人工智能对抗新冠肺炎:早期评论
人工智能尚未产生影响,但数据科学家已经接受了挑战
来源:Pixabay
简介
由新型冠状病毒病毒引起的新冠肺炎病于 2019 年 12 月在中国被发现,并于 2020 年 3 月 11 日被世卫组织宣布为全球疫情。人工智能(AI)是对抗新冠肺炎疫情的潜在强大工具。就目前的目的而言,人工智能可以定义为机器学习(ML)自然语言处理 (NLP)和计算机视觉应用程序,以教会计算机使用基于大数据的模型进行模式识别、解释和预测。这些功能可用于识别(诊断)、预测和解释(治疗)新冠肺炎感染,并帮助管理社会经济影响。自从疫情爆发以来,为了这些目的,出现了使用和探索人工智能和其他数据分析工具的热潮。
在这篇文章中,我提供了一个早期的回顾,讨论了人工智能对抗击新冠肺炎的实际和潜在的贡献,以及这些贡献目前的制约因素。它旨在从快速扩展的讨论和不断增加的工作中快速获取信息,以便为研究、政策和医学分析中的快速响应提供投入。疫情在生命和经济损失方面的代价将是可怕的;在撰写本文时,对于非药物和药物反应究竟有多糟糕以及有多成功的估计存在很大的不确定性。改进人工智能是过去十年左右开发的最有前途的数据分析工具之一,以帮助减少这些不确定性,是一项值得追求的目标。令人鼓舞的是,数据科学家已经接受了挑战(这意味着这篇论文的保质期可能很短)。
关键要点如下。我发现人工智能还没有对新冠肺炎产生影响。它对人工智能的使用受到缺乏数据和太多噪音和离群数据的阻碍。克服这些限制将需要在数据隐私和公共健康问题之间保持谨慎的平衡,以及更严格的人机交互。在目前的疫情时期,这些问题不太可能得到及时解决,也不会有多大帮助。相反,AI 可能“帮助下一个疫情”。与此同时,收集关于谁具有传染性的诊断数据对于拯救生命和限制围堵造成的经济浩劫至关重要。
AI 对新冠肺炎的实际和潜在贡献
人工智能可以在六个领域为抗击新冠肺炎做出贡献:I)早期预警和警报,ii)跟踪和预测,iii)数据仪表板,iv)诊断和预后,v)治疗和治愈,以及 vi)社会控制。
预警和警报
加拿大人工智能模型蓝点的案例已经成为传奇。它说明了一个相对低成本的人工智能工具( BlueDot 由大约 900 万美元的启动投资资助)可以在发现传染病爆发方面超越人类。根据账户 , 蓝点在 2019 年底预测到了感染的爆发,并在 2019 年 12 月 31 日向其客户发出了警告,早于世界卫生组织在 2020 年 1 月 9 日发出的警告。与蓝点合作的研究人员还在 2020 年 1 月 14 日的旅行医学杂志上发布了一份通知,其中列出了武汉乘客将到达的前 20 个目的地城市。它警告说,这些城市可能处于疾病全球传播的最前沿。
虽然蓝点毫无疑问是一个强大的工具,但它受到的许多宣传都有些夸大和低估了人类科学家的作用。首先,当蓝点在 2019 年 12 月 31 日发出警报时,美国波士顿儿童医院的另一个基于人工智能的模型 HealthMap 甚至更早,在 2019 年 12 月 30 日发出警报。此外,仅在此之后 30 分钟,一名科学家在监测新出现疾病的项目中发出了警告。虽然基于人工智能的模型只快了 30 分钟,但它对疫情爆发的重要性非常低。本质上,它需要人的解释和提供环境来识别威胁。此外,正如蓝点的创始人卡姆兰·可汗在本期播客中解释的那样,即使在蓝点的案例中,人类仍然是评估其产出的核心。因此,强调人工智能的最佳应用需要来自不同学科的人工输入是正确的。**
跟踪预测
人工智能可以用来跟踪(包括临近预报)和预测新冠肺炎病将如何在时间和空间上传播。例如,在 2015 年寨卡病毒的疫情之后,开发了一个动态神经网络来预测 T21 的传播。然而,像这样的模型需要使用来自新冠肺炎疫情的数据进行重新训练。这似乎正在发生。在卡耐基梅隆大学,训练来预测季节性流感的算法现在正根据来自新冠肺炎的新数据进行重新训练。
各种各样的问题困扰着对疫情将如何传播的准确预测。这些包括缺乏训练人工智能的历史和无偏见的数据;导致社交媒体上“噪音”的恐慌行为;以及新冠肺炎感染的特征不同于以往大流行的事实。不仅缺乏历史数据,而且使用“大数据”(如从社交媒体收集的数据)也存在问题。
在这里,传染病背景下大数据和人工智能的陷阱仍然存在,正如臭名昭著的谷歌流感趋势的失败所表明的那样。大卫·雷泽、瑞恩·肯尼迪和亚历山德罗·维斯皮亚尼在 2014 年发表在科学上的一篇论文中将这些称为“大数据狂妄和算法动力学”例如,随着感染的继续传播和周围社交媒体流量的积累,噪音的数量也在积累,必须经过过滤才能看出有意义的趋势。对于依赖于过去行为的预测工具来说,像新冠肺炎这样拥有大量新的和前所未有的数据的全球异常事件被 Ian Rowan 描述为“现代人工智能方法的氪石”,这不仅会影响传染病的预测,还会影响所有的预测模型,包括金融、经济中的预测模型。正如他解释的那样,“许多行业将会把人类拉回到被模型从他们手中夺走的预测椅子上”。
应对大数据傲慢和算法动态的一种方式是通过社交媒体上的内容节制。由于封锁措施导致人员减少,谷歌(YouTube)和脸书(T1)等大型社交媒体平台已经开始更密集地使用人工智能来进行内容审核,包括检查 T2 的假新闻。更多地依赖人工智能进行内容审核暴露了一个事实,即人工智能在这方面仍然做得很差。YouTube 承认在内容审核中更广泛地使用人工智能是“容易出错的”这再次说明了人工智能需要人类的投入和指导。
由于缺乏数据,太多的离群数据和嘈杂的社交媒体,大数据傲慢和算法动力学,人工智能对新冠肺炎传播的预测还不是非常准确或可靠。因此,到目前为止,大多数用于跟踪和预测的模型都而不是使用人工智能方法。相反,大多数预测者更喜欢已建立的流行病学模型,即所谓的 SIR 模型,SIR 模型是一个缩写,代表一个地区的人口是可接受的、可感染的和可移动的。
例如,牛津大学人类未来研究所根据流行病学模型提供了病毒传播的预测。总部位于三藩市的 Metabiota 公司提供一种流行病跟踪器和一种疾病传播的短期预测模型,他们用这种模型来预测 T21。牛津大学数学家汤姆·克劳福德在最近的 YouTube 视频中对这些 SIR 模型做了简短的解释。
柏林的罗伯特·科赫研究所使用了一个流行病 SIR 模型,该模型考虑了政府的遏制措施,如封锁、隔离和社会距离处方。他们的模型在这里被解释为,在这里被解释为。一个类似的扩展 SIR 模型,考虑了针对疫情的公共卫生措施,并使用了来自中国的数据,最近已经预先发布并以 R 格式提供。罗伯特·科克研究所的模型早些时候被用于中国的案例,以说明遏制措施可以成功地将传播速度降低到低于指数速度。
跟踪和预测新冠肺炎的传播是公共卫生当局规划、准备和管理疫情的宝贵数据输入。并评估他们在流行病学曲线上的位置,以及他们是否成功地拉平了这条曲线。它还可以粗略反映为减少或减缓传播而采取的措施可能产生的影响。例如,罗伯特·科赫研究所预测,到 2020 年 3 月 28 日,荷兰的感染人数将达到 10,922 人。根据约翰霍普金斯大学 CSSE 的数据,在这个时候,荷兰的感染患者总数低于预期,为 8647 人。这可能会加强政府的做法有助于减少感染增长的论点。
数据仪表盘
对新冠肺炎的跟踪和预测导致了一个可视化疫情的数据仪表板行业的出现。《麻省理工技术评论》对这些跟踪和预测仪表板进行了排名。他们将最上面的仪表盘排列为 UpCode 、 NextStrain 、约翰霍普金斯、JHU CSSE 、 Thebaselab 、英国广播公司、纽约时报、健康地图。其他值得注意的仪表盘包括微软必应的人工智能跟踪器。
必应的新冠肺炎追踪器截图,2020 年 3 月 31 日
虽然这些仪表板提供了全球概况,但越来越多的国家已经有了自己的仪表板;例如,南非建立了由比勒陀利亚大学数据科学促进社会影响研究小组维护的 COVID 19 ZA 南非仪表板。
为了促进疫情的数据可视化和仪表盘的制作,Tableau 已经创建了一个新冠肺炎数据中心和一个新冠肺炎初级工作簿。Tirthajyoti Sarkar 发表了一个 Python 脚本来说明如何从《纽约时报》的新冠肺炎数据集中提取数据,以创建感染进展的数据可视化。 Amanda Makulec 呼吁对新冠肺炎数据进行负责任的可视化,并列举了“可视化新冠肺炎数据时的十大考虑因素”。
诊断和预后
快速准确地诊断新冠肺炎病毒可以挽救生命,限制疾病的传播,并生成用于训练人工智能模型的数据。人工智能可以在这方面提供有用的输入,特别是基于图像的医疗诊断。根据联合国全球脉动的研究人员最近对新冠肺炎的人工智能应用的审查,研究表明,人工智能可以像人类一样准确,可以节省放射科医生的时间,并且比新冠肺炎的标准测试更快,更便宜。X 射线和计算机断层扫描(CT)都可以使用。 Adrian Rosebrock 提供了一个关于如何使用深度学习通过 X 射线图像诊断新冠肺炎的教程。他指出,新冠肺炎的检查“供应不足且价格昂贵,但所有医院都有 x 光(或 CT)机”。 Maghdid 等人。(2020)提出了一种使用手机扫描 CT 图像的技术。
这方面的几项举措正在进行中。一个名为 COVID-Net 的人工智能已经被开发出来,可以利用来自包括新冠肺炎在内的各种肺部疾病患者的数据,在胸部 x 射线中诊断新冠肺炎。在中国,武汉人民大学的研究人员发表了一个人工智能模型(尚未经过同行评审),用于从 CT 扫描中诊断新冠肺炎,结论是“深度学习模型显示出与专家放射科医生相当的性能,并大大提高了放射科医生在临床实践中的效率。它具有极大的潜力来缓解一线放射科医生的压力,改善早期诊断、隔离和治疗,从而有助于控制疫情。
另一个正在进行的努力的例子包括荷兰代尔夫特大学的研究人员发布了一个通过 X 射线诊断新冠肺炎的人工智能模型。这个被标记为 CAD4COVID 的模型是“一个人工智能软件,它在胸部 x 光图像上对新冠肺炎嫌疑人进行分类”。它依赖于之前由结核病诊断大学开发的人工智能模型。
人工智能在诊断方面的潜力尚未付诸实践,尽管有报道称一些中国医院已经部署了“人工智能辅助”放射技术。然而,放射科医生表达了他们的担忧,即没有足够的数据可用于训练人工智能模型,大多数可用的新冠肺炎图像来自中国医院,可能存在选择偏差,使用 CT 扫描和 X 射线可能会污染设备并进一步传播疾病。事实上,在疫情崩溃后,CT 扫描在欧洲医院的使用已经下降,也许反映了这种担忧。
最后,一旦在一个人身上诊断出这种疾病,问题是这个人是否会被感染以及感染的程度如何。并非所有被诊断患有新冠肺炎的人都需要重症监护。能够预测谁将受到更严重的影响,有助于确定援助目标,规划医疗资源的分配和利用。中国华中科技大学的研究人员已经使用 ML 开发了一种预后预测算法来预测某人感染后存活的可能性。来自温州和纽约的一组研究人员准备了一个人工智能,它可以以 80%的准确率预测哪些新冠肺炎患者将会患上急性呼吸窘迫综合征(ARDS)。然而,他们用来训练人工智能系统的样本很小(只有 53 名患者),并且仅限于两家中国医院。
总之,应用人工智能来诊断新冠肺炎,并对患者的病情发展做出预测,已经激发了许多研究工作,但尚未广泛应用。正如 Devan Coldeway 总结的那样,“今年春天没有人会被人工智能医生诊断为冠状病毒”在将人工智能用于非常早期的诊断目的方面,似乎也付出了相对较少的努力,例如,在 x 光或 CT 扫描显示之前识别某人是否被感染,或者寻找污染风险较小的数据驱动的诊断方法。
治疗和治愈
甚至在新冠肺炎病毒爆发之前很久,人工智能就因其对新药发现的潜在贡献而受到称赞。在新冠肺炎的案例中,许多研究实验室和数据中心已经表示,他们正在招募人工智能来寻找新冠肺炎的治疗方法和疫苗。希望人工智能可以加速发现新药的过程以及重新利用现有药物的过程。
例如,谷歌的 DeepMind 预测了病毒蛋白质的结构——这一信息可能有助于开发新药。然而,正如 DeepMind 在其网站上明确表示的那样,“我们强调,这些结构预测尚未得到实验验证……我们无法确定我们提供的结构的准确性。”
来自韩国和美国的研究人员发表了使用 ML 鉴定现有药物 atazanavir 的结果,该药物可能被重新用于治疗新冠肺炎。英国人工智能初创公司 Benevolent AI 和帝国理工学院的研究人员在 The Lancet 上发表了一篇论文,将用于类风湿性关节炎和骨髓纤维化的药物 Baricitinib 确定为新冠肺炎的一种潜在疗法。隶属于新加坡公司 Gero 的研究人员利用深度神经网络,确定了许多现有的实验性和批准的药物,包括 Afatinib ,一种肺癌治疗药物,可能用于治疗新冠肺炎。–然而,他们的论文还没有经过同行评议。
在不久的将来,这些治疗方法(或许还有治愈方法)不太可能出现,至少在当前的疫情期间不会有太大用处。原因是,一旦这些药物被识别和筛选,在这些药物被批准之前需要进行的医学和科学检查、试验和控制将需要花费 T2 时间,根据估计,一种疫苗需要 18 个月。
社会控制
人工智能已经并可以进一步用于管理疫情,通过扫描公共空间寻找潜在的感染者,并通过实施社交距离和封锁措施。例如,正如《南华早报》所描述的那样,在中国各地的机场和火车站,红外摄像机被用来扫描人群的高温。它们有时与面部识别系统一起使用,该系统可以确定发烧的人以及他或她是否戴着外科口罩。
中国公司百度是这种使用计算机视觉扫描人群的红外摄像机的生产商之一。据报道,这些摄像机每分钟可以扫描 200 个人,并且可以识别出那些体温超过 37.3 度的人。然而,热成像被批评不足以从远处识别戴眼镜的人是否发烧(因为扫描内泪管给出了最可靠的指示),并且因为它不能识别一个人的体温升高是因为新冠肺炎还是其他原因。
更令人担忧的是,正如南华早报进一步报道的那样,“这个系统也被用来确保公民服从自我检疫命令。据报道,无视命令离家出走的人会接到当局的电话,大概是在被面部识别系统跟踪之后。
这种用法不仅限于中国。一个基于人工智能的扫描公共区域的计算机视觉摄像系统被用来监测英国牛津市的人们是否遵守政府的社交距离措施。美国一家基于计算机视觉的初创公司已经在提供“社交距离检测”软件,该软件使用相机图像来检测社交距离规范何时被违反,之后它会发出警告。在更极端的情况下,以色列政府已经批准其安全部门进行网络监控,以识别和隔离可能受感染的人,而俄罗斯正在推出我们的应用程序和 QR 系统的组合,以跟踪受感染的人并控制行动。
尽管由于缺乏历史训练数据,使用人工智能预测和诊断新冠肺炎受到阻碍,但计算机视觉和机器人等人工智能工具并没有受到阻碍。因此,在短期内,我们更有可能看到这种类型的人工智能被用于社会控制。相关技术也更有可能被采用,比如装有人工智能驱动的应用或可穿戴设备的手机,这些设备可以收集用户的位置、使用和健康数据。Bruegel 的圣乔治·彼得罗保罗斯表示,这种应用程序“使患者能够从医疗服务提供者那里获得实时的等待时间信息,为人们提供关于他们医疗状况的建议和更新,而不必亲自去医院,并实时通知个人潜在的感染热点,以便可以避开这些区域
基于来自移动设备的数据,谷歌提供了“新冠肺炎社区流动性报告”,可供 131 个国家使用,这使人们能够观察遏制措施对人们流动性的影响。
谷歌荷兰新冠肺炎社区移动性报告的屏幕截图
尽管这些都很有用,但令人担忧的是,一旦疫情结束,数据隐私的侵蚀将无法逆转,各国政府将继续利用其提高的能力调查其人口,并将在抗击新冠肺炎的斗争中获得的数据用于其他目的。Yuval Noah Harari (2020)警告说"即使冠状病毒的感染下降到零,一些渴求数据的政府可能会辩称,他们需要保留生物识别监测系统,因为他们担心第二波冠状病毒,或者因为中非出现了新的埃博拉病毒株,或者因为。。。你明白了。”
约束:数据太多,又太少
人工智能有潜力成为对抗新冠肺炎和类似流行病的工具。然而,正如布鲁格尔的圣乔治·彼得罗保罗斯得出的结论:“人工智能系统仍处于初级阶段,这种人工智能措施的结果可见还需要一段时间。”这里已经表明,目前人工智能的使用实际上受到限制,一方面是由于缺乏数据,另一方面是由于数据太多。缺乏训练人工智能模型的历史数据,没有足够的开放数据集和模型,但也存在大数据自大、算法不调整以及大量科学发现和异常数据的潜在问题,这些数据需要在最终投入临床试验之前进行转换和评估。
相比之下,在人工智能更容易使用的领域,如监控领域,我们可能会看到更多的努力——但可能会对隐私和相关人权问题产生潜在的长期不利后果。在下文中,我将更详细地讨论这些问题。
首先,就对更多数据的需求而言,新冠肺炎显然需要更多新的训练数据;需要更多的信息开放和共享,需要更多的合作和多学科研究来提高人工智能的能力。此外,还需要进行更多的诊断测试。在所有这些方面,人类在与人工智能互动和指导人工智能方面的作用是必要的。
到目前为止,已经取得了令人鼓舞的进展,开展了一些引人注目的活动,认识到建立和分享关于这一流行病的现有数据集和信息的重要性。第一个是世界卫生组织(世卫组织)的冠状病毒疾病全球研究数据库(T7 ),并链接到其他类似的倡议。
其中最雄心勃勃的专注于人工智能的项目之一,可能是语义学者、艾伦人工智能研究所、微软、脸书和其他人的联合倡议,公开提供新冠肺炎开放研究数据集,其中包含大约 44,000 篇学术文章,现在可用于数据挖掘。
与之相关的是,数据科学竞赛平台 Kaggle 基于这些数据举办了一场数据竞赛,名为“新冠肺炎公开研究数据集挑战赛”。非洲最大的数据竞赛平台 Zindi 也发起了类似的竞赛,旨在“准确预测未来几个月新冠肺炎在全球的传播”。
爱思唯尔在其新型冠状病毒信息中心 公开了关于新冠肺炎的早期和同行评审的研究,以及 ScienceDirect 上约 20,000 篇相关文章,以及数据挖掘的全文。类似地,Lens 也在它所谓的人类冠状病毒创新景观专利和研究工作开放数据集中提供了所有的专利数据,以支持对新药物和再利用药物的研究。 谷歌 已经在其云平台上提供了(直到 2020 年 9 月 15 日)新冠肺炎公共数据集,而亚马逊已经推出了一个公共的 AWS 新冠肺炎数据湖,它将其描述为“一个关于或涉及新型冠状病毒(新型冠状病毒)及其相关疾病新冠肺炎的传播和特征的最新和精选数据集的集中存储库”。
其他数据收集和开放创新计划包括加州大学伯克利分校、伊利诺伊大学厄巴纳-香槟分校和 C3.ai,他们建立了 C3.ai 数字转换研究所。该研究所已经发起了“减轻疫情的人工智能技术”的提案征集除其他外,这些应该涉及“应用机器学习和其他人工智能方法来减缓新冠肺炎疫情的传播”,以及“新冠肺炎研究利用私人和敏感数据的数据分析”。开放存取数据也由 GISAID Initiative (以前的共享所有流感数据全球倡议)收集和提供。
不仅仅是大型科技公司、出版商和大学在推动新冠肺炎数据和科学文献的开放获取,小型创业公司和非政府组织也是如此。例如, Newspeak House — 一所总部位于英国的独立住宿学院——已经启动了一项众包计划,这是一本冠状病毒技术手册,它已经邀请公众为之做出贡献。陈彦宏和他的同事发布了第一个公开的新冠肺炎推特数据集。
限制人工智能应用的不仅仅是数据的缺乏,或许有些矛盾的是,还有太多的数据。正如所指出的,随着疫情的进展,这个问题主导了新闻和社交媒体,产生了太多的大数据噪音和离群数据,算法将不堪重负——这是从谷歌流感趋势失败的倡议中吸取的教训。内容监管和算法调整都涉及到人类的常识,因此变得特别有价值。此外,科学家将需要处理大量的科学论文和新产生的数据,并在它们之间进行转换。
现在每天都有超过 100 篇关于疫情的科学文章出现。然而,这种潜在的信息过载正是数据分析工具可以发挥重要作用的地方。这方面的一个例子是新冠肺炎证据导航,它提供了计算机生成的疫情科学出版物的证据地图,每天从PubMed 更新。
2020 年 4 月 1 日 Gruenwald 等人的新冠肺炎证据导航器截图
结论
至少从流行病学、诊断学和药学的角度来看,AI 还没有在对抗新冠肺炎的斗争中发挥重要作用。它的使用受到缺乏数据和太多噪音和离群数据的限制。为人工智能训练创建无偏的时间序列数据是必要的。这方面越来越多的国际倡议令人鼓舞;然而,有必要进行更多的诊断测试。不仅是为了提供训练数据以使人工智能模型运行,而且是为了更有效地管理疫情并降低其在人类生命和经济损失方面的成本。
在撰写本文时,所有受影响的国家都在努力通过封锁、加强社交距离和取消活动来关闭经济。目前,这些措施似乎成功地减缓了传播速度。然而,这些措施是否能持续几周以上仍值得怀疑。据帝国理工学院新冠肺炎反应小组,“抑制的主要挑战是,这种类型的密集干预……将需要维持到疫苗可用,因为我们预测如果干预放松,传播将迅速反弹”
更多的诊断测试将有助于最终停止疫情,限制封锁带来的经济损失,并避免限制放松后的反弹。Mathias Dewatripont 和他的同事们提出了一个对人群进行广泛诊断测试的案例,以允许人们只有在没有传染性的情况下才能返回工作岗位,并隔离那些有传染性的人。他们还呼吁进行更多的随机抽样检测,以提高我们对无症状病毒携带者比例的估计。目前,我们只是不知道有多少人被感染。本质上,正如《T4 科学》杂志的一项研究表明的那样,86%的感染病例可能没有记录在案。如果是这样的话,那么疫情反弹的危险是非常可能的。因此,克服关于谁具有传染性的有限数据至关重要。
最后,数据是人工智能是否将成为对抗未来流行病和大流行的有效工具的核心。正如我已经提到的,人们担心公共健康问题会压倒数据隐私问题。在疫情战争结束后,各国政府可能希望继续对其公民进行非同寻常的监控。因此,对数据隐私受到侵蚀的担忧是有道理的。
对数据管理的法律和道德层面的全面讨论超出了本文的范围。然而,最近有两篇优秀的评论发表在《布鲁盖尔》和《T2》【自然】杂志上。简而言之,鉴于疫情造成的公共健康威胁,欧洲 GDPR(第 9 条)允许收集和分析个人数据,只要它有一个明确和具体的公共健康目标。及时收集和分析大数据的灵活性对于抗击疫情至关重要,即使这可能需要当局收集比许多人感到舒服的更多的个人数据。因此,至关重要的是,当局在处理此类数据及其理由和向公众传播时要特别小心。危险在于人们可能会失去对政府的信任,正如恩卡和瓦耶纳指出的那样,“这使得人们不太可能遵循公共卫生建议或推荐,更有可能健康状况不佳”
人工智能:人工智能术语简单解释
什么是人工智能?机器学习是什么意思?甘一家怎么样了?在这里你可以找到常用技术术语的清晰定义。
在 Unsplash 上由 Hitesh Choudhary 拍摄的照片
如果你考虑计算机的未来,你不能回避人工智能。而谁想到计算机的过去,其实都不是——思维机器的梦想在古希腊人身上就已经可以找到了。
但传奇的时代似乎已经结束:人工智能如今无处不在。但是我们今天称之为人工智能的是什么呢?它是如何工作的?
人工智能
人工智能的创始人之一约翰·麦卡锡将人工智能描述为“生产智能机器的科学和技术”,即研究人员和工程师的活动领域。
今天,这个术语主要指这些智能机器:人工智能代表行为智能的计算机系统。
智能在这里的意思是:它们解决通常需要智能的任务,如理解和表达语言、图像识别、决策或翻译。
弱/紧 AI
与人类不同,人工智能通常只学习和完成一项高级任务。这样的 AI 因此被称为弱 AI 或窄 AI。在他们的专业上,他们现在经常比人类优越。现在所有的 AI 系统都是弱 AI。
一般/强人工智能
具有类似人类智能、能够将其思维应用于许多不同任务的人工智能尚不存在。但这是人工智能研究的主要目标。这样的 AI 被称为通用人工智能。通常,但由于其哲学渊源,术语强或真人工智能不太清楚。
超级人工智能
如果通用人工智能发展到各方面都超过人类的程度,一个人工超级智能就产生了。对于许多人工智能警告者来说,KSI 的出现——被称为奇点——标志着人类可能的终结。另一方面,一些人工智能专家希望超级人工智能能够解决人类的大问题,如气候变化、贫困和疾病。
如何创造人工智能
创造人工智能有不同的方法。基本上,可以区分两种不同的方法:
所谓的**“好的,老式的 AI”**(go fai)确定 AI 研究一直到 80 年代末,争取强 AI。想法是:人类思维由包含我们对世界的知识的单个术语的逻辑组合组成。
SHRDLU 是最早尝试理解自然语言的 AI 程序之一。1968 年至 1970 年间创造的人工智能可以移动几何物体,并在需要时提供有关它们的信息。
根据这一想法,所谓的专家系统出现了,它们将关于世界的简单信息打包成符号类别,并以逻辑结论对它们进行操作。
GOFAI 无法满足 AI 的高期望——第一次 AI 寒冬爆发。科研经费取消,项目取消。例如,今天,这种人工智能被用于过程自动化。
机器学习
AI 研究目前最喜欢的是机器学习,尤其是深度学习。
机器学习创造了使用数据来学习如何执行任务的计算机系统。与开发人员以编程代码的形式逐行指定指令不同,该软件在第一次触发后独立更新其代码,并为获得更好的结果进行优化。
该研究学科目前最受欢迎的是所谓的深度学习:具有多层神经网络的机器学习,可以越来越准确地识别数据中的模式,从而学习人类的偏好,识别物体或理解语言。
机器学习驱动了大量当前的 AI 服务。不管是谷歌、网飞还是脸书:学习算法做推荐,改进搜索引擎,让语音助手给出答案。
(人工)神经网络
人工神经网络的灵感来自人类大脑的一个基本图像:一种算法创建了不同层的连接神经元或节点,它们相互交换信息。神经网络的数学起源于 1943 年。
在最简单的情况下,该架构由输入层、中间隐藏层(隐藏层)和输出层组成。输入信号被中间神经元最初随机生成的值修改,并被传递到输出层。
一个简单的人工神经网络。一个圆圈对应一个人工神经元,一个箭头表示一个神经元的输出与另一个神经元的输入的连接。图片:有色神经网络, CC BY-SA 3.0 。
现在可以将输出与输入进行比较——预测是否正确?基于该结果,中间神经元的值被修改,并且用新的输入重复该过程。经过多次重复,预测变得越来越精确。
简而言之:神经网络是自我优化的算法。
如果你想深入了解,推荐这部优秀的英文视频系列。
深度学习
深度学习(Deep learning)或称深度学习,是具有不止一个隐层(hidden layer)的神经网络的机器学习。
这些复杂的神经网络最迟在 2012 年开始了他们的凯旋游行,当时这样一个网络赢得了 ImageNet 图像分析竞赛。
深度神经网络的每一层都可以分析自己的图像信息:边界、纹理和图案,直到对象。图片:蒸馏
深度学习是近年来人工智能热潮的原因,特别是在图像识别、自动驾驶或 deepfakes 方面。
深度学习的突破是由越来越快的处理器和专用人工智能芯片(如谷歌的 TPU)以及用于训练机器的海量数据实现的。
生成对抗网络
GANs 由两个相互促进的神经网络(代理)组成。两者都用共同的数据集进行训练,比如照片。
然后,一个代理创建类似于数据记录的内容,另一个代理将其与原始数据记录进行比较。如果它识别出它是伪造的,它会迫使伪造者改进它的内容——直到它看起来像是属于原始的训练数据记录。
在 4.5 年的时间里,甘-基人已经变得更擅长生成人类肖像。
经过足够的重复,一个大师级的伪造者就诞生了:GANs 创造出看似真实的人、深刻的赝品、街道或假模型。他们作曲、播放音乐、创作昂贵的艺术品,将复古游戏变成高清版本。自 2014 年推出以来,它们一直在稳步改善。
训练,训练,还有更多训练
训练是人工智能的一部分,就像数学公式中的占位符一样。但是你如何学习和训练完全取决于人工智能。我提出一些在人工智能训练中使用的学习方法。
监督学习
通过监督学习,人工智能在训练数据准备就绪的情况下受到监控。一个例子:如果一个人工智能应该识别照片中的物体,所有的猫、汽车、树等等。训练前的照片上都有标注。
这个标记过程(“标记”)非常耗时,但这是成功的监督训练的基础——多亏了密集的人类准备工作,AI 知道它应该寻找哪些模式。
监督学习是大多数目前广泛使用的人工智能的背后,例如自动驾驶、人脸识别或在线搜索。标签通常是由低工资工人制作的,近年来它已经成为一个全球性的行业。
无监督学习
无监督学习是 AI 研究的希望。与监督学习相反,数据不是以复杂的方式准备的:AI 接收大量没有标签的数据并独立搜索数据中的模式。
该方法有两个优点:第一,准备充分、广泛的数据集很少。其次,人工智能可以揭示数据中仍然对人们隐藏的相关性。
用 AI 研究员 Yann LeCun,的话说就是:“如果智能是一块蛋糕,那么这块蛋糕的大部分是无监督学习,蛋糕上的糖衣是监督学习,樱桃是强化学习。”
OpenAI 强大的文本 AI GPT-2 通过自我监督学习成为可能:通过人工智能生成文本的进展也带来了发现虚假文本的新工具。
与此同时,术语自我监督学习也传播开来。根据不同的观点,这是无监督学习的特殊变体或同义词。LeCun 已经宣布,从现在开始他将只谈论自我监督学习,而不是无监督学习。
自我监督学习通常会保留部分训练数据,人工智能必须预测这些数据,例如句子中的下一个单词。这迫使他们学习关于数据的重要细节,比如语义表示。
例如,自我监督学习被用于人工智能扩展,并在过去 1.5 年中实现了语言人工智能的巨大进步。OpenAI 使用强大的 GPT-2 算法的学习方法。
强化学习
鼓励学习依靠胡萝卜加大棒:每当人工智能成功完成任务,它就会得到奖励。如果她错过了她的目标,她要么什么也得不到,要么受到惩罚。
OpenAI 教 AI 玩捉迷藏,强化学习。
通过这种试错法,人工智能通过从初学者到专业人员的尝试,在许多领域得到了发展,例如在围棋和象棋、Dota 2、星际争霸 2 或扑克中。所有最近的成功都依赖于所谓的深度强化学习,即强化和深度学习的结合。
迁移学习
迁移学习是指将从人工智能学到的技能应用于一个新的但相关的问题的训练方法。一个例子是谷歌的图像识别 AI Inception,研究人员用它来检测肺癌。
从长远来看,转移学习人工智能可以远离孤岛人才到更大的灵活性。因此,对迁移学习的研究是对普通人工智能的一个重要贡献。
模仿学习
模仿学习使用演示作为人工智能的培训材料。例如,在视频游戏中,这可以是人类玩家在游戏中奋力拼搏的记录,也可以是机器人通过观察人类动作进行学习的记录。
ai 已经很久不能玩遍雅达利经典《蒙特苏马斯复仇》了。与此同时,人工智能已经通过模仿基于人类游戏策略的学习做到了这一点。
与授权学习相比,模仿学习的一个优势是更大的灵活性:在某些环境下,回报很难定义或实现。纯粹的试错法不会推进人工智能。这就是人类演示有所帮助的地方,人工智能可以从中学习方法。
少数镜头学习
在人工智能成功识别数据模式之前,通常需要无数的例子。所谓的一次性和少量学习方法有助于人工智能,类似于人们如何仅通过几个例子或者甚至仅通过一个例子来学习新的能力。
英伟达的 AI 可以跳舞,可以转移面部表情,可以生成街拍。全才只需要几个例子,比如一个新闻主播的几张照片。视频:英伟达
实际上,人工智能无需大量训练就能学习新任务。例如,三星的研究人员仅用几个例子就成功地交换了人的面部。一个以色列研究小组更进一步,开发了一种无需人脸训练的实时 deepfakes 方法。
人工智能
用外行人的话来说,你需要知道的就是
作为人类,我们可能经常想知道人类的智能是否可以复制,机器是否可以像我们一样工作。
虽然这仍然是一个遥远的梦想,但我们并不遥远。在《通往人工智能之路》中,让我们概述一下它的真正含义以及数据科学如何帮助我们实现它。
AI Vs ML Vs DL 图片作者
人工智能(Artificial Intelligence):这是一门重要的科学,在当今的日常活动中确实有所帮助。任何机器学习或深度学习算法的最终目标都是实现人工智能。
人工智能是指机器的智能,它们可以像做决定、建议行动、解决问题和获取重要信息一样智能。
从自动驾驶汽车到手机中的 Siri,再到网飞推荐,一切都由人工智能驱动。
B)机器学习:机器学习是人工智能的一个子集,其主要目的是从作为输入的数据中学习,并预测连续值或将数据集分类到某个类别中。
这些问题分别称为回归问题和分类问题。
机器学习有 3 种类型:
**1)受监督的:**在受监督的学习中,我们标记了数据,因为我们有从中训练的具有预测值的数据。
有两种类型的监督学习:
分类
在这种监督学习中,一组独立的数据用输出类标记。
按作者对数据图像进行分类
在上面的例子中,你可以看到像胸痛、动脉阻塞和血压这样的独立特征可以确定一个人是否患有心脏病,这就是分类数据。
当一个模型在这种数据上被训练时,它可以被用来预测心脏病的类别或没有。
用于分类的算法的例子是逻辑、支持向量分类器、决策树分类器等等。
回归
在这种监督学习中,用输出连续预测值来标记一组独立数据。
回归问题图片作者
在上面的例子中,房龄、卧室总数、人口、家庭、家庭收入是决定房屋价值的独立特征,并且尽管可以对数据进行训练,但是该模型可以用于预测各种房屋的房价。
用于分类的算法的例子有线性、支持向量回归、决策树回归等等。
**2)无监督:**在这种学习中,没有带标签的数据,即不存在输出标签,我们需要确定给定数据之间的关系。像这样的问题大多通过聚类或分组来解决,即数据被分组以形成彼此相关的聚类。
分组或聚类
一个非常有用的例子是任何行业中的客户细分,其中公司试图根据其收入、关系状态、年龄和其他因素将其客户分类为其产品的未来客户。
另一个例子是房子更喜欢附近有名的食品连锁店。
无监督学习中的聚类,按作者分类的图像
离房屋最近的分支将是优选的,并且可以基于位置和离该分支的距离来聚集房屋。
**3)**强化学习
也称为半监督学习。这是一种在环境中发生的学习,通过采取一些行动,如果行动是正确的,就给予一些奖励,如果不正确,就向系统发送一些观察结果以从中学习,系统的整个想法是通过采取在每次迭代中学习到的和更好的行动来专注于越来越多的奖励。
作者的强化图像
强化学习的例子可以是机器人或人工智能应用驱动的汽车。通过反馈或观察进行学习,模型得到改进。
有两种强化学习
积极: 在这种类型的学习中,给予奖励的行为得到改进和加强,每次都会产生奖励,从而使绩效最大化。
否定: 在这种类型的学习中,观察结果为否定的行为会被避免或停止,每次都会提高绩效。
C)深度学习
深度学习现象是在人工智能必须深度到实际上可以像神经网络一样模仿人脑的时候发展起来的。
机器学习可以学习非常复杂的问题,就像人类通过在环境中反复看到或听到并分析事物来学习一样,这可以被称为深度学习。
人脑有多种功能,如下图所示:
人脑功能图像来源
对于每个功能和零件,人工智能程序正在开发中,如:
枕叶 -用于视觉识别的卷积神经网络(CNN)或深度剩余学习(ResNet)
颞叶-用于语音识别的递归神经网络(RNN)或深度神经网络(DNN),代表用于对话理解的学习(RL)。文本分析和 NLP(自然语言处理)目前正在扩展领域。
运动皮层 -机器人学
一个简单的神经网络是一套算法,试图通过一个非常类似人脑运作方式的过程来识别一组数据中的关系。
它基本上指的是大脑的神经元,以及在给定的情况下它们如何行动。
单层神经网络来源:作者
上图有一个输入层,它类似于给定的一组数据或神经元必须发挥作用的情况。
隐含层有神经元,其内部工作可以分两步进行。
步骤 1)分析输入 x 并赋予它们权重 w。它将每个输入乘以权重并添加偏差 b。
Y =∑ xiwi +b,这非常类似于求解线性方程 y=mx+c
步骤 2)激活神经元-该功能确定神经元是否必须被激活以响应给定的情况。它可以使用任何函数,如 Sigmoid,Tanh,Relu。
它的值将在 0 到 1 之间。
值越接近 0 意味着神经元必须是不活跃的,越接近 1 意味着它必须是活跃的。
我将在我的下一篇博客中更详细地讨论神经网络中隐藏层的内部功能。
感谢阅读!
原载于 2020 年 10 月 19 日https://www.numpyninja.com。
人工智能
简明的概念介绍
要谈人工智能,首先要对智能有一个合理的定义。在他最近的论文《 关于智力的衡量》 》中 Chollet 描述了主导文献的两种不同的智力定义:
- 智力是特定任务技能的集合:强调实现目标的能力。
- 作为一般学习能力的智力:强调一般性和适应性。
无论采用哪种定义,智力在许多自然系统中都是一种属性。生命形式以各种方式呈现智能,描述和解释这一现象的挑战性任务是所谓认知科学的核心。除此之外,自 1956 年的创立大会以来,人类建造智能机器的长期努力一直被贴上人工智能(AI)的标签。从一开始,关于如何制造智能人工系统的主要想法就围绕着两种方法:
- 向专家学习:专注于将知识提炼为规则集或其他显式表示的方法,并将这些描述加载到机器中。通常把这个传统上的方法称为符号 AI。
- 从数据中学习:通过例子来关注教学机器。允许计算机直接从数据中学习的核心思想由命名这种范式的总括术语来表达:机器学习。
由于技术上的挑战和在符号方面的有限成功,许多这样的方法被废弃不用,导致这种范式通常被称为优秀的老式人工智能(GOFAI)。此外,在过去几十年中,计算能力和数据的可用性不断增长,这将机器学习推向了人工智能研究的前沿。如果今天有人在谈论 AI,那很可能是在谈论机器学习。
重要的是要注意到,当机器学习作为一个研究领域出现时,“从数据中学习”的方法已经是另一个学科的主题:统计学。多年来,统计和机器学习之间的这种重叠已经引起了一些争论,Breiman 的论文’Statistical modeling:the two culture’是开始讨论这个问题的一个很好的参考。简而言之,论点如下:
- 统计:通过假设一个随机模型并估计其参数来对数据建模。拟合优度测试和残差检验评估模型质量。
- 机器学习:通过假设模型复杂且未知来对数据进行建模。它对保留数据集的预测能力评估模型的质量,例如交叉验证。
由于这两种传统提出的各种解决方案在技术上的细微差别,很难将每种技术归类为属于一种或另一种方法。也许更有用的是承认这两种“文化”是一个谱系中的两个对立的极端,其中每种传统提出的工具都处于以推理为中心的方法和以预测为中心的方法之间的连续体中。
现在,记住这个背景,让我们继续机器学习解决方案的复杂性。即使我们将关于人工智能的讨论集中在机器学习上,要涉猎围绕该领域的丰富术语仍然不是一件容易的事情。当谈到这样一个系统时,我发现将每个机器学习解决方案想象成由五个有点独立的抽象层组成是很有用的。
机器学习解决方案的五个层次
机器学习解决方案的五个重叠抽象层。
技术
每个解决方案都依赖于计算基础设施。
- 存储:取决于数据集大小、数据类型、所需延迟等。
- 计算:取决于所需的处理单元,如 CPU 和 GPU,以及处理是集中式还是分布式。
- 开发:依赖于团队专业知识、工具集成熟度等。
此外,像任何其他计算系统一样,对每个主题的决策都必须考虑其他问题,如预算限制、可伸缩性和可维护性。这一层有许多选项,从将数据存储在硬盘中并在本地 Jupyter 笔记本上处理的小型系统,到多云环境中的大规模管道。
数据
表格、文本或图像构成了最常见的数据集。
这似乎是显而易见的,但值得一提的是:所有机器学习解决方案都依赖于数据。知道哪种类型的数据将被系统处理,将允许系统设计者作出关于适当建模技术的明智决定,以实现期望的结果。当谈到数据时,关注点通常是:
- 数据类型:信息呈现给系统的方式。它可能在桌子上,文本上,图像上,声音上,等等。每种数据类型都有独特的挑战,需要特定的工具和方法来应对。
- 数据集大小:可用数据的数量会影响技术和模型层的决策。一些模型依赖于大量数据,而另一些则适用于小数据集。
- 相关性:了解数据集中的每个数据点是否独立,或者是否存在某种相关性结构,例如时间序列和图表,在选择适当的建模技术时会产生很大的影响。
模型
在选择模型时有许多选择。
选择模型就是选择函数空间或假设集,我们将在其中搜索最佳拟合模型。之前各层的特征已经在某些方面影响了这一决策,例如,深度学习模型可能需要更大的数据集和专门的硬件来训练。此外,这一层还有一个特别的核心特征:
- 可解释性:解释预测或模型中变量关系的需求是模型选择的一个关键方面。
对线性模型上的系数或决策树上的阈值的直接评估可以给我们关于数据集上变量之间关系的信息。其他模型,如随机森林或深度神经网络,很难直接评估,可能需要额外的工具来深入了解其内部工作。
方法
机器学习的三种主要方法。
方法,或学习方法,是我们定义如何使用数据来寻找一个好的模型。这在很大程度上取决于我们正在解决的问题的类型:聚类、分类、回归、控制等。大多数关于机器学习这方面的论述倾向于强调三种主要方法:
- 无监督学习:我们没有特定的目标变量。处理分割和关联任务的常用方法。
- 监督学习:我们有一个特定的目标变量。处理分类和回归问题的常用方法。
- 强化学习:智能体学习如何通过与环境的直接交互来实现目标。
虽然学习方法表征看起来可能只是一种形式,但它是机器学习系统设计的一个关键定义。针对给定问题的适当学习方法的规范将指导所有模型训练设置,包括其评估方法、学习度量和预期结果。
值得记住的是,这三种方法并不是唯一可用的方法。尽管如此,一旦你清楚地了解了它们的特点,就会更容易理解其他的学习变体,比如半监督学习、在线学习、对抗学习等。
应用
每个应用程序解决一个特定的问题。
应用程序是为解决问题而设计的,与底层技术无关。应用程序是机器学习系统设计的最终产品。如今依赖机器学习的一些众所周知的应用是推荐系统、贷款分类器、异常检测器和自动驾驶汽车。
重要的是要记住,实际上,任何这些应用程序都可以使用硬编码的规则来构建。记住这一点可以作为对在给定解决方案中使用机器学习技术的真正必要性的现实检查。软件工程本身就有很多复杂性,依靠机器学习来构建应用程序增加了另一层复杂性,这可能导致技术债务积压的显著增加。
结论
人工智能是一个复杂的研究领域,对于处理这项技术的人来说,拥有一个清晰的整体图景非常有用,如果不是必需的话。下次你面对一个使用机器学习构建的应用程序时,尝试解开它的每个抽象层,以理解设计师在每个抽象层中的选择,这可能会提高你对它的理解。最后,我希望这个概念性的介绍可以作为一个简单的地图,帮助你在这个广阔的领域导航。对于那些想知道如何更深入地挖掘这个主题的人,当有疑问时,我总是会回到罗素和诺维格的优秀著作《人工智能:一种现代方法》。’。
人工智能伦理和十诫?
将人工智能伦理问题映射到 10 条戒律
这篇文章探讨了我们可以将不同背景的想法汇集在一起的方法,以帮助减少我们在当今行业中看到的偏见。所以,在这篇文章的最后,我将把一些人工智能伦理问题映射到 10 条戒律上,看看它们是如何叠加的。
也许在认识到我们的偏见并向机器传授我们的共同价值观的过程中,我们可能会比人工智能提高更多。我们可以提高自己。— IBM
一段时间以来,我一直在思考如何将圣经中的十诫作为构建人工智能原则伦理框架的良好起点。我对此不予理会,因为我觉得这有点奇怪。然而,在看到 2020 年 2 月微软、IBM 和罗马天主教会关于人工智能伦理的的不寻常的合作关系 后,我意识到我的想法终究不是那么疯狂!
首先,让我们定义什么是伦理:
伦理被定义为一套管理一个人的行为或一项活动的进行的道德原则。— 维基百科
今天,伦理在社会和文化中发挥着重要作用。它有助于确定在一个社会中什么是合法的或非法的,并且通常作为一个国家的法律和秩序的基础。例如,当探索西方的伦理和道德时,你会发现宗教,尤其是基督教,在提供指导方针方面发挥了重要作用。尽管西方文明已经在很大程度上摆脱了它的宗教根源,但是基督教在西方文明形成中的重要性是不可否认的。然而,本文的重点不在这方面。
为什么是 AI 伦理?
人工智能可以提供非凡的好处,但它也可能产生负面影响,除非它得到负责任的构建和使用。深度学习(机器学习的子集)模型在不同的应用中有时会超过人类水平的性能。
以 AlphaGo 为例,一个由 DeepMind 开发、后来被谷歌收购的深度学习计算机程序,学习如何下围棋。AlphaGo 没有像典型的程序一样将围棋规则输入其中,相反,开发人员让 AlphaGo 通过与业余和职业选手进行数千场比赛来学习游戏,使用一种 奖励系统 **,**有点像人类的学习方式。这最终导致它成为第一个打败职业围棋手的计算机程序。这非常令人印象深刻,因为围棋被认为是人工智能领域最具挑战性的经典游戏,因为它在单个游戏中有大量的变化,从而使游戏中的策略非常复杂!
显而易见,这种技术可以用来为更大的利益建立人类知识的独创性。然而,为了防止臭名昭著的反乌托邦所谓的 技术奇点**——**运行人工通用智能的计算机程序自我改进成为超越人类智能的超级智能代理——我们必须建立一个道德框架来防止不必要和不可预见的情况。
一、机器人电影— 来源
十诫是什么?
十诫,也被称为十诫,是一套关于伦理和崇拜的圣经原则,在亚伯拉罕宗教中扮演着重要的角色——维基百科
下面你会发现写出来的十诫,我们现在将尝试把它们映射到我们今天面临的一些常见的人工智能伦理问题。(A 还要注意,这不是一个详尽的列表,而是一个在你的系统中构建人工智能道德原则的建议。显然,任何 AI 系统的伦理都将在很大程度上取决于其创造者的伦理。
弥合差距
- **在我之前,你不会有其他神(又名:责任/可追溯性)😗*今天,人工智能系统面临的一个问题是责任和透明度。任何特定的人工智能系统都需要对一个权威——系统的创造者——负责,这个权威可以是个人也可以是组织。 例如,亚马逊开发了一个 招聘算法 ,意在从世界各地招聘顶尖候选人。该程序有效,但算法已经学会将女性排除在候选人名单之外,因此对简历中有“女性”的人进行降分。由于问责制,亚马逊承担了责任,并最终在推广到更大的群体之前取消了该计划。这里还有一个场景,如果一辆自动驾驶汽车(AV)撞死了人,谁应该负责?人工智能驱动的 AV 还是系统的创造者?我喜欢工程和物理科学研究委员会(EPSRC)在“机器人的 5 条伦理规则”中的表述。第五条规则规定“应该可以找出谁对任何机器人负责(在我们的例子中是 AI)”。人工智能不应该在法律上对它的决定负责,它是一个工具,创造者应该承担唯一的责任。因此,对创造者的可追溯性是可信的人工智能系统的关键。
- 你不应该制造偶像:这和第一点非常相似,所以我们现在可以跳过这一点。
- 不可妄称耶和华你神的名(又名:滥用权力):这个命令是为了防止滥用/误用神的名。所以本质上,人工智能系统不应该滥用它被赋予的权力。这可能是一个很难检测的问题,因为大多数人工智能系统并不为它们的决定提供解释。 我来举个例子。ToTok 是一款已经被下载了数百万次的阿联酋消息应用程序,据称被政府用来跟踪该应用程序用户的对话、位置和其他数据。虽然 ToTok 在他们的网站上否认了这一点,但希望这不是真的。然而,人工智能(机构)不应该滥用或利用用户赋予他们的权力和信任。
Google Playstore 上的 ToTok 警告消息(来源)
4.记住安息日并保持它的神圣(又名:维护/可靠性):安息日的目的在信奉亚伯拉罕宗教的人们中一直有争论,但它通常被认为是休息日。有鉴于此,重要的是抽出时间定期维护一个人工智能系统,以确保它没有偏见、错误、故障和安全漏洞,并确保最佳性能。该系统应在其整个生命周期内进行持续测试,以保证其可靠性。
5 。尊重你的父母(又名:如果需要,允许人类干预并强制遵守人类法律):人工智能系统应该遵守现有法律&基本权利&自由,包括隐私。这些系统还应该允许人类在需要时接管它们。回到自动驾驶汽车(AV)的例子,在一个事故不可避免的场景中,一组科学家设计了一种将决定权交给人类乘客的方法,并将其称为“伦理旋钮”。这允许乘客决定在这种情况下 AV 应该做出什么样的道德选择。像这样的灵活性可以为您的系统增加另一层信任。
6 。你不应该杀人(又名:AI 不应该杀人):这是一条被全世界普遍一致认为在道德上是错误的规则,除了自卫的情况。一般来说,如果人类有生存的权利,那么道德会说,“你不能杀死一个人”。可以说,让一台机器在没有人类干预的情况下判断是否要夺走一个人的生命,对社会是有害的。例如,在 2007 年,一个军用火炮机器人发生故障,开火,造成 9 名士兵死亡,14 人受伤。这是一个悲剧,但值得庆幸的是,许多国家和组织已经签署了一项承诺,禁止在致命的自主武器中使用人工智能。取人性命的决定在任何情况下都不应该交给人工智能系统,这个决定应该总是委托给人类。
7 **。你不应该通奸(又名:忠诚/安全)😗*这是一个有趣的地图,但随着人工智能系统变得越来越强大,确保它们(特别是像武装无人机或甚至州级能源管理系统这样的关键任务系统)不会落入坏人手中,然后被用于恶意目的是很重要的。 这意味着系统应具备强大的访问控制措施,以防止未经授权的访问。 网络安全已经并将继续在人工智能解决方案的可靠性中发挥关键作用,因此请确保从第一天起就将这种安全性构建到您的程序中。
8 。不得窃取(又名:数据保护):再次引用世界人权宣言、 任何人的财产’都不得被任意剥夺,这包括他/她的数据。因此,人工智能系统不应在未经用户明确同意的情况下窃取或欺骗性地收集用户数据。像 GDPR 这样的法规已经在这方面有所帮助。剑桥分析公司和脸书丑闻是脸书允许第三方开发者仅仅为了收集数据而设计应用程序的一个例子。开发者能够利用一个漏洞,不仅收集使用该应用的人的信息,而且在他们不知情的情况下收集他们所有朋友的信息。应该不惜一切代价避免这种做法。因此,我们将确保您的系统符合 GDPR 政策或您的系统将运行的任何地区的任何类似法规。
来源: Vox
9 。你不应该对你的邻居做伪证(又名:真实性/欺骗例如:深度假证):深度假证的缺点令人困扰。在 Deepfakes 中很难看到“好”的一面,但是在特效行业中,这是非常有益的。看看这个大卫·贝克汉姆说 9 种语言的视频,感谢 Deepfakes 合成的力量。
也就是说,确保人工智能不被用来通过提供真实的幻觉来剥削用户是至关重要的。你的人工智能应该为用户提供一种方式来了解系统所呈现的信息的真实性。
10.你不应贪图(又名:失业和财富不平等):据麦肯锡全球研究所报告,到 2030 年,大约 8 亿人将因人工智能驱动的机器人而失业。这些数字令人担忧,距离 2030 年只有 10 年了!为此,这里可以考虑“T4”的概念,即每砍伐一棵树,就种植更多的树。本质上,人们应该考虑作为人工智能系统开发的结果而创造的创造性的新工作/技能。例如,机器学习工程师可以开始教放射科医生如何重新训练癌症检测 AI 程序。这将赋予放射科医生新的技能,并确保人工智能系统将只是一个增加他们工作的工具,而不是一个夺走工作的工具。
就是这样!我希望这些要点对你的下一个人工智能项目有所帮助和实用。
其他资源:
人工智能:世界各地的事件(7 月 4 日)
本周,我们已经看到一个受欢迎的图像数据集被下线,更多与数据相关的职位空缺,以及机器人在食物银行抗击新冠肺炎病毒的传播
在人工智能的世界里,每天都有很多事情发生。事件发生的频率使得跟上事件的发展相当具有挑战性。我读过一些标题和文章,把人工智能描绘成一幅不太正面的画面。
一个机器学习相关项目和研究中的管道和过程受到监控和监管的世界正在成为可能的现实。
本周报道的文章:
- 更多与数据相关的职位空缺,即使是在当前的疫情
- 由于种族和性别偏见,麻省理工学院撤销了数据集
- 数据科学角色的未来
- 负责给食物银行消毒的机器人。
包括文章的封面图片
未来的数据科学工作会是什么样子?5 职业趋势。[西雅图时报]
当前技术和人工智能的出现催生了对数据的不可满足的需求,因此,理解数据的个人需要确保人工智能系统正常运行。
《西雅图时报》的这篇文章探讨了围绕数据相关角色的趋势:数据科学家和数据分析师。
数据科学和分析是一个独特的工作角色,跨越各种行业和部门。凭借你的数据科学技能,你可以在医疗行业和石油行业工作,实际上你的职业发展和潜力是无限的。本文探讨了基于数据的角色的一个基本事实,即每个行业都需要理解数据的个人。
除了工业领域的趋势之外,这篇文章还提到了学术趋势。许多拥有技术技能的人很可能会回到大学,专攻与数据相关的高级学位。这句话非常正确,因为我在做了几年 Web 开发人员后,又回去获得了机器学习的硕士学位。我相信在未来的几年里会有更多的专业人士效仿。
本文包含的一个趋势是将数据素养规范化为每个专业人员的必备技能。这篇文章关注的是数据科学工作,但这一趋势适用于每一个现代工作角色;每个人只需要理解系统产生的数据。被视为正常的数据理解或读写水平并不复杂,但对数据的基本理解和解释对每个人来说都有很大帮助。
文章探讨并详述了更多的趋势;下面是原文的链接。
[## 未来的数据科学工作会是什么样子?5 个职业趋势|由东北大学提供…
回想一下您上次登录流媒体服务或音乐订阅服务的时间。仪表板是否有…
www.seattletimes.com](https://www.seattletimes.com/sponsored/what-will-data-science-jobs-look-like-in-the-future-5-career-trends/)
旅行者雇佣了 500 名技术专家来支持现代化工作。【华尔街日报】
在当前的全球气候下,对许多人来说,工作保障是最重要的议题。但看起来机器学习和软件开发角色可能不会受到当前失业浪潮的影响。
保险公司 Travelers 希望在一段时间内雇佣一批软件和机器学习专业人员。这一招聘热潮旨在帮助该公司实现数字化转型。
新员工将参与与机器学习领域相关的项目,如计算机视觉、自然处理、语音识别和数据科学。
更具体地说,该公司正在寻求开发一种可以从语音中进行情绪分析的系统,甚至可以从图像中检查财产损失的系统。
Travelers 总部位于纽约,因此对于该地区的机器学习从业者来说,这是一个进入人工智能领域或改变职业生涯的绝佳机会。
以下链接提供了更多信息:
旅行者 Cos。正在竞相填补 500 个技术岗位,包括许多人工智能相关的职位,由…
www.wsj.com](https://www.wsj.com/articles/travelers-hiring-500-tech-specialists-to-support-modernization-effort-11593600230?mod=djemAIPro&ns=prod/accounts-wsj)
麻省理工学院道歉,永久下线了教导人工智能系统使用种族主义、厌恶女性的诽谤的庞大数据集。[登记册]
这篇文章的许多读者可能已经用公开可用的数据集训练了机器学习模型。你使用的数据集之一可能是广泛使用的“微小图像”,一个由麻省理工学院创建和发布的数据集。微小的图像数据集包含 8000 万张图像,这些图像都标有定义图像内容的描述。
原来数据集包含了一些相当不恰当的描述。麻省理工学院已经关闭了数据集,甚至发布了一份声明,可以在这里找到。
该数据集创建于 2006 年,主要通过使用互联网搜索引擎进行填充,对数据集的内容没有任何监督。由于数据集规模庞大,无法识别数据集中的所有图像,麻省理工学院已将其离线,该数据集无法再利用。
微小的图像数据集很受欢迎,我敢肯定许多计算机视觉系统会在数据集上进行训练,甚至可能在互联网上散布着副本。
当前的事件揭示了人工智能系统因其训练数据而产生的偏见,我相信未来我们可能会在几个机器学习项目和研究中看到更受监控和更严格的数据收集过程。
[## 麻省理工学院道歉,永久下线教人工智能系统使用种族歧视的大量数据…
特别报道麻省理工学院已经使其被高度引用的数据集离线,该数据集训练人工智能系统来潜在地描述人…
www.theregister.com](https://www.theregister.com/2020/07/01/mit_dataset_removed/?mod=djemAIPro)
麻省理工学院机器人开始为大波士顿食物银行消毒。[TechCrunch]
你如何在食物银行减缓新冠肺炎病毒的传播?你拿一个智能移动机器人,在它头上放四把光剑。
**图片来源:**艾丽莎·皮尔森——麻省理工学院 CSAIL
艾娃机器人公司与麻省理工学院的计算机科学和人工智能实验室(CSIL)合作,创建了一个机器人系统,可以对大波士顿食品银行(GBFB)内的表面进行消毒。机器人系统的另一个组成部分旨在根除新冠肺炎气溶胶。这个机器人看起来和听起来一样令人印象深刻。
该机器人可以在其环境中导航,由内部绘图系统引导,该系统包含待消毒区域的标记。
Techcrunch 提供了更多信息:
[## 为了抗击新冠肺炎,麻省理工学院的机器人开始为大波斯顿食物银行消毒
麻省理工学院的计算机科学和人工智能实验室(CSAIL)已经将其研究项目之一投入工作,提供…
techcrunch.com](https://techcrunch.com/2020/06/29/in-effort-to-fight-covid-19-mit-robot-gets-to-work-disinfecting-the-greater-boston-food-bank/?mod=djemAIPro&guccounter=1)
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
- 订阅我的 YouTube 频道 视频内容即将上线 这里
- 跟着我上 中
- 通过 LinkedIn 联系我
用于内部审计和风险管理的人工智能
审计图。人工智能文本分析平台
将评估拖进现代
目录
1。摘要:为什么人工智能适用于内部审计和风险管理?
2。简介
3。当代内部审计挑战
4。 AuditMap.ai:审计增强的平台
5。局限与前进的道路
6。参考文献
1。摘要:为什么人工智能用于内部审计和风险管理?
大型组织内的内部审计任务会因为大量的文档而变慢。缓慢的审核响应时间、基于抽样的审核计划以及对关键字搜索的依赖都表明需要自动化来加速内部审核任务。当相关差距或风险没有及时向利益相关者披露时,审计质量也会受到影响。这项工作概述了一个名为 AuditMap.ai 的工作流自动化解决方案。该解决方案包含几个人工智能模型,可以读入数以千计的各种语言的审计报告,以持续识别和组织其中的相关文本。 AuditMap.ai 不是取代审计员,而是协助以人为中心的审计规划和执行过程。
2。简介
组织的内部审计职能面临着交付结果以满足利益相关方的保证需求以及保护组织免受新出现的威胁的压力。考虑到组织中存在的大量报告,保持全局观点是困难的。这项工作概述了一个解决方案,它读取数千个审计报告,对报告中的相关文本进行分类和组织。
内部审计师提供了一道防线,防止可预防的错误和遗漏,这些错误和遗漏可能会降低质量,损害公司的声誉和可信度,错过机会,或导致直接的财务损失。内部审计的主要作用是发现低效率、不合规和防止损失。这些活动通过基于风险的评估和与董事会委员会沟通的方式进行,而财务审计则侧重于发现交易记录中的潜在重大问题,并不时进行纠正。换句话说,在财务审计中发现的损失已经发生,而内部审计的工作结果突出了合规、质量和其他方面的差距。为了确定这些差距,内部审计操作需要跟踪组织的计划所面临的每个风险领域的结果。这种跟踪需要上下文和快速的结果,而不是向审计委员会提交年度总结报告。
内部审计在公司结构中具有独特的保证地位。它在财务审计中有着历史渊源,并已发展到提供更大范围的保证。内部审计在实践中与财务审计有很大不同。而现代财务审计评估交易及其记录以支持财务报表的准确性(有时使用复式记账软件);内部审计的基于绩效的评估旨在向审计委员会和高级管理层报告其组织的治理、流程、程序、风险、控制、案例报告等状况。此外,在上市公司以及医疗保健和金融等特定部门,法律要求进行内部审计活动和风险披露【2】。
3.当代内部审计挑战
内部报告已经进入大数据时代,这将导致整个企业的信息过载。由于大量的报告数据,一种数据丰富信息贫乏的情况正在审计领域蔓延【3】。这种情况的特点是,一个组织在假设许多指标保证质量的情况下跟踪这些指标,但遗漏了新出现的风险,因为手头的信息没有用任何被跟踪的指标来衡量。答案必然是将数据转化为可操作信息的更好技术。技术是内部审计职能【4】中效率和生产力的关键驱动力。引用 2017 年《内部审计专业实务国际标准》:“内部审计人员必须对关键信息技术风险和控制以及可用的基于技术的审计技术有足够的了解,以执行其分配的工作”【5】。正如 2019 年布里登报告【6】中所概述的那样,审计领域的格局也正在朝着加强审计师与客户分离的方向转变,这促使公司以更高的比率轮换其担保提供商。此外,该报告还指出,“人们似乎普遍认为,自动化现有数据相关的审计任务正在进行中,其扩展不可避免。”
照片由 geralt (Gerd Altmann) 通过 pixabay (CC0)拍摄
内部报告的大量私人文本数据集已经压倒了审计师的传统角色。比如说。在高度管控的领域(例如,飞机制造业)拥有 100,000 名员工的组织在 10 年内可能会生成数百万份文档。将这些仔细记录的报告数据形成理论和评估计划非常耗时,然而这些评估的结果可能对时间极其敏感。管理层迫切需要知道周二的风险在哪里,但审计部门倾向于每季度和每年发布报告 [7] 。此外,风险管理面临越来越大的压力,需要向外寻找新出现的风险。除了快速交付的压力,报告中讨论的评估通常基于样本,导致缺乏全面覆盖。使用关键字选择要采样的报告是很常见的,这可能会导致遗漏陈述相似概念但没有使用指定关键字的关键文档。错过跨时间的报告之间的联系也是常见的,例如重复的风险、不断增加的控制和其他基于时间的现象。
除了在评估大型数据集时需要自动化之外,人为因素也要求额外的审计流程自动化。人类审计员承受着低估实质性弱点的压力【8】。将算法集成到分析过程中可以在一定程度上使审计人员免受这些压力。此外,人类聚集和理解大型数据集的能力有限。不幸的是,使用电子表格和文字处理程序作为基于团队的工作产品的引擎受到人类理解大量数据集的能力的限制。基于文本的工作产品和报告阻碍了治理度量的创建和计划活动的交付。从根本上来说,规划现代内部审计是管理信息过载。审查大型企业控制环境既昂贵又耗时。尽管报告大部分是数字化的,但对于任何人类团队来说,完整地阅读和理解报告仍然是一项艰巨的任务。在与感知的财务风险联系不那么紧密的审计领域,项目覆盖面往往会变薄。此外,主题之间不明显的联系可以忽略,因为低风险领域获得的审计资源较少。内部审计和风险管理职能部门发现自己高估了一些业务领域,而忽略了其他很少审计的领域。为了应对这些挑战,近年来,主要审计组织已经采取了重大的人工智能和数据分析采用计划【9】【10】【11】。对于大多数企业来说,获得核心治理计划的可量化概览的目标仍然遥不可及,因为人工智能技术尚未在审计公司中得到广泛采用。文献中提出了人工智能在审计流程中的一些应用,但很少被主要的审计公司应用【12】【13】。
财务审计学术文献中已经提出了【14】等预测模型,这项工作自然会导致审计工作流程中类似的预测和自动化创新。人工智能正在进入内部审计和风险管理职能,并将为公司治理转型带来新的机遇。
公开披露是正确和及时识别风险至关重要的一个领域,并且通常是法律强制要求的。在公共关系危机中,确定报告中的相关信息以便随后公开披露非常重要,而且具有时效性。这些信息通常不会在风险登记簿或质量管理系统中进行跟踪,因为所讨论的风险可能是新的或意想不到的。监管风险披露也可能是时间紧迫的,因为申报日期有时可能不灵活。公司文件中的风险披露增加了投资者的风险认知【15】,因此,或许不足为奇的是,公司文件中有用的风险披露很少。披露风险的法律要求是主观的,因此使用一般声明【15】【16】【17】并不难规避。然而,研究揭示了年度备案和 SEC 意见函【18】之间的关系,即如果(1)公司认为不披露可能导致 SEC 的调查结果,或(2)在 SEC 向公司发布 SEC 调查结果后,公司更有可能披露风险。鉴于季度和年度申报中风险披露的重要性,显然非常需要一种能够及时检测风险的解决方案来促进披露流程,尤其是在时间紧迫的情况下。更一般地说,评估质量管理的强弱是内审员必须具备的重要能力【19】【20】。
在 AuditMap.ai 发布之前,机器学习已经应用于风险披露文件的各种应用,如年报分析评估相似性【21】、内部财务控制【22】、IT 安全【23】【24】。审计领域中机器学习的这些和类似应用代表了向数字化转型和预测审计的更大目标迈进的举措。相对于法律和会计等其他领域,内部审计在采用自然语言处理和机器学习方面的滞后可以解释为制度惰性、缺乏培训数据集、顾问的报销模式、理解多语言文档的要求以及不同的报告标准。这些阻碍这一领域发展的各种因素现在正在发生变化,这为利用机器学习实现审计自动化带来了重大机遇【11】。更详细地评估这些因素,专业服务公司的时薪结构可能会阻碍减少计费时数的创新。此外,对审计过程进行建模所需的数据也是严格保密的公司机密,因此标记的报告数据必须由主题专家精心收集和标记。报告中的文本数据类型在一个组织内的不同团队之间有很大的不同。国家风险等评估可以完全侧重于外部文件,而内部控制可以完全侧重于内部文件。阻碍人工智能在审计中采用的另一个因素是缺乏多种语言的数据,如英语、法语、德语和阿拉伯语。此外,与新闻报道和书籍等标准文本语料库相比,审计报告的特征是不同寻常的。具体来说,审计报告表达了比典型文档更高的语言水平,因为它们需要抽象复杂的问题模式。此外,还有许多内部审计标准和风险管理框架,它们的采用因地区而异。例如,ISO 31000 病毒在欧洲更流行,而 COSO 病毒在美国更流行。其他重要的框架包括 COBIT【27】、TSC【28】、NIST【29】。内部审计员使用这些框架来确保最佳实践,并且这些框架是高质量审计再现性的关键。
审计质量、速度和效率竞争是人工智能采用的驱动因素。例如,及时发现差距或风险并将其披露给利益相关者的需要与公司业绩密切相关。采用还将涉及审计人员教育和监测人工智能性能的科学测试制度。利用公开披露的公司报告,应该在今后的工作中以多种语言制定这种业绩评估的基准。应该用这些基准测试每个模型的召回率、精确度和偏差。
关于即将到来的变化的性质,在保险行业或学术文献中没有广泛的共识。一些评估得出结论,人工智能创新将取代审计师【10】。这可能是不正确的。相反,未来很可能是审计师与人工智能合作,就像他们采用电子表格和文字处理来通过数字自动化增强工作流程一样。这项工作的立场是通过应用许多专门模型的增量改进将为审计团队提供自动化的初始推动。从长远来看,用技术广泛取代审计是不太可能的。
审计人员可能会保持现有的流程,同时更频繁地执行这些流程,并通过人工智能解决方案实现更高的覆盖率。未来是辅助性的,而不是规定性的。在这种观点下,人工智能不会取代审计师的决策、判断或评估面试。相反,创新加速了与纠正和预防措施相关的计划和执行活动。关键成果应该是提高审计质量和速度,朝着持续审计的方向发展。
4.AuditMap.ai:审计增强平台
AuditMap.ai 是审计团队的解决方案,可以帮助他们理解大量的文档。风险经理也可以用它来发现新出现的风险。该解决方案使审计团队能够快速检索和处理上传文档中的文本。使用 AuditMap.ai 执行的活动是内部审计职能的战略和战术规划活动的一部分。该解决方案自动执行活动,以支持内部审计师的信息密集型任务。下面的图 1 总结了审计人员利用该解决方案的过程。
审计团队通过定义业务目标开始使用该平台。然后,他们开始定义组织的首选审计主题。团队还通过手动上传或提取、转换和加载(ETL)任务将他们的审计报告和其他文档上传到平台(图 1 (a))。该平台包括一个数据集概念,用于跨客户端管理文档集。在摄取期间,平台内的机器学习模型根据定义的审计主题对上传的文档进行分类。模型架构基于最先进的机器学习模型【30】【31】【32】,在专有训练数据集上训练。其他机器学习模型执行语言实体的自动提取,提取实体关系,语句相似性的跨文档分析,以及关键语句的分类-那些指示企业风险、缓解措施以及那些指示关键见解的语句。执行进一步的处理,以便评估文档片段与普遍接受的企业风险管理框架的相关性(图 1 (b))。通过系统的用户门户提供从文档摄取和自动化分析中得出的结果,这是一个 web 应用程序,允许审计人员通过基于角色的访问控制对内容执行技术辅助审查。当探索机器学习过程的结果时,审计人员可以观察程序或主题内随时间推移的趋势,并可以标记特定的风险或控制,以进行更深入的分析和段落或文档级上下文,或进行重新标记(图 1 ©)。最后,该解决方案包括一个交互式工作台,用于快速创建和导出工作底稿。
该平台为审计员和风险经理提供了一种简化的、自我导向的能力,通过减少在文档数据集中识别信息和将其添加到工作工件之间的步骤,来手动包括研究期间发现的信息(图 1 (d))。向涉众交付工作项目是通过导出来完成的(图 1 (e))。
图 2 显示了审计人员使用的一些用户界面组件。该平台能够缩小关注范围。例如,在一个包含 35 份报告中的 17,571 个句子的选定数据集中,只有 418 个句子被突出显示为指示风险。有些不是“真正的”句子,因为它们可能是句子片段,如目录条目或表格数据。考虑到这一点,AuditMap 能够减少 97.6%的待分析数据。确定了 9800 个实体。以下是在公开报告中发现的表明存在风险的有趣句子的一些例子(圆括号中的数字表示分类置信度):
- (98.4%) “我们注意到,没有记录优先化工作以确定首先进行哪些工作危害分析,我们也没有看到根据最近的事件或操作风险优先进行工作危害分析的证据。”【33】
- (52.8%) “鉴于在过去的审计中发现了类似的结果,我们建议[实体]要求所有区域 SCC 使用打印机代码从共享网络打印机中检索打印的[身份数据]信函。”【34】
- (99.3%) “根据所进行的访谈,发现【部门 1】过去使用备份来选择性地修复三个应用系统的问题;但是,它不必执行完整的数据库恢复。”【35】
- (86.1%) “与安装和审批管理有关的档案,不包括与审计统一文件相关的附件”【36】
- (73.7%)“EFK 的寄生虫在德国的传播”【37】
5.局限性和前进的道路
审计和风险管理行业采用 AuditMap.ai 人工智能可能会改变结果。这很可能会改变保险本身的性质。然而,在审计中采用人工智能必须伴随着对技术局限性的定量评估,以及强调技术局限性的员工培训。如果人工智能失败,盲目采用可能会导致声誉风险。因此,谨慎的做法是意识到机器学习在保证方面的功能限制,并评估这些限制的可接受性。
AuditMap.ai 中应用的两种类型的机器学习是用于分类的监督学习和用于上下文表示和相似性评估的非监督学习。应用于专有客户数据的监督学习模型不太可能具有完美的召回率和精确度。这意味着一些风险和控制会被算法遗漏,一些语句会被错误分类。对于审计人员来说,理解这些限制,并在工作流中轻松地获得能够动态地重新标记语句的纠正功能是至关重要的。AuditMap.ai 确实有这个能力。
监督学习也容易受到来自数据的学习偏差的影响,如果它在任意客户端数据上被训练,因此 AuditMap.ai 模型在部署到审计员的环境之前,在解决这个问题的专有主数据集上被训练。尽管偏见可能会在初始部署中得到解决,但这是一个需要衡量和评估的问题**,尤其是在进行模型再培训时。**
无监督学习同样受限于它所接触到的环境。当面对全新的环境时,技术容易出错。在某些情况下,监督模型依赖于使用非监督学习创建的表示,而更改非监督模型的训练分布可能会破坏监督模型的预测能力。例如,AuditMap.ai 中的模型经过训练,可以对审计报告中的文本进行分类,并且从未接触过电子邮件或短信。将此类数据输入模型会导致相似性理解不佳,因为它们的写作风格和词汇与训练数据完全不同。因此,在部署之前考虑技术采用中包含的数据范围非常重要。
缺失信息是另一个需要考虑的关键问题。审计报告和工作底稿数据集之外的信息经常存在,这些信息只能通过进入现实世界并通过内部审计过程收集数据来获得。假设从内部审计数据集中提取的信息(例如,关系图、风险、缓解措施、见解)完全涵盖了组织的状态,这肯定是错误的。审计人员需要保持好奇,并就遗漏的风险、遗漏的程序提出尖锐的问题,并大体了解内部审计在内部评估方面的薄弱环节。AuditMap.ai 有助于审计团队识别信息可能缺失的地方。然而,填补空白的主动权仍然属于内部审计团队。能够访问大图视图使审计团队能够考虑按主题或按时间可能遗漏了什么信息。
审计员必须问采用这种不完善的近似技术是否比现状更好,是否提高了审计的质量和速度。当审计人员考虑采用 AuditMap.ai 技术时,他们应该定量地、冷静地评估该技术的采用情况。我们正在举办一系列网络研讨会,与审计和风险管理专业人员交流,展示平台,并安排试点。
网站将很快发布一个链接指向即将到来的网络研讨会。如果你喜欢这篇文章,那么看看我过去在 AI for internal audit 上的一些文章吧,“Audit map . AI 如何改善内部审计”和“用人工智能改善内部审计”我也要感谢渥太华大学的米奥德拉·博利奇教授对这项工作的反馈。有没有注意到 AuditMap.ai 有了新网站?嘿,通过网站加入时事通讯!
下次见!
丹尼尔
6.参考
[1] United States Public Law: Quality System Regulation. 21 CFR part 820 (1996)
[2] United States Public Law: Prospectus summary, risk factors, and ratio of earnings to fixed charges (Item 503). 17 CFR part 229.503 (2011)
[3] Goodwin, S.: Data rich, information poor (drip) syndrome: is there a treatment? Radiology management 18(3) (1996) 45–49
[4] Eulerich, M., Masli, A.: The use of technology based audit techniques in the internal audit function–is there an improvement in efficiency and effectiveness? Available at SSRN 3444119 (2019)
[5] Institute of Internal Auditors: International standards for the professional practice of internal auditing. Institute of Internal Auditors (2017)
[6] Sir Donald Brydon, CBE: Assess, Assure And Inform: Improving Audit Quality And Effectiveness; Report Of The Independent Review Into The Quality And Effectiveness Of Audit. The Crown (2019) Accessed on Jan 2, 2020 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment%5Fdata/file/852960/brydon-review-final-report.pdf.
[7] Chan, D.Y., Vasarhelyi, M.A.: Innovation and practice of continuous auditing. International Journal of Accounting Information Systems 12(2) (2011) 152–160
[8] Cowle, E., Rowe, S.P.: Don’t make me look bad: How the audit market penalizes auditors for doing their job. (September 2019) Available at SSRN: https://ssrn.com/abstract=3228321.
[9] Kokina, J., Davenport, T.H.: The emergence of artificial intelligence: How automation is changing auditing. Journal of Emerging Technologies in Accounting 14(1)(2017) 115–122
[10] Alina, C.M., Cerasela, S.E., Gabriela, G., et al.: Internal audit role in artificial intelligence. Ovidius University Annals, Economic Sciences Series 18(1) (2018) 441–445
[11] Sun, T., Vasarhelyi, M.A., et al.: Embracing textual data analytics in auditing with deep learning. (2018) Universidad de Huelva.
[12] Sun, T., Vasarhelyi, M.A.: Deep learning and the future of auditing: How an evolving technology could transform analysis and improve judgment. CPA Journal 87(6) (2017)
[13] Appelbaum, D.A., Kogan, A., Vasarhelyi, M.A.: Analytical procedures in external auditing: A comprehensive literature survey and framework for external audit analytics. Journal of Accounting Literature 40 (2018) 83–101
[14] Kuenkaikaew, S., Vasarhelyi, M.A.: The predictive audit framework. The International Journal of Digital Accounting Research 13(19) (2013) 37–71
[15] Kravet, T., Muslu, V.: Textual risk disclosures and investors’ risk perceptions. Review of Accounting Studies 18(4) (2013) 1088–1122
[16] Schrand, C.M., Elliott, J.A.: Risk and financial reporting: A summary of the discussion at the 1997 aaa/fasb conference. Accounting Horizons 12(3) (1998) 271
[17] Jorgensen, B.N., Kirschenheiter, M.T.: Discretionary risk disclosures. The Accounting Review 78(2) (2003) 449–469
[18] Brown, S.V., Tian, X., Wu Tucker, J.: The spillover effect of sec comment letters on qualitative corporate disclosure: Evidence from the risk factor disclosure. Contemporary Accounting Research 35(2) (2018) 622–656
[19] Bhattacharya, U., Rahut, A., De, S.: Audit maturity model. Computer Science Information Technology 4 (12 2013)
[20] Thabit, T.: Determining the effectiveness of internal controls in enterprise risk management based on COSO recommendations. In: International Conference on Accounting, Business Economics and Politics. (2019)
[21] Fan, J., Cohen, K., Shekhtman, L.M., Liu, S., Meng, J., Louzoun, Y., Havlin, S.: A combined network and machine learning approaches for product market forecasting. arXiv preprint arXiv:1811.10273 (2018)
[22] Boskou, G., Kirkos, E., Spathis, C.: Assessing internal audit with text mining. Journal of Information & Knowledge Management 17(02) (2018) 1850020
[23] Boxwala, A.A., Kim, J., Grillo, J.M., Ohno-Machado, L.: Using statistical and machine learning to help institutions detect suspicious access to electronic health records. Journal of the American Medical Informatics Association 18(4) (2011) 498–505
[24] Endler, D.: Intrusion detection. applying machine learning to Solaris audit data. In: Proceedings 14th Annual Computer Security Applications Conference (Cat. №98EX217), IEEE (1998) 268–279
[25] International Organization for Standardization: Risk management — Guidelines. Standard, ISO 31000:2018, Geneva, CH (February 2018)
[26] Committee of Sponsoring Organizations of the Treadway Commission and others: Internal Control — Integrated Framework. (2013)
[27] Information Systems Audit and Control Association: Cobit 5: Implementation. ISACA (2012)
[28] American Institute of Certified Public Accountants: Trust Services Criteria. AICPA (2017) Accessed on Jan 15, 2020https://www.aicpa.org/content/dam/aicpa/interestareas/frc/assuranceadvisoryservices/downloadabledocuments/trust-services-criteria.pdf.
[29] Bowen, P., Hash, J., Wilson, M.: Information security handbook: a guide for managers. In: NIST Special Publication 800–100, National Institute of Standards and Technology. (2007)
[30] Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018)
[31] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le, Q.V.: Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237 (2019)
[32] Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)
[33] Internal Audit and Program Evaluation Directorate: Audit of Occupational Health and Safety, March 2019. Technical report, Canada Border Services Agency, Ottawa, CA (March 2019)
[34] Internal Audit Services Branch: Audit of the Management and Delivery of the Social Insurance Number Program, December 2015. Technical report, Employment and Social Development Canada, Ottawa, CA (December 2015)
[35] Internal Audit Services Branch: Audit of the Departmental Information System and Technology Controls — Phase 1– Application Controls, 2014. Technical report, Employment and Social Development Canada, Ottawa, CA (November 2014)
[36] Audit interne: Achats et marchés, Novembre 2018 Rapport d’audit interne. Technical report, Bureau du surintendant des institutions financieres, Ottawa, CA (November 2018)
[37] Swiss Federal Audit Office: Prüfung der IT-Plattform NOVA für den öffentlichen Verkehr — Schweizerische Bundesbahnen. Technical report, Switzerland, Bern, Switzerland (July 2019)
降低银行业风险的人工智能:当前用途
银行如何使用人工智能进行欺诈检测、合规性和网络安全
克里斯汀·罗伊在 Unsplash 上的照片
银行正在大力投资人工智能以降低风险,即欺诈检测、合规性和网络安全。用机器学习的术语来说,这些是异常检测技术的应用。
我们将了解三家银行——汇丰银行、摩根大通银行和丹斯克银行如何使用人工智能来打击欺诈、遵守反洗钱(AML)法规以及抵御网络威胁。然后,我们看看用于异常检测的特定机器学习技术。最后,我们考虑负责实施基于人工智能的风险降低工具的银行高管的关键要点。
银行优先考虑降低风险
聊天机器人和面向客户的人工智能项目受到了大量的炒作。银行经常发布新闻稿,宣传他们最新最棒的聊天机器人。然而,新闻稿是品牌建设练习,并不一定表明实际的人工智能投资或开发。
银行在异常检测方面至关重要的人工智能投资很少受到关注,即使这是资金的去向。研究表明在银行领域人工智能供应商筹集的 30 亿美元中,超过 50%是由专门从事欺诈、网络安全、合规性和风险管理的供应商筹集的。
作者图片
优先考虑人工智能降低风险有三个原因。首先,未能发现欺诈和洗钱成本高昂。2019 年,美国和英国监管机构对反洗钱违规行为开出了总计 81.4 亿美元的罚单。
其次,良好的风险检测系统让银行客户放心,并提高银行的声誉。例如,客户更有可能选择那些在防范网络攻击方面有良好记录的银行。
第三,通过使用人工智能来自动化某些合规性、欺诈检测和网络安全活动,银行将实现显著的时间和成本节约。如今,这需要大量的人工努力,而当前基于规则的异常检测系统还有许多不足之处(稍后将详细介绍)。
虽然银行拥有内部数据科学团队,并且不总是公布内部人工智能计划,但他们也与第三方人工智能供应商合作,开发量身定制的异常检测解决方案。我们可以看看银行如何与这些供应商合作,以了解他们如何使用人工智能来对抗风险。
合规:汇丰利用人工智能打击洗钱
汇丰银行与机器学习软件公司 Ayasdi 合作,开发人工智能反洗钱(AML)解决方案。
该软件由汇丰内部 IT 团队和 Ayasdi 的数据科学家合作开发,用于识别历史数据中可能存在洗钱的模式。当输入当前支付数据时,它可以识别欺诈模式,并提醒员工阻止这些支付。该软件分析支付的来源和目的地以及其他因素,以识别与正常行为的偏差。
汇丰的 IT 人员帮助 Ayasdi 了解内部反洗钱数据,汇丰的建模团队帮助 Ayasdi 创建准确的客户行为模型。这种合作意味着汇丰可以轻松地使用 Ayasdi 的模型并将其集成到自己的业务实践中,从而克服插入供应商产品的常见挑战。
传统的基于规则的检测系统通常会产生误报警报,将无辜的交易错误地标记为可疑交易。对工作人员来说,调查这些警报非常耗时。Ayasdi 声称他们的软件已经帮助汇丰减少了 20%的假阳性调查,而没有放松合规标准。
网络安全:摩根大通开发网络钓鱼和恶意软件预警系统
摩根大通的研究人员利用深度学习和其他人工智能技术开发了一个检测恶意软件、特洛伊木马和网络钓鱼活动的“早期预警”系统。据称,这种检测系统在网络钓鱼邮件实际发送给员工之前很久就能识别出可疑行为。
用于异常检测的深度学习技术可以学习什么构成了正常行为,并识别以前没有见过的异常活动。研究人员表示,通常情况下,一个特洛伊木马入侵公司网络需要大约 101 天的时间。早期检测系统将在实际攻击发生之前提供充分的警告。
据报道,该系统可以识别通过域生成算法创建的大规模网络钓鱼活动。它还可以通过将恶意 URL 与已知的可疑流量模式、混乱的 URL 和网络钓鱼活动特有的拼写错误进行比较,来识别恶意 URL。
虽然该系统是使用钓鱼网址的公共数据集进行训练的,但研究人员在的一篇论文中声称,其深度学习算法使其能够比传统安全系统更好地检测威胁。它还可以提醒银行的网络安全团队,因为黑客准备向员工发送带有恶意软件的钓鱼电子邮件来感染网络。
欺诈检测:丹斯克银行使用深度学习来打击欺诈
丹麦最大的银行 Danske Bank 与分析公司 Teradata 合作,实施了一个基于深度学习的欺诈检测系统。
根据 Teradata 的案例研究,Danske 银行旧的基于规则的欺诈检测系统只有 40%的成功率,并且每天产生 1200 个误报。此外,该银行调查的 99.5%的可疑案件证明不是欺诈。这些没有结果的调查需要时间和资源,而这些时间和资源本可以用来打击实际的欺诈行为。
Danske Bank 与 Teradata 合作实施了一个深度学习工具,该工具将欺诈检测能力提高了 50%,将误报率降低了 60%。该系统还自动化了许多决策,同时将一些案例发送给人类分析师进行进一步检查。
案例研究提到,该系统使用“冠军/挑战者”方法来检测异常。每个模型(挑战者)学习指示欺诈的交易特征,并被馈送客户位置等附加数据以提高准确性。当一个模型击败其他模型时,它就成为“冠军”,并帮助训练其他模型。这种改善过程可能会重复。
用于异常检测的机器学习技术
银行及其首选供应商很少宣传其异常检测工具背后的特定机器学习技术。然而,我们可以推断他们使用了以下技术的组合。这并不意味着详尽的分析,而是一些相关技术的概述。
分类
分类算法将记录标记为属于特定类别。例如,当应用于异常检测时,算法可以将交易标记为“可疑”或“合法”。
【KNN】是一种流行的异常检测分类技术。它使用数据集中最相似的记录(即最近邻)对交易记录进行分类。如果新交易与先前已知的可疑交易具有相同的特征,则该交易也被归类为可疑交易。相似性由图表上两个数据点之间的距离决定,相似的记录靠得更近。
KNN 易于实现,并且在给定大量训练数据的情况下表现良好。然而,随着更多数据的引入,它变得更慢且计算量更大。这个缺点使得单独使用 KNN 进行快速分类不切实际,例如需要在成千上万的输入交易中检测欺诈。因此,银行可能会将 KNN 与其他算法结合起来。
逻辑回归是另一种流行的分类技术。它是一个二元分类器,将观察结果标记为属于具有一定概率的两个组之一(例如欺诈/合法)。例如,它可以用来检测可疑的网络流量和恶意软件。
使聚集
聚类技术将记录分组到“簇”中,使得一个簇中的记录彼此之间比其他簇中的记录更相似。k-Means是一种流行的聚类技术,将记录聚类成“k”个组。不属于这些组的记录被标记为可疑。
其他用于异常检测的聚类技术包括 DBSCAN 和高斯混合模型 。
聚类技术特别强大,因为它们是无监督的学习方法。与分类技术不同,在分类技术中,人们必须将训练数据标记为属于一个类别或另一个类别,而聚类技术则根据相似性自动将数据点分组。这允许聚类算法识别人类分析师可能看不到的关系。
神经网络
神经网络试图模仿人脑对物体进行分类和检测模式的方法。当用于异常检测时,神经网络可以将金融交易或网络流量模式分类为“正常”或“可疑”。
神经网络的基本结构包含一个输入层、一个或多个处理层和一个输出层。深度学习指的是具有许多处理层的神经网络,因为更多的层能够解决更复杂的问题。
基本自动编码器结构(图片由作者提供)
自动编码器 是一种人工神经网络。他们获取输入数据,解构它,学习构成数据的关键维度,然后使用这种简化的理解来重构它。
当输入常规(非欺诈性)交易数据时,自动编码器会准确地重建初始交易数据,因为它了解常规交易的结构和组成部分。当美联储进行不规则(欺诈性)交易时,重建将会有缺陷,从而提醒分析师调查可疑交易。
其他神经网络和深度学习技术,如卷积神经网络也可以用于欺诈检测。
决策树
决策树使用一系列 IF-ELSE 语句对记录进行分类或预测结果。
用于异常检测的决策树结构(图片由作者提供)
在众多决策树技术中,我们将研究用于异常检测的隔离森林和 XGBoost 树算法。
隔离森林 类似于随机森林,构建很多决策树,取单个树中最常出现的分类。然而,隔离森林是使用二元决策树的集合来识别异常而不是剖析常规观察来构建的。它们可以处理包含许多变量的大型数据集,这使它们有助于识别金融交易中的异常情况。
XGBoost是一种强大的决策树技术,旨在提高速度、效率和性能。它允许使用所有 CPU 内核构建并行树,同时优化硬件使用。它还处理缺失值,避免过度拟合,并在不牺牲分类能力的情况下减少树长度。
最终结果是强大的预测能力加上相对较短的训练时间,这使得 XGBoost 成为在非常大的交易数据集中检测欺诈或异常的良好选择。
机器学习库
Luminol 是一个用于时间序列分析的 Python 库。它查找异常原因,确定异常发生的时间窗口,并随着时间的推移跟踪异常。例如,这对于分析交易流和网络数据流非常有用。
Apache Spark 机器学习库( MLlib )包含可用于异常检测的算法,如决策树和聚类算法。Spark 可以很好地处理大型数据集,可以在 Scala、Java、Python 和 R 中使用,这使得它成为大公司的热门选择。
给银行高管的建议
银行不能在欺诈检测、合规性和网络安全方面走捷径。未能发现洗钱行为的处罚很高,而且被黑客攻击造成的声誉损失也很大。
随着不良行为者使用越来越复杂的技术,主要银行正在采用人工智能来提高其异常检测能力。目标是在最大限度减少人工干预的同时实现高精度。然后,可以将人力投入到更有利可图或非常规的活动中。
建还是买?
银行应该建立自己的人工智能工具,还是从供应商那里购买一个平台?虽然内部构建需要时间和专门的数据科学人才,但最终产品是根据银行的需求量身定制的。从供应商处购买可能更快更便宜,但是产品可能与银行的流程和数据不完全兼容。创建新的流程和映射数据以适应系统也是一项繁重的工作。
混合方法更有意义。银行可以与供应商合作构建定制的解决方案,就像上面例子中汇丰银行与 Ayasdi 的合作一样。这将加快实施速度,同时仍能创造出符合银行需求的产品。最终,银行可能会选择使用自己的数据科学家、开发人员和研究团队在内部开发产品。
无论银行选择哪条道路,它们都有充分的理由投资人工智能,以更好地应对合规、欺诈和网络风险。
机械工程中的人工智能
一个深度学习实现的示例,为数据科学和人工智能领域的初学者或爱好者的机械工程师提供了非常基本的解释。这个项目是在尼泊尔的 Pro-mech Minds 进行的。
人工智能和机器学习似乎是当前的流行语,因为每个人似乎都在进入这个主题。人工智能似乎在所有科学领域都有作用。根据《大英百科全书》,“人工智能(AI) ,被广泛定义为数字计算机或计算机控制的机器人执行通常与智能生物相关的任务的能力。”智慧生物基本上是指人类…但也许不是所有的人类…所以无论如何,
它通常被分为如下所示的三个子集。
人工智能及其子集(来源:Edureka
人工智能是配合机器学习的一个更广泛的术语。机器学习使用统计方法来让机器随着经验而改进。
深度学习也是机器学习的子集,它使用模拟人脑的多层神经网络,可以利用足够的数据学习难以置信的困难任务。
我们要讲的是深度学习方法及其在机械工程领域可能发挥的作用。一些常见的例子有异常检测(机器学习)和基于图像的零件分类(深度学习)。重点将放在基于图像的零件分类器以及我们为什么需要它们。
首先,什么是图像分类器?应该会想到曾经著名的识别猫狗图片的人工智能。这里有一个链接到这样一个程序的代码。使用的数据集包含猫和狗的图像,算法从中学习,然后能够以 97%的准确率猜测随机显示的图像是猫还是狗。
猫还是狗?(来源:中条)
我们将尝试类似的代码,但使用螺母,螺栓,垫圈和定位销作为我们的猫和狗……因为机械工程。
螺栓还是螺母还是定位销还是垫圈?人工智能能够辨别吗?
那么它是如何工作的呢?一种算法能够通过使用称为卷积神经网络(CNN)的机器学习算法(一种用于深度学习的方法)来(有效地)对图像进行分类。我们将使用这个模型的一个简单版本,称为序列,让我们的模型区分图像为四类螺母,螺栓,垫圈和定位销。该模型将通过“观察”一组训练图像来学习。在学习之后,我们将会看到它能多准确地预测一幅图像(它还没有见过的)是什么。
使用神经网络模型对螺母和螺栓的图像进行训练的机器学习算法的流程图。(原图: pngfind )
数据集
我们从互联网上的各种零件库中下载了 4 类共 238 个零件(总共 238 x 4 = 952)。然后我们给每个部分拍了 8 张不同的等轴图像。这样做是为了增加可用的数据,因为每个部分只有 238 个图像不足以训练一个好的神经网络。一个类现在有 1904 个图像(238 个部分的 8 个等轴图像),总共 7616 个图像。每幅图像都是 224 x 224 像素。
4 个类的图像。1 部分有 8 个图像。每个图像都被视为单个数据。
然后我们用数字 0,1,2,3 来标记,每个数字对应一个特定的图像,意味着它属于某个类别
#Integers and their corresponding classes
{0: 'locatingpin', 1: 'washer', 2: 'bolt', 3: 'nut'}
在对上面的图像进行训练之后,我们将会看到我们的模型预测一个它没有见过的随机图像的效果。
方法论
这个过程分 7 步进行。我们稍后将讨论细节。简要总结是
- 数据收集:从互联网上的各种标准件库中收集各类数据。
- **数据准备:**从每幅图像中截取 8 张等轴视图截图,并缩小至 224 x 224 像素。
- **模型选择:**选择顺序 CNN 模型,因为它简单且适合于图像分类
- **训练模型:**在我们的 7616 幅图像的数据上用 80/20 训练测试分割来训练模型
- **评估模型:**评估模型的结果。它对班级的预测有多好?
- **超参数调整:**该过程用于调整超参数,以获得更好的结果。在这种情况下,我们已经调整了我们的模型
- **做预测:**检查它对真实世界数据的预测有多好
数据收集
我们从互联网上的不同零件库中下载了各种螺母和螺栓的零件数据。这些网站有来自不同制造商的不同文件格式的标准零件的大量 3D 模型。因为我们将使用 FreeCAD API 来提取图像,所以我们下载了中性格式的文件(步骤)。
CAD 模型下载流程图
如前所述,4 个类中的每个类有 238 个部分被下载,总共有 952 个部分。
数据准备
然后,我们使用 FreeCAD API 运行了一个程序,该程序自动拍摄了每个部分 224 x 224 像素的 8 个等距截图。FreeCAD 是一个免费开源的通用参数化 3D 计算机辅助设计建模器,它是用 Python 编写的。
数据是如何创建的流程图
如上所述,每个数据创建 8 个 224 x 224 像素的图像。所以我们现在从 4 个类中的每一个类总共有 1904 个图像,因此总共有 7616 个图像。即使 8 幅图像来自同一个零件,每幅图像也被视为单独的数据。
8 个 a 2 螺栓的等距图像。每一行代表不同的部分。
这些图像按照它们的类别被保存在不同的文件夹中。即我们有四个文件夹螺母、螺栓、垫圈和定位销。
接下来,这些图像中的每一个都被转换成一个数组,其像素值为灰度。像素值的范围从 0(黑色)到 255(白色)。所以实际上有 255 种灰度。
转换为像素值数组的图像示例。(来源: openframeworks.cc )
现在我们的每个图像都变成了一个 224 x 224 的数组。因此,我们的整个数据集是一个 7616 x 224 x 224 维的 3D 数组。
7616 ( 图像数量 ) x 224 x 224 ( 每个图像的像素值)
使用 matplot.lib 可视化我们的像素阵列
类似地,我们创建一个标签数据集,将下面所示类的整数值赋给数据集中相应的索引。如果数据集(X)中的第 5 个(索引)数据是一个定位销,标签集(Y)中的第 5 个数据将具有值 0。
#integers and the corresponding classes as already mentioned above
{0: 'locatingpin', 1: 'washer', 2: 'bolt', 3: 'nut'}
型号选择
由于这是一个图像识别问题,我们将使用卷积神经网络(CNN)。CNN 是一种处理图像数据特别好的神经网络。神经网络是一种机器学习算法,其学习方式类似于人脑。
卷积神经网络。我们的算法将如何工作的基本可视化(原始图像来源:文章由阿迪特·德什潘德
下面的代码是我们 CNN 的样子。不懂也不用担心。这个想法是来自我们每个数据的 224 x 224 特征将通过这些网络并给出一个答案。该模型将相应地调整其权重,并在多次迭代后能够预测随机图像的类别。
#Model description
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 222, 222, 128) 1280
_________________________________________________________________
activation_1 (Activation) (None, 222, 222, 128) 0
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 111, 111, 128) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 109, 109, 128) 147584
_________________________________________________________________
activation_2 (Activation) (None, 109, 109, 128) 0
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 54, 54, 128) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 373248) 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 23887936
_________________________________________________________________
dense_2 (Dense) (None, 4) 260
_________________________________________________________________
activation_3 (Activation) (None, 4) 0
=================================================================
Total params: 24,037,060
Trainable params: 24,037,060
Non-trainable params: 0
这里是 Mark Rober(美国宇航局机械工程师)在 YouTube 上的一段视频,他解释了神经网络如何在很少编码的情况下工作。
模特培训
现在终于到了使用我们的 7616 张图像的数据集来训练模型的时候了。因此,我们的[X]是一个 7616 x 224 x224 的 3D 数组,而[y]标签集是一个 7616 x 1 的数组。为了所有的训练目的,数据必须被分成至少两部分:训练和验证(测试)集(当只涉及 2 个集时,测试和验证可以互换使用)。
数据被分成训练集和测试集。(来源:researchgate.net)
训练集是模型看到并训练的数据。这是它调整权重和学习的数据。我们的模型在这个集合上的精度就是训练精度。一般高于验证精度。
验证数据通常来自与定型集相同的分布,并且是模型尚未看到的数据。模型根据训练集进行训练后,它将尝试预测验证集的数据。它预测的准确程度,就是我们验证的准确性。这比训练精度更重要。它显示了模型的泛化能力。
在实际应用中,通常将其分成三部分。培训、验证和测试。
对于我们的例子,我们将只把它分成训练集和测试集。这将是一个 80-20 的分裂。80 %的图像将用于训练,20%将用于测试。即在 6092 个样本上训练,在总共 7616 个样本中的 1524 个样本上测试。
对于我们的模型,我们训练了 15 个时期,批次大小为 64。
历元数是一个超参数,它定义了学习算法在整个训练数据集中工作的次数。
一个时期意味着训练数据集中的每个样本都有机会更新内部模型参数。一个时期由一个或多个批次组成。
您可以将 for 循环想象为遍历多个历元,其中每个循环遍历训练数据集。在这个 for 循环中是另一个嵌套的 for 循环,它迭代每批样本,其中一批具有指定的“批量大小”数量的样本。[2]
也就是说,我们的模型将总共 15 次(历元)遍历我们的全部 7616 个样本,并且每次都调整其权重,因此每次预测都更加准确。在每个历元中,它将遍历 7616 个样本,一次 64 个样本(批量大小)。
评估模型
该模型不断更新其权重,以使成本(损失)最小化,从而为我们提供最佳精度。成本是模型在预测图像类别时的不准确性的度量。成本函数用于估计模型的表现有多差。简而言之,成本函数是衡量模型在估计 X 和 y 之间关系的能力方面有多差的一种方法
如果算法预测错误,则成本增加,如果预测正确,则成本降低。
经过 15 个时期的训练,我们可以看到下面的损失和准确性的图表。(在我们的案例中,成本和损失可以互换使用)
从 matplot.lib 生成的图表显示了我们模型的训练和验证损失
模型训练次数越多,损失越小。它可以更好地对每个时期的图像进行分类。该模型不能在验证集上提高太多的性能。
从 matplot.lib 生成的图表显示了我们模型的训练和验证准确性
随着模型在每个时期的训练,精确度增加了。它在图像分类方面变得更好。验证集的准确性低于训练集,因为它没有直接在其上训练。最终值为 97.64%,还不错。
超参数调谐
下一步将是改变超参数、学习率、时期数、数据大小等。来改进我们的模型。在机器学习中,超参数是一个参数,其值用于控制学习过程。相比之下,其他参数(通常是节点权重)的值是通过训练获得的。[3]
出于我们的目的,在撰写本文之前,我们已经修改了这些参数,以获得在本文上显示的最佳性能。我们增加了数据集的大小和历元的数量,以提高精确度。
超参数影响参数并最终影响最终得分(准确性)。(来源:deepai.org)
做预测
对模型进行调整后的最后一步是使用将用于该模型的实际数据进行预测。如果模型在这方面表现不佳,可以开始进一步的超参数调整。
机器学习是一个相当迭代和经验性的过程,因此超参数的调整经常被比作艺术而不是科学,因为尽管我们知道通过改变某些超参数会发生什么变化,但我们不能确定这一点。
机器学习算法流程图(原图: pngfind )
应用程序
这种对机械零件进行分类的能力使我们能够仅根据客户提供的图像或 CAD 模型从标准库中推荐零件。目前,要从标准库中搜索所需的零件,您必须浏览目录,并能够根据可用选项和您对目录的了解来判断您想要哪个零件。需要记住序列号,因为单个数字或字母的变化可能意味着不同类型的零件。
来自 TOREX 网站的零件号示例。
如果一幅图像可以用来从标准库中获得所需的零件,我们需要做的只是制作一个粗略的 CAD 模型,然后通过我们的算法发送出去。该算法将决定哪些部分是最好的,并帮助缩小我们的搜索范围。
推荐算法如何工作的可视化
如果分类方法足够详细和精细,它应该能够详细分类您想要的零件类型。缩小搜索范围可以节省大量时间。这在有数千个相似零件的库中特别有用。
结论
深度学习(人工智能)是一个具有巨大可能性的研究领域,因为它使我们能够从原始数据中提取大量知识。其核心仅仅是数据分析。在这个互联网时代,数据无处不在,如果我们能够有效地提取数据,就可以完成很多事情。
这个领域在机械工程领域也有很多可能的应用。由于几乎所有深度学习的研究都需要领域专家,因此建议所有对数据分析感兴趣的工程师,即使他们没有主修计算机科学,也要学习数据科学、机器学习并研究其可能性。该领域的知识加上数据分析的技能将真正帮助我们在自己的领域中脱颖而出。
承认
我很感谢亲械甲怪的头脑让我这样做,特别是它的数据科学团队,包括 Gopal Kisi,Bishesh Shakya 和系列 Chikanbanjar,他们对这个项目的巨大帮助。pro-Mech Minds & Engineering Services 是尼泊尔一家在工程领域同时提供机械和 IT 解决方案的公司。这个想法是结合设计工程和数据科学的一次尝试。最后但同样重要的是,我要特别感谢 Saugat K.C .担任我们数据科学团队的导师。
参考
[1] 康纳·麦克唐纳,机器学习基础(一):成本函数与梯度下降(2017) ,走向数据科学
[2] 杰森·布朗利, 神经网络中批次与历元的区别( 2018),machinelearningmastery.com
[3] 超参数 _(机器学习),维基百科
[4]吴恩达,深度学习的卷积神经网络,deeplearning.ai(未注明)。检索自 Coursera
医疗保健行业中的人工智能
人工智能如何引领诊断和药物发现的未来
Jair Lázaro 在 Unsplash 上的照片
人工智能是推动医疗保健未来发展的技术之一。人工智能并不打算(也不可能)完全自动化医疗保健流程。人工智能机器人医生和护士不是这里的目标。相反,与人工智能并肩工作的医疗保健专业人员将开创一个前所未有的病人护理效率的新时代。在这篇文章中,我们将回顾人工智能如何改善当前围绕患者诊断和药物发现的系统,并考虑阻止人工智能在医疗保健中实施的障碍。
诊断
目前,误诊是一个巨大的问题:仅在美国,估计每年就有 1200 万人遭受诊断错误,每年在美国医院中估计有 40,000 到 80,000 人因误诊而死亡(来源:【激烈医疗】)。通过 AI,特别是卷积神经网络(CNN),可以更准确地从医学成像中诊断疾病。在我们讨论 CNN 如何诊断疾病之前,让我们先了解一下 CNN 是什么。
来源:技术运行【CC BY 4.0】
人工神经网络模仿人脑的生物神经网络,并可以基于过去数据中识别的模式进行预测。CNN 是一种神经网络,通常包括卷积层和最大池层。卷积将滤镜应用于构成输入图像的像素集合。这导致激活。这种过滤器的重复应用产生了一种称为特征图的激活图,它本质上告诉计算机关于图像的信息。卷积层之后是最大池层。在 max-pooling 层中,图像上的过滤器检查每个部分中的最大像素值(部分的大小由程序员指定),然后使用最大像素值创建一个新的更小的图像。这些较小的图像有助于计算机更快地运行模型。当卷积层和最大池层连接到神经网络的输入和输出层时,该模型能够使用过去的标记数据来预测新图像。
来源:门德利【CC BY 4.0】
上面这些 x 光图像描绘了一个正常人、一个细菌性肺炎患者和一个病毒性肺炎患者的肺部。带有每个条件的标记图像的数据集将用于训练 CNN。在训练模型之后,我们可以将患者的 x 射线输入模型,它会将 x 射线分类为指示健康的人或感染了细菌性肺炎或病毒性肺炎的人。
实现人工智能来诊断疾病似乎非常有前途:研究发现,在正确诊断疾病方面,模型的表现与人类专业人员不相上下。最近,斯坦福机器学习小组开发了一个模型,可以在短短 10 秒内诊断肺炎!在未来,将人工智能与诊断医生结合在一起可以减少误诊的机会。
药物发现
药物研发是人工智能似乎准备颠覆的另一个医疗保健领域。由于所涉及的高度复杂性,将新药推向市场既耗时(> 10 年)又昂贵(平均花费 26 亿美元)。此外,一种药物获得 FDA 批准的可能性不到 12%(来源: PhRMA )。通过利用神经网络寻找新药,制药公司的目标是同时减少这一过程所需的时间和金钱。
神经网络由输入层、隐藏层和输出层组成。输入层是输入数据的地方,隐藏层是具有权重和偏差的神经元执行计算的地方,输出层中的激活函数给出最终输出。当神经网络在大的标记数据集上训练时,它们的预测输出与实际输出进行比较,并且误差函数用于更新权重/偏差(反向传播)。神经网络利用大量信息快速学习和预测的能力使其成为药物发现的理想选择。
在药物发现过程的第一步,研究人员寻求在分子水平上理解人类疾病。一旦研究人员形成一个想法,他们就专注于确定一个药物靶点,当药物化合物与其相互作用时,该靶点可以治疗或预防疾病。随着药物靶标的确定,研究人员筛选大量的化合物,直到他们找到最终可能成为药物的少数化合物。仅这一过程就需要三到六年。神经网络可以大大加快这个速度;例如,人工智能药物发现公司 twoXAR 已经将这一过程缩短到仅三个月左右。
挑战
同样重要的是要记住,人工智能在医疗保健领域的应用将面临各种障碍。
- AI 在某些情况下难免会出现诊断错误;与人为错误相比,患者可能会对人工智能错误表现出更多的关注。根据医疗事故法,医生可以因误诊而被起诉,但目前不存在因人工智能误诊而提起的诉讼。
- 对大数据集的需求给医疗保健领域采用人工智能带来了一些挑战。医疗数据不容易获得,这使得开发有效的人工智能模型变得很困难。此外,从患者那里收集数据会引发隐私问题。一个潜在的解决方案是通过区块链分类账匿名存储病人。
- 偏见是另一个需要注意的重要问题。人工智能中的偏见是一个存在于医疗保健应用之外的问题,并扩展到对整个技术的广泛关注。由于人工智能模型根据它们在训练数据集中所学的知识进行预测,如果训练数据偏向于具有特定种族、性别、位置等的患者,它们可能无法推广到所有患者。因此,确保在训练数据集中代表不同的人群是至关重要的。
参考
[1] PhRMA,生物制药研究&开发,PhRMA 手册
[2]英特尔人工智能,人工智能如何革新药物发现,福布斯
[3] W. Nicholson Price II,医疗保健中人工智能的风险和补救措施,布鲁金斯
感谢阅读!
我是 Roshan,16 岁,对人工智能的应用充满热情。如果你对人工智能更感兴趣,可以看看我关于新冠肺炎推文情感分析的文章。
在 Linkedin 上联系我:https://www.linkedin.com/in/roshan-adusumilli/
人工智能是一个超级计算问题
人工智能超级计算— 01
人工智能从业者不能回避我们的责任
Marenostrum 超级计算机—巴塞罗纳超级计算中心(图片来自 BSC
【本帖将在大师课程 超级计算机体系结构atUPC 巴塞罗那理工 的支持下BSC
下一代人工智能应用提出了新的要求苛刻的计算基础设施。支持人工智能的计算机系统怎么样?我们是怎么到这里的?谁有权访问这些系统?我们作为人工智能从业者的责任是什么?
对于人工智能来说,这是一个激动人心的时刻。我们在巴塞罗那超级计算中心拥有令人印象深刻的科学数据分析系统,涉及基因组学、生物信息学、天文学以及其他许多领域。这些系统可以做出几年前我们认为不可能的惊人之举。
此外,对于通用应用程序,我们进展非常快。例如,在视频分析中,我们在 UPC & BSC 的研究小组通过引用表达式获得了有价值的视频对象分割结果。给定一个视频和一个语言短语,我们展示如何为短语所指的对象生成二进制掩码。
图片由作者根据来自 RefVOS 的图片制作:参考 VOS、M. Bellver 等人的表述。
触发人工智能爆炸
**问题是,**为什么是现在?人工智能从上世纪中叶就有了。约翰·麦卡锡在 20 世纪 50 年代创造了人工智能一词,与马文·明斯基一起成为人工智能的创始人之一。此外,在 1958 年,弗兰克·罗森布拉特建立了一个原型神经元网络,他称之为感知器。此外,用于计算机视觉的深度学习神经网络的关键思想在 1989 年就已经为人所知;此外,对于时间序列的深度学习的基本算法,例如 LSTM,在 1997 年就已经开发出来了。那么,为什么现在会出现这种人工智能热潮呢?
让我们试着找出一个引发 AI 大爆发的导火索。** Oriol Vinyals 表示,根据他最近的一条推文,数据集发挥了重要作用:**
https://Twitter . com/OriolVinyalsML/status/1253053130411032576
显然,大数据集的可用性有助于深度学习的算法效率,在 7 年的时间里,每 16 个月翻一番:
图片来源:https://openai.com/blog/ai-and-efficiency/
这意味着,在 2012 年至 2019 年期间,训练分类器在 ImageNet 上达到 AlexNet 级别性能所需的操作减少了 44 倍。
大数据集和开源 DL 框架在创建“大”算法中扮演着重要角色。但目前的兴奋是由于另一个关键因素,这在 2012 年 AlexNet 赢得 ImageNet 之前并不存在。除了数据和算法,现在还有哪些东西是可用的?
我不想拒绝奥里奥尔·维尼亚的肯定;他是这个领域的老大!!!还有我们课题组的好朋友!;-)
答案是大型计算机。“计算能力是人工智能进步的关键组成部分。如今,深度学习或强化学习是混合这三个组件的结果:
作者图片
计算如何进化以满足人工智能的需求?
看看这张来自 OpenAI 的图,它已经变得非常流行:
图片作者(数据源)
自 2012 年以来,生成人工智能模型所需(或可用)的计算量呈指数增长(Y 轴是对数轴)。
一个petaflop/s-day(PFS-day)由一天内每秒执行 10 到 15 次运算组成,即总共约 10 到 20 次运算。
此外,在此期间,这些用于训练模型的计算需求增长了 300,000 多倍。在最大的人工智能训练中使用的计算量以 3.4 倍的月倍增时间呈指数增长。
摩尔定律的终结
让我们回顾一下,看看计算是如何发展的。计算机性能的大部分改进来自几十年来计算机部件的小型化。你们都听说过摩尔定律。对吗?
1975 年,英特尔创始人戈登·摩尔预测了这种小型化趋势的规律性,现在被称为摩尔定律,直到最近,计算机芯片上的晶体管数量每两年翻一倍。
原创论文:摩尔,g。数字集成电子学的进展。在国际电子设备会议的记录中(华盛顿特区,12 月)。IEEE,纽约, 1975 ,1113。
虽然摩尔定律持续了几十年,但它在 2000 年左右开始放缓,到 2018 年,摩尔的预测和当前能力(英特尔等公司制造的处理器)之间出现了大约 15 倍的差距。目前的预期是,随着 CMOS 技术接近基本极限,这一差距将继续扩大!
可悲的是,就在我们需要快得多的机器进行深度学习的时候,摩尔定律开始变慢了!
事实上,在计算机架构社区中还出现了其他重要的观察结果,这些观察结果伴随着摩尔定律: Dennard Scaling 是 Robert Dennard 的一项预测,指出随着晶体管密度的增加,每个晶体管的功耗将会下降,因此每平方毫米硅的功耗将接近恒定。根据摩尔定律,每平方毫米硅片的计算能力随着每一代新技术的发展而提高,计算机将变得更加节能。然而,Dennard 缩放预测在 2007 年开始明显放缓,其好处在 2010 年左右消失。
随着 Dennard 扩展的结束,增加芯片上的内核数量可以使功率以大约相同的速度增加。但是进入处理器的能量也必须以热量的形式带走。所以多核处理器受限于散热能力。
简而言之,应用所有这些观察的结果可以总结在下图中,该图基于最初的图“计算机性能的增长”,由 Hennessy 和 Patterson 创建:
图片作者(数据源)
在这张图中,我们可以看到,在 20 世纪 80 年代和 90 年代,当所有这些定律和观察结果都存在时,我们正在将晶体管变成快速计算机,因此当时大约每 18 个月性能就翻一番。
多好的时光啊!多么渴望啊!。现在,我们大约每 20 年才有同样的进步。综上所述,从每 18 个月因子 2 到每 18 个月因子 1.05。
从一个非常普遍的角度来看,从来自伯克利的扬·斯托伊察教授在射线峰会上的演讲中得到的想法,我们可以在前面的图表中直观地表示计算性能增长的影响(大约)。可以看出,考虑到我们正在对数 Y 轴上移动,在任何情况下,都不允许我们响应 AI 算法的需求。
作者图片
嗯,虽然摩尔定律可能已经终结,但对计算能力增长的需求并没有终结。所以,一个问题出现了,没有摩尔定律怎么得到更快的机器?
专门的硬件呢?
为了应对这一挑战,计算机架构师们将注意力集中在构建特定领域的处理器上,以通用性换取性能。背后的理念是,“不要试图做所有的事,只是例外地做几件事”。各公司竞相打造专门的处理器,如 Nvidia 的 GPU 和谷歌的 TPUs
图片来源:谷歌和英伟达
我们说的“破例做几件事”是什么意思?例如,GPU 包含数百个在 4x4 矩阵上操作的张量核,这大大加速了深度学习中基本操作的计算,例如数据矩阵乘以权重矩阵,然后是偏差的和。
但是最终,专门的硬件是不够的。与此同时,像 GPU 和 TPU 这样的加速器为桌面带来了更多的计算能力,它们本质上有助于将摩尔定律进一步延长到未来,而不是从根本上提高改进的速度。
一般来说,使用同一个 OpenAI 图,我们可以直观地表示与 CPU 相关的专用架构的性能改进的影响。但是,可以看出,在任何情况下,都不允许响应深度学习和强化学习应用的需求:
作者图片
并行性:不止一个特定于域的处理器
也许我们可以让多个特定领域的处理器协同工作?。让我们来看一个具体的例子,我们在 BSC 中使用了 4 个能够并行工作的 GPU:
图片来源: https://bsc.es
这台服务器由 IBM 提供,有两个 CPU,power 9,和 4 个 NVIDIA V100 GPU。现在,我们如何利用这些资源来提高计算速度呢?在深度学习的情况下,我们通常有两种并行方法可以用来实现这一目的:
- 模型并行性
- 数据并行性
在第一种方法中,我们将网络的不同层分布在不同的设备上;同时,在第二种方法中,我们在每一个 GPU 中都有相同的模型,但它们都在处理独立的数据片段,即小批量的独立部分。
作者图片
当我们有一个可能不适合单个 GPU 内存的大型模型时,模型并行性非常有用。
然而,数据并行性是大多数从业者通常用来扩大深度学习模型的训练过程的,因为他们有一个如此庞大的数据集,以至于在单个 GPU 上完成一个时期可能需要非常长的时间,可能是几个小时、几天甚至几周。
因此,当有可能共享数据集以加速训练时,我们会这样做,只要模型可以容忍更大的批量。
我们可以使用框架作为 Pytorch 的 TensorFlow 来编写多 GPU 训练。要并行化模型的训练,只需要在 PyTorch 中用[torch.nn.parallel.DistributedDataParallel](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html)
包装模型,在 TensorFlow 中用[tf.distribute.MirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy)
包装模型。非常容易!
TensorFlow 和 PyTorch 需要一个软件堆栈,其中包括作为 Python 包安装在执行环境中的不同软件层。此外,NVIDIA 的[cuDNN](https://developer.nvidia.com/cudnn)
库帮助我们挤压所有加速器的能力,例如使用我提到的张量核。
例如,当我在我们的超级计算机中执行深度学习代码时,我需要用module load
命令加载这里列出的所有模块:
**$ module load** python/3.7.4_ML cudnn/7.6.4 cuda/10.2 nccl/2.4.8tensorrt/6.0.1 openmpi/4.0.1 atlas/3.10.3 scalapack/2.0.2fftw/3.3.8 szip/2.1.1 ffmpeg/4.2.1 opencv/4.1.1 gcc/8.3.0
一个巨大的世界,我部分致力于此,并且非常重要,对于像你这样的深度学习用户来说通常是透明的。
但最终,4 个 GPU 无法满足深度学习或强化学习中出现的挑战的需求:
作者图片
我们在服务器中可以放置的 GPU 数量非常有限;在我们讨论的 Power 9 服务器的情况下,我们最多可以达到 6 个 GPU。
多服务器:分布式计算
公司必须解决这个问题的方法是将许多这样的服务器放在一起!这就是我们在 BSC 所做的,利用这个研究平台,54 台服务器通过光纤上的 InfiniBand 网络连接在一起。
作者图片
这些服务器运行 Linux 作为它们的操作系统,并且每一个都由两个 Power 9 处理器和四个 512 GB 主内存的 NVIDIA GPU组成,这意味着我们用两百多个 GPU 来计数。
InfiniBand 是互连服务器的行业标准,允许从远程服务器快速访问一台服务器的本地内存。
在这个新的场景中,我们需要软件堆栈的扩展来处理神经网络训练过程中的多个分布式 GPU。还有其他选择,但是在我们 BSC 的研究小组中,我们决定使用来自优步的 [Horovod](/distributed-deep-learning-with-horovod-2d1eea004c b2) 。Horovod 插入 TensorFlow 、 PyTorch 和 MXNet 。
[Horovod](/distributed-deep-learning-with-horovod-2d1eea004c b2) 使用消息传递接口(MPI) 与以分布式方式执行的进程进行通信。MPI 是一种普遍存在于任何超级计算机中的编程模型,用于通信在不同服务器中执行的进程。它还使用 NVIDIA NCCL2 库来管理服务器中 GPU 之间的数据通信。
为了加速训练,Horovod 使用了之前介绍的数据并行训练模型。也就是说,所有工人都在不同的数据上训练,所有工人都有相同的模型副本,神经网络梯度也是交换的。
这些年来,并行性和分布策略的总和使得人工智能社区对计算的需求不断增长。
新的大型计算机:超级计算的怪物
这种硬件和软件技术的结合创造了真正的超级计算怪兽。例如,谷歌拥有数百个 TPU 的计算基础设施,这些 TPU 可以放在一起合作解决深度学习和强化学习社区中出现的挑战。
谷歌最近的一篇论文提出了一个多语言翻译质量模型,有 6000 亿个参数。为了了解这个问题的严重性,我们可以将其与著名的 GTP-3 进行比较,这是 OpenAI 创建的第三代语言预测模型。它“只有”1750 亿个参数。
在这种情况下,我们谈论的计算需求相当于 22 年 1 TPU。在这篇论文中,作者用 TPU 年来衡量业绩。一个有趣的度量!。这意味着,如果我们只有一个可用的 TPU,我们将需要 22 年来做培训。
在这种情况下,Google 将培训分布在 2048 个 TPU 上,仅用了 4 天就取得了成效。
关于谷歌 TPU 基础设施系统架构的详细信息可以在这里找到。
更新 15/04/2021-来自微软、英伟达和斯坦福大学的研究:他们研究如何缩放一万亿参数模型的模型。参见论文GPU 集群上的高效大规模语言模型训练。
新的大算法:深度强化学习
在上一节中,我们考虑了一个深度学习问题,作为当今人工智能应用程序急切而快速地吞噬计算的一个例子。但实际上,人工智能领域的前沿应用是基于需要大量计算的深度强化学习模型。
如果你想通过介绍性的系列文章了解强化学习,这些文章涵盖了强化学习和深度学习的基本概念,从深度强化学习领域开始,你可以在这里找到它。
几年前,像 DQN 这样的基础算法是为了消耗一些硬件资源而构思的;例如,1CPU+1GPU 就足够了。如果我们按照时间线,分布式强化学习(RL)算法的初始版本只需要多几个 CPUs 例如异步演员-评论家方法 (A3C),它在几个 CPU 和单个 GPU 上工作得非常好。
然而,如果我们仔细看看强化学习算法的最新发展,我们会发现它们越来越需要更多的计算资源。例如,两年前,一个名为黑斑羚的大规模分布式 RL 被设计成利用数百个 CPU。
当前分布式强化学习代理的架构通常分为参与者和学习者。这是黑斑羚的例子:
https://ai . Google blog . com/2020/03/massively-scaling-reinforcement . html
通常在 CPU 上执行的参与者在环境中采取步骤和在模型上运行推理之间迭代,以预测下一个动作。在收集了足够数量的观察数据后,参与者将向学习者发送观察数据和行动的轨迹。然后学习者优化模型,将模型的参数发送给行动者,每个行动者更新其推理模型的参数。在这种算法中,学习者使用来自数百台 CPU 机器上的分布式推理的输入在 GPU 上训练模型。
分布式强化学习方法的最新版本,来自 DeepMind 的种子方法,允许使用超过 200 个 TPU,太神奇了,对吧!!允许我们认为真正的大规模强化学习。
照片由 Jordi Torres 拍摄
好吧,不进入细节,假设种子强化学习架构被设计来解决IMPALA 方法中存在的一些缺点。在这种情况下,神经网络推理由学习者在 TPUs 上集中进行(而不是像 IMPALA 那样在 actor 中),从而通过确保模型参数和状态保持在本地来实现加速推理和避免数据传输瓶颈。
虽然 actor 在每个环境步骤都向学习者发送观察结果,但由于非常高效的网络库 gRPC (在功能上等同于我之前提到的 MPI),延迟保持得很低。这使得在一台机器上每秒可以完成多达一百万次查询。
图片来源:https://ai . Google blog . com/2020/03/massively-scaling-reinforcement . html
总之,学习器可以扩展到数千个核(例如,高达 2048 个 TPU),并且演员的数量可以扩展到数千个机器以充分利用学习器,使得以每秒数百万帧的速度训练成为可能。印象深刻吧。
人工智能:超级计算能力是真正的推动者!
我们可以得出结论,计算正在响应人工智能社区的需求,允许我们解决所提出的模型。我在这份出版物中的论点是,计算能力是真正的推动者,或者,如果你喜欢,是人工智能进步的关键组成部分,当我们混合这三个组成部分时:大数据、大算法和大计算机。
在此期间,是什么推动了有效计算的变化?OpenAI 将人工智能和计算趋势分为摩尔定律和增加的支出/并行化,以及算法效率的进步:
图片来源:测量神经网络的算法效率 Danny Hernandez,Tom B. Brown OpenAI。
作者估计,2012 年至 2018 年间,最大规模的人工智能实验可用的有效训练计算将增加 750 万倍。
看起来计算将继续响应深度学习和强化学习社区的需求,允许他们解决所需的模型。
想象一下,谷歌需要更多的计算能力来实现一个新的强化学习算法,那么,谷歌唯一会做的就是聚合更多的并行和分布式服务器!仅此而已!
例如,几个月前,谷歌在行业标准基准 MLPerf 中打破 AI 性能记录。 MLPerf 基准测试模型被选为尖端机器学习工作负载的代表。
在这种情况下,Google 唯一需要做的就是聚合更多的服务器。最终的系统包括 4096 个 TPU 和数百台 CPU 主机,它们通过超高速互连连接在一起。总的来说,该系统提供了超过 430 PFLOPs 的峰值性能。
现在看来,增加服务器可以让我们对人工智能模型的需求做出反应。很简单,对吧?嗯,不是这样的!
需要思考的事情
在完成我的文章之前,让我给你布置一些“家庭作业”让你自己做。你承诺去做吗?希望如此!
谁能拥有并支付这些超级计算机?
在阅读了上一节之后,一个重要的问题出现了:解决这些挑战需要多少计算成本?你想过吗?
例如,根据下面的推文中的,我之前提到的训练使用深度学习产生类似人类文本的 transformer GPT-3 语言模型的估计成本在公共云上接近 1200 万美元。
图片来源:https://twitter.com/eturner303/status/1266264358771757057
2020 年 11 月 29 日更新:腾讯的一篇新论文再次展示了规模的力量,他们使用了一个包含 250,000 个 CPU 内核和 2,000 个 NVIDIA V100 GPU的集群进行培训。
也许你已经听说过 top500 榜单,这个榜单记录了世界上最快的计算机,每年发布两次,分别在 6 月和 11 月世界两大超级计算大会期间( SC 、 ISC )。
一般情况下,公共机构中托管有超级计算机,峰值性能以万亿次浮点运算(每秒 10 到 12 次运算)为单位,如下表所示。例如,Top1 的峰值性能为 500,000 万亿次。
TFlop/s =每秒 1 000 000 000 000 次数值运算。
2020 年 6 月 500 强榜单前十名(图片由 Jordi Torres 提供)
现在,Marenostrum 4,这台位于巴塞罗那的超级计算机,位于 UPC 大学校园的 Torre Girona 的教堂,在这个列表中占据了第 38 位,对我们来说不错!(虚访)。
之前提到的谷歌系统,包括 4096 个 TPU 和数百个通过超高速互连连接的 CPU 主机,提供超过 430,000 TFLOPs 的峰值性能。接近世界第一(根据 2020 年 6 月榜单),和第二以及其他人相差甚远!
为了创造人工智能,我们需要超级计算机。谁能拥有并支付这些超级计算机?仅民族国家和跨国公司?
人工智能碳足迹
上周,西班牙报纸《先锋报》刊登了这篇文章:数字世界是这个星球上的第三个污染者。
照片由 Jordi Torres 和 Júlia Torres 拍摄
此外,麻省大学的研究对人工智能不可持续的成本提出了建议。他们声称,训练一个通用 NLP 模型的估计碳成本相当于从纽约到北京的 125 次往返航班产生的碳量。
这些数字可能是相对的,因为组织可以使用可再生能源为他们的计算设施供电。然后他们可以减少碳足迹。例如,冰岛的能源 100%来自可再生的地热和水力发电,其国家电网现代化且可靠;这意味着那里的人工智能系统运行更有效,提供更清洁的能源。
但是,即使这些数字是夸大的,人工智能计算需求的指数增长也很难想象我们可以在短期内只用绿色能源来驱动超级计算。
目前,绝大多数人工智能算法研究都集中于实现最高水平的准确性,而不太关注计算或能源效率。但随着世界的注意力转移到气候变化上,人工智能领域是否应该开始注意它的碳足迹?
我们不能逃避我们的责任
人工智能肯定正在渗透社会,就像电一样,我们会期待什么?我们将“发明”的未来是我们共同做出的选择,而不是偶然发生的事情。
这很好!例如,遗传学和基因组学从 DNA 和的信息中寻找突变和疾病的联系。在人工智能的帮助下,人体扫描可以早期发现疾病,并根据他们的遗传基因预测人们可能面临的健康问题。
但是就像生活中的大多数事情一样,哪里有光,哪里就有阴影。人工智能算法传播性别偏见,人工智能系统在未经公民知情同意的情况下对其进行监控。在许多其他的坏事中!
我们必须仔细考虑即将采用的人工智能及其影响。如果我们继续建设人工智能,而不考虑我们防止其滥用的责任,我们永远也不能指望看到人工智能帮助人类繁荣。
我们所有人,无论是正在研究还是想要研究这些课题的人,都不能回避我们的责任,否则,我们将来会后悔的。
感谢您阅读本出版物!
****鸣谢:非常感谢胡安·路易斯·多明格斯、阿尔瓦罗·约弗·阿尔瓦雷斯、米克尔·埃斯科瓦尔·卡斯特尔斯和劳尔·加西亚·富恩特斯对本文件校对工作的贡献。
BSC-CNS 人工智能研究组的新兴技术
我们在巴塞罗那超级计算中心** 和 UPC 巴塞罗那理工 的研究小组正在做这个课题的研究。**
动机
现实世界的挑战,例如卫生或银行等部门的图像处理,正在推动基础研究,以创建新的大型深度和强化学习模型。然而,创建这些新模式只是解决这些挑战的一部分。这些模型的训练过程需要大量的计算和执行时间。但是,在今天的并行和分布式基础设施中扩大大型深度和强化学习模型已经成为一个重大挑战,因为它需要机器学习和超级计算方面的大量多学科专业知识。总的来说,这两个领域的研究到目前为止还没有走到一起;现在需要努力在这些算法的并行化中提供联合解决方案,不仅需要对它们重新编程,还需要知道如何有效地使用并行和分布式资源。因为正如强化学习的主要研究者之一 Rich Sutton 最近所说的那样,“通过大规模计算增强的一般方法是最有效的”。我们的研究小组旨在引入将这两个研究领域相结合的解决方案。人工智能革命不仅仅是关于新的数学模型;这是关于如何利用 HPC 为下一代深度和强化学习方法提供的前所未有的机会。
我们在这方面的最新论文
探索、发现和学习:状态覆盖技能的无监督发现,发表于第 37 届国际机器学习会议(ICML2020) 。提出了一种新的强化学习无监督技能发现范式。是我们和 @DocXavi 共同指导的博士生之一 @vcampos7 最后的贡献。本文由来自 Salesforce Research 的 @alexrtrott 、 @CaimingXiong 、 @RichardSocher 共同撰写。
关于 BSC 和 UPC
巴塞罗那超级计算中心 (BSC)是位于巴塞罗那的公共研究中心。它拥有一台 13.7 千万亿次的超级计算机,其中也包括新兴技术集群。2017 年 6 月世界排名第 13 位。
加泰罗尼亚理工大学(Universitat politècnica de Catalunya),目前简称 BarcelonaTech ,俗称 UPC ,是西班牙加泰罗尼亚地区最大的工科大学。它还提供其他学科的课程,如数学和建筑。
本系列内容:
人工智能的超级计算
人工智能正在重演视频游戏行业
图片:博尔哈·洛佩兹
AI 会跟上电子游戏吗?
在过去的几年里,人工智能已经给许多行业带来了巨大的变化。其中包括卫生、法律、零售和音乐行业。今天我将带你了解人工智能是如何改变视频游戏行业的,以及我认为人工智能在未来会把视频游戏带到哪里。
你可能已经意识到了游戏行业目前正在应对的热门平台变化。以前,视频游戏是通过光盘和盒式磁带购买的,然后用来安装游戏或在设备上玩游戏。如今,数字下载是发行的主要形式,在新的转变中,我们看到了通过平台向流媒体游戏转移的显著趋势,如 Steam 或谷歌最近推出的自己的视频游戏流媒体平台 Stadia 。除了这一发展,我们还看到了从常规流媒体到云流媒体的转变。这就带来了一个问题:“云流媒体会取代游戏机吗?”
图片:Stas Knop
为什么要在电子游戏中使用 AI?🎮
人工智能在视频游戏中的应用比大多数人意识到的要多得多。最早记录的人工智能在视频游戏中的使用可以追溯到 1978 年,当时流行的街机游戏如 Pong、太空入侵者、吃豆人、大金刚和大金刚都集成了某种形式的人工智能。人工智能主要对游戏中编码的某些动作以及一些随机移动做出反应。尽管游戏中的角色并没有边玩边学习,但这是在电子游戏中首次引入人工智能。
《吃豆人》于 1980 年首次发布,里面有一些类似 AI 的元素。有四个幽灵出现在这个名为。Inky,Blinky,Pinky 和 Clyde,每个人都有自己的个性,目的是游戏永远不会无聊。反过来,它会有玩家可以学习的行为。比如 Blinky 喜欢追吃豆人,Pinky 喜欢伏击吃豆人。
在视频游戏中用于模拟人工智能的一种广泛使用的算法是有限状态算法或 有限状态机 。有限状态算法表示并控制视频游戏的执行流程。它由一个或多个状态组成,但一次只能有一个状态处于活动状态。作为实现人工智能的一种方式,它工作得很好,因为它对视频游戏中的不同场景做出了很好的响应。
图片:费尔南多·贝维拉克瓦
目前大多数游戏中人工智能最常见的用途是在非玩家角色(通常指 NPC)中。NPC 只是一个不受用户控制的角色,然而,它是用来增强游戏体验的。NPC 使用人工智能来控制他们对游戏中用户行为的反应。
**图片:凯文·彼德维尔
目前使用人工智能的视频游戏🎮
“视频游戏”中的人工智能实际上可以追溯到 1948 年,当时艾伦·图灵(通常被称为计算机科学之父)和大卫·尚珀诺恩为流行的棋盘游戏国际象棋开发了一种算法。这种算法是在计算机甚至可以执行简单查询之前开发出来的。这个项目被称为“涡轮增压”。
如今,《侠盗猎车手 5》(gt a5)已经将人工智能编入其中。虽然自动驾驶汽车还不允许在现实世界中的全球道路上漫游,但《侠盗猎车手 5》却不是这样。游戏中实施了一定数量的人工智能,以允许汽车学习如何自动驾驶。这个概念是由一个狂热的程序员和成功的商人 Harrison“sendex”Kinsley 提出的。多年来,GTA 5 一直被用于大学的人工智能研究。虽然 Rockstar Games 不赞成他们的代码未经他们允许就发表,但这并不能改变这些年来对人工智能研究有益的事实。
《红色死亡救赎 2》背后的团队希望为玩家创造一种身临其境的体验。这包括一个动态的环境,它会随着你的行动而真实地变化。还有一个人工智能奖杯,一旦完成三部分任务就可以领取。任务包括通过在特定时间(白天或晚上)完成一系列任务来定位 Marco Dragic。
最令人印象深刻的是《使命召唤 2》中使用的开创性 AI。玩家周围有许多盟军士兵,他们完全意识到周围环境的变化。他们还可以使用一个新的上下文敏感的战斗聊天系统来警告玩家。他们可以吸引敌人的火力,并移动坦克到盾牌作为掩护。他们也可以警告你即将到来的军队和激进分子的火力。
图片:苏米尔·库马尔
人工智能在电子游戏中的未来🎮
人工智能在不断进步。我们训练人工智能越多,给它的数据越多,它就变得越好。这是真的,尤其是在电子游戏中。人工智能从玩家的输赢中学习。在识别这些成功和失败时,人工智能可以用来识别这些在哪里发生以及它们是如何发生的。
2021 年**,中国游戏市场将达到 350 亿美元。中国游戏市场巨大,据说还会变得更大,仅中国就有超过 6 亿“游戏玩家”。这是一个巨大的数字,这些统计数据对中国市场来说非常有希望。**
图片:杰西卡·刘易斯
正如你所看到的,视频游戏行业目前正在经历一些大的变化,这对于游戏爱好者来说是非常令人兴奋的。然而,他们可能还需要一段时间才能赶上现有的高水平人工智能,并将其应用到游戏中。
所有观点和意见仅代表我个人,不代表甲骨文
人工智能正在重塑时尚产业
图像:使用 Canva 创建
人工智能如何被用来修补市场上最大和最具竞争力的行业之一。
人工智能目前是一个时髦的术语,但它是如何被用来改善全球最大的行业之一的呢?人工智能正被用于提高服装制造和企业运营的生产率。新的和新兴的技术可以用来提高可持续性,并产生一个定制的,个人的客户体验。
人工智能是如何在时尚界得到应用的?💻
人工智能正在时装业中以许多不同的方式使用。人工智能在时尚界的第一个用例是作为顾问角色。人工智能数字助理正被用来根据顾客的身高、体重、体型和当前尺寸向他们推荐衣服。然后,客户可以根据他们输入系统的详细信息获得准确的尺寸。尺寸精度基于其他客户的反馈。平均来说,40%的网上购物最终会被退回。在客户咨询中使用人工智能很重要,因为它可以提高客户满意度,减少退货次数。
人工智能还可以用于商店和在线零售的实用性和生产力。通过记录销售、退货和网上购物,零售商可以跟踪库存,判断哪些商店需要哪些产品。根据凯捷的一项调查,人工智能可以通过提高多个流程和运营的效率,帮助零售商在 2022 年前每年节省 3400 亿美元。这个预测数字是巨大的,可以理解为什么许多零售商希望在他们的业务中采用人工智能等新技术。
图片:乌苏娜·马达里亚加
时尚与可持续发展中的人工智能🍃
时装业仍然是全球最大的污染源之一。它负责全球二氧化碳排放量的 10% 、全球工业废水排放量的 20% 、工业使用的所有杀虫剂排放量的 25% 。认为这个行业可以继续大规模生产服装以跟上这种快速时尚流行是不现实的。然而,人工智能可以用于生产的许多阶段,以应对这种困境,进而降低库存水平。AI 为时尚提供了一个可持续的解决方案,将整体库存水平降低了 20–50%,并改善了时尚行业的工作条件*。*人工智能与机器学习、深度学习、自然语言处理、视觉识别和数据分析的结合使用可用于减少趋势预测中的错误,并更准确地预测趋势,这将减少生产和未使用的服装数量。
在 2017 年,旧金山的一个亚马逊团队创造了一个未命名的 AI“时装设计师”。他们开发了一种算法,分析图像并复制风格,以类似的风格制作新的项目。我们还没有达到高级时装的水平,但这些新技术预示着未来的可能性。
图像:Unsplash
一家将可持续发展放在商业模式首位并坚持多年的公司是汤姆斯。由 Blake Mycoskie 于 2006 年 5 月成立,他们的使命声明如下:
“TOMS 的使命是通过商业帮助改善生活,这是我们的核心价值观,融入了我们所做的一切。我们相信与分享这些价值观并以道德方式开展业务的其他人合作。”
每买一双汤姆鞋,他们就向贫困地区捐赠一双。截至目前,汤姆斯已经捐赠了超过9650 万双鞋子。这些鞋子由许多材料制成,如天然大麻、有机棉、再生聚酯纤维。这些材料用于鞋的鞋帮、衬里和/或鞋内底。他们不仅捐赠鞋子,还捐赠了他们净利润的 33.3%。因此,他们每赚到 3 美元的 T4,就会捐出 1 美元的 T7。这显示了汤姆为回馈世界各地的贫困社区所做的贡献。汤姆斯已经不仅仅是提供鞋子,2011 年他们开始向有需要的人捐赠处方眼镜,2014 年他们开始为每人提供 140 升(一周的供应量)的水。2015 年,他们培训了熟练的助产士,并发放了安全分娩包。他们帮助超过 25000 名母亲安全分娩。毫无疑问,当涉及到他们的业务时,汤姆有他们的优先次序。****
图片:https://www.instagram.com/toms/
设计师在时尚中使用人工智能👗
我要讨论的第一个品牌是 H&M。它是一家全球流行的服装店,由 Erling Persson 于 1947 年在瑞典创立,在全球生产大量服装。他们选择使用高级分析和人工智能来改善他们的整体业务。H&M 正在改进他们发现趋势和规划物流的方式,并通过使用人工智能技术减少打折销售的数量和大量未售出的库存。他们还利用它来检查供求关系,并向每个商店分配足够数量的商品,再次减少了浪费的衣服数量。在 H&M 集团,他们将分析和人工智能与人类智能结合起来,使用所谓的“放大智能”
Stitch Fix 由 Katrina Lake 于 2011 年 2 月成立。这是一家为男性和女性提供个人风格服务的公司。他们使用来自顾客和客户的数据为用户创造准确的结果。客户输入他们的数据以创建简档。你回答这样的问题:“你喜欢购物吗?”以及“你早上花了多少时间准备”来产生个性化的体验。有许多不同的技术可以使这个工具/应用程序成功。其中一些包括:推荐系统、人工计算(利用人工智能解决计算问题)、物流优化、状态机(一台机器可以有不同的状态,但一次只能实现一个状态)、需求建模、库存管理和数据平台(其他系统可以访问的客户数据库)。
图片:Pexels
最后
人工智能在时尚行业有很多好处,包括使用在线时尚助手来改善客户体验、趋势预测和产生更可持续的解决方案。在一个消费者驱动的时代,我们必须向他们传达正确的信息,并鼓励他们参与讨论,因为我们正在走向一个更加数字化的时代。正如霍华德·米特曼(Bleacher Report 的首席执行官)所说:“内容是王道,但参与是女王,她说了算。”**
*所有观点和意见都是我自己的,不代表甲骨文。”
人工智能是破解宇宙奥秘的关键,下面是原因!
人工智能、数据科学和深度学习的工具是否先进到足以破解不可测量的宇宙的秘密?让我们来了解一下!
由 Unsplash 上 Greg Rakozy 拍摄的照片
几千个世纪以来,宇宙一直吸引着人类。看着天空让人想知道宇宙有多大。有太多的东西等待我们去探索和发现。宇宙既巨大又美丽。宇宙学家和天体物理学家正在尽力揭开宇宙的奥秘。既然宇宙如此浩瀚,我们很自然会想知道关于这个天体的各种概念和哲学。
人类的好奇心是由未知所驱动的。卫星每年发射数百万亿字节的信息,智利正在建设的一台望远镜每晚将产生 15 万亿字节的太空照片。现代望远镜可以扫描并覆盖很长的距离,但还不够长。宇宙太大了,无法达到预期的范围。
照片由 Amy-Leigh Barnard 在 Unsplash 上拍摄
在有限的技术和预算问题下,大型宇宙飞船和更好的设备,我们如何实现探索宇宙的目标?人工智能是解决这个问题的方法吗?
嗯!在提到所有限制的情况下,人工智能是黑暗宇宙中的亮星。这很可能是解决宇宙复杂性和征服宇宙奥秘的完美方案。
人工智能如何帮助克服这一点?
随着人工智能技术在数据科学、探索性数据分析和计算机视觉领域的进步,我们可以取得超乎想象的结果。
自从我们用望远镜开始对话以来,人工智能是打击更远距离的不清晰图像的最佳解决方案。如果你想知道这到底是如何工作的,那么你会惊讶地知道,人工智能特别是计算机视觉和深度神经网络领域处理图像绝对是非常棒的。
由于在这些方面的发展,我们有一种方法来创造许多清晰的视觉效果,可以识别这些模糊的再图像如何被重建来创造更多的副本。最后,我们可以确定这些神经网络产生的这些异常有效的图像的真阳性率和假阳性率。
正如这篇研究论文所描述的,将这项技术应用于寻找引力透镜出人意料地简单。首先,科学家们制作了一个数据集来训练神经网络,这意味着生成 600 万张假图像,显示引力透镜看起来像什么,不像什么。然后,他们将神经网络从数据中解放出来,让它慢慢识别模式。稍作微调后,他们有了一个程序,可以在眨眼之间识别引力透镜。
计算机模拟来解释和数字设计一个清晰的图片来代表我们宇宙中的数十亿个实体一直是科学家们实验的概念和理论哲学,但无济于事。人工智能已经明显改变了这个范围。这一成就归功于开发了称为深度密度位移模型(D . M)的深度神经网络架构的研究人员。
根据这篇研究论文,深度密度位移模型(D M)从一组预运行数值模拟中学习,以 Zel’dovich 近似(ZA)作为输入来预测宇宙的非线性大规模结构,这是一种基于微扰理论的解析近似。他们的大量分析表明,在预测非线性区域的宇宙结构方面,D M 优于二阶微扰理论(2LPT),后者是一种常用的快速近似模拟方法。深度密度位移模型(D M)也能够精确地外推远远超出其训练数据,并预测明显不同的宇宙学参数的结构形成。
这个模型的构建对于天体物理学家甚至是这个特殊设计的创造者来说都是一个令人震惊的惊喜。它产生了超出开发者想象的精确和准确的响应方式。D M 制作的模拟异常精确,甚至对整个宇宙进行了三维模拟,让整个开发团队都感到惊讶。
人工智能的进步不仅限于使用望远镜进行图像分割或模拟整个宇宙。宇航员在太空中生存、去月球旅行和其他太空探险都很艰难。然而,即使是由于这些太空冒险的复杂性而产生的问题,也有一个解决方案。人工智能漫游车和机器人设备的使用。
亚当·米勒在 Unsplash 上的照片
先进的现代人工智能机器人漫游车可以用来取代天文学家在外层空间的作用。火星漫游车就是现代漫游车的一个例子。将高度先进的人工智能系统与卫星、机器人漫游车和宇宙飞船连接起来的好处占据了我们的发现机会,远远超出了人类的理解。
火星探测器上的智能数据传输软件消除了人类的调度错误,否则会导致宝贵的数据丢失。这增加了来自我们的行星邻居的有用数据。同样的技术也可以用于探索太阳系的长期任务,这意味着它们需要地球上人类控制者的最小监督。
拥有人工智能技术的机器人作为一个整体包含了更多。如今,人工智能在太空应用中的使用也很广泛,从机器人到无人能去的地方,再到自主航天器和群体智能。而且,通过使用人工智能,分析卫星图像的方式、巨型星座的管理,甚至寻找太阳系外的行星都变得更加容易。
GIF 来自欧空局
我们将在本文中揭示的最后一个讨论主题是人工智能领域的重大新发展,这可能是最重要和最特殊的发现。这个概念可以启发我们关于宇宙的最高结构、设计和能力。欢迎新的人工智能称为“黑暗模拟器。”
安娜斯塔西娅·杰尼娜在 Unsplash 上的照片
困扰了科学家几代人的一个概念是暗物质背后的理论。随着对暗物质或暗能量的详细研究和突破,不仅整个宇宙结构的秘密可以被揭开,而且现代物理概念的假设和复杂区别也可能得到解决。黑暗模拟器 AI 可能是解决天体物理学家问题的最佳工具。根据主要作者 Nishimichi 的说法—
“我们使用超级计算机建立了一个非常大的数据库,这花了我们三年的时间,但现在我们可以在几秒钟内在笔记本电脑上重建它。我觉得数据科学很有潜力。利用这个结果,我希望我们能够努力揭开现代物理学最大的秘密,也就是揭开暗能量是什么。我还认为我们开发的这种方法将在自然科学或社会科学等其他领域发挥作用。”
—西道。
黑暗模拟器从现有数据中学习,创建多个虚拟世界,并不断重复学习。在用真实巡天进一步测试所得工具后,它能够在几秒钟内成功预测 Hyper Suprime-Cam 巡天中的弱引力透镜效应,以及斯隆数字巡天中记录的三维星系分布模式,精确度在 2%至 3%以内。相比之下,在没有人工智能的情况下,通过超级计算机单独运行模拟需要几天时间。
结论:
使用人工智能的各种工具和技术来解释巨大宇宙的潜力是巨大的。在遥远的未来,关于宇宙的谜、悖论和秘密将会展开,我们将会对各种各样的奥秘有一个清晰的感知,或者至少有一个探索、检查和设想宇宙永恒的简要想法。
随着图形处理单元和自动化机械化的快速持续发展,以及 GANs 等深度学习算法的发展,我们清楚地推测我们的世界是如何形成的那一天可能不会太远。当你读到埃隆·马斯克的引语时,所有这些有趣的好奇的想法都被进一步提出来了。
“人工智能(我指的不是狭义的 AI)的进步速度快得令人难以置信。除非你直接接触过像 Deepmind 这样的团体,否则你根本不知道它的发展速度有多快——它正以接近指数级的速度增长。发生非常危险的事情的风险是在五年的时间框架内。最多 10 年。”
——埃隆·马斯克
我想以有趣、有趣、奇特和奇怪的方式结束这段对话。感谢大家抽出时间,让我知道你们有多好奇去发现宇宙中的未知事物,以及我们的未来!在我看来,发现任何形式的外星生命都将是一个伟大的开始,也是一项绝对了不起的成就。
一定要让我知道你们对迷人的宇宙最感兴趣的秘密。祝你有一个美好的一天!
有兴趣了解更多关于计算机视觉和神经网络的知识吗?查看这些文章,获得深入的解释、指南和更多内容!
[## OpenCV:用代码掌握计算机视觉基础的完全初学者指南!
包含代码的教程,用于掌握计算机视觉的所有重要概念,以及如何使用 OpenCV 实现它们
towardsdatascience.com](/opencv-complete-beginners-guide-to-master-the-basics-of-computer-vision-with-code-4a1cd0c687f9) [## 神经网络的完整有趣和复杂的历史!
重温人工神经网络发展背后的迷人历史
towardsdatascience.com](/the-complete-interesting-and-convoluted-history-of-neural-networks-2764a54e9e76) [## 神经网络拿 TensorFlow 游乐场开玩笑!
使用 TensorFlow Playground 探索神经网络并从中获得乐趣
towardsdatascience.com](/neural-networks-made-fun-with-tensorflow-playground-4e681a0c4529)
其他受欢迎的文章,你应该完全考虑检查!
[## 迷失在密林中:用简单的代码对机器学习中稀疏性的直觉!
为什么 ML 需要稀疏性?理解稀疏性的核心概念。
towardsdatascience.com](/lost-in-a-dense-forest-intuition-on-sparsity-in-machine-learning-with-simple-code-2b44ea7b07b0) [## Python 从头编码:没有任何机器学习库的矩阵乘法!
从零开始了解如何在没有任何机器学习库的情况下实现矩阵乘法!
towardsdatascience.com](/python-coding-from-scratch-matrix-multiplication-without-any-machine-learning-libraries-463624fe8726)
马塞洛·奎南在 Unsplash 上的照片
参考资料:
- 发现千度强引力透镜的研究论文
- 学习预测宇宙结构的形成
- 人工智能可能是探索宇宙的完美工具
- 第一个能够模拟宇宙的人工智能工作得如此之好,以至于令人害怕
- 第一个人工智能宇宙 sim 快速而准确——它的创造者不知道它是如何工作的
- 人工智能模拟宇宙,甚至连它的创造者都不知道它是如何精确的
- 人工智能创造了我们宇宙的 3D 复制品。我们不知道它是如何工作的。
- 开发出预测宇宙结构的人工智能工具
- 欧洲航天局
- 科学家称,名为“黑暗模拟器”的新人工智能可以告诉我们宇宙的结构
人工智能领域——100 篇优秀文章和研究论文
AI/ML 景观
早在 2015 年,我就写过一篇关于 100 篇大数据论文的文章,以帮助揭开景观的神秘面纱。同样的,我认为为 AI 做一个也不错。最初的部分是关于基础的,并提供了一些很好的链接来巩固你的基础。后半部分有一些很棒的研究论文的链接,是为想了解理论和细节的高级从业者准备的。
人工智能是一场革命,正在改变人类的生活和工作方式。机器能够以人类认为“智能”的方式执行任务是一个广泛的概念——这个术语可以追溯到 70 年前(见历史此处)艾伦·图灵,他定义了一个测试图灵测试,来测量机器表现出与人类同等或不可区分的智能行为的能力。这场革命有许多复杂的运动部件。我的目标是简化这些复杂的部分,并提供一个三层蛋糕的视角。顶层是人工智能服务,即解决实际问题的实际应用,中间层由基本的 ML 算法组成,而底层是实现前两者的 ML 平台。
首先是基本定义,人工智能 ( AI )是由机器展示的智能,与人类展示的自然智能形成对比。机器学习(ML)是人工智能的一个子集,它基于这样一个想法,即我们应该真正能够让机器访问数据,并让它们自己学习。神经网络(NN)进一步是 ML 的子集,其中计算机系统被设计成通过以与人脑相同的方式对信息进行分类来工作。深度学习(DL)进一步是 ML 的子集,它使用多层人工神经网络来解决复杂的问题,如对象检测、语音识别和语言翻译。
关于人工智能、人工智能和人工智能之间的区别,可以在这里和这里找到一些很棒的读物。神经网络的基础知识很好的解释了这里和通过代码这里和这里。人工智能可以根据类型进行分类,如这里所解释的狭窄、一般或强大或者反应机器、有限记忆、心理理论和自我意识的级别,如这里所解释的和
ML 算法
ML 算法可以分解为有监督的、无监督的和强化学习(这里解释这里解释,这里解释这里解释,这里解释这里解释)。ML 和 DL 在如何提取特征方面有所不同。传统的 ML 方法要求数据工作者通过应用学习算法来明确地提取特征。另一方面,在 DL 的情况下,特征由算法自动学习,并且不需要特征工程-例如,来自谷歌的 Meena 新聊天机器人具有 2.6B 特征。这是 DL 相对于传统 ML 方法的优势。
神经网络受我们大脑中神经元的启发,旨在识别复杂数据中的模式。我们大脑中的神经元被组织成一个数十亿的巨大网络,每个神经元通常与成千上万的其他神经元相连,这些神经元通常位于连续的层中,尤其是在大脑皮层(即大脑的外层)。神经网络有输入层、输出层和隐藏层。具有两个或更多隐藏层的神经网络被称为深度神经网络。
人工神经网络(ANN)模拟生物神经系统。一层的输出通过使用激活函数进行转换,成为下一层的输入。激活函数是附属于网络中每个神经元的数学方程,并基于每个神经元的输入是否与模型的预测相关来确定是否应该激活(“激发”)它。激活函数可以是线性的或非线性的。TanH、Sigmoid、ReLU、Leaky ReLU 的按键激活功能在这里和这里都有解释。
有不同种类的人工神经网络,如这里的和这里的和所述。一个完整的神经网络图是这里是。
- 感知器是单层神经网络。感知器是最古老和最简单的神经网络,创建于 1958 年。它有一个输入层和一个输出层(没有隐藏层)。感知器无法学习复杂的模式,特别是,它们无法解决一些琐碎的问题,例如异或 (XOR)分类问题。
- 多层感知器(MLP)又名“香草”网络——感知器的局限性可以通过堆叠多个感知器来消除。MLP 是深度学习的基础。全连接层或密集层是一个层,其中一层中的所有神经元都连接到前一层中的所有其他神经元。
- 卷积神经网络引入了卷积层和子采样层。与 MLPs 中的全连接层不同,卷积层仅连接到其各自前一层的子区域,追求受生物学启发的局部感受域的概念。CNN 基本上是一个深度神经网络,由隐藏层组成——卷积层、池层、全连接层和归一化层。CNN 适用于图像和视频识别。一些补充阅读这里,这里这里,这里这里。
- 递归神经网络(RNN)是一种特殊的网络,它沿着时间序列而不是空间序列工作,这使得它们对于手写和语音识别等关键问题非常有用。递归神经网络(RNN)在这里和这里和有很好的解释。他们患有短期记忆。长短期记忆网络——通常简称为“lstm”——是一种特殊的 RNN,能够学习长期依赖性(长时间记忆信息),通过维持时间状态来解决 RNN 限制,如本文所述。门控循环单元是一种更新更简单的 LSTM。LSTM 氏症和 GRU 氏症都有称为“门”的内部机制来调节信息的流动。这里很好的解释了 LSTM 和 GRU 的区别。
- 生成对抗网络(GAN)(原论文)——是一个特殊的网络,它实际上有两个子网络生成器和鉴别器不断相互竞争。生成器尝试生成一些数据,鉴别器尝试将生成的数据与真实的样本数据区分开来。基础知识在这里,高级话题在这里。
- 自动编码器(纸)和变分自动编码器是实现压缩和解压缩功能的特殊种类的人工神经网络。它们将输入复制到输出,首先将输入压缩成一个潜在空间表示,然后从这个表示中解压缩输出。自动编码器的两个应用是数据去噪和降维。更多这里和这里。
- 图形神经网络(GNN) ( 论文 & 论文)是基于深度学习的方法,对图形进行操作。现有机器学习算法的一个关键假设是,每个数据实例都是相互独立的。这种假设不再适用于社交网络、地理地图、分子结构等图形数据,因为每个实例(节点)都通过链接和交互与其他实例相关。gnn 自然有助于对图形数据结构建模。像 CNN 和 RNNs 这样的标准神经网络不能处理图形输入,因为它们在从一层到下一层的处理中是顺序的。这里的基础这里的和这里的。GNN(这里的基础知识)和 CNN 的混合被称为图形卷积网络(GCN),RNN 被称为图形时空网络,自动编码器被称为图形自动编码器。卷积网络(GCN)是更有趣的网络(基础知识这里)。这些还有两种口味。光谱 gcn 或空间 gcn。谱 gcn 使用类似于常规卷积神经网络处理方式的滤波器。另一方面,空间 GCN 通过聚集邻居节点进行卷积。
- 脉冲神经网络(SNN) ) ( 论文)是下一代人工神经网络,它希望通过使用类似于我们大脑中神经元功能的模型来弥合神经科学和机器学习之间的差距。顾名思义,SNNs 使用离散的激活阈值或峰值,而不是常用网络中的连续值。更多此处。
鉴于神经网络模型的复杂性和爆炸式增长,有相当多的努力来自动化架构工程,以找到针对给定业务问题的最佳机器学习模型的设计神经架构搜索。这是 AutoML 和超参数优化的一个子领域。更多这里和这里。
ML 平台
重要的努力不是花费在创新新的学习算法或模型上,而是花费在使 ML 工具和基础设施更好上。ML 平台为机器学习开发人员、数据科学家和数据工程师提供了基础,使他们的 ML 项目从构思到生产和部署,快速且经济高效。
ML 生命周期
典型的 ML 生命周期始于数据准备,随后是(特征)发现、开发和训练模型、测试、部署,最后使用模型进行推理或预测。数据准备通常与获取、导出和清理足够的训练数据以馈入 ML 算法相关联。特征发现和提取识别对业务领域最重要的关键数据属性。部署包括可观察性、可调试性、监控和生产化。Auto ML 框架的云特定基准可以在这里找到。
在现代 ML 生命周期中有几个挑战(见技术债务)。
- 多个算法和库——ML 开发人员通常希望尝试每一个可用的算法来构建最精确的模型,一个正在进行项目的团队可能会尝试多个处理库——例如 MxNet 、 TensorFlow 、 Clipper 、 Caffe 、 PyTorch 、 Theano 、 Chainer 。
- 实验-从输入数据到超参数,模型预测可能会受到数百个配置参数的影响。
- 精度——从训练到部署的模型可能会从数据科学家易手到数据工程师,后者可能最终会使用不同版本的库,导致模型性能不佳。
- 部署-由于多种推理环境,如 REST 服务、批处理和在线评分,因此存在挑战。像 Kubeflow 这样的框架使得部署更加简单
斯坦福大学的 MLFlow 开源项目(Databricks)和 DAWN (面向下一步的数据分析)Stack 是试图解决这些挑战的两项努力。MLflow 的关键原则是一个开放接口设计,与现有的 ML 平台如脸书 FbLearner 、优步 米开朗基罗、网飞、谷歌 TFX 、Airbnb 大头和腾讯(见此处的对比)相比,这种开放接口设计在保留生命周期管理优势的同时给予用户灵活性和控制权。除了解决 ML 生命周期的挑战之外,DAWN Stack 还解决了从新接口到新硬件的抽象问题。
ML 堆栈
1)计算硬件——对计算硬件——CPU、GPU 和 TPU——的一个很好的观察可以在来自脸书和谷歌的这些论文中找到。量子物理学和 ML 的交叉产生了量子机器学习。谷歌最近开源了 Tensorflow Quantum ,使用谷歌 Cirq 等框架进行混合经典量子模型的快速原型制作。
2)分布式深度学习——运行高度并行的模型需要并发(见分析)和调度器( DL2 、 Optimus 和忒瑞西阿斯)。在构建分布式深度学习框架方面有很多进展,在这里可以找到很好的介绍其中比较流行的有 Google GPIPE 、优步 Horovard 、DeepMind 的 TF-Replicator 和微软的pipe dreamZero&deep speed。
3)特征存储允许不同的团队管理、存储和发现用于机器学习项目的特征。它充当数据工程和数据科学之间的 API,实现改进的协作。一个很棒的介绍可以在这里找到,这里列出了的特色店列表。几个受欢迎的是来自谷歌的盛宴和一些背景这里,来自 Logicalclocks 的 HopsWorks ,来自 LinkedIn 的 Frame 和来自 Airbnb 的 ZipLine 。 ML Ops 可以与一个特性库相结合,实现模型的训练、测试和部署的自动化。
4)可解释性和可解释性——AI 系统中信任的 4 个特征是 i) 公平性其中模型和数据没有偏见 ii) 健壮性其中不容易篡改或损害他们被训练的数据 iii) 可解释性其中决策可以被他们的消费者理解 iv) 沿袭允许审计模型生命周期的开发、部署和维护的能力。这些技术中最突出的是莱姆和 SHAP ,它们基于模型不可知的方法,专注于解释给定黑盒分类器的单个预测。局部可解释模型不可知解释(LIME)提供了一种快速的方法,通过随机地反复扰动模型特征来获得预测,然后使用预测来计算近似的线性“解释模型”。SHAP (SHapley 附加解释)通过计算每个特征对预测的贡献来工作。它源于联盟博弈论,其中数据实例的每个特征值充当联盟中的参与者,并计算每个特征的边际贡献或支出(参见 Chris Molnar 的可解释机器学习书)。这两种技术之间的进一步区别在这里有详细描述。Google 的可扩展性白皮书论文也是很好的参考。
为了消除偏见,谷歌最近引入了几个新方法,用概念激活向量( TCAV )和联合学习进行测试。TCAV 从实例数据中学习概念。例如,TCAV 需要实例数据中的几个女性实例,以学习“性别”概念。人类使用概念来思考和交流,而不是使用每个特征的权重。TCAV 解释了人类相互交流的方式。联合学习将模型训练推到边缘(以防移动计算到设备)。
5)可视化——与模型可解释性和可解释性相关的是模型可视化。白盒 AI 查看模型复杂性和模型意识,以得出不同的可视化技术。谷歌开源了 Facets 来帮助可视化训练数据,优步内部使用 Manifold ,而脸书有 HiPlot 。
6)指标-指标用于衡量模型的质量和性能。有许多不同类型的评估指标可用于测试模型。这些包括混淆矩阵、分类准确度、精确度、召回率、ROC、AUC、F1 分数、灵敏度、特异性、对数损失、均方误差和平均绝对误差。三部曲系列是很好的参考。另一个介绍性的参考是这里的。就模型预测而言,偏差和方差之间有一个权衡,这可能由于欠拟合或过拟合而发生。为了建立一个好的模型,你需要通过在偏差和方差之间找到一个好的平衡来最小化总误差。另一个需要测量的重要事情是概念漂移和模型衰减。概念漂移发生在输入和输出数据之间的关系会随着时间而改变时,这意味着根据旧数据训练的模型不再像根据最近数据训练的模型那样准确。防止模型衰变的一个好方法就是持续监控和维护它。
最后,接下来的部分是给对构建和扩展 ML 算法和平台感兴趣的 AI 技术专家的。
- 深度学习的架构、算法和应用的调查
- 深度学习调查:算法、技术和应用
- 机器学习框架和库的调查
- 调查分布式基础设施上的可扩展深度学习:挑战、技术和工具
- 大规模图网络的调查。
人工智能、机器学习和深度学习——有什么区别?
人工智能、机器学习和深度学习的简单解释以及它们之间的区别
人工智能是新的电力— 吴恩达
电力改变了世界的运作方式。它改变了运输、制造、农业,甚至医疗保健。比如电灯发明之前,人类仅限于白天活动,因为晚上很黑,只有买得起煤气灯的人才能做活动。相比现在,我们仍然可以在晚上进行活动,因为它是由电灯照明的。
人工智能(AI)也是如此。 AI 预计也有类似效果。我们今天可以举的一个具体例子是广告问题。此前,出现的广告是由人类手动确定的。现在,出现的广告是由人工智能根据用户档案数据确定的。例如,如果用户喜欢时尚,那么可能出现的是服装广告。
随着技术的进步,人工智能领域的研究也在增长,因此以前定义人工智能(AI)的基准现在变得过时了。
从这一发展中产生了机器学习和深度学习等新术语。但有时,AI、机器学习和深度学习之间存在切片,因此它们之间的区别可能非常不清楚。所以在这篇文章中,我将快速解释一下人工智能,机器学习和深度学习的含义以及它们之间的区别。
让我们从这张图片开始。
人工智能、机器学习和深度学习
从图片中我们可以看出,机器学习是人工智能的一部分,深度学习是机器学习的一部分。然而,有些人认为人工智能和机器学习是分开的。然而,在这篇文章中,我将讨论机器学习是人工智能的一部分。更多细节,让我们更明确什么是 AI。
人工智能
人工智能已经研究了几十年,仍然是计算机科学中最难理解的学科之一。这部分是因为这个主题是多么的庞大和模糊。这在我们在社会中使用计算机的几乎每一个方面都有应用。人工智能是指在机器中对人类智能的模拟,这些机器被编程为像人类一样思考并模仿他们的行为。
人工智能这个术语是由约翰·麦卡锡在 1956 年首次提出的,当时他就这个主题召开了第一次学术会议。尽管,理解机器是否真的能思考的旅程在那之前很久就开始了。
人工智能通常会分析其环境,并采取行动来最大化其成功的机会。在早期,人工智能的方法是形式逻辑和专家系统。这些方法在当时统治了 AI。
然而,随着计算能力的发展,更加强调解决具体问题,人工智能与其他领域之间也有了新的联系。由此产生的一种方法就是学习,或者我们称之为机器学习。
机器学习
马里奥·高在 Unsplash 上拍摄的照片
按照字面意思,机器学习就是从数据中学习的机器。机器学习模仿了人类从童年到成年的学习概念。例如,如果教婴儿区分狗和猫,他们会得到狗和猫的图片,以及机器,如果你想让机器学习,我们必须向机器提供关于狗和猫的知识。给出的图片越多,机器区分猫和狗的能力就越强。
图像检测—来源:pix abay(https://www . pexels . com/photo/kitten-cat-rush-lucky-cat-45170/)
机器学习与计算统计学密切相关,计算统计学侧重于做出预测。数据挖掘也与这项研究有关,这项研究侧重于通过无监督学习进行探索性数据分析。
在机器学习中,使用了几种类型的算法,并根据算法的预期输入和输出进行分组。
监督学习
监督学习创建将输入映射到期望输出的函数,例如在分类中。它观察数据的模式,并将它们转换成模型来预测未来的数据。更多细节,我们看这个例子。
分类示例
从上图可以看出,起初我们只有 cross 和 round 类的数据。然后我们有了新的数据,三角形。然后,根据之前训练的模型预测新数据。因为新数据与交叉类具有相似性,所以这些数据被分类到交叉类中。
包括在监督学习中的方法的一个例子是神经网络、kNN、决策树、朴素贝叶斯、SVM 等。
无监督学习
无监督学习对输入集进行建模,例如聚类。不同于每个数据都有一个类的分类。聚类的工作原理是将相似的数据分组。
聚类示例
从上图可以看出,首先,我们有一组数据,然后根据数据与其他数据的相似性将数据分组到特定的组中。
包括在监督学习中的方法的一个例子是 k-means、DBSCAN 等。
强化学习
强化学习是一种应用于智能代理的学习算法,使它们能够适应其环境中的条件,这是通过最大化可实现的“奖励”奖赏的值来实现的。这种类型教导如何采取行动来处理问题,一个有影响的行动。
最常见的例子是自动驾驶汽车,机器被要求避免碰撞或违规。如果发生事故或违规,那么机器将获得负奖励,如果机器做得对,将获得正价值。从那里,机器将学习驾驶汽车。
从上面的一些解释,也许我们已经明白了什么是机器学习。其中机器学习侧重于根据过去的现有数据预测未来事件。
如今,几乎所有 AI 领域的行业都专注于开发机器学习,如情感分析、图像识别等。这是基于今天机器学习的快速发展。
然而,上面提到的方法仍然有弱点,其中之一对于复杂数据不是最佳的。因此,在下一节中,我将讨论机器学习的下一个级别,即深度学习。
深度学习
乔希·里默尔在 Unsplash 上的照片
深度学习是基于学习多层(即深度)表示/抽象的机器学习算法,受大脑结构和功能的启发,称为人工神经网络**。**基本上深度学习就是一个大型的神经网络。
你可能会问,需要多少层才算深度?这个问题没有明确的答案,但通常有两个或两个以上的隐藏层算作深度。“深度”这个术语本身是由 Geoffrey Hinton 在他题为“ 深度信念网的快速学习算法 ”的论文中引入的,用来解释大型人工神经网络的发展。
现在新的深度学习正在出现的一个原因是,已经有更快的机器和多核 CPU/GPU,以及更快和开放的分布式系统(Hadoop、Spark 等)。
与传统的机器学习方法相比,深度学习的优势在于能够处理大量的数据集,并减少建模中的人工干预。
脸书人工智能研究总监 Yann LeCun 发表了题为“卷积网络:释放机器学习对于强感知系统的潜力的演讲,深度学习之所以被称为 deep,是因为它有几个阶段来识别一个对象,所有这些都是训练的一部分。深度学习和传统机器学习的区别可以从下图看出来。
学习分层表示法——受https://www . slide share . net/embedded vision/01-am-keynotelecun启发——pix abay(https://www.pexels.com/photo/animal-pet-cute-kitten-45201/创作的猫图像
当使用传统的机器学习时,特征提取往往是不够的,我们经常添加中级特征。但这不足以表示数据,通常这部分是通过无监督学习来训练的。基本上,它只是捕捉统计数据,没有做太多。随着深度学习,它被模块流水线所取代,并且是可训练的。但是这是要付出代价的,就是大量的计算,需要大量的数据。
深度学习的方法有很多,比如卷积神经网络(CNN),长短期记忆(LSTM)等。如果你有兴趣了解神经网络架构,可以访问下面的链接。
[## 人工智能、神经网络、机器学习、深度学习和大数据的备忘单
最佳人工智能备忘单的最完整列表
becominghuman.ai](https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463)
以下是深度学习的应用实例。
- 自动驾驶汽车
- 机器翻译
- 图像彩色化
如果你有兴趣更好地理解神经网络,你可以尝试使用 Tensorflow 游乐场。
这是一种构建从数据中学习的计算机程序的技术。它非常松散地基于我们如何思考…
playground.tensorflow.org](https://playground.tensorflow.org/)
如果你喜欢这个帖子,你可以看看我的其他故事。
做机器学习项目的分步指南
towardsdatascience.com](/how-to-start-a-machine-learning-project-5654832cb1ed)
人工智能可能会让你获得重身幽灵奖
如果你曾经想过在世界的某个地方拥有你的分身,人工智能可能很快就会实现。
人类的大脑远远超出了目前任何机器的能力。虽然计算机执行数百万次计算的速度确实比人脑快得多,但人类可以执行更复杂的活动,如表达情感、在高难度地形中保持身体平衡以及适应不断变化的环境和时间。人工智能(AI)试图弥合人脑和计算机之间的差距。
其中最成功的成果之一,是由汉森机器人公司创造的人形机器人——索菲亚【1】。该公司接着说,
Hanson Robotics 最先进的类人机器人 Sophia 体现了我们对人工智能未来的梦想。作为科学、工程和艺术的独特结合,Sophia 同时也是一个描绘人工智能和机器人未来的人类科幻小说角色,以及一个高级机器人和人工智能研究的平台。
虽然这可能看起来是一个虚构的角色和一个很酷的概念,但如果有机会与你长期互动,Sophia 甚至可能会像你一样,这可能不是不合理的。有没有想过,如果你有一个跟你一模一样的二重身 AI 怎么办?这听起来可能既有趣又怪异,但人工智能研究肯定会在不久的将来实现它。
人工智能的艰难旅程
人工智能是一个非常困难的话题,但它看起来很有前途。到 20 世纪上半叶,科幻电影引入了智能类人机器人和计算机的概念。然而,爱好者们并不仅仅把这当成一部小说。到 20 世纪 50 年代初,科学家和研究人员开始对人工智能产生兴趣。艾伦·图灵就是这样一个人,他在理论计算机科学和著名的“图灵机”的发展中具有很高的影响力。在他 1950 年在发表的论文“计算机械和智能”中,艾伦·图灵提出了一个问题——
机器会思考吗?
图灵很好奇的发现,*如果人类可以吸收周围的信息来学习和做决定,为什么计算机不能做同样的事情?*从那时起,人工智能研究吸引了大量研究人员,并在世界各地获得了大量资金。根据国际数据公司(IDC)的数据,2019 年全球人工智能支出为 375 亿美元,预计到 2023 年将达到 979 亿美元【3】。
如今,人工智能与人类互动的主要实现之一是通过智能手机、笔记本电脑和数字助理,如 Siri 和 Cortana。它们不仅可以帮助你完成日常任务和设置提醒,还可以了解你的习惯、喜好和厌恶,甚至可以从你的声音和电话使用中检测你的情绪。在 2018 年的谷歌 IO 活动中,谷歌展示了他们的助理如何聪明到可以给一家沙龙打电话,与电话另一端的人互动,并毫无差错地安排约会。
在 I/O 2018 的舞台上,谷歌展示了谷歌助手令人瞠目结舌的新功能:在不太遥远的…
www.theverge.com](https://www.theverge.com/2018/5/8/17332070/google-assistant-makes-phone-call-demo-duplex-io-2018)
计算技术的进步
虽然人工智能不仅仅包括神经网络方法,但是神经网络和深度学习对于人工智能的有效性变得越来越重要【4】。随着硅技术的进步,处理器变得极其节能、快速和可靠。此外,存储技术在过去十年中有了很大的发展,在速度惊人的口袋大小的固态硬盘中存储万亿字节的数据已经成为可能,而这在几年前还是不可能的。
这使得研究人员能够建立和训练人工智能所需的大型复杂神经网络【5】,以模拟类似人类的特征,如感情,以及**【合理决策】【6】的重要行为。此外,大量的计算可以在这些不那么耗电的处理器上进行,这使得这种远程应用程序的电池寿命更长。在更快更准确的传感器及其与机载嵌入式系统的可靠集成方面也正在进行大量的研究**【7】,这将使这样的人工智能比以往任何时候都更加了解周围的环境——甚至可能不仅仅是一个活生生的人!
在更小的外形中更快更大的存储意味着大量的信息可以存储在 AI 硬件中。这可以是由人工智能的设计者存储的信息,但更重要的是,它将使人工智能能够实时存储信息——它在与环境交互时经历的信息。这些信息可以被 AI 实时用来学习新的东西——这就是所谓的**【自我意识 AI】**【8】,也就是说,它知道该学什么,不该学什么。这将使这样的人工智能能够适应变化,并更真实地与环境互动。
值得一提的是新兴的 5G 技术
5G 正开始成为一种超高速网络,不仅用于数据消费,还用于近乎实时的远程控制——这要归功于其低延迟。这意味着许多人工智能决策可以在云端做出,而不需要本地存储。由于“几乎无限”的可用知识【9】,在云中存储和计算决策不仅有助于人工智能做出更加恰当的决策,还将有助于跟踪和控制人工智能不执行非法或令人反感的任务。值得看看爱立信发布的使用 5G 的远程控制设备的潜在用例。
5G 引入了远程控制设备和重型机械的能力,从而释放了改进的潜力…
www.ericsson.com](https://www.ericsson.com/en/5g/use-cases/critical-control-of-remote-devices)
他们知道我们的一切
马库斯·斯皮斯克在 Unsplash 上拍摄的照片
但是二重身是怎么回事?
人工智能怎么能像我一样思考和决策?
你有没有和朋友聊过买 iPhone 的事情,下一刻就看到一个关于最新款 iPhone 的谷歌广告?或者你是否曾经想要点菜,而你最喜欢的菜却自动上来了?或者甚至 LinkedIn 建议你一个完整的信息,你可以用它来回复一个连接?你肯定经历过这个!
像谷歌和脸书这样的大型科技公司不断收集你的数据——你搜索了什么,你和谁聊天,你喜欢谁的帖子,甚至你喜欢什么音乐。这些数据用于个性化您对他们产品的体验,让他们的产品像您一样思考!但是这些信息的范围远远超出了内容个性化。
这些数据可以专门用来训练 AI 像你一样行为和决策。随着联网设备(智能手机和可穿戴设备)的出现,关于你睡眠模式的数据,直到对你重要的人,一切都存储在云中。IEEE【10】上的一篇论文也研究了微软 Kinect 在机器人应用中的应用,这是一种检测你姿势的传感器。该论文研究了如何通过逆向工程,使用从人类受试者收集的数据,教会机器人室内导航。
这样的 AI,如果在机器人身上实现,绝对可以在办公会议上替你骗过同事。它不仅看起来像你,行为也像你,而且在某些方面还可能在决策方面比你更聪明——这要归功于 5G 和联网设备范式的出现,这将使人工智能能够跟上最新发生的事情。不,我并不是说我们的技术已经为这样的转变做好了准备,但是我们可能已经很接近了。人工智能发展的速度和吸引研究人员的速度,不难想象人工智能在我们周围的未来。但是,这将导致下一个大问题,这是本世纪最大的辩论之一!
会危及我们吗?
照片由 Mikael Seegen 在 Unsplash 上拍摄
所有这些可能看起来很酷,对人类执行任务和做决策很有帮助。但是,研究人员和非科学界也担心它可能对我们有潜在的危险。
- 决策 —许多人担心这种智能决策会让人类过于依赖人工智能工具来为他们做决定。随着这种影响的加深,人们将被迫相信人工智能,而不知道它是如何工作的,这也将妨碍他们独立决策的能力。【11】
- 网络威胁 —网络安全已经成为现代社会的一个主要问题。随着人和设备的联系越来越紧密,网络攻击者的脆弱性及其可能带来的潜在影响已经是一个令人震惊的问题。随着人工智能的突然涌入及其指数级增长,网络攻击对这种技术的影响尚未完全知晓,它可能对社会产生的后果不应被低估。随着越来越多的个人信息被人工智能使用,数据隐私等问题也是一个主要问题。
- 自主人工智能的危险 —随着人工智能变得越来越复杂和智能,人们相信很快它将不再需要人类输入(或所谓的监督学习)来执行任务。它将被编程为自动从环境中学习并决定其行动来执行特定的任务。然而,许多人担心这种自主行为需要在人工智能设计中考虑严格的道德规范,因为它不应该在完成其目标时造成任何伤害或破坏。斯坦福大学的一篇文章很好地说明了人工智能的这个潜在问题。
人工智能(AI)和机器人是将对发展产生重大影响的数字技术…
plato.stanford.edu](https://plato.stanford.edu/entries/ethics-ai/)
人工智能要么是发生在人类身上最好的事情,要么是最坏的事情。~斯蒂芬·霍金
我想以问一个问题来结束这篇文章— 你会给你的二重身取什么名字?请在评论区告诉我。我希望你喜欢这篇文章,它让你了解人工智能如何变得越来越聪明,越来越了解周围的环境,以及数据爆炸如何导致个性化达到这样的水平,以至于你的办公室同事可能会把你的分身误认为你!关于这个问题的更多讨论,请发邮件给我,地址是**【jishnudeep.kar@gmail.com】**或者在 Instagram 上给我发 DM。
参考
[1]https://www.hansonrobotics.com/sophia/
[2]http://sitn . HMS . Harvard . edu/flash/2017/history-artificial-intelligence/
https://www.idc.com/getdoc.jsp?containerId=prUS45481219
[4]https://www.pnas.org/content/early/2020/01/23/1907373117
[5]https://static . Google user content . com/media/research . Google . com
[6]https://link.springer.com/chapter/10.1007/11893004_69
[7]https://www . mdpi . com/journal/sensors/special _ issues/vision _ sens
https://doi.org/10.3389/frobt.2018.00088
[9]https://www . Forbes . com/sites/tomtaulli/2020/05/08/how-5g-will-unleash-ai/
https://ieeexplore.ieee.org/document/6236985
[11]https://ea-foundation . org/files/ai-opportunities-and-risks . pdf
https://plato.stanford.edu/entries/ethics-ai/
如果你喜欢这篇文章,你可能也会喜欢这些。
机器学习超越了图像分类和语音识别。了解为我们的产品提供动力变得多么重要…
towardsdatascience.com](/machine-learning-is-becoming-increasingly-important-to-keep-your-homes-lit-7bd2e62ca2b) [## 从印度到美国的文化冲击——一个学生的视角
如果你计划去美国,并且对那里的文化太过好奇,这可能是你最好的剧透!
medium.com](https://medium.com/illumination/cultural-shock-visiting-the-usa-from-india-a-students-perspective-1f901df99984) [## 使用这些技巧让你的 Matlab 代码更快更真实
我在 Matlab 上工作和编码的 4 年多的旅程中学到的技巧。
towardsdatascience.com](/make-your-matlab-codes-faster-and-more-realistic-with-these-tips-281389b9d376)
人工智能为谷歌产品提供动力
人工智能如何深度融入谷歌产品
丹尼尔·罗梅罗在 Unsplash 上的照片
“我们希望使用人工智能来增强人们的能力,使我们能够完成更多的工作,并让我们花更多的时间进行创造性的努力。”
**—杰夫·迪恩,**谷歌高级研究员
我们都很熟悉谷歌以及它的搜索引擎如何为每个人带来互联网革命。谷歌声称,如果公司没有投入大量时间、金钱和努力来发展技术,如人工智能、深度学习和 机器学习 ,他们的搜索引擎和其他产品系列就不可能取得进步。
作为一家涉及多个领域的软件和硬件的多元化公司,谷歌现在明白创造人工智能产品以帮助其用户进入智能技术的新时代是多么重要。
在过去的几十年里,人工智能一直在发展,它积极地使人们和…
blog.digitalogy.co](https://blog.digitalogy.co/best-examples-of-artificial-intelligence-in-everyday-life/)
谷歌当初为什么对深度学习感兴趣?
谷歌人工智能专注于将人工智能的好处带给每个人。
过去几年清楚地表明了谷歌对为其用户构建更智能的技术有多么感兴趣。证据包括其大量使用的搜索引擎以及许多其他产品,这些产品严重依赖于诸如人工智能、机器学习和深度学习等技术。谷歌的主要目标一直是了解其用户实际上是如何使用其服务的,这里的想法可能包括何时、何地以及如何使用其服务。
谷歌进军开发、采用和/或收购更好的技术将被证明对理解其产品背后的使用模式至关重要。谷歌还依赖于其基础设施和一系列算法,这些算法不断分析和寻找改进其产品的方法,以便最新的改进使其用户能够用更少的点击和点击完成更多的事情。
在这里了解更多—
- 【https://ai.google/
- https://twitter.com/Google
- https://www.youtube.com/user/Google
使用谷歌人工智能中心将想法变为现实
towardsdatascience.com](/top-google-ai-tools-for-everyone-60346ab7e08)
人工智能为谷歌产品提供动力
现在我们知道了为什么谷歌一直致力于将人工智能融入其各种服务中,让我们看看我们常用的谷歌的一些流行应用程序、服务和硬件。
1.谷歌搜索引擎
- **类型:**网络搜索引擎
- 投放: 1997 年
- 提供: 149 种语言
- 写于: Python,C,C++
谷歌的搜索引擎自发布以来发生了巨大的变化,人工智能在其中发挥了重要作用。算法是任何搜索引擎的关键部分。随着时间的推移,谷歌调整了其搜索引擎算法,以支持该行业的各种趋势,但真正使谷歌能够建立如此高效的算法,以至于它们可以自主学习的是深度学习的突破。
如果没有人工智能,谷歌就不可能改进其搜索模式识别算法,以过滤和避免垃圾邮件,以及对搜索图像进行分类和编目。
谷歌搜索的工作原理—
2.谷歌翻译
- **类型:**神经机器翻译
- **上线:**2006 年 4 月 28 日(作为统计机器翻译)
2016 年 11 月 15 日(作为神经机器翻译) - **创建者:**弗朗茨·约瑟夫·奥奇
- 提供: 109 种语言,见下文
- 网址:translate.google.com
谷歌翻译是一个简单的在线工具,允许用户将任何文本从一种语言翻译成另一种语言。与 2006 年推出统计机器翻译时相比,谷歌翻译在提供即时翻译方面取得了长足的进步。
但最近人工智能的进步,特别是神经机器翻译,真正提高了翻译的质量和可靠性,包括超过 109 种语言来提供相关翻译。此外,自然语言处理的改进也优化了几个谷歌服务的语音输入功能。
作者图片
3.谷歌助手
图片来源— 谷歌助手
- **类型:**虚拟助手
- **发布日期:**2016 年 5 月 18 日
- **操作系统:**安卓、Chrome OS、iOS、iPadOS、KaiOS、Linux
- 写于: C++
- **提供:**多语种
- 配音者:琪琪·贝塞尔
- **网址:**assistant.google.com
你不能只谈论谷歌的人工智能创新,而把谷歌助手排除在讨论之外。你可以把谷歌助手看作是你手机的智能扩展,它可以帮助你在不接触它的情况下最大限度地完成你的数字任务,比如打电话、发短信、记笔记、设置提醒等等。
但这还不是清单的结尾,谷歌助手还支持语音搜索的自然对话,它可以从你的使用模式中学习并建议行动,甚至可以通过一个简单的命令一次自动完成几项任务。
4.谷歌广告
图片来源— 谷歌广告
- **类型:**网络广告
- 2000 年 10 月 23 日
- 网址:ads.google.com
AdWords ,现在叫做 Google Ads 是T5Google 营销套件工具的一部分。谷歌广告是一个让企业和用户在网上为他们的产品做广告的工具,让用户完全控制他们广告的制作、管理和投放。随着谷歌继续分析和描述其用户的搜索行为,它可以利用这些数据有效地将正确的广告瞄准正确的个人,这是谷歌广告背后的核心理念。
谷歌使用几个 ML 算法 ,这些算法根据几个指标对数千个关键词进行排序,然后用来挑选合适的广告展示给用户。此外,人工智能还可以为用户提供有价值的纠正性见解。
在这里了解更多—
5.谷歌地图
- ****类型:网络制图
- 2005 年 2 月 8 日
- ****创建者:拉斯·拉斯穆森延斯·艾尔斯特鲁普·拉斯姆森
- ****提供:多语言版本
- 用: C++(后端),JavaScript,XML,Ajax 编写
- ****网址:https://www.google.com/maps
谷歌地图是来自谷歌的便捷导航系统,可以在安卓、iOS 和网络上使用。它被评为顶级导航和地图应用程序,在用户中非常受欢迎。卫星图像、360 度地图、室内地图和实时交通状况只是谷歌地图提供的部分功能。
谷歌已经在谷歌地图中实现了几个人工智能和人工智能驱动的功能,例如与谷歌助手的集成,该助手分析用户的通勤路线,并根据实时数据建议交通流量和延迟较少的路线。另一个这样的功能是推荐附近的兴趣点,如加油站、吃饭的地方、自动取款机等等。****
在这里了解更多—
- **【https://twitter.com/googlemaps **
- https://www.youtube.com/user/googlemaps
6.谷歌邮箱
图片来源— Gmail
- ****类型:网络邮件
- 2004 年 4 月 1 日
- ****创建者:保罗·布赫海特
- 提供: 105 种语言
- 编写于: Java,JavaScript,C++(后端),JavaScript (UI),Ajax
- 网址:【mail.google.com】T22
我们确信大多数用户主要使用 Gmail 作为他们首选的电子邮件服务,但是你知道谷歌已经为 Gmail 实现了许多智能功能吗?其中一个功能被称为智能回复,它分析整个电子邮件并建议一个合适的简短回复,甚至无需键入确认。
Gmail 还有垃圾邮件保护功能,可以过滤任何潜在的垃圾邮件,防止它们进入你的收件箱。此外,Gmail 中的人工智能可以智能地将你的电子邮件分类,如促销、社交、更新、主要和优先。当你试图撰写电子邮件时,Gmail 还可以预测文本,从而加快工作速度。
智能回复—
作者图片
智能邮件分类—
作者图片
Gmail 中的 Google Meet 选项卡—
7. YouTube
照片由freestocks.org从派克斯拍摄
- ****类型:视频分享平台
- 2005 年 2 月 14 日
- 创始人:贾韦德·卡里姆,查德·赫利陈士骏
- 写成: Python,C,C++,Java,Go,JavaScript
- 【https://www.youtube.com/】网址:
自 2005 年以来,著名的在线视频分享平台 YouTube 的功能和规模都呈指数级增长。大量品牌使用 YouTube 进行营销,而数百万其他人使用它来消费他们感兴趣的最新视频内容。
为了给品牌和消费者提供安全无缝的体验,YouTube 部署了几个依赖于人工智能和人工智能的机制。这些人工智能驱动的机制包括自动识别和删除不良内容,自动推荐内容,以及根据用户的兴趣和观看历史播放下一个相关视频。
了解更多这里的事情—
8.谷歌浏览器
图片来源— Chrome
- ****类型:网络浏览器、手机浏览器
- 2008 年 9 月 2 日
- ****引擎:Blink(iOS 上的 WebKit),V8 JavaScript 引擎
- ****操作系统:微软 Windows,安卓,Windows 7,等等
- 用: C、C++、Java(仅限安卓 app)、JavaScript、Python 编写
- 提供: 47 种语言
- ****网址:www.google.com/chrome/
谷歌 Chrome 可能是最常用的浏览器之一,自 2008 年冬天首次推出以来,它已经经历了许多变化。在众多变化中,最近有几个变化是利用人工智能的力量让每个人都可以访问互联网。****
其中包括最近为视觉障碍者引入的辅助功能,该功能分析网站上的图像并播放音频描述或替代文本(如果可用)。谷歌 Chrome 获得的另一个便利技巧是,在谷歌搜索中搜索某些内容时,可以呈现视频中简短且高度相关的部分。
了解更多这里的事情—
9.Google Drive
图片来源— Google Drive
- ****类型:文件托管服务
- ****发布日期:2012 年 4 月 24 日
- 编程语言: Python,Objective-C
- 【https://www.google.com/drive/】网址:
Google Drive 是个人和职业任务的顶级在线文件存储和协作选项之一。多年来,谷歌对 Google Drive 进行了多项改进,不仅节省了时间,还提高了生产率。其中一个功能称为快速访问**,它使用 ML 来分析几个最常用的文件,并预测您最常访问的文件,从而让您可以在 Drive 中即时访问它,无需手动导航到该文件。**
在此了解更多信息—
10.谷歌照片
图片来源— 谷歌照片
- ****类型:照片存储和分享
- ****投放:2015 年 5 月 28 日
- ****操作系统:安卓、iOS、web
- ****网址:photos.google.com
把 Google Photos 想象成一个在线相册**,可以让用户无缝管理自己拍摄的照片。他们所有的照片都被备份到云端进行保管,但这并不是谷歌照片的唯一目的。**
Google Photos 利用一些漂亮的人工智能和人工智能技术为您提供智能功能,例如基于里面的主题对照片进行自动分组的、自动分析和增强照片以获得最佳效果的智能过滤器、与谷歌镜头的集成以识别对象和文本,等等。****
在这里了解更多东西—
- **【https://twitter.com/googlephotos **
- https://www.youtube.com/user/GooglePlusPhotos
11.谷歌日历
图片来源— 谷歌日历
- ****类型:电子日历
- ****发布日期:测试版—2006 年 4 月 13 日,常规版—2009 年 7 月
- ****平台:网络应用,安卓,iOS
- 编程语言: Java,JavaScript
- 网址:www.google.com/calendar/about
日历在我们的日常生活中起着决定性的作用,是管理它的一个重要工具。谷歌的日历应用提供了广泛的日常管理选项,但为了使其更加强大,谷歌增加了一个目标功能**,旨在帮助用户实现他们的个人目标,无论是学习新的爱好,完成任何未完成的项目,还是去散步。**
根据谷歌的说法,这种人工智能功能可以智能地分析你在繁忙时段的日常安排,如果需要,可以在你方便的时候自动重新安排你的目标。
在此了解更多信息—
12.巢凸轮室外
Nest Cam Outdoor 是一款户外安全摄像头,可以将实时视频传输到您的手机上,以提醒您房子周围的任何可疑活动。Nest Cam 可以像许多其他安全摄像头一样完美地检测运动,但它与其他摄像头的区别在于底层的人工智能算法,该算法使用计算机视觉来检测外部情况。
除了智能地提醒你有人来了,也不是因为你的宠物在镜头前缩放,室外的摄像头总是在记录。捕捉的视频可以使用 Nest 应用来观看,它通过应用智能人工智能算法,可以让你快速筛选活动时段,而不是快速回放一整天。
更多人工智能驱动谷歌产品—
- 谷歌镜头
- 谷歌双工
- 谷歌新闻
- 谷歌金融
- 面向消费者的云存储
- 所有谷歌产品列表—https://developers.google.com/products
下一步是什么
我们浏览了谷歌的大量服务,讨论了人工智能和相关技术不仅在改善服务和体验方面发挥了关键作用,还让谷歌带来了新功能。如果谷歌继续以同样的热情朝着人工智能、深度学习和机器学习的方向前进,我们很有可能在接下来的几年里见证几个领域的巨大飞跃。
如果你有更多的建议或想法,我们很乐意倾听。
更多有趣的阅读—
我希望这篇文章对你有用!以下是一些有趣的读物,希望你也喜欢
** [## 给 Python 开发者的 10 个很酷的 Python 项目想法
您可以使用 Python 构建的有趣想法和项目列表
towardsdatascience.com](/10-cool-python-project-ideas-for-python-developers-7953047e203) [## 2020 年你必须使用的最好的 Python IDEs 和代码编辑器
具有显著特性的顶级 Python IDEs 和代码编辑器
towardsdatascience.com](/best-python-ides-and-code-editors-you-must-use-in-2020-2303a53db24) [## 2020 年人工智能工程师的顶级编程语言
从几种编程语言中,人工智能工程师和科学家可以挑选出适合他们需要的语言
towardsdatascience.com](/top-programming-languages-for-ai-engineers-in-2020-33a9f16a80b0) [## 机器学习和深度学习的最佳 Python 库
现代机器学习模型和项目的 Python 库
towardsdatascience.com](/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c) [## 选择 PyTorch 进行深度学习的理由
PyTorch 可以为深度学习程序员提供很多东西
towardsdatascience.com](/reasons-to-choose-pytorch-for-deep-learning-c087e031eaca)
关于作者
克莱尔 D 。在Digitalogy—是一个内容制作者和营销人员,这是一个技术采购和定制匹配市场,根据全球各地的特定需求,将人们与预先筛选的&顶尖开发人员和设计师联系起来。在Linkedin,Twitter,insta gram。****