保我们明白我在说什么,所以说,第二个人实际接受了治疗他们的储备糖含量是6。5,让我们做一个小小的调查,6。5个数字,应该在这一栏里吗。
举起你的手,还是应该在这一栏里,举起你的手,所有的权利,你们中大约有一半人答对了,的确,它到第二列,一次又一次,我们想知道的,是反事实,会发生什么,他们的糖含量是多少,他们接受了药物治疗吗。
A我们在数据中实际上没有观察到,但我要假设,你知道,假设有人告诉我是七点,然后你会看到那个值,它填满了那里,那是未被观察到的反事实,所有的权利,首先是,这是设置清楚,好了现在,这是你用的。
你的计算器,所以我们现在要,演示平均治疗效果的朴素估计器之间的差异,和真实的平均治疗效果,所以我想让你现在做的是,接受药物治疗的人的平均糖水平b,所以我们只用红线,红色的,好的。
所以这是以接受药物B为条件的,所以我们只打算,这相当于回到一个,并说我们只会在个人接受药物治疗的地方,我们要平均他们观察到的糖水平,每个人都应该这么做,第一个号码是多少?六点五加,六英尺,我得了7。
8分,七五,因为这是平均的概率,糖,因为他们接受药物治疗,B是其他人做对的,第二个数字呢,我现在要,我要去,我要你计算一下,好的,我要请大家在一分钟内大声说出来,如果你弄错了,你当然会感到尴尬。
所以我要自己试试,好的,数到三,我想让每个人都读出,第三个数字是一二三七,一二五,所有的权利,好,我们都可以做算术,这又是,我们只是在看这里的红色数字,只有红色的数字,所以我们只是计算了这个差异。
也就是一点七十五,是啊,是啊,看起来差不多,所有权利,所以这是一个正数,现在,让我们做点不同的事吧,好的,现在让我们计算实际的平均治疗效果,我们现在要平均,这一列中的每一个数字。
我们将平均这一列中的每一个数字,对吗,所以这是个人接受治疗后潜在结果下的平均糖水平b,这是个人接受治疗的潜在结果下的平均糖水平,所有权利,谁在做这件事,点七五点七五是什么,是啊,是啊,你怎么知道喜欢。
你说好,你动作真快,好的,让我看看你说的对不对,我其实不知道,好的,第一个是七十五好,我们做对了,我故意不把今天讲座的幻灯片贴上,第二个是负七十五,所有的权利,所以现在,让我们设身处地为政策制定者着想。
所有的权利,嗯,这是个好主意吗,或者假设它是一家保险公司,健康保险公司,健康保险公司正试图决定,我应该报销治疗费用吗,或者不是,好的,或者我应该简单地说不,我永远不会报销治疗费用,因为它不好用,对呀。
所以如果他们做了天真的估计,那将是第一个例子,那么它看起来就像药物B,我们想要更低的数字,所以看起来B药物比A药物更糟糕,如果你正确地估计了实际的平均治疗效果,你会得到完全相反的结论。
你得出药物B比药物A好得多的结论,这只是一个简单的例子,来真正说明条件反射和实际计算之间的区别,反事实,作为一个好的,所以希望你现在开始明白了,你会有更多的机会来解决这些问题,在你的家庭作业中。
任务等等,所以到现在,你应该开始怀疑,在这个世界上,我怎么能做任何事情,对,因为你实际上并没有观察到那些黑色的数字,对呀,这些都是未被观察到的,很明显,在价值观应该是什么方面存在偏见。
因为我一直在说的话,那么我们能做好什么呢,我们必须认识到的第一件事是,通常这是一个不可能解决的问题,你的直觉没有错,我们将不得不做出大量的假设,为了在这里做任何事情,所以第一个假设叫做sutva。
我甚至不打算谈论,你可以在阅读中读到这一点,我来告诉你这两个假设,更容易描述,第一个关键的假设是不存在未被观察到的,数学上的混杂因素,这意味着你的潜在结果,Y不在Y上,Y有条件地独立于治疗决定。
给定你在单个X上观察到的,现在这可能有点难,这叫做忽略能力,这有点难以理解,所以让我画一幅画,所以x你的协变量,挑逗你的治疗决定,现在我在这里为你们画了一个稍微不同的图表,我说x去t x,t去y。
但现在我没有你了,我有Y零和Y一,我对他们没有任何优势,这是因为现在我实际上使用了潜在结果符号,为什么零是这个人可能发生的事情的潜在结果,不得不接受零治疗,为什么一个是如果这个人接受治疗会发生什么。
因为你已经知道个体接受的治疗,谈论从t到那些值的边是没有意义的,这就是为什么那里没有边缘,所以你可能会想,你怎么可能违反这个条件独立假设,在我给你答案之前,让我给这些东西起几个名字。
所以我们可以把x看作是年龄,性别,重量,个人的饮食等,可能是药物,比如抗高血压药物,试图降低病人的血压,这将是这两种药物后的潜在结果,所以违反忽略能力的一个例子是如果有其他东西,一些隐藏的变量,h。
没有被观察到的,这将影响数据集中的个人接受何种治疗的决定,和可能的结果,而现在,应该很清楚这将违反有条件独立的假设,在这个图中,y not和y one与给定x的t不是条件独立的,所有的权利。
那么这些隐藏的混乱是什么呢,嗯,它们可能是东西,比如说,真正影响,也许有治疗指南说糖尿病患者,他们应该接受零治疗,那是正确的做法,因此,违反这一点将是,如果事实,病人的糖尿病没有记录在电子健康记录中。
所以你不知道那不在上面,你不知道,事实上,病人接受治疗T的原因是因为这个H因素,还有另一个关键的假设,也就是说h实际上会影响结果,对呀,这就是为什么你有这些从h到y的边,如果H是可能影响治疗决定的东西。
但不是实际的潜在结果,这可能会发生,当然,像性别这样的事情经常会影响治疗决定,但也许对于某些疾病来说,可能不会影响结果,在那种情况下,这不会是一个混杂因素,因为它不是,这并不违背这个假设,事实上。
人们将能够得出平均治疗效果的一致估计,在这个假设下,当你拥有这两个边缘时,事情就会变得糟糕,所以不能有这些H,你必须观察所有影响治疗和结果的事情,第二大假设,哦耶,实践中的问题,这个模特有多好。
我在这里给你看的高血压,我当然不知道,但我认为你问这个问题的真正目的是什么,这个模特有多好,我的天啊,我怎么知道我是否观察到了一切,这就是你需要开始与领域专家交谈的地方,所以这是我开始的地方。
我说不的地方,我不打算试图拟合因果图,我假设我知道因果图,试着估计一下效果,这就是这开始变得真正相关的地方,因为你知道,如果你注意到这是另一个因果图,不是我在黑板上画的那个,等等。
这是我们真正和他们谈论的事情,和专家将是相关的,所以如果你说,好的,我将学习高血压,这是我在病人身上观察到的数据,然后你可以去看临床医生,也许是经常治疗高血压患者的初级保健医生,你说,好的。
通常影响你治疗决定的是什么,你得到一组变量,然后你检查以确保我有所有这些我观察到了吗,所有这些变量,至少也会影响结果的变量,在谈话中经常会有一个来回,以确保您正确地设置了问题,并再次。
这是你看到关键区别的一个领域,在我们进行因果推断的方式之间,从我们做机器学习的方式,机器学习,如果有一些未观察到的变量,所以我的意思是,也许你的预测准确性并不像它本可以的那样好,但不管怎样。
你的结论可能是完全错误的,如果你没有得到那些混杂的因素,我们会触及它,非常摊位和星期四,但是这门课的时间不多,我会谈谈方法,您将阅读有关评估健壮性的方法,违反这些假设,这些被称为敏感性分析,例如。
你可能会问的问题类型是,我的结论会如何改变,如果有一个混杂的因素,这是人们可以试着从数据中回答的问题,嗯,但这真的开始超出这门课的范围了,所以我会给你一些关于它的读数,但我不能在讲座上谈论它,现在。
一个人需要的第二个主要假设是所谓的共同支持,顺便说一句,请注意这里,因为,嗯,在今天的讲座结束时,如果我忘记了,一定要有人提醒我,我要问你,这两个假设是从哪里来的,在我即将给你的证据中。
第一个我要给你一个死,获得赠品,所以我要回答你忽略能力的问题,但这取决于你来决定从哪里来,支持出现,那么什么是共同支持,嗯,共同的支持说了什么,在治疗决定中总是有一些随机性,比如说,在您的数据中。
病人只接受治疗a,没有病人接受治疗b,然后呢,你永远无法弄清楚反事实,如果病人接受治疗会发生什么,但如果它不是那么普遍会发生什么,但也许有阶级的人,你知道吗,一些人,比如说蓝头发的人,蓝头发的人。
蓝发总是接受零治疗,他们从来没有看到这些人得到很好的治疗,如果出于某种原因,他们有蓝色头发也会影响他们对治疗的反应,然后呢,你不能回答任何问题,关于那些人的反事实,这就是所谓的倾向得分。
它是每个人接受某种治疗的概率,我们假设,这个倾向得分总是在零到一右之间,所以它在1减去ε和ε之间,对于一些小的,Epsilon,违反这一假设将完全无效,我们能从数据中得出的所有结论。
现在在实际临床实践中,你可能会想,这能坚持住吗,因为有临床指南,嗯,你会看到的几个地方如下所示,首先,经常,有些场景我们一点也不知道,如何治疗二线糖尿病患者,对呀,你知道我们首先用的是二甲双胍。
但是如果二甲双胍不能帮助控制病人的葡萄糖值,有几种二线治疗方法,现在我们真的不知道该尝试哪一个,所以临床医生可能会从一个类别开始治疗,如果这不起作用,你尝试不同的类等等,而且有点随机,对于任何一个病人。
您从哪个类开始,在其他设置中,可能会有很好的临床指南,但在其他方面也有随机性,比如说,在西海岸接受培训的临床医生可能会接受培训,这是正确的做事方式,在东海岸接受培训的临床医生可能会接受培训。
这是正确的做事方式,所以嗯,即使任何一个临床医生是这种治疗决定是确定性的,在某种程度上,你会看到临床医生的一些随机性,在你的分析中如何使用这一点有点微妙,但相信我,这是可以做到的,好的。
所以如果你想从观察数据中进行因果推断,你必须首先从数学上把事情形式化,就你的x而言,你的T是什么,你的Y是什么,你得想清楚,做这些选择,满足这些忽略能力的假设,并重叠其中的一些东西,您可以签入您的数据。
忽略能力,您不能显式签入数据,但是重叠这个东西,你可以在你的数据中测试,顺便说一句,一个想法,另一个今天没说话的人,所以你只要回想一下前面的例子,对呀,你有这个,你有一张轴的桌子,处理A或B与糖值。
你怎么会,你会如何测试,这可以使用预先的方法,就像数数有多少东西出现,如果没有,那么你可以说它被侵犯了,所以你有这张桌子,我回那张桌子去,我们有这张桌子,你知道,这些是你的斧头。
实际上我们会回到上一张幻灯片,在那里更容易看到,在这里我们将忽略结果,糖的含量是正确的,因为记住这只与治疗的概率有关,给定你的协变量,Y根本没有出现在这里,所以右手边的这个东西。
观察到的糖含量是无关紧要的,对于这个问题,我们关心的是这里发生了什么,所以我们看这个,这些是你的斧头,这就是你的治疗,你可以看看,好的,这里有一位75岁的男性他经常锻炼并接受治疗,数据集中还有其他人吗。
他是75岁的男性,经常锻炼,但接受治疗,是或否,否,好的,所以这里不满足重叠,至少不是经验上的,现在你可能会说我在这里有点太粗鲁了,对,我很好,如果这个人已经74岁了,接受了治疗,会发生什么,b。
可能已经够近了吧,所以在评估这些事情时开始变得微妙,当您有有限的数据时,但这是最基本的东西,你可以开始使用数据来评估,而不是忽视能力,你不能用数据来测试好吧,所以你要考虑,这些假设是否得到满足。
只有当你开始思考这些问题时,你能开始做你的分析吗,所以现在让我进入这节课的下一部分,这就是我们现在如何相信,戴维,相信这些假设成立,我们如何进行因果推断,我得到的问题,你知道能力。
如果你知道一些病人喜欢健康的病人不太可能得到任何治疗,我们应该把它们去掉吗,基本上,所以问题是会发生什么,如果您违反了重叠,例如,你有一些人,你知道健康的人从来没有接受过任何治疗。
是否应将它们从数据集中删除,嗯,首先它与,你如何正式提出这个问题,因为不接受治疗是一种治疗,所以那可能是你的控制臂,现在我想说清楚,如果你问两种治疗方法的区别,一种疾病的两种不同的治疗方法,嗯。
然后通常会定义相关的包含标准,以便,为了保持这些条件,比如说,我们可以试着重新定义我们所询问的个体,使重叠保持不变,但在这种情况下你必须确保你的政策也被修改了,你说,好的,我的结论是。
对这种类型的人来说,平均治疗效果是废话,那么我们如何从数据中计算平均治疗效果,从数学上记住平均治疗效果,是潜在结果y1减去y0之间的期望值,我们将使用的关键工具来估计,这就是所谓的调整公式。
这在统计界有很多名字,比如这里的g公式,我给你一个推导,我们首先要认识到这个期望实际上是两个期望,合二为一,这是对个人x的期望,这是对潜在结果的期望,y给定x,所以我首先要把这两个期望写出来。
我会写下期望,喜欢在外面演戏,这就是完全期望定律,不你知道这是这是微不足道的在这个阶段,好的,顺便说一下,我正在写x,对Y一的期望,几分钟后,我将向你们展示Y零的Xation,但现在会完全相似。
下一步是我们使用忽略能力的地方,所以我告诉过你我要把它送人,所以要记住,我们说过,我们假设你有条件地独立于治疗,在给定x的情况下,这意味着,等于y的概率1给定x,逗号t等于任何,在这种情况下。
我说t等于一,这意味着y 1有条件地依赖于给定x的t,所以我可以用逗号,t在这里等于1,这显然是因为忽略能力持有,但现在我们在一个非常好的地方,因为注意这里我刚刚做了一些简短的记号。
我只是要隐藏这种期望,顺便说一句,你可以对Y零做同样的事情,你一个,y零,现在请注意,我们可以用这个期望来代替这个平均治疗效果,对所有个人,y的期望值的x给定x,逗号t等于1以此类推。
这些都是我们现在可以从数据中观察到的数量,所以,比如说,我们可以观察接受治疗的人,对于那些我们知道的人,我们意识到了你,我们可以观察接受零治疗的个人,对于这些人,我们意识到y为零,我们可以平均这些实现。
得到相应预期的估计,好吧,所以我们可以很容易地从我们的数据中估计,所以我们取得了进展,我们现在可以从我们的数据中估计其中的一部分,但是请注意,有些事情我们还不能从我们的数据中直接估计,特别是。
我们不能估计y 0的期望值,给定x逗号t等于1,因为我们不知道这个得到治疗的人会发生什么,如果他们得到了零治疗,所以这些我们不知道,同样的,所以好吧,所以这些我们不知道,现在我对你玩的把戏是什么。
我们能做好这件事有什么帮助,关键是我们可以从数据中估计的这些数量显示,在那个术语中,特别是,如果你看看你所取样的个人行为,从全套个人中,对于单个x,x的p,实际上我们观察到T等于1。
那么我们可以估计y 1的期望值,给定x公共t等于1,对于y 0也是如此,但我们需要做的是推断,因为从经验上讲,我们只有从x的p给出等于1的样本,给定t,x的p等于零,对于这两个潜在的结果,相应地。
但我们也要得到表演的样本,这样,对于数据集中的那些人,你可能有,你可能只观察到t等于零,并计算这个公式,你必须回答那个X,如果他们得到等于1的治疗会是什么,所以我们有,会有一组个体,我们必须推断。
以便将此调整公式用于估计数,是的,我以为,因为共同的支持是真的,我们有一些病人接受了给定类型X的每种治疗,但现在如此如此是的,那倒是真的,嗯,但这是一个关于无限数据的陈述,在现实中,人们只有有限的数据。
所以,尽管在某种程度上必须保持共同的支持,你不能只是在此基础上发展,说你总是观察每个人的反事实,就像我之前给你看的照片,所以我要离开它,我要把这张幻灯片再放一秒钟,让它沉入其中,看看它在说什么。
我们从计算平均治疗效果的目标开始,y一减y零的期望值,使用调整公式,我们现在得到了一个等价的表示,这是现在的期望,对于从期望值为y 1的x的p中取样的所有个体,给定x逗号t等于1,y零期望值。
给定x逗号t等于零,对于一些个体,你可以观察到这一点,对于其中一些,你必须推断,所以现在有很多尝试,从这里开始,有很多方法可以让你的问题停留一会儿,你会听说过的因果推断方法的类型,包括协变量调整。
倾向评分魏,双鲁棒估计器,匹配,等等,这些都是因果推断贸易的工具,在本课程中,我们只讨论前两个,今天的课我们只讲第一个,协变量调整,星期四我们将讨论第二个,所以协变量调整是一种非常自然的方法来进行外推。
它也被称为响应面建模,我们要做的是学习函数f,它以x和t为输入,它的目标是预测Y,如此直观,你应该把f看作是条件概率分布,给定x和t,它预测y,所以T将是机器学习算法的输入,它将预测这个人的潜在结果。
所以这只是上一张幻灯片,我们现在要做的是,这就是现在我们对机器学习的简化,我们将使用经验风险最小化,或者是一些正则的经验风险最小化来拟合函数f,它近似y t的期望值,给定资本t等于小t,得到了我的X。
一旦你有了那个功能,我们将能够用它来估计平均治疗效果,通过比较,但只要在这里实现这个公式,所以我们首先要做一个期望,关于数据集中的个人,对呀,所以这是,我们将用一个经验预期来近似它。
我们对数据集中的小N个个体求和,那么我们要做的是计算,因为这接近于y 1的期望值,给定t逗号x t等于一个逗号x,我们将近似第二项,刚刚插上电源,T为零而不是一,我们要把它们之间的区别。
这将是我们对平均治疗效果的估计,这里是问问题的自然场所,你知道的,您可能想知道的一件事是在您的数据集中,你确实为那个人观察到了一些东西,好的,请注意,您的原始数据根本没有显示在这里,因为我做过机器学习。
然后我扔掉了观察到的y,我用了这个估计器,所以你可以做一个替代的公式,顺便说一句,这也是一个一致估计器,将是使用观察到的Y来表示任何事实,和使用f的反事实的估算y,这也是一个一致的估计,平均治疗效果。
你可以做任何一个,有时你对平均治疗效果不感兴趣,但你实际上对了解人口的异质性感兴趣,嗯,这也给了你一个机会来探索异质性,所以对于每个人来说,你可以看看f对治疗1的预测,如果治疗为零,F预测什么。
两者之间的区别是你对你的条件平均治疗效果的估计,例如,我们想为这个人弄清楚,我们的最佳策略是什么你可能会看到凯特是积极的还是消极的,还是大于某个阈值,比如说,所以让我们看一些图片,现在我们用的是。
我们用函数f,为了把那些反事实的东西,现在我们观察到了,我们实际上可以计算和平均你可以估计的,现在平均治疗效果,就是,好,那么这会出什么问题呢,那么你是什么意思,有偏见的第一,3。
我会要求你们找到报纸上看到的东西,我们玩了Bunya和哮喘患者,是啊,是啊,我想我会做一个新的信息,但更多的是因为他们已经,哦,非常感谢你带来后援,从几个星期前开始,我们谈到的地方。
使用纯机器学习算法试图预测医院环境中的结果,特别是对于急诊科的肺炎患者,如果你们都记得,有一个哮喘的例子,哮喘患者被预测有更好的结果,比没有哮喘的病人,你说这是偏见,但如果你还记得我说过这件事的时候。
我称之为偏见,由于一件特定的事情,我用的是什么语言,我说的是由于干预而产生的偏见,也许就是我所说的,我记不清我到底说了什么,所以说,弥补一下,现在教科书将通过干预带偏见地编写,好的。
所以问题是他们没有正式确定一个,他们没有正确地形式化预测问题,他们应该问的问题是,你真正想问的是X的问题,为哮喘患者做的,所以这篇论文的失败之处在于它忽略了因果推理问题,隐藏在数据中的。
它只是预测y给定x在t上的边际化,所以T从来没有在预测模型中,说了不同的话,他们从来没有问过反事实的问题会发生什么,你做了不同的T吗,然后他们仍然用它来指导一些治疗决定,就像,比如说。
你应该送这个人回家吗,或者你应该留着仔细监控之类的,所以他们用的是这个,这是完全相同的例子,正如我在讲座开始时所说的那样,在那里我说,如果你只是使用风险分层模型来做出一些决定,你冒着做错误决定的风险。
因为那些决定,因为这些预测是有偏见的,因为你的数据中的决定,所以这里不会发生这种事,因为我们在所有的分析中都明确地考虑了T,我们使用的数据集,就像耶,治疗信息有多少,它模仿了一吨多少治疗信息。
所以事实上,下周的阅读之一,将是试图理解如何管理败血症,这是一种由感染引起的疾病,由,比如说,给予广泛,广谱抗生素,给液体,给嗯,压力机和通风机,所有这些都是干预,所有这些干预都记录在数据中。
这样人们就可以从数据中提出反事实的问题,就像这个病人会发生什么,他们是否收到了一套不同的干预措施,我们会延长他们的寿命吗,比如说,在重症监护室里,我们想问的大部分问题,不是全部,而是许多。
或者关于动态处理,因为这不仅仅是一种单一的治疗,而是一系列针对当前患者状况的治疗,所以这就是我们下周真正开始研究这种材料的地方,不是在今天的讲座中,确保您的函数真的有效,关系是一个惊人的问题。
你整个课程都在哪里,谢谢你的邀请,所以我会重复一遍,你怎么知道你的函数f实际上了解了,输入x和治疗t与结果之间的关系,这就涉及到我的缩减是否有效的问题了,所以我采取了,我已经接受了这个问题。
我把它简化为机器学习问题,我获取数据的地方,和,从字面上看,我只是学习了一个函数f,试图很好地预测数据中的观察结果,我们怎么知道函数f实际上在估计某物方面做得很好,像一般的待遇,事实上,事实上。
它可能不会,这就是事情开始变得非常棘手的地方,特别是对于高维数据,因为这可能会发生,比如说,你的治疗犹豫不决只是影响结果的众多因素之一,y,可能有一个更重要的因素隐藏在X中,因为你没有太多的数据。
因为你必须规则化你的学习算法,假设用l1或l2正则化,或者可能因为使用深度神经网络而提前停止,您的算法可能永远不会了解对T的实际依赖,它可能会学会扔掉t,只用x来预测y,如果是这样的话。
你永远无法准确地推断出这些平均治疗效果,你会有很大的错误,这又回到了我跳过的一张幻灯片上,我从这张照片开始,这是机器学习图片,说着,好的,对机器学习的简化,是你吗,现在您添加了一个附加功能。
这是你的治疗决定,你知道黑匣子函数f,但这就是机器学习的地方,因果推断开始不同,因为我们实际上并不关心,预测Y正确的质量,我们可以测量你的根,预测Y的均方误差,考虑到你的X和T,这个误差可能很低。
但你可能会遇到这些故障模式,它完全忽略了T,比如说,所以T在这里很特别,对呀,所以真的,我们想要记住的图景是T是一些感兴趣的参数,对呀,我们想学一个F模型,这样,如果我们旋转T。
我们可以看到基于Twitter T对Y的差异效应,这才是我们真正关心的,所以这真的是差距,对吧,这就是我们今天理解的差距,这确实是一个活跃的研究领域,你如何改变整个机器学习范式来认识到。
你实际上对一些不同的东西感兴趣,顺便说一句,这是我实验室研究的一个主要领域,我们刚刚发表了一系列论文试图回答这个问题,超出本课程范围,但如果有人感兴趣,我很乐意把这些文件寄给你。
那种类型的问题是极其重要的,它没有那么多出现,当你的x不是很高维的时候,在像正规化这样的事情变得不重要的地方,但是一旦你的X变得高维,一旦你想在试穿过程中考虑越来越复杂的f,就像你想用深度神经网络。
比如说,这些目标上的差异变得极其重要,所以还有其他失败的方式,所以我想在这里给你们举一个例子,在哪里,拍摄,我在回答我的问题,哈哈哈哈哈,好的,没人看到那个幻灯片问题,重叠假设在哪里出现。
在我们用协变量调整估计平均治疗效果的方法中,我要回到公式,今天没说话的人,希望,你可能错了,没事的,是啊,是啊,在后面,同一个地方接受治疗的版本,所以也许有一个年龄较大的人。
我们希望能够看到F和F之间的区别,如果他们接受治疗A而不是治疗B,对该个体的预测,或一或对零,和,让我试着引导一下,嗯,它可能发生在您的数据集中,对于那个人来说,我们只为像他们这样的人,只有你。
你只观察过治疗一,甚至没有人像他们一样,你观察谁治疗零,这个函数要输出什么,然后当你为第二个参数输入零时,如果你在你的数据集中,那么这个函数对于那个人来说基本上是未定义的,我是说,是啊,是啊。
你的函数会输出一些东西,因为你适合它,但这不会是正确的答案,对,这就是这个假设开始出现的地方,当人们谈到学习这些函数的样本复杂性时,f做协变量调整,当人们谈到这些论点的一致性时,比如说,您希望能够声称。
随着数据量的增长,让我们假设无限,这是正确的答案,给你正确的估计,所以这就是证明的类型,这在因果推理文献中经常给出,如果你有重叠,然后随着数据量的无穷大,你会观察到像接受治疗的人这样的人。
你会保留一个也接受零治疗的人,你可能需要大量的数据才能到达那里,因为零号治疗可能比一号治疗更不可能,而是因为治疗的概率为零不是零,最终你会看到那样的人,所以最终你会得到足够的数据来推断。
所以这就是一致性的地方,这就是重叠的地方,给出这种一致性的论点,当然啦,在现实中,你永远不会有无限的数据,所以这些关于在你拥有的数据量和,事实上,你从来没有真正,与少量数据有经验重叠。
并回答什么时候你能正确地推断,尽管如此,这是一个需要回答的关键问题,但顺便说一句,在文献中没有得到很好的研究,因为在这个领域,人们通常不会考虑样本的复杂性。
这就是计算机科学家可以开始真正为文献做出贡献的地方,把我们在机器学习中经常思考的事情带到这个新的话题中,我还有几分钟,还有其他问题吗?还是我应该在一分钟内介绍一些新材料,所以你说。
这里的平均治疗效果估计器是一致的,但这有关系吗,如果我们选择了错误,必须选择一些功能形式的特征来达到效果,大问题坚持,即使我们选择了一种完全错误的,不不不,你在问所有的问题,今天干得好。
每个人都如此如此,如果你觉得,如果你回顾一下我的论点,我首先假设两件事,你观察到足够的数据,这样你就可以,嗯,有任何机会推断出正确的,但在这个陈述中隐含的是,你选择了一个函数族,它足够强大。
可以正确地推断,所以如果你的真正功能是没有的,如果真函数,如果你回想一下这个,我给你们看的这个图,你知道如果真正的潜在结果函数是这些二次函数,你用线性函数拟合它们,那么不管你有多少数据。
你总是会得到错误的估计,对呀,所以这个论点的类型确实需要你考虑越来越复杂的问题,非线性是随着数据量的增长,所以现在这里有一个可能出错的视觉描述,如果你没有重叠,所以现在我拿出了,你知道吗。
以前我在这里有一两个红点,这里有一两个蓝点,但我已经把那些拿出来了,所以在你的数据中,你只有这些蓝点和那些红点,这样人们就可以尝试,你知道的,所以你所拥有的只是分数。
现在人们可以学习你能想象到的尽可能好的功能,让我们说,最小化均方误差,预测这些蓝点,并将预测这些红点的均方误差降至最低,你可能会得到一些你知道的东西,也许你决定一个线性函数,因为这有点,你知道尽你所能。
如果你只有那些红点,所以你知道,即使你愿意在这里考虑越来越复杂的假设类,你知道的,如果你试着考虑一个比这一行更复杂的类怎么样,你可能只是过度适应你所拥有的数据,所以你决定在这条线上因为这里没有数据。
你甚至不知道这与数据不太吻合,对呀,然后你注意到你得到了完全错误的估计,比如说,如果你问一个年轻人,它在这里会有错误的标志,因为他们把两个翻转了。
这两条线,这是一个如何开始出错的例子,当我们开始周四的讲座时,我们将从今天中断的地方继续,我会谈谈,我会更详细地谈谈这个问题,我将讨论如果一个人学习一个线性函数,人们如何在真正的潜在结果是线性的假设下。
如何实际解释线性函数的系数,以因果的方式,在两个潜在结果是线性的非常强的假设下,这就是我们周四要讲的。