本周(7 月 18 日)你应该阅读的有趣的 AI/ML 文章
分析和意见
发现一些文章,这些文章提供了关于如何撰写数据科学博客以及身份盗窃如何使用基于人工智能的技术发展的信息
人工智能技术和系统发展迅速,每周都有新的发明和技术出现。然而,人们仍然不满意我们目前拥有的人工智能水平。
了解为什么人工智能没有达到我们的预期,以及身份盗窃如何演变为利用 deepfakes 和面部识别数据。
本周的封面文章介绍了:
- 关于如何在媒体上撰写专注于数据科学的文章的技巧和建议
- 身份盗窃在中国变得多么创新和廉价。
- 缺乏对当前人工智能水平的欣赏
- 一种你可能没听说过的神经网络架构
包括文章的封面图片
我如何写一个数据科学博客
如果你正在读这篇文章,那么你对 Medium 并不陌生,你也很有可能,是一个对 AI 感兴趣或者从事 AI 相关工作的人。可能在某个时候,你想在媒体上写文章。
丽贝卡·维克里写了一篇文章,详细介绍了她写文章的过程。
你为什么要接受丽贝卡在文章中分享的建议和提示呢?Rebecca 已经在 Medium 上写了两年了,并且每周都会发表一到两篇文章。如果这还不够,她目前还被认为是教育、技术和人工智能领域的顶级作家。
那么丽贝卡是如何写数据科学文章的呢?
据丽贝卡说,她倾向于将她的写作生涯与目标和目的联系起来。也就是说,Rebecca 的目的是向他人传授数据科学知识,同时巩固自己的知识。这是任何人都可以采用的目的,因为机器学习是一个不断增长的领域,每天都有新的技术和工具出现。
撰写数据科学文章可能会很乏味,需要一个稳健的过程,那么 Rebecca 如何保持动力呢?
她在文章中指出,她不是受金钱激励或社会认可的驱使。根据丽贝卡的说法,不要把经济或社会认可作为动力的来源,你可以拥有成功而长久的写作生涯。
在写作过程中,金钱和社会的验证不会很快到来。因此,你需要一些能激励你坚持写作多年的东西。
我从丽贝卡的文章中得到的最好的建议是她的文章提炼技巧和过程。丽贝卡没有坐下来,炮制出值得策展的文章。她对一篇文章反复推敲。每一次迭代都从一系列想法到围绕这些想法的解释…再到一篇完整的文章。
迭代技术的关键是丽贝卡可以随时随地进行写作。
如果你想从这篇文章中得到灵感,开始在媒体上写作,请读一读这篇文章。也许很快,我会读到你的一篇文章。
这篇文章非常适合:
- 数据科学博主
- 数据科学从业者
撰写数据科学(或任何其他主题)的顶级技巧
towardsdatascience.co](/how-i-write-a-data-science-blog-62e4108fe478)
你可以在中国的黑市上以 0.07 美元的价格买到戴夫·格什戈恩(Dave Gershgorn)的随机面部识别照片。
我似乎每周都会阅读一两篇戴夫·格什根的文章,我认为人工智能行业的每个人都应该这样做。戴夫涵盖了人工智能和技术相关的相关和当前的主题;这是一剂有益的当代信息,可以平衡你可能每周阅读的所有研究和技术媒体文章。
未来十年,身份盗窃会是什么样子?
好吧,戴夫的文章涵盖了中国对先进人工智能技术的众多滥用之一的最新发展。戴夫写道,中国黑市上正在出现包含人脸图像和附带个人数据的数字包销售。
这些出售的软件包是在中国许多广泛使用的金融、商业和生活应用中绕过许多面部认证系统的所有要求。
从戴夫文章的标题,你可以看到获取数据是多么可笑的便宜。
Dave 写了一个高级包,让整个故事更加离奇。只要支付几美元,你就可以得到一个“deepfake like”软件,它可以移动静止图像的内容来模仿微妙的头部运动。
几年前,戴夫在他的文章中所涵盖的一切,将会出现在一部以 2079 年为背景的电影剧本中,讲述一个先进的犯罪集团。但是我们看到这将在 2020 年实时展开。
Dave 还提到,这种身份盗窃方法可能不太容易适用于美国境内的系统。他还表示,IPhones 拥有先进的面部识别过程,可以测量面部特征的深度。
但有人以低于 1 美元的价格成为数字版的你只是时间问题吗?
这篇文章非常适合:
- 未来学家和技术专家:简要了解非法活动和犯罪是如何随着先进的技术和人工智能而发展的。
- 机器学习实践者 :了解世界上一些最聪明的人开发的工具和应用程序的误用是如何导致严重问题的。
* [## 你可以在中国的黑市上花 0.07 美元买到一张随机的面部识别照片
卖家提供多达 20,000 张人脸图像的套装
onezero.medium.com](https://onezero.medium.com/you-can-buy-facial-random-recognition-photos-on-chinas-black-market-c54ab219580f)*
AI 革命来了。这与我们对托比亚·图迪诺的预期不同
我们想要会飞的汽车,他们却给了我们假的。
Tobia Tudino 的最新文章是基于没有意识到人工智能目前的状态是多么具有革命性。这种缺乏欣赏是由于科幻小说中人工智能的呈现导致的高期望的结果。
Tobia 指出,我们在科幻电影和动作中观察到的人工智能可以采取的几种形式的未来主义描述,遮蔽了我们的视线,使我们无法认识到我们期待已久的人工智能革命就在这里,就在我们面前。
但是我没有看到会飞的汽车;没有传送…我们确实有一些很酷的 飞船 。
Tobia 开始用 Micheal I. Jordan 的扩展声明来解释为什么 AI 没有满足我们对电影的期望(人工智能——革命尚未发生】)。该语句传递 AI 是通配符术语的消息。术语“AI”用于描述任何消除或模拟人类干预或参与的技术进步。
基于对人工智能的描述,可以有把握地说,我们周围到处都有人工智能。
我得到的印象是,Tobia 希望我们读者欣赏我们现在拥有的人工智能水平。Tobia 提到了医疗保健、商业、咨询和时尚行业在决策和数据收集方面的进步。
也许人们担心对当前人工智能的欣赏可能会导致内容。或者,人们尚未接受我们已经实现了值得骄傲的“人工智能”这一事实,这也许不是一件坏事,因为这可以推动研究人员、工程师和创新者发明和创造更好的人工智能系统和技术。
这篇文章令人兴奋,因为:
- 机器学习从业者 :这篇文章将鼓励你去欣赏你投入到这个世界中的工作,即使这个世界不一定会表现出欣赏。
仅仅因为人工智能还不足以成为科幻小说,并不意味着它已经不是革命性的了
towardsdatascience.com](/the-ai-revolution-is-here-its-just-different-than-we-expected-5022c23aaeee)*
有人称之为天才,有人称之为愚蠢:安德烈·叶创造的最有争议的神经网络
我从来没有遇到过“极限学习机(ELM)”这个话题,所以安德烈·叶的文章对我来说既有教育意义又有启发性。
你们中的一些人可能也没有听说过 ELM,Andre 在他的文章中给出了原因。主要原因是机器学习社区没有采用它,深度学习专家批评和质疑它的性能。
Andre 的文章非常有教育意义,因为它在初级水平上介绍了 ELM,所以任何具有机器学习基本背景的人都可以理解 ELM 的描述和好处。
Andre 通过陈述 ELM 的内部组件对其进行了介绍;如何训练神经网络结构以及其他更具体的特征和属性。
我从这篇文章中得到的总体想法是,榆树是有效的,因为它的随机性。如 Andre 所述,ELMs 由两个律师组成,其中第一层被随机初始化,而权重参数是固定的。
在神经网络架构中融入随机性元素是我们在各种深度学习神经网络架构中看到的;权重可以被随机初始化,并且之后的丢弃也为架构提供了随机性特征。
Andre 还介绍了 elm 被机器学习社区中有声望的个人抛弃的主要原因。Andre 还提供了一些关于 elm 所面临的限制的信息,以及为什么它们没有被广泛采用或利用的原因。
这篇文章非常适合:
- 机器学习从业者
* [## 有人称之为天才,有人称之为愚蠢:有史以来最有争议的神经网络
极限学习机
towardsdatascience.com](/some-call-it-genius-others-call-it-stupid-the-most-controversial-neural-network-ever-created-2224ed22795a)*
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
- 订阅我的 YouTube 频道 即将上线的视频内容 这里
- 跟我上 中
- 通过 LinkedIn 联系我
本周(7 月 4 日)你应该阅读的有趣的人工智能/人工智能文章
找出为什么你应该换工作,成为一名哲学家
本周,我看到了几篇文章,挑战基于人工智能的系统在几个领域的开发和利用。
作为一名机器学习从业者,我从来没有真正反思过我所做贡献的哲学和法律方面,但在阅读了一些有趣的文章后,这种情况发生了变化,这些文章展示了人工智能进步现在正在发生的后果,以及那些尚未发生的后果。
我们今天的生活明天可能会完全不同。
本周我感兴趣的文章涵盖了以下主题:
- 为什么哲学家会是最后站着的人
- 法律聚光灯下的面部识别
- 如何开发有效的数据科学产品组合
- 物体检测算法之间的较量
包括文章的封面图片
一家面部识别巨头拒绝分享其算法数据集的细节
你会让一个失败率 98%、误报率 81%的机器学习模型投入生产吗?
嗯,这些声称的性能数据来自一个面部识别系统,该系统被南威尔士和英国其他地区的警察部队使用。
Dave Gershgorn 的文章以一个类似于反乌托邦未来的场景开始,在这个场景中,一个监管系统监控着所有人;歇斯底里地预示着可预见的未来。
南威尔士警方自 2017 年以来一直在使用面部识别系统,并在公众面前毫不隐瞒地做到了这一点。他们通过面部识别系统逮捕了一些人。
从表面上看,利用该技术打击犯罪和帮助有效维持治安并没有敲响任何警钟,但这些用于实施逮捕的系统的准确性指标和性能审计结果描绘了一幅更令人吃惊的画面。
Dave 的文章包含了一项针对使用面部识别软件的管理机构的诉讼信息。这起诉讼是由于面部识别系统固有的算法种族偏见和无效性——这是最近成为头条新闻的一个主题。
但是,Dave 对该事件的报道的要点是揭示 NEC technology(面部识别工具的提供商)不愿意透露他们数据集的细节。
甚至使用该工具的警察也不知道该系统是如何被训练的。在我看来,公开用于训练对公众有直接/间接影响的系统的数据是有意义的,特别是在公共警务方面。
戴夫的文章提到了英国对欧洲其他国家和世界的影响。它指出,他们对面部识别的行动和观点可以为欧洲其他国家如何采用和利用面部识别技术开创先例。
Dave 文章的后半部分简要介绍了解决自动驾驶汽车中复杂问题的文章。
阅读这篇文章,了解针对开发用于公共场合的人工智能系统的公司所采取的法律后果和行动。
这篇文章非常适合:
- 机器学习从业者
- 技术专家
NEC 声称其系统没有偏见——但拒绝透明的呼吁
onezero.medium.com](https://onezero.medium.com/a-facial-recognition-giant-refuses-to-share-details-about-its-algorithm-dataset-df27a208683d)
忘掉编码吧,未来的工作是哲学,作者卢卡·罗西
本周我读过的最有趣的文章之一。卢卡·罗西写了一篇文章,会让大多数读者走上自我和环境意识的道路。
读完这篇文章后,我发现自己在质疑我的行为和贡献的影响,这些行为和贡献会导致这篇文章中所创造的想象世界。
Luca 的文章首先陈述了农业、工业和技术革命等全球性革命周期性发生所造成的失业影响。
然后,随着自动化使传统的手工劳动过时,他描绘了引入新的角色和工作的一线希望。但这一丝希望被他的个人意见挡住了。
卢卡在他的文章中指出,自动化和人工智能不会导致大量失业,这并不能保证或确保未来所有人都有大量工作。卢卡还表达了他对未来的担忧,在未来,自动化将主宰生活的方方面面,让我们变得一无是处;他表达了对人类幸福和满足感的关注。
Luca 列出了一些最终将被淘汰的职业,当我往下读列表时,我很欣慰没有看到任何机器学习的角色。卢卡明确指出,由于机器和自动化,没有提到的职位仍然是即将到来的就业市场末日的受害者,这种宽慰很快就消失了。他甚至提供了一个人工智能通过艺术模仿人类创造力的例子来进一步支持他的观点。
没有人是真正安全的。除了哲学家
卢卡认为人工智能不能取代哲学家,因为哲学是人类对存在和生命的本质的模糊性的表达,这与“纯智能”无关。这是一个我不完全赞同的观点。在这个问题上,我可能会和卢卡好好辩论一番。
不管我对卢卡观点的反对意见,我仍然欣赏他对四个越来越相关的哲学主题的结构化方法:道德、意识、生命的意义和对齐问题。
卢卡将每个提出的哲学主题与当前技术(如自动驾驶汽车)和假设的未来技术(如心灵传输和心灵传输)的发生结合起来。
通过创建基于简单和复杂事件的场景,Luca 展示了人类可能做出的选择之间的差异,并展示了人工智能系统做出相同决定的可能性。
Luca 的文章可能不同于许多机器学习从业者习惯阅读的更具技术性和更直接的文章。但是我推荐定期阅读探索技术进步的哲学方面的文章。我知道的一本很好的书是尼克·博斯特罗姆的超级智慧:路径、危险、策略。
在结束一篇有趣的文章时,卢卡大胆地指出,世界的命运掌握在哲学家手中,这一观点令我着迷。
这篇文章很有意思,适合:
- 技术专家
- 对与人工智能交织在一起的哲学话题感兴趣的人
人工智能在不久的将来会带来四大问题。只有哲学可以拯救我们。
medium.com](https://medium.com/predict/forget-about-coding-the-job-of-the-future-is-philosophy-33acadcee05a)
如何建立有效的数据科学投资组合 Harshit Tyagi
想要一份让你从其他求职者中脱颖而出的“一流”投资组合,那么 Harshit Tyagi 的文章可以被视为建立投资组合以实现这一目标的蓝图。
我将诚实地声明,在面试阶段,我没有任何作品集可以展示给我现在的雇主,但是正如 Harshit 非常正确地指出的,拥有高学历会给你带来优势。所以 Harshit 的文章非常适合没有理学硕士或博士学位的数据科学家。
文章中提出的第一个建议是自我认同。哈什特建议求职者了解自己目前的技能和自身的局限性。通过这种了解,他们会更清楚自己最适合做什么工作。
没有项目目录的数据科学家组合是不完整的。在这篇文章中,有一些特定形式的项目,希望从人群中脱颖而出的读者应该渴望完成。Harshit 对求职者可以探索的各种项目给出了近乎完美的解释,甚至包括几个投资组合的例子。
后面的步骤探讨了在线展示的重要性,以帮助提升数据科学家的声誉。Harshit’s 推荐了 GitHub、LinkedIn、Medium 和 Twitter 等平台,以及他如何利用这些平台的一些个人轶事。
这篇文章最后提供了一些关于简历中关键内容的信息。老实说,这篇文章充满了很棒的技巧和信息,如果你是一个视觉学习者,你也可以查看他的 YouTube 频道,了解更多很棒的内容。
这篇文章非常适合:
- 数据科学学生
- 数据科学求职者
创建一流投资组合的全面指南
towardsdatascience.com](/how-to-build-an-effective-data-science-portfolio-56d19b885aa8)
YOLOv5 与更快的 RCNN 相比。谁赢了?由 Priya Dwivedi
如果你是一个非常视觉化的学习者,你会喜欢由 Priya Dwivedi 撰写的文章,该文章探索了与两种广为人知的对象检测算法的性能比较:YOLOv5 和更快的 RCNN。
这不是一篇关于每种算法如何处理目标检测的分解文章,所以一些读者可能会失望地发现,没有解释所包含的算法如何工作。也就是说,Priya 提供了大量的资源链接,这些资源提供了算法内部工作的信息。
Priya 用来衡量每个算法性能的比较场景是真实的。本文以视频的形式呈现了三种场景:汽车视频、篮球比赛和拥挤的公共场景。
在这篇文章中,Priya 提供了对对象检测算法结果的并排视频评估,然后附有对每个算法进行评估的性能和精度标准表。
我不会透露哪种对象检测算法是最好的,请阅读文章了解一下。
这篇文章的视觉本质使得它对于所有水平的深度学习实践者来说都是容易阅读的。
这篇文章非常适合:
- 深度学习从业者
- 机器学习从业者
用数据做很酷的事情!
towardsdatascience.com](/yolov5-compared-to-faster-rcnn-who-wins-a771cd6c9fb4)
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
- 订阅我的 YouTube 频道 即将上线的视频内容 这里
- 跟我上 中
- 通过 LinkedIn 联系我
本周(6 月 20 日)你应该阅读的有趣的 AI/ML 文章
意见
这四篇文章涵盖了我本周感兴趣的机器学习主题…包括许多数据科学家可能会感到沮丧的原因
有趣文章的封面图片
又是一周,又一批有趣的媒体文章要通过了。
媒体文章的质量变得越来越令人兴奋和迷人。这周我读了一些围绕学习主题的文章。学习可能是人工智能的中心主题,这应该是相当明显的,因为它是人工智能(机器学习、深度学习、强化学习)大多数领域的最终结论。
学习不仅仅是为我们构建的人工智能系统保留的;我们机器学习实践者必须不断地用正确的工具来装备自己,以加快我们自己的学习。我提到的一些文章为你提供了促进学习游戏的方法和心态。
本周我感兴趣的文章涵盖了以下主题:
- 免费在线资源,来自以学术成就闻名全球的机构
- 对下周备受期待的苹果开发者大会的预测
- 为什么许多数据科学家感到沮丧
- 人脑与人工智能的持续战斗
由丽贝卡·维克里从顶尖大学免费学习数据科学
免费的教育资源是互联网的礼物, Rebecca Vickery 为有抱负的数据科学家或任何对机器学习领域感兴趣的人打包了一个学习资源包。
丽贝卡通过参考一本名为《超学习》的书开始了这篇文章。加速你的职业生涯并提到了作者能够“超学习”的关键因素,即免费在线课程的可用性。
这就引出了丽贝卡写这篇文章的主要原因,那就是揭示学术机构如麻省理工学院和斯坦福大学所提供的精心设计的课程的存在。
本文的主体包括一系列基于课程的机器学习相关主题的学习资源,供喜欢结构化学习方法和知识积累的学习者使用。
读者不仅仅是提供这些免费资源的链接,丽贝卡提供的是已识别资源的背景,使读者能够了解资源提供者的起源、作者和使命。
我向数据科学和机器学习的新老学生推荐这篇文章。
丽贝卡为读者提供了超过 11 种免费的在线资源,将它们加入书签可以在未来为你节省一笔昂贵的学费。
这篇文章是优秀的:
- 数据科学/机器学习学生
在哪里可以找到麻省理工学院、斯坦福大学和哈佛大学的免费讲座、研讨会和完整课程
towardsdatascience.com](/learn-data-science-from-top-universities-for-free-ee3387ad88ac)*
一位资深 iOS 开发者对 WWDC 220 的预测由 Anupam Chugh
距离 WWDC 2020 只有几天了;这是最令人期待的苹果开发者大会之一。它持续了将近一周,尤其是今年,它从 6 月 20 日开始,到 6 月 26 日结束。
Anupam 已经写了一篇文章,其中包含了他对苹果在 2020 年 WWDC事件中的预期的结构化收集。
你可以告诉 Anupam Chugh 非常激动地见证了这次大会和重要的进展,因为他提到了 2019 年 WWDC 大会上介绍和改进的苹果开发生态系统。
本文的主要内容包括 Anupam 对苹果生态系统中现有应用和平台的见解和功能要求,如 CoreML 、 CreateML 、 RealityKit 和 SwiftUI 。
文章的上半部分专注于围绕苹果生态系统内机器学习相关应用的预测,而后半部分则更倾向于苹果开发者生态系统的实用和设计部分。
如果你等不及下周即将发生的激动人心的事情,请快速阅读这篇文章。
这篇文章是优秀的:
- Swift 开发人员
- CoreML 开发者
- 应用程序开发人员/软件工程师
* [## 一位资深 iOS 开发者对 WWDC 2020 的预测
我认为在不久的将来,苹果公司将会推出
medium.com](https://medium.com/better-programming/a-senior-ios-developers-predictions-for-wwdc-2020-fb727a4b45e6)*
当你试图成为一名数据科学家时感到沮丧的原因
Kurtis Pyke 的文章旨在揭示定义最成功的数据科学家的实际个性特征。通过识别这些特征,任何人都可以成为成功的数据科学家
Kurtis 在他的文章中提出了一个很好的观点,即满足该领域的学术要求是很重要的,但这并不能定义该领域的成功。
我从这篇文章中得到的一个信息是,成功不是通过学习的内容来实现的,而是学习如何不断地学习新的内容。
根据我的个人经验,我发现理解学习的过程很重要,因为在一个内容和方法都在不断变化的领域,唯一不变的是学习的方法,不管内容如何。
学习如何学习是我每周从 Medium 上的各种作者那里听到的信息,Kurtis 以数据科学家可以理解的方式定制了一般信息,主要包括他的个人经历和机器学习领域内受人尊敬的人物的片段。
这篇文章是优秀的:
- 所有级别的数据科学家
将最优秀的人与众不同的隐藏技能
towardsdatascience.com](/the-reason-youre-frustrated-when-trying-to-become-a-data-scientist-2d2b8b402811)*
元学习告诉我们,大脑比人工智能有独特的学习优势
文章的开头是承认人工智能在许多任务上开始超过人类的表现。尽管如此,Jesus Rodriguez 承认需要大量的训练数据和计算资源来实现人工智能系统的卓越性能。
这篇文章的主要内容是围绕人脑和人工智能之间的对比展开的。更具体地说,是大脑调节化学物质以实现身体功能的独特能力。这篇文章引用了 Deepminds 的关于一种促进人脑学习过程的神经递质的研究论文。
Jesus 很好地解释了这篇文章和参考资料研究集中的神经递质,他甚至使用金·卡戴珊来确保读者得到这种特殊神经递质的作用的说明。
这篇文章本身是对 DeepMind 研究的一个非常简短的总结,涵盖了研究中进行的实验的方法和结果。
这篇文章是优秀的:
- 强化学习爱好者
- 机器学习工程师(对人脑功能和神经科学感兴趣)
* [## 元学习告诉我们,大脑比人工智能有独特的学习优势:它必须…
没有一个星期我们不在这里谈论人工智能取得的另一个令人印象深刻的里程碑…
medium.com](https://medium.com/dataseries/meta-learning-teaches-us-that-the-brain-has-a-unique-learning-advantage-over-ai-and-it-has-to-do-f6bed5a825f6)*
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
- 订阅我的 YouTube 频道 即将发布的视频内容 这里
- 跟着我上 中
- 通过 LinkedIn 联系我
本周(6 月 28 日)你应该阅读的有趣的 AI/ML 文章
四篇文章涵盖了我本周感兴趣的机器学习主题…其中一篇文章涵盖了你可能不喜欢的未来
再过一周,又一批媒体文章要通过了。
我这周读的文章很吸引人,因为许多作家都表达了他们对我们未来的看法。
除了我在 Medium 上遇到的常见技术文章,我觉得探索未来可能会发生什么很重要,特别是像 AI 这样的快节奏领域可能会产生的影响。
我们今天的生活明天可能会完全不同。
本周我感兴趣的文章涵盖了以下主题:
- 新兴技术带来的未来会是什么样子
- 如何让你的机器学习模型退出开发
- 如何度过 10,000 小时的数据科学家指南
- 人工智能及其对医疗保健的影响
包括文章的封面图片
9 项可怕的技术将塑造你的未来
生命、死亡、艺术、激情、性、选择、心智、人工智能和完美的孩子,这些仅仅是 Luca Rossi 在他写得非常好的关于技术的文章中提到的一半话题,这些技术将很快控制我们生活的许多方面。
首先,卢卡提供了一个免责声明和警告读者,因为文章的内容围绕伦理和道德的细线跳舞。卢卡敦促读者在消化文章中呈现的内容时要有开放的心态。但读完之后,我会说,你不一定需要一个开放的心灵才能理解卢卡所展示的技术的现实。
Luca 将遥不可及的未来假设与我们可用的当今技术之间的相似之处联系起来,这种方式让我认为,是的,所有这些未来技术都只需要几代人的时间。
如果你想知道为什么将来只有穷人会死,或者为什么未来的社会会充满“完美”的人类,那么这篇文章是一个很好的读物。
Luca 讨论了与提到的未来技术相关的恐惧。每一部分还包括一个片段,合理化了人类对即将到来的不可预防的未来的恐惧。
这篇文章充满了提供组织证据的资源,暗示了创造提到的未来技术的途径。因此,对于那些怀疑的读者来说,他们觉得我们离提到的一些未来技术可能还有数百年的时间,卢卡的文章可能会改变你的想法。
这篇文章非常适合
- 对未来技术感兴趣的个人
- 技术专家
在接下来的几十年里,我们将见证新的不可思议的可怕技术的出现。多么害怕…
medium.com](https://medium.com/predict/9-terrifying-technologies-that-will-shape-your-future-befa688d247)
10 分钟在谷歌云平台上部署深度学习模型 Binh Phan
Binh Phan 提供了关于机器学习实践者如何在线扩展他们的机器学习模型的信息,相对来说没有任何成本。这是通过利用全球最大的云服务提供商之一的计算资源实现的。
这篇文章包含了清晰简洁的一步一步的说明,使得最终目标非常容易实现;这与许多过时的文章形成对比,这不是作者的错,因为这仅仅是技术快速发展的结果。
Binh 推出了 Docker 和 GCP 等行业标准工具。
本文中的说明的最终结果是一个外部链接,用于访问经过训练的机器学习模型的公开功能。
这篇文章非常适合
- 数据科学家
- 学生
- 机器学习工程师
如何在 GCP 部署深度学习模型,完全免费,永远免费
towardsdatascience.com](/10-minutes-to-deploying-a-deep-learning-model-on-google-cloud-platform-13fa56a266ee)
10.000 小时的数据科学|通过 Richard Michael 获得熟练程度
假设你有 10,000 个小时致力于成为你能成为的最好的数据科学家,那么理查德·迈克尔的文章本质上将是你如何度过每个小时的蓝图。
Richard 总结了一种结构化的方法,通过提供涵盖统计学和数学基础的资源,从操作系统和编程语言的选择,一个完全的初学者如何成为一名熟练的数据科学家。
每个确定的主题领域都被分配了成为专家数据科学家所需的 10,000 小时中的一部分时间;所以你可以粗略估计完成每个主题领域需要多长时间。
Richard 文章的后半部分剖析了机器学习领域中的工作角色。
许多人会发现,机器学习中的大多数角色在其指定的职责和责任方面往往是重叠的。然而,了解你学习的最终目标是什么总是好的,因为这可以让你的学习道路更加透明。
这篇文章很适合:
- 数据科学学生
从数据新手到专业人士的路。
towardsdatascience.com](/10-000-hours-in-data-science-gaining-proficiency-440387e723c1)
人工智能、深度学习和医学医学博士亚当·塔布里兹
Adam Tabriz,MD 文章结合了人工智能和医疗保健的世界,描述了人工智能将如何影响各种医疗保健实践提供的日常角色和服务。
这篇文章的非技术方法使它成为所有读者的好读物。
Adam 首先对术语深度学习及其内涵进行了深入探讨。文章的早期内容可以看作是对人工智能相关的常见术语和短语的非技术性解释。
亚当又一次以非技术的方式进一步解释了人工智能是如何在工业中应用的。虽然人工智能在各种行业中被用于不同的任务,但亚当的文章解释说,每个人工智能系统的过程在各个行业中都是相同的。
我不会对 Adam 的文章进行任何剧透,但 Adam 提供了一个惊人的声明,总结了机器学习领域的首要目标。
当我们接近文章的主体时,Adam 开始以更快的节奏写作。本节中的文章内容开始更多地关注医疗保健行业中的人工智能。
Adam 介绍了几个有趣的想法和技术,例如,将人工智能与人类思维相结合,以及在医疗保健中利用人工智能进行诊断。
亚当文章的主要内容充满了人工智能在医疗保健行业的巨大潜力。这篇文章对于医疗保健行业中那些好奇他们的工作和实践在未来几年将如何开始改变的个人来说是一篇很好的读物。
Adam 文章的后半部分采取了与前一部分相反的观点,因为 Adam 介绍了人工智能对社会、个人和日常生活的负面影响。
主题包括隐私、工作保留、武器、算法偏见等等。亚当把引入人工智能应用和解决方案的负面、黑暗的一面包括进来,这是公平的。
Adam 通过关注医疗保健专业人员和他们拥抱人工智能和基于人工智能的解决方案的方法来结束他的文章。
我从文章的结论部分获得的一般信息是,医疗保健专业人员需要了解人工智能工具在医疗保健中的引入,并知道如何与人工智能结合,为患者和客户提供最佳服务。
这篇文章非常适合:
- 技术专家
- 医护专业人员
积极的医生姿态将拯救医学艺术
medium.com](https://medium.com/datadriveninvestor/artificial-intelligence-deep-learning-and-medicine-ae0cdb7cb20)
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
- 订阅我的 YouTube 频道 视频内容即将上线 这里
- 跟着我上 中
- 通过 LinkedIn 联系我
本周(10 月 11 日)你应该阅读的有趣的人工智能/人工智能文章
强烈推荐的文章,对人工智能和机器学习感兴趣的个人应该读一读。
又是一周,又一批有意思的文章要过了。
有时候,我不得不后退一步,欣赏像 Medium 这样内容丰富的平台,它们提供关于传统主题(如人工智能)的易于消费的知识。
关于这一点,以下是我本周在 Medium 上看到的四篇文章,每篇文章在内容和提供的信息方面都很突出。
- 读完 妮可·珍妮薇·比尔兹 的文章后,做好停止使用“人工智能”这个术语的准备。
- Waymo 刚刚宣布了他们在追求完全自动驾驶交通未来方面的一次重大飞跃,而 戴夫·格什高恩 写了一篇文章,涵盖了关于该事件的所有重要信息。
- 亚历山大·科姆斯特朗 写一篇文章,涵盖一个可以告诉你你有多有魅力的网站。
- Wael Jabir采访了在人工智能领域颇具影响力的人物 Micheal Kanaan。
如果你在 Medium 上写 AI/ML 文章,你希望我阅读你的文章,并将其纳入我的每周/每月文章报道中,请随时在你的文章的评论部分给我加标签,或者连接并发送一个链接到关于LinkedIn的文章。
我们能消灭“人工智能”这个术语吗?由妮可·珍妮薇买单
一篇深入探讨被广泛滥用的术语“人工智能”呈现给不知情观众的隐藏期望和虚假现实的文章。
Nicole 提供了人工智能作为学习和研究领域的初始信息。
涵盖人工智能的历史将提到该领域经历的以往人工智能冬天。妮可也暗示了第三次人工智能冬天的可能性和重现的可能性。
在文章中,Nicole 暂时离开了人工智能这个术语,转而使用一个更容易接受的术语:机器学习。
在这篇文章中提到了 ML 专长,但是 Nicole 很快解释了机器学习的缺点,包括婴儿拥有的更广泛的学习能力。婴儿的学习能力是我们今天使用的机器学习技术目前无法实现的壮举。
读完这篇文章后,你可能会羞于使用人工智能这个术语,Nicole 对这个术语可能造成的误导提出了一些很好的观点。
尽管唱反调,我还是要说,人工智能这个术语给人工智能领域带来了耳目,这导致了更多的金融投资和对该领域的兴趣。
人工智能一词可以被视为我们用来娱乐每个人的吉祥物,而真正的工作和进展正在后台进行。
阅读这篇文章并分享你的想法。
我们正在加深数据科学的可信度危机
medium.com](https://medium.com/better-programming/kill-artificial-intelligence-7bc02f85ea70)
真正的自动驾驶出租车正在城市街道上行驶
未来就在这里,至少在亚利桑那州的菲尼克斯。
Dave Gershgorn 写了一篇文章,为 Waymo 的一项重大公告提供了见解和信息,其中他们概述了向 Waymo One ride-hail 服务的用户提供完全自动驾驶汽车的计划。
Dave 的文章还简要概述了 Waymo 的研究工作,这些工作专注于解决一些问题,如预测行人运动、跟踪对象和数据生成。
Waymo 正式在凤凰城推出一支无人驾驶汽车车队
onezero.medium.com](https://onezero.medium.com/actual-self-driving-taxis-are-hitting-city-streets-db41095d8a02)
人工智能的开拓者:由瓦伊尔·贾比尔采访迈克尔·卡纳安
这篇特别的文章需要在媒体上有更多的可见性,尤其是对机器学习从业者。
Wael 转录了对 Michael Kanaan 的采访,他是一个在美国空军担任人工智能领导角色的人,目前正在麻省理工学院的 primer AI 实验室工作。
以下是对采访记录所包含内容的一些见解:
在采访的早期,迈克尔很快抛弃了好莱坞电影中对人工智能的刻板印象,并为读者提供了一个更准确的人工智能描述。
迈克尔准确地指出,我们所谓的人工智能只是机器学习算法,可以从数据中获取模式,进而创建感兴趣主题的预测模型,如人的行为、股票价格等。
采访继续包括围绕适合人工智能角色的个人类型的讨论,在这次对话中,Michael 揭穿了人工智能职位只保留给具有 STEM(科学、技术、工程和数学)背景的个人的神话。
对话继续讨论人工智能在日常生活中的应用,进入人工智能相关领域的学生的关注点,行业适应性以及对迈克尔最近发布的书籍【T-Minus AI】的简要讨论。
Michael Kanaan 是福布斯 30 under 30 的成员之一,曾是美国人工智能的联合主席
medium.com](https://medium.com/the-ai-education-project/trailblazers-in-ai-an-interview-with-michael-kanaan-ea5fcf8ea3da)
根据人工智能,你有多有魅力?作者亚历山大·科姆斯特朗
Alexander 的文章涵盖了一个网站上的信息,该网站可以告诉你使用基于人工智能的技术你有多有吸引力。
让人工智能给你的长相打分可能不适合大多数人。
亚历克斯讲述了展示的网站中使用的算法和技术与流行和广泛使用的应用程序(如 Tinder 和抖音)之间的相似之处。
亚历山大的文章触及了利用这种无害的算法和机器学习技术可能存在的危险,包括用于训练这些 ML 算法的数据中存在的隐含偏差。
medium.com](https://medium.com/swlh/how-attractive-are-you-according-to-a-i-5dd2f33c8630)
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
本周推荐的关于媒体的 AI/ML 文章(10 月 17 日)
强烈推荐的文章,对人工智能和机器学习感兴趣的个人应该读一读。
我还没有决定我对媒体网络平台新设计的立场。不过不得不承认,看到一个与众不同的首页和文章呈现风格,还是挺让人耳目一新的。
更让人耳目一新的是我这周偶然看到的发人深省的文章,当然都是与人工智能和机器学习相关的。
以下是我本周推荐的文章的简要描述:
- 维克多·BASU将数据科学和机器学习技术应用于网络安全用例。在他写得很好的文章中,Victor 详细介绍了使用 ML 检测 DDoS 攻击的实现和过程。
- Christopher Potts 写了一篇文章,邀请读者参与关于语言模型实现语言理解的可能性的讨论。
- Andre Ye 描述了研究人员在开发算法和机器学习模型时采用的一种方法,这些算法和模型可以模拟人类用来学习的过程。
- Duncan Riach 利用先进的人工智能形式对意识的概念提出了挑战,这种人工智能还将被开发为一个支持性的案例研究。
图片作者:Richmond Alake
如果你在 Medium 上写 AI/ML 内容,你想让我阅读你的文章,并将其包含在我的每周/每月文章报道中,请随时在你的文章的评论部分给我加标签,或者连接并发送一个链接到LinkedIn上的文章。
维克多 BASU用人工智能检测 DDoS 攻击的方法
推荐数据科学学生和对网络安全感兴趣的 ML 从业者阅读。
Victor Basu 记录了一项研究实验,该实验探索了利用机器学习和深度学习技术对 DDoS(分布式拒绝服务)攻击进行分类。黑客使用的标准网络渗透方法。
Victor 的文章将 ML/数据科学技术应用于一个网络安全用例,这是一个随着基于人工智能的应用程序的采用而越来越受欢迎的计算领域。
从这篇文章中可以获得丰富的知识。其中包括人们可能会遇到的典型数据科学项目流程,如数据收集、探索性数据分析或模型实施。
Victor 还包括基本主题,如数据存储管理和培训可视化。
机器学习实践者将欣赏 Victor 实现的检测 DDoS 攻击的通用方法。实验涵盖了有监督和无监督的最大似然分类方法。
文章中提供了相关的代码片段和可视化材料。
DDoS 攻击是互联网上最强大的黑客技术之一。黑客使用的基本武器…
towardsdatascience.com](/an-approach-to-detect-ddos-attack-with-a-i-15a768998cf7)
语言模型有可能实现语言理解吗?作者克里斯托弗·波茨
NLP 从业者推荐读物。
克里斯托弗的文章是他透露将于本月晚些时候举行的一次演讲的概要。演讲本身关注的是语言模型获得语言理解的能力。
克里斯托弗在他的文章中表示,他愿意参与可能会动摇他当前对该主题的思维过程的讨论。
除了本文对作者的个人意义之外,本文还提供了与作为机器学习任务的语言建模相关的主题的介绍性和上下文信息。出于这个原因,Christopher 的文章是一篇引人入胜的文章,超越了人们在撰写自然语言处理相关主题时会遇到的常见技术细节。
我恳求 NLP 从业者和好奇的 ML 爱好者参与 Chistoper 在他的文章中表达的观点和意见的讨论。
这篇文章出色地探索了可能的讨论点,即为什么语言模型的局限性限制了它们产生“T6”理解的能力。
[## 语言模型有可能实现语言理解吗?
10 月底,我应邀在安海关于 OpenAI 的 GPT-3 项目的研讨会上发表了一些讲话。我选择了…
medium.com](https://medium.com/@ChrisGPotts/is-it-possible-for-language-models-to-achieve-language-understanding-81df45082ee2)
深度学习迫切需要的人类大脑:零起点学习指南作者安德烈·叶
向对探索未开发的研究领域感兴趣的机器学习从业者推荐 read】
Andre Ye 的文章描述了研究人员在开发算法和机器学习模型时采用的方法,这些算法和模型可以模拟人类用来学习的过程。
更具体地说,安德烈在本文中描述的技术旨在以某种方式复制人类幼儿所拥有的理解和学习能力的有效衍生。
这篇信息丰富的描述性文章是对正在进行的研究的世界的一个可访问的介绍,这些研究还没有发展成成熟的可应用的技术。
也就是说,Andre 提出和描述的方法可能是机器学习中尚未发现的未来发展起源的一个窗口。
零拍学习技巧对我来说一直是个谜。尽管如此,Andre 还是展示了相关研究论文的关键要点,并通过简单易懂的例子将直觉归纳到技术范式中。
以及令人尴尬的简单 ZSL 算法
medium.com](https://medium.com/@andre_ye/what-the-human-brain-has-that-deep-learning-desperately-needs-a-guide-to-zero-shot-learning-2e296741ce51)
为什么我不相信意识作者邓肯·里亚奇
推荐给那些准备挑战自己对现实的观点和想法的人。
我必须承认,我对意识与水向山下流动的关系的描述感到惊讶。邓肯,在他这篇多少有些启发性的文章的第一段中(看一下评论部分),将意识传达为存在的一种后续效果,而不是一种无法解释的现象,这种现象证明了人类在这个世界上的独特性。
媒介是一个平台,它展示了个人持有的各种形式的观点和观点,邓肯认为,关于为什么意识的概念不存在的书面解释是令人惊讶的非常翔实,可以作为驳回意识概念的有力论据。
如果你以开放的心态来阅读这篇文章,那将是最好的,因为邓肯非常雄辩地提出了一些可行的概念。邓肯拥有的心理学和人工智能背景的结合,为未来几十年人工智能领域的想法和观点提供了温床。
人工智能似乎揭示了什么
medium.com](https://medium.com/swlh/why-i-dont-believe-in-consciousness-4ae16e98bb8f)
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
本周(10 月 24 日)你应该阅读的有趣的人工智能/人工智能文章
中国如何利用人工智能解决新冠肺炎问题,以及本周你应该阅读的其他有趣的人工智能/人工智能文章。
Medium 上并不缺少令人兴奋和信息丰富的 AI/ML 文章,本周有一篇文章是针对各种类型的机器学习从业者的。因此,毫无疑问,本周的推荐列表中有一篇文章会对你有用。
快速总结:
- 那些对人工智能系统内的安全性感兴趣的人应该读一读 Guy Harpak 的文章】,这篇文章讨论了人工智能安全的状况以及我们可以做些什么来确保我们在人工智能系统内实施严密的安全。
- 深度学习的学生和从业者会很欣赏Arjun Sarkar的使用 TensorFlow 实现 VGG16 卷积神经网络的报道。Sebastian Poliak在他最新的技术文章中也介绍了一种机器学习技术——零距离学习。
- 通过Agustinus nal wan的文章了解孩子和人工智能系统中学习方法的相似性,这篇文章涵盖了他教授人工智能模型和一个两岁孩子学习的经验。
- Awais Bajwa提供了中国如何利用人工智能应对当代最糟糕的疫情的见解。
图片作者:Richmond Alake
如果你在 Medium 上写 AI/ML 内容,你希望我阅读你的文章,并将其纳入我的每周/每月文章报道中,请随时在你的文章的评论部分给我加标签,或者连接并发送一个链接到LinkedIn上的文章。
人工智能技术如何让我成为我们蹒跚学步的孩子更好的父母 作者 奥古斯汀纳斯·纳尔万
Agustinus Nalwan 将工作带回家,他应用五年的人工智能知识有效地教他两岁的儿子某些行为。
这篇写得很巧妙的文章讨论了监督和强化学习的训练方法,以及在教授幼儿新技能和行为的方法中可以看到的模仿。
Agustinus 的文章非常出色地强调了机器学习模型和幼儿学习方法之间的相似性。
机器学习从业者意识到,该领域的一个关键愿望是在机器学习算法中模仿幼儿的学习方法。
Agustinus 提到了 ML 算法中缺失的一个关键因素,那就是推理能力。推理能力也被称为常识。
阅读这篇文章揭示了生物系统和人工系统之间的相似之处。Agustinus 的文章还提到了两种学习系统之间目前存在的巨大差距。
AI 要在一般活动中赶上或超过人类,还有很长的路要走。人类的优势在于,能够在很少甚至没有训练数据的情况下生成多个世界模型,更重要的是,能够创建、访问和破坏这些生成的模型之间的互连关系。
我用我在人工智能工作中获得的知识和智慧来理解和教授我的…
medium.com。](https://medium.com/@msubzero2000/how-ai-techniques-made-me-a-better-parent-for-our-toddler-de1ea14e9226)*
零距离学习字母字符(代码实验)BySebastian Poliak
Sebastian 的最新文章是对机器学习中零镜头学习技术的实际介绍。
这篇简单易懂的文章包括几个关于零起点学习的介绍性要点,包括对该技术学习范例的描述。
Sebastian 为机器学习从业者写了一篇初学者友好的文章,这些人希望了解机器学习领域的技术实现,这一领域正迅速受到欢迎。使用 Keras(一个流行的机器学习库)实现了本文中的零镜头技术。
在一个小时内,机器学习实践者可以理解零射击学习背后的实现细节和思想,而那些愿意更多地理解该技术的人可以使用文章中包含的相关研究论文的外部资源链接。
是否有可能识别培训中未提供的字母字符?
towardsdatascience.com?](/zero-shot-learning-the-alphabetic-characters-an-experiment-with-code-d1a0f23f4b4c)*
中国如何利用人工智能对抗新冠肺炎作者阿瓦斯·巴杰瓦
Awais 简要探讨了中国政府机关和机构为遏制 Covid19 的传播而招募的人工智能应用和技术,同时为其公民维持一种正常运作的社会形式。
在处理个人隐私时,中国使用大规模监控系统一直是一个有争议的话题。
Awais 探讨了这种曾经不被认可的公民治理和监控方法的好处,这就是为什么中国在处理新冠肺炎危机方面优于全球某些国家的原因,尽管最初报道的新冠肺炎病例源自中国。
人工智能技术、大数据和机器人在有效应对新冠肺炎病毒在中国的传播方面发挥了更大的作用。Awais 提到利用各种形式的基于人工智能的技术,如面部识别,面具检测和热量读取,以监测,警告和通知市民在他们当地附近的所有新冠肺炎相关病例。
阅读这篇文章时,我惊讶于阿里巴巴和腾讯等大型科技公司与其他小型创业公司合作,提供开源工具和研究成果,帮助新冠肺炎应用程序和解决方案的快速发展。其中一些解决方案被公共部门使用,如医疗保健和警察机构。
深度学习的最新研究,包括计算机视觉和自然语言处理(NLP),使人工智能提供了…
medium.com。](https://medium.com/datadriveninvestor/how-china-used-artificial-intelligence-to-combat-covid-19-f5ebc1ef93d)*
使用 Tensorflow 从零开始创建 VGG作者 Arjun Sarkar
Arjun 的最新文章探讨了使用 TensorFlow 2.0 实现 VGG16 网络的过程。
VGG16 或 OxfordNet 是一个卷积神经网络,大量深度学习实践者会以某种形式或形式遇到它。
神经网络架构用于赢得 2014 年的 ILSVR ImageNet 竞赛,是一个标准网络,可以在 PyTorch 和 TensorFlow 等大多数深度学习库中轻松实现。
Arjun 在文章开始时提供了一个简短的声明,描述了深度学习领域早期的收获和发展。
Arjun 在详细描述 VGG16 网络的内在部分方面做得非常出色,并使用了架构组件的说明性描述来补充所包含的代码片段。
Arjun 的最新文章是我将恳求深度学习实践者存档的一篇文章,因为它与深度学习和计算机视觉相关。
我们将看到如何使用 Tensorflow 2.0 从头开始实现 VGG16
towardsdatascience.com](/creating-vgg-from-scratch-using-tensorflow-a998a5640155)*
黑客攻击超级情报由盖伊·哈帕克
盖伊的文章预示了未来几十年人工智能系统缺乏安全性可能带来的迫在眉睫的威胁。
几十年前,利用基于人工智能的技术是研究实验室和大学机构内部的一个话题。现在,人工智能已经融入了我们生活的方方面面,Guy 在这篇文章的开头就提到了这个事实。
随着技术的进步,安全一直是一个非常重要的主题,盖伊指出,尽管我们已经看到基于人工智能的技术大量涌入和采用,但在人工智能安全方面付出的努力与人工智能的进步不成比例。
这篇文章介绍了基于人工智能的技术带来的风险,强调了我们给予基于人工智能的应用程序(如电话接听、决策解决方案、推荐工具、自动驾驶系统等)的高度可访问性和自由所带来的风险。
Guy 平衡了人工智能的风险,向读者介绍了研究小组、先驱、管理机构、监管机构和机构在制定政策和指导规则方面的共同努力,这些政策和指导规则可以在应用程序中以及因此在社会中实现人工智能的安全和道德利用。
提到了人工智能安全的几个组成部分,应该考虑建立一个强大的解决方案生态系统,可以在人工智能系统中实施适当的安全性。
目前,有明显的努力,以确保安全措施跟上当前人工智能的进展。作为一个社会,在治理人工智能解决方案的使用对日常生活产生的高度影响方面,我们希望避免追赶。Guy 的文章与时间非常相关,对于那些对该领域感兴趣的人来说,是对 AI 安全主题的极好介绍。
AI/ML 正在影响敏感的决策——为了保护我们的系统,我们需要一个统一的框架和一个新的规则…
towardsdatascience.com。](/hacking-super-intelligence-af5fe1fe6e26)*
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
本周(10 月 3 日)你应该阅读的有趣的人工智能/人工智能文章
强烈推荐的文章,对人工智能和机器学习感兴趣的个人应该读一读。
2020 年的最后一个季度即将到来,还有什么比阅读 Medium 上的作家写的一些关于 AI/ML 的精彩文章更好的方式呢?
本周的文章包括对英伟达和亚马逊等顶级科技公司的讨论;此外,一些文章关注深度学习主题领域,如项目和模型调整等。
如果你在 Medium 上写 AI/ML 文章,你希望我阅读你的文章并将其收录到我的每周/每月文章报道中,请随时在文章的评论部分给我加标签,或者在 LinkedIn 上连接并发送文章链接。
左上:照片由 Jonas Denil 在 Unsplash 上拍摄。右上:Valentin Salja在 Unsplash上的照片左下:Artem Beliaikin 在 Unsplash上的照片右下:照片:Philippe Lopez/Getty Images 中:图片来自文章
英伟达收购 ARM 对 Graph Technologies 的影响 Dan McCreary
Dan McCreary 写了一篇短文,重点介绍了 NVIDIA最近收购 Arm Holding 的好处。
NVIDIA 是大多数机器学习从业者熟悉的公司,另一方面,Arm 可能不那么知名,但 Dan 在这篇文章中做了很好的工作,简要介绍了 Arm 和该公司的目的。
大多数机器学习实践者并不完全关心 GPU 的硬件细节。无论如何,Dan 提供了深度学习领域中 GPU 应用的相关性和影响的简要历史。
Dan 阐述了 GPU 对图像数据处理加速的影响,包括当前硬件在处理稀疏矩阵方面的局限性。
丹在他的文章中提到,英伟达收购 Arm 的原因是,英伟达正在为开发硬件奠定基础,这些硬件可以处理人工智能等领域使用的更复杂的数据表示格式。
本文是广大机器学习从业者的必读之作。Dan 为 ML 工程师日常使用的硬件的未来状态提供了重要的见解和信息。
非常适合阅读:
- 机器学习从业者
- 硬件架构师
[## 英伟达收购 ARM 对 Graph Technologies 的影响
在本文中,我们将关注 NVIDIA 最近以 400 亿美元收购 Arm Holdings。然后我们会看…
medium.com](https://medium.com/@dmccreary/the-impact-of-nvidia-acquisition-of-arm-on-graph-technologies-76449c8b45f9)
作为一名数据科学家,我在 6 个月的时间里学到了什么
六个月是很短的时间,但在机器学习行业,对于一个人来说,获得宝贵的知识以拥有成功的机器学习生涯已经足够了。 Nicole Janeway Bills 与 Medium 读者分享了她作为数据科学家的六个月经验。
在这篇文章中,Nicole 谈到了通过阅读研究论文、探索 Github 资源库、听播客和理解机器学习领域的硬件组件所学到的经验。
其中一个让我印象深刻的要点是 Nicole 通过研究机器学习库和包的 Github 问题产生新想法的非正统方法。除了产生想法之外,Nicole 还分享了探索 Github 问题的额外好处,包括了解软件包的弱点,在承诺在项目中使用软件包之前评估软件包开发者社区的活动水平。
尽管大部分关键要点都是技术性的,但 Nicole 最终学到的是典型数据科学家工作互动中的人的因素。Nicole 提到,数据科学家需要识别特定行为的社会科学线索,这些线索在探索与人类或基于人类的活动相关的数据时可能不明显。对人类行为引起的外部因果关系和相关性的理解可以为开发机器学习解决方案的独特方法提供直觉。
强烈推荐用于:
- 数据科学家
我找到了我梦寐以求的工作。以下是一些关键要点。
towardsdatascience.com](/6-months-data-science-e875e69aab0a)
亚马逊使用自动化来隐藏灾难性的工作场所伤害记录作者布莱恩·麦钱特
Brian Merchant 写了一篇关于自动化对亚马逊仓库工人的影响的令人大开眼界的文章。
我们大多数人都渴望看到一个世界,在这个世界里,枯燥而平凡的任务被自动化,由机器人来处理。
对于大多数机器学习从业者来说,自动化的未来并非源于懒惰,而是来自于工程师对令人印象深刻的知识、技术和机械能力的应用,以解决重复性任务。
我们都听说过自动化和人工智能必将在未来几十年开始的工作启示录,但许多人可能忘记了人类目前在试图跟上机器人同行时所遭受的伤害。
布莱恩的文章探讨了自动化和亚马逊(Amazon)等企业巨头的努力导致的工作场所伤害这一主题,以压制受压迫者的声音,因为机器人和自动化提供了更高效、更快速的交付系统。
激动人心的读物:
- 技术专家
- 未来学家
随着机器人化规模的扩大,伤害也在增加
onezero.medium.com](https://onezero.medium.com/amazon-uses-automation-to-hide-a-disastrous-record-of-workplace-injuries-4920797d9301)
最有趣的 5 个机器学习和深度学习项目作者冉(Reine)
冉(Reine) 策划了一系列有趣的 ML/DL 项目,这些项目在应用方面独树一帜,显示出巨大的潜力。
每个包含的项目都由项目作者对直觉和方法的技术解释来补充。Ran 包含的资源提供了每个项目的更多信息和见解,因此好奇的读者可以进一步探索每个项目和细节。
包含的项目有各种各样的 ML 主题,例如自然语言处理(NLP)、语音识别、图像字幕和通过 GANs 生成图像。
机器学习实践者可以从这篇文章中受益,将其作为个人项目和学习的灵感来源。
非常适合阅读:
- 机器学习从业者
包括每个产品的技术摘要
medium.com](https://medium.com/@m.fortitudo.fr/5-mind-blowing-machine-learning-deep-tech-projects-b33479318986)
通过观察偏差和方差系统地调整你的模型塞巴斯蒂安·波利亚克
超参数调整和优化的主题在大多数机器学习实践者手册中很常见。
机器学习实践者通常训练一个神经网络,并遍历一组学习速率、批量大小、层数等的值。这个过程可以一丝不苟。
Sebastian Poliak 写了一种不同的方法来调整模型,这种方法可能比传统的网格或随机搜索方法更容易搜索超参数值空间。
Sebastian 引入了观察偏差和方差的操作,以将模型调整到最佳性能。Sebastian 系统调整模型的方法补充了几个易于实现的代码片段,这些代码片段演示了通过几种方法减少偏差和方差的效果,如增加神经元的数量或向网络添加正则化。
推荐阅读:
- 数据科学家
有没有想过是否有比盲目猜测超参数或…更系统的方法来调整您的模型
towardsdatascience.com](/systematically-tuning-your-model-by-looking-at-bias-and-variance-4986662315b2)
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
本周(9 月 12 日)你应该阅读的有趣的人工智能/人工智能文章
优步,谷歌,声音分类和空间探索人工智能,这些都是本周有趣的人工智能/人工智能文章的主题。
如果本周你还不能消费一些高质量的商品,那么我会帮你搞定的。
以下是我在 Medium 上看到的四篇文章。所有包含的文章都包含与人工智能或机器学习相关的内容。
下面列表中的一篇文章探讨了天外来客不是以小绿人的形式出现,而是更多地以人工形式出现的可能性。一想到宇宙中存在基于人工智能的高级文明,我就想起了电影《湮没》中的太空人工智能入侵者。
所有包含的文章都非常翔实,值得你花时间。
左上:来源:https://neuro hive . io/en/news/manifold-visual-debugging-tool-for-machine-learning-at-Uber/。右上:(Pixabay,KELLEPICS)。左下:丹尼尔·罗梅罗在 Unsplash 上的照片。右下:图片来自 Pixabay 的 CSTRSK
本周的文章包含以下内容:
- 优步开发的 AI 开源工具和软件套件综述
- 简要了解人工智能在几款谷歌产品中是如何被利用的
- 一篇发人深省的文章,探讨了外星生命的形式可能是人工的,而不是广为接受的生物形式。
- 用神经网络进行声音分类的技术教程
概述优步对开源机器学习的重大贡献,作者 Jesus Rodriguez
“优步开发的人工智能开源工具和软件套件述评”
Jesus Rodriguez 讲述了他最喜欢的优步开发的开源工具,这些工具专注于人工智能过程,如模型训练、模型实现、编程语言、解释和可解释性等。
根据 Jesus 的说法,优步是拥有企业实验室的科技公司之一,为人工智能开源社区贡献了大量的知识和工具。
专注于交通运输的科技公司优步遇到了一系列问题,这些问题可以通过使用技术和深度学习技术来解决。优步是应用深度学习技术解决自动驾驶汽车、车道检测、行人检测等交通相关问题的领先力量。
耶稣在他的文章中包括了优步开发的工具,如路德维希、火神、歧管、柏拉图等。
除了详细描述每个工具的用途,Jesus 还提供了机器学习从业者如何利用每个工具以及指导每个工具目标的一般原则。
非常适合阅读:
- 机器学习工程师
- AI 爱好者
这家运输巨头为机器学习领域做出了重大的开源贡献。
medium.com](https://medium.com/dataseries/an-overview-of-ubers-impressive-contributions-to-open-source-machine-learning-cfb6eabd12ac)
克莱尔·d·科斯塔的《为谷歌产品提供动力的人工智能》
“简单了解人工智能在几个谷歌产品中是如何被利用的”
根据 Claire D. Costa 的说法,谷歌声称他们的旗舰搜索引擎和其他广泛使用的产品的大部分进步都源于采用基于人工智能的技术和技巧。
带着“将人工智能的好处带给每个人”的首要目标,克莱尔的文章简要探讨了谷歌投资人工智能的最初驱动力。
Claire 文章的主要内容探索了 12 个具有某种形式的嵌入式人工智能的谷歌知名产品。文章中包含的产品从硬件到软件都有,每个产品都以一个类似于简介的形式呈现,包括发布日期、开发语言、访问 URL 等等。
这篇文章简要介绍了人工智能在谷歌的几个产品中是如何被利用的。
每个产品的描述都是用通俗易懂的语言编写的,这使得大多数读者都可以轻松地阅读本文的内容。
适合阅读:
- 技术专家
看看 AI 是如何深度融入谷歌产品的
towardsdatascience.com](/artificial-intelligence-powering-google-products-18e191da88d0)
外星生命会是人造的吗?贡纳尔·德温特
“一篇发人深省的文章,探讨了外星生命的形式可能是人工的,而不是广为接受的生物形式。”
当你仰望星空时,你可能会想宇宙中还有多少文明。嗯,贡纳尔·德温特在这篇文章中介绍了德雷克方程。德雷克方程提供了宇宙中外星文明数量的数字范围。
文章的主体介绍了这样一种思想,即人类可能不得不摆脱他们的生物形态来探索宇宙的深处。
贡纳还介绍了一项研究,该研究修改了德雷克方程,以适应一个参数,该参数指向一个发展了太空探索人工智能的高级文明。
这篇文章围绕人工智能、生物学和太空领域展开,但它保持了一种简单的方法来说明科幻般的场景和未来的结果。
有趣的读物:
- 未来学家
德雷克方程是估算地外文明数量的一个(非常粗略的)指南,但它也可能…
medium.com](https://medium.com/predict/will-alien-life-be-artificial-4ea60c5082ba)
舒巴姆·古普塔利用神经网络进行城市声音分类
“用神经网络进行声音分类的优秀技术教程”
我一直想知道苹果的开发者是如何在苹果智能手表上创造出洗手功能的,当你洗手的时候,这个功能就会被激活;看起来,Shubham Gupta 的文章已经提供了一些答案。
Shubham 写了一篇技术文章,重点是指导读者如何为城市声音分类开发机器学习模型。实现的模型对声音进行分类,如警笛声、音乐、钻孔声和狗叫声。
Shubham 利用 Numpy、Pandas、Keras 等工具,通过神经网络实现声音分类的目标。
数据集源代码和代码片段的提供使本文成为许多机器学习实践者都可以从事的一个简单项目。
非常适合阅读:
- 机器学习从业者
- 机器学习学生
每天我们都会听到不同的声音,这是我们生活的一部分。人类可以很容易地区分声音,但是如何…
towardsdatascience.com](/urban-sound-classification-using-neural-networks-9b6fcd8a9150)
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
本周你应该阅读的有趣的人工智能/人工智能文章(9 月 19 日)
强烈推荐对人工智能和机器学习感兴趣的个人应该阅读的文章。
如果本周你没能消费一些高质量的商品,那么我会为你买单。
媒体上的内容人工智能和 ML 文章通常跟随人工智能行业中正在发生的当前事件,例如,当 OpenAI 发布 GPT-3 时,出现了大量 GPT-3 相关的文章。
本周,我发现在我看到的文章中没有明显的主题或题材。因此,以下是涵盖深度学习、企业人工智能、GPT-3 和机器学习等主题的文章组合。
左上:切尔奎拉在 Unsplash 上拍摄的照片。右上:Denys Nevozhai 在 Unsplash 上的照片。右下:图片来自文章。左下方:来源: Unsplash
本周的文章包含以下内容:
- 探索自然语言处理和语言建模中深度学习解决方案的发展
- 企业内部 AI 快速发展概述
- GPT-3 赫然解释了一切的起源
- 选择机器学习算法时要考虑的因素
长期短期记忆网络正在消亡:取而代之的是什么?安德烈
“探索自然语言处理和语言建模中深度学习解决方案的演变”
Andre Ye 写了一篇文章,探索了试图使用神经网络复制人类书面语言的理解和构建的起源。
这篇文章提到了早期的矢量化技术,用于数字表示文本文档,如单词包(BoW)。
Andre 带领读者快速了解自然语言处理(NLP)和语言建模技术(如递归神经网络、长短期记忆、变形金刚等)的进展,但这些解释写得很好。
文章中提到的每种技术都附有详细的描述和插图。更重要的是,安德烈概述了上述技术的缺点。
对于那些对语言建模和深度学习领域感兴趣的人来说,这篇文章是对该领域多年发展的技术总结。
非常适合阅读:
- 深度学习学生
- 自然语言处理从业者
LSTM 的兴衰
towardsdatascience.com](/long-short-term-memory-networks-are-dying-whats-replacing-it-5ff3a99399fe)**
了解今天企业如何实际使用人工智能的七个令人惊讶的统计数据ByAlex Fly
“企业内部人工智能快速发展概述”
Alex Fly 的文章展示了一些与人工智能的发展和基于人工智能的技术在企业中的应用相关的关键统计数据。包含的统计数据和数字来自声誉良好的调查机构,如德勤、高德纳、麦肯锡&公司等。
文章中的统计数据和图表描绘了人工智能如何改变一个典型企业的日常职能。从招聘计划到盈利收入来源,都可以感受到人工智能的影响。
Alex 文章中的一个主要观点是,人工智能将继续存在,企业正在以一种将在未来五年内看到整个公司、行业和国家转型的速度适应。
对于那些对大规模公司如何采用人工智能以及采用率有兴趣的人,Alex 的文章提供了这些信息和更多信息。
强烈推荐用于:
- 业务经理
- 技术专家
** [## 了解关于当今企业如何实际使用人工智能的七个令人惊讶的统计数据
Gartner 预测,到 2022 年,人工智能创造的商业价值将达到 3.9 万亿美元。人工智能技术…
medium.com](https://medium.com/@alex.fly/learn-seven-surprising-stats-about-how-enterprises-are-actually-using-ai-today-c1c1ee5d2db5)**
人工智能解释大爆炸前发生的事情柯克·奥密特
“GPT 3 号令人印象深刻地解释了一切的起源”
柯克·奥密特的文章是他自己和 GPT-3 的对话,被称为‘智慧存在’。**
对话的内容是围绕大爆炸的起源和其他相关的话题,如时间,空间和宇宙。
我真的以为会很无聊,或者至少会对对话中’Wise be’的输出留下一点印象。
在阅读了对话和文章的全部内容后,我不得不承认来自“智慧生物”的回应感觉几乎像人类,并且超出了我最初的预期。这些回答被很好地组织在一起,并具有某种形式的逻辑,以及在回答超出人类想象范围的问题时尽可能多的逻辑。
我从这篇文章中得到的关键是,GPT 3 语言模型显然非常健壮,能够模仿创造性。它还能够利用来自其训练数据的相关文本源来提供一些适当的响应。
尽管应该指出,GPT-3 的反应实际上并不是唯一的,也不是推理的产物。反正现在不会。
非常适合阅读:
- AI 爱好者
下面是我与 OpenAI 的 GPT-3 的语言模型的对话。我给了 GPT-3“智慧生物”的角色所有的…
medium.com](https://medium.com/ai-in-plain-english/artificial-intelligence-explains-what-happened-before-the-big-bang-e4a9e7fefbab)**
如何选择合适的机器学习算法作者 Ramya Vidiyala
Ramya Vidiyala 为负责选择机器学习算法的机器学习从业者撰写了一篇实用指南文章。
这些准则是在机器学习算法实现和选择过程中起作用的关键因素的形式。Ramya 包括内存需求、数据格式、训练时间、可解释性等因素。
每个关键因素都附有快速描述,有时还附有场景,解释为什么要选择特定的方法。
这篇文章很短,但包含了一些方便的信息,可以在机器学习实践者实现或选择 ML 算法来解决问题的大多数情况下使用。
非常适合阅读:
- 机器学习从业者
实施算法时要考虑的七个关键因素
towardsdatascience.com](/how-to-select-the-right-machine-learning-algorithm-b907a3460e6f)**
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
本周(9 月 5 日)你应该阅读的有趣的人工智能/人工智能文章
分析和意见
你是从数据科学开始的吗?那么本周的精选文章将引导你的旅程。
介绍
在全球许多地区,学年开始了,这意味着在其他课程和主题中,2020 年可能会看到对人工智能相关课程感兴趣的学生数量增加,包括数据科学。
本周的文章献给那些开始数据科学领域之旅并寻求学术或专业建议的人。
媒体已经并将永远是学习和获取信息的推荐来源。
有经验丰富、才华横溢的数据科学家,他们在媒体上分享丰富的知识;这是我向对数据科学感兴趣的个人推荐该平台的主要原因之一。
本周,我收录了涵盖以下内容的文章:
- 邀请您参加的数据科学运动。
- 一个数据科学家第一个月的回忆。并为保持成功职业生涯提供建议。
- 探索数据科学技能带来的创业可能性。
- 创建技术博客的七大理由。
左上:肯吉#66DaysOfData 。右上:由活动创建者在 Unsplash 上拍摄的照片。左下:帕特里克·福尔拍摄的照片。右下:图片来源:Ian Stauffer 在 Unsplash 上拍摄的照片
为什么我要重新开始 Ken Jee 的数据科学
“数据科学运动邀请您”
肯·吉是数据科学社区内的一位杰出的 YouTuber ,他已经发起了一场运动,专注于在数据科学从业者中发展和保持势头。
在您的数据科学学术或专业旅程中,您有时可能会遇到知识积累停滞或缺乏灵感的时期。这种学习和进步停滞不前的感觉促使 Ken 重新审视数据科学的基础主题。
通过接受问责制和一致性的概念,Ken 发起了一场名为#66DaysOfData 的互联网运动。
根据 Ken 的说法,#66DaysOfData 是一项养成习惯和激发灵感的运动,参与者每天至少花五分钟学习数据科学相关主题。鼓励参与者在 LinkedIn、Twitter 等平台上分享他们的学习成果。
对于数据科学从业者来说,这是一个加入数据科学社区的机会,共同努力在社区和个人中激发灵感和推动动力。
以下链接提供了更多信息:
- 第 66 天的不和服务器数据:https://discord.gg/VXSUJYJ
- 肯的推特:【https://twitter.com/KenJee_DS
- 视频版:【https://www.youtube.com/watch?v=uXLnbdHMf8w
这篇文章很适合阅读:
- 数据科学从业者
- 数据科学专业的学生
介绍#66DaysOfData
towardsdatascience.com](/why-im-starting-data-science-over-21bec8036ce9)
我作为数据科学家的第一个月,作者 Leon Lok
“数据科学家第一个月的回忆和保持成功职业生涯的建议”
虽然 Leon Lok 担任数据科学职位仅一个月,但他已经成功地学会了一些知识和习惯,这些知识和习惯将确保他在数据科学职业生涯中取得丰硕成果和成功。
在本文中,Leon 分享了一些技巧和建议,他认为这些技巧和建议将有助于那些旨在进入数据科学领域的人。Leon 帮助数据科学从业者了解成功和生存的要素。
莱昂的建议包括典型的技巧,如网络,笔记,头脑风暴,适应性等。Leon 详细阐述了每个技巧和建议如何有益于数据科学职位中的个人。
Leon 不仅为数据科学家提供如何在职业生涯的最初几个月导航的建议,还涉及长期从业者面临的话题,如工作压力、冒名顶替综合症和想法产生。
这篇文章很适合阅读:
- 数据科学从业者
- 数据科学学生
我学到了什么?
towardsdatascience.com](/my-first-month-as-a-data-scientist-454b44aaef91)
为什么我有一个数据科学博客?分享代码的七大好处
“创建技术博客的七个理由”
尽管安托万·苏特威在他的博客statsandr.com上写文章还不到一年,但他已经体验到了保持在线编写和分享代码的习惯的显著好处。
通过扩展共享代码的关键好处,Antoine 希望激励机器学习实践者开始他们的博客,要么通过 WordPress,非技术博客的媒介,要么通过技术博客的 Hugo (静态站点生成器)。
坚持写博客和代码共享的一些好处包括通过写作和向他人解释概念和想法来学习的能力。另一个好处是创造新的职业关系和自我提升平台的可能性。
在文章的最后,Antoine 提供了一些关于创建博客的技巧,我建议大多数机器学习从业者采纳这些技巧并采取行动。
整篇文章非常值得一读,因为它展示了在线技术写作可能带来的短期好处。
非常适合阅读:
- 数据科学从业者
通过写作学习,获得反馈,为开源社区做贡献和建立专业…
towardsdatascience.com](/why-do-i-have-a-data-science-blog-7-benefits-of-sharing-your-code-77f2aee53127)
bharat K 的 6 个最佳人工智能创业选择
“探索数据科学技能带来的创业可能性”
如今,许多科技初创公司和公司都植根于人工智能技术。过去 20 年,人工智能彻底改变了各行各业,创造了大量高净值个人。
已经有数百家,如果不是数千家创业公司从人工智能和机器学习的“炒作”中脱颖而出。
Bharath K 确定人工智能领域的创业想法和可能性,如自然语言处理(NLP)、机器学习、计算机视觉等。
每一个领域都伴随着一个想法和方法的描述,可以探索,以发展业务。自动驾驶汽车、人工智能聊天机器人、推荐系统、面部识别等想法都包含在本文中。
这篇短文让我们一窥数据科学提供的技能所带来的可能性世界。
非常适合阅读:
- 数据科学从业者
想用 AI 创业成功?
towardsdatascience.com](/6-best-startup-choices-with-artificial-intelligence-360260ccf89e)
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
本周(5 月 2 日)偶然看到的有趣的 AI/ML 相关文章
由于我们大多数人都有更多的空闲时间,高亮显示的文章对那些想学习新东西或只想寻找分散注意力的内容的人来说是有用的
有趣的文章封面图片拼贴
人工智能的世界从不睡觉,Medium 上有更多好奇、聪明、有激情的作家写的有趣的文章。
由于封锁,许多人有了更多的空闲时间,我在媒体上看到的高质量和信息量也在增加。可悲的是,我只能写一些。
做好准备,迎接涵盖以下主题的作家:
- 机器学习工程师的灭绝
- 非法音乐
- 我们都需要的在家工作小贴士
- 免费学习资料
享受。
机器学习工程师 10 年后将不复存在
卢克·波西关于软件行业中机器学习工程师角色的寿命问题的一篇有趣的观点文章。
老实说,当我看到标题时,我觉得有点被触发了。但是看了文章的内容,我就明白路加是从哪里来的了。
卢克对机器学习角色消失的看法是基于这样一个事实,即与 ML 工程相关的职责将合并到更广泛的软件工程角色中。
这篇文章是一个对话的开始,因为 ML 工程师的角色是广泛的,并且因公司而异。Luke 承认这个角色没有行业标准的描述,所以他提供了你在招聘信息中会遇到的 ML 工程角色的三个典型要求。
卢克还指出了一个很好的观点,那就是,由于机器学习本身所包含的模糊性,人工智能工程师的角色可能会存在。这就引出了这样一句话:“因此,在许多情况下,ML 工程师一半是研究员,一半是工程师”。
这是我每天生活中的一个事实,尽管有人可能会说平衡不一定是 50/50。
Luke 的观点集中在这样一个概念上,即随着越来越多的人开始理解 ML,对 ML 工程师这样的模糊角色的需求可能会减少,而这个角色本身将被更广泛的软件工程角色需求所吞没。
我仅仅触及了卢克·波西观点的皮毛。
景观正在迅速演变。
towardsdatascience.com](/machine-learning-engineers-will-not-exist-in-10-years-c9cbbf4472f3)
Deepfake 音乐太棒了,以至于可能被戴夫·格什格恩非法播放
Deepfake 正在重新成为人们关注的焦点,特别是当世界著名的说唱歌手 Jay Z 对 YouTube 上描述自己属性的 deepfake 内容采取行动。
Dave Gershgorn 文章围绕 deepfakes 的法律方面以及过去针对不属于检察官的一方使用类似创作/音乐风格而采取的法律行动。
戴夫的文章提供了一首人工智能生成的歌曲的例子,它与人类生成的音乐难以区分(听一听,你会感到惊讶)。
人工智能生成的音乐和 deepfakes 的主要问题是保留在生成的音乐中的艺术风格的残余。这开启了法律行动和版权侵权诉讼的世界。
戴夫提供了现实生活中的法律案件场景,这些案件涉及由于人类音乐风格的相似性而对一方采取的法律行动。
决定人工智能是否不受人类法律约束是一条模糊的线。这绝对是一个灰色地带,没有坚实的联邦法律法规基础可以借鉴。目前,针对 deepfakes 和人工智能的法律诉讼已经结案。
和本周其他有趣的人工智能研究
onezero.medium.com](https://onezero.medium.com/deepfake-music-is-so-good-it-might-be-illegal-c11f9618d1f9)
如何在家工作——Semi Koen开发商版
我很高兴我看到了这篇文章,因为它是非常需要的。这篇文章的许多读者可能是开发人员,或者他们的工作性质使他们一天中的大部分时间都只能呆在电脑屏幕前。因此,这些信息对大多数人来说是无价的。
在家工作时,你不需要知道或做太多事情,你只需要坐在桌子上(或躺在床上),像往常一样继续工作。对我和许多其他人来说,问题在于生产率和效率。
Semi 提供了五个小贴士,有助于让在家工作变得更加轻松和富有成效。她还包括有助于提供适当的在家工作环境的工具和技术。
在阅读了文章中的提示后,我意识到我可能没有最好的工作环境来提高工作效率和生产力。
但是,本文中不仅有一些容易立即实施的技巧,而且还有一些个人回忆和怪癖,它们会对你的工作成果产生很大的影响。
这篇文章帮助我设计了一个更好的工作环境,通常关注健康、沟通、生产力和时间管理。
如果你是一名开发人员,你会发现一两个可以改善你当前工作环境的技巧。
面向开发人员的 5 个 WFH 生产力技巧
towardsdatascience.com](/how-to-work-from-home-developers-edition-5bb4078cc6a3)
价值 2000 美元的深度学习课程笔记本现在由 B. Chen 开源
下一篇文章并不像列表中的大多数文章那样发人深省。尽管如此,我发现这篇文章很有趣,因为信息和知识的曝光应该总是被广播,尤其是如果知识是免费的。
我不需要对这篇文章进行深入的分析,因为文章本身就有事实依据。
B. Chen 曝光了一个 GitHub 知识库,其中包含来自 Jermey Howard 的尚未发布的关于深度学习的书的代码片段。
2000 美元的价值基于课程,以及在杰瑞米·霍华德的帮助下成功完成深度学习课程后授予的证书。
GitHub 存储库包含补充课程关键信息的实现。
这篇文章提供了更多的信息并解释了存储库的本质。很多深度学习的学生应该对呈现的内容给予一定的关注。
这些笔记本构成了 fast.ai 创始人杰瑞米·霍华德新书的基础,并用于价值 2000 澳元的深度…
towardsdatascience.com](/deep-learning-course-notebooks-worth-2-000-are-now-open-source-7d6bc759ef47)
其他有趣的文章
了解 A.I .,ML,DL 的区别!!由 到鲁帕罗伊到
我很肯定我们大多数人可能对“人工智能”这个术语很熟悉,因为它一直是…
towardsdatascience.com](/understanding-the-difference-between-ai-ml-and-dl-cceb63252a6c)
斯普林格已经免费发布了 65 本机器学习和数据书籍,作者 尤里·埃里亚巴耶夫
数百本书现在可以免费下载
towardsdatascience.com](/springer-has-released-65-machine-learning-and-data-books-for-free-961f8181f189)
如果我必须重新开始学习数据科学,我会怎么做?由 圣地亚哥·巴斯克斯·塞古拉
几天前,我开始思考是否要重新学习机器学习和数据科学…
towardsdatascience.com](/if-i-had-to-start-learning-data-science-again-how-would-i-do-it-78a72b80fd93)
我本周(4 月 25 日)看到的有趣的 AI/ML 相关文章
不应该错过的文章总结。
有趣的文章封面图片拼贴
人工智能的世界从不睡觉,Medium 上有更多好奇、聪明、有激情的作家写的有趣的文章。
这个星期,我又看了一遍大量的文章。我在下面列出了让我印象深刻的文章,以及我相信你的理由,读者应该读一读。
做好准备,迎接涵盖以下主题的作家:
- 人工智能进步带来的问题
- 有趣的人工智能游戏
- py torch 框架与 TensorFlow 的对比
- 探索 PyTorch 生态系统,包括来自 Skorch 和 Fastai 等流行库作者的报道。
享受。
《人工智能的 5 个真实危险》作者:蒂瓦达·卡丹
蒂瓦达·卡丹的文章强调了伴随当前人工智能技术快速发展的一些常见问题。
假货、隐私问题和错误信息一直是全球许多新闻和媒体的头条。
蒂瓦达尔的文章简要介绍了滥用人工智能技术的常见形式。文章中提供的信息通过现实生活中的案例研究和场景得到加强,让读者感受到当前的危险。
在文章的前面,提到了 DeepFakes 在不久的将来可能拥有的操纵和误导的潜在力量。Tivadar 通过包含一个真实的 DeepFake 视频(是你认识的某个人的)加强了 DeepFakes 的误导潜力。
探讨了人类偏见如何在我们生活的各个方面,如找工作、信用检查甚至执法中融入算法偏见的问题。
蒂瓦达尔强调的危险之一就在我们的口袋里。智能手机的面部识别功能增加了大规模监控的危险。
我觉得 Tivadar 的文章很有意义,有两个原因。
首先是在新冠肺炎疫情期间,减少感染传播的有效方法之一是放弃一方面的隐私。许多国家采用的接触追踪方法已被证明非常有效,但也可被视为对大众实施不必要的监视的手段的开端。
第二个原因是需要提高对研究人员和工程师开发的算法和技术的危险的认识,这篇文章就是这么做的。
造假、算法偏差和其他问题会对我们的日常生活产生多大影响
towardsdatascience.com](/5-real-dangers-of-ai-1f94b4f0151d)
谷歌有趣的人工智能实验,你现在应该去看看了
这篇文章与我所看到的通常的机器学习代码演练类型的文章非常不同。我觉得这篇文章读起来很有趣,我在文章和包含的游戏链接之间来回浏览。
这篇文章揭示了一些由谷歌开发的,由人工智能驱动的创造性和直观的游戏。
除了介绍如何玩游戏,这篇文章还提供了游戏背后的人工智能如何工作的信息。
向读者解释了机器学习技术的简单说明。这篇文章省略了复杂的技术术语,这使得这篇文章对于所有层次的 AI 爱好者来说都是一篇有趣的文章。
这些游戏包括物体识别、姿势估计、语音识别等技术。
本文介绍了几个机器学习实践者如何利用人工智能的力量进行创新的例子。
玩人工智能
medium.com](https://medium.com/the-research-nest/interesting-ai-experiments-with-google-that-you-should-checkout-now-1c0e2982cbb0)
深度学习不再只是谷歌的专利凯勒·凯瑟
Caleb Kaiser 从他自己的角度写道,人工智能行业内的技术资源是如何被民主化的。
他的文章谈到了深度学习模型的资源现在如何在整个行业中容易获得。现在,小型企业,如创业公司,可以利用这些资源来推进他们的产品供应。
Caleb 包括这样一个事实,即拥有一个专门的研究团队来利用深度学习技术是一个要求,随着在通用机器学习库和框架中包含最先进的模型和数据集,这个要求已经被消除。
Caleb 给出了许多关于如何利用最新模型的例子,包括代码片段。
我钦佩 Calebs 对这篇文章的写作方法;他创造了一个大卫对抗歌利亚的形象,将大众可用的资源和科技巨头谷歌扣留的大量资源进行了对比。
阅读这篇文章让任何人都能感受到一个公平的竞争环境,用人工智能创造出令人惊叹的产品。Caleb 通过列举新兴的人工智能初创公司来支持这篇文章,这些公司的产品几乎可以与顶级工业竞争对手相媲美。
生产深度学习现在可以用于创业公司
towardsdatascience.com](/deep-learning-isnt-just-for-google-anymore-c79f07f16993)
8 创作者和核心贡献者谈论他们来自 PyTorch 生态系统的模型训练库 Jakub Czakon
我很惊讶这篇文章没有更多的掌声。这可能是我本周遇到的最长的一篇文章,但无疑是信息量最大的一篇。
Jakub Czakon 探索了六个为 PyTorch 机器学习库增加了抽象层次的库。简单地说,这些库降低了 PyTorch 给模型实现和训练带来的复杂性。
Jakub 文章中提供的信息令人印象深刻地补充了库作者自己的更多见解。探索的一些库包括 Fast.ai 、 PyTorch Lighting 、 Skorch 等。
每个包含的库的作者都经历了 Jakub 提出的一系列主题领域。一些领域包括项目的理念、易学性和受欢迎程度。
Jakub 在文章的结尾给出了他对提到的每一个库的看法。
我已经把这篇文章保存到我的阅读清单中,因为这是永恒的信息和知识。
[## 8 位创作者和核心贡献者谈论他们来自 PyTorch 生态系统的模型训练库
我在 2018 年初使用 py torch 0 . 3 . 1 版本开始训练我的模型。我被蟒蛇皮的感觉迷住了…
towardsdatascience.com](/8-creators-and-core-contributors-talk-about-their-model-training-libraries-from-pytorch-ecosystem-deccc3bfca49)
TensorFlow 还是 PyTorch?乔迪·托雷斯。艾
乔迪·托雷斯。AI 召唤出两个可怕的敌人之间的古老战争,TensorFlow 和 PyTorch。
机器学习从业者提出了 Jordi 的文章正在解决的问题。答案以结构化的方式呈现,这也是 Jordi 的文章适合初学者和好奇的学习者阅读的原因
Jordi 在文章的开头就回答了这个问题。
我不会在这里包括任何剧透。但是本文探讨了在选择合适的框架时需要考虑的各种重要因素。
对典型的机器学习项目任务(如模型实现、数据处理和模型评估)的实现过程进行了并排比较,指出了两种框架的相似性。
Jordi 还提到了这一点,即两个框架的相似之处似乎越来越多。
他提到了 TensorFlow 最近发布的一项功能,该功能与 PyTorch 库中的方法具有相似的功能。Jordi 谈到了相似性的原因以及这两个框架的未来前景。
虽然这篇文章强调了关键的相似之处,但 Jordi 提到了机器学习实践者在进行选择时应该知道的一个关键区别。
文章最后陈述了理解深度学习概念的重要性,而不是专注于选择哪个框架。
请记住,框架来来去去,意识形态和概念会一直存在。
深度学习网络编程的最佳框架是什么?
towardsdatascience.com](/tensorflow-or-pytorch-146f5397278a)
这就是本周来自我的全部内容,祝你度过一个安全愉快的周末
本周(5 月 16 日)偶然看到的有趣的 AI/ML 相关文章
意见
四篇文章涵盖了我本周感兴趣的机器学习主题…包括人工智能生成的性爱诗歌
从封面文章中收集封面图片
我仍然处于相对的封锁措施之下(正在慢慢放松),所以我在媒体上消费的内容量仍然处于历史最高水平。
本周,我遇到了许多有创意的文章,展示了数据科学家和机器学习工程师的技能,以及该领域呈现的可能性。
我设法写了几篇有趣的文章,是我一个多星期来偶然发现的。
本周,我发现了许多有趣的文章,其中包括性爱诗歌、艺术技巧的解释和职业建议。我要感谢 Medium 上的这些作者,他们制作了高质量的内容,激发了灵感和指导……以及急需的分心。
我让人工智能给我写性爱诗,作者是本杰明·戴维斯
有人用 AI 生成性爱诗只是时间问题;我唯一惊讶的是,有人没有更早这样做。本杰明·戴维斯在很少有人涉足的地方冒险。虽然 AI 产生诗意或小说般的内容也不是闻所未闻。
本杰明已经挖掘了之前被认为太强大而无法发布 GPT2 AI 模型的力量。
通过向网站 TalkToTransformer 中呈现的界面输入短语,本杰明生成了一系列完全由人工智能创作的诗歌和创造性写作。
通过向人工智能系统输入遵循“性别是 __”模式的短语,本杰明发现系统的反馈有时令人瞠目结舌。它回避了一个问题:什么训练数据被用来训练这个人工智能系统,《五十度灰》?
向人工智能提供挑衅性的短语,从而产生一系列有趣的富有想象力的、小说般的和诗意的结构,这些结构似乎散发出人类直觉和创造力的某些方面。多么奇怪。
如果你想从教程和研究论文中解脱出来,那么这篇文章是打发时间的绝佳读物,也许还能学到一两件关于创造性写作的事情。
这些阴暗、肮脏、又出奇温柔的性爱诗,完全是安艾写的。
psiloveyou.xyz](https://psiloveyou.xyz/i-made-an-ai-write-me-sex-poems-7b124654e494)
学习数据科学的阶段 Ken Jee
肯吉强调了学习时可以经历的五个阶段。通过他结构良好的书面文章,他设法将每个阶段与数据科学家可能经历的事情联系起来。
任何试图学习特定专业领域的思想和概念的人都会意识到学习者经历的困难和轻松的循环。Ken 的文章详细阐述了学习过程中的这些循环。
五个学习阶段中的四个阶段侧重于学习者的能力水平,并在相当罕见的“精通”水平结束。
我很高兴 Ken 打开了这篇文章,谈到新学习者的天真和无知,他们认为整个数据科学可以塞进一两门课程,viola 你是一名数据科学家!
认为数据科学或任何机器学习领域都是可以匆忙进行的想法是许多人的受害者,包括我在内。
通过在每个学习阶段加入自己的经验,Ken 补充了每个阶段的技巧和建议,以便在困难时刻保持并进入下一个阶段。
本文提出的建议包括建议学习者记住他们的学习目的;保持一致性,专注于基本技能。这个建议是相关的,甚至对于有经验的数据科学家也是如此。
这篇文章适合所有级别的数据科学家阅读。如果你是一个喜欢 YouTube 视频的视觉型人士,那么这里有一个涵盖本文内容的链接。
如何在关键学习点“摆脱困境”
towardsdatascience.com](/the-stages-of-learning-data-science-3cc8be181f54)
YOLOv4 作者乔纳森·许
Jonathan Hui 是人工智能和深度学习领域的知名作家。他的最新文章基于最近发布的 YOLOv4,这是一种最先进的对象检测方法。
对于那些可能不知道的人来说,对象检测是一项常见的计算机视觉任务,涉及到开发一个可以识别图像或一系列图像中的内容(如猫、狗、汽车)的系统。
Jonathan 的文章对 YoloV4 对象检测技术中的思想和技术进行了分析。他触及了神经网络架构的基本组成,同时在必要的地方提供了解释。这篇文章有丰富的图像和图表,有助于说明神经网络架构设计。
这是一篇文章,提供了深度学习术语和概念的信息和一些基本定义,您一定会在其他艺术技术中遇到,如密集块、空间金字塔池层、正则化技术等。
对于一般的深度学习实践者来说,这篇文章可能需要一段时间才能看完,但它是一篇值得重温并保存到您的阅读列表中的文章。
虽然对象检测在过去几年中逐渐成熟,但竞争仍然激烈。如下图,YOLOv4 声称…
medium.com](https://medium.com/@jonathan_hui/yolov4-c9901eaa8e61)
马丁·安德松·阿伯格用 7 个数据点编制成功媒体作家的神奇公式
有什么比使用 Medium writers 作为案例研究更好的方式来展示您的数据科学和分析技能呢?
马丁·安德松·阿伯格通过巧妙利用特定媒体作者的统计数据和指标,成功吸引了媒体数据科学和写作社区的关注。
马丁提出了一个有数据支持的公式,根据从一些受欢迎的媒体作家那里收集和分析的数据点,在媒体上创作成功的文章,这些作家包括祖列·雷恩、蒂姆·丹宁和香农·阿什利。
配备了 Python 和一些可视化工具,Martin 专注于数据点,如作者的兴趣、标题字数、帖子阅读时间和发布频率。所有这些数据点为每个作家的理想文章提供了一个个人的“神奇公式”。
也许 Martin 可以创建一个 web 界面,提供对其程序功能的简单访问。
这篇文章发表在《更好的营销》杂志上。尽管如此,我还是忍不住认为,通过接触本文中数据分析方法的代码实现,它会在《走向数据科学》出版物中找到自己的位置。我确信数据科学界将会被这种展示个人技能的创造性方法所鼓舞。
这篇文章不是机器学习或数据科学文章,但马丁程序的壮举足以激励数据科学家探索更具创造性的数据分析方法。
用数据分析为什么三位顶级作家如此成功
medium.com](https://medium.com/better-marketing/7-ways-you-can-find-the-magic-formula-of-great-successful-writers-d32001d6ac4e)
希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
- 订阅我的 YouTube 频道 即将上线的视频内容 这里
- 跟我上 中
- 通过 LinkedIn 联系我
本周(4 月 18 日)我看到的有趣的 AI/ML 相关文章
由于我们大多数人都有更多的空闲时间,高亮显示的文章对那些想学习新东西或只想寻找分散注意力的内容的人来说是有用的
包括文章的封面图片
媒体上的内容数量有了明显的增长,这应该是由于作家们现在有了更多的空闲时间。
我读过大量围绕机器学习或数据科学相关主题的精彩内容。我选择了五篇文章,我认为它们在许多方面对不同水平的机器学习读者都有好处。我建议你在下面找到一两篇适合你的文章,并探究它们的内容。
所选文章写得很好,包含不同类型的机器学习爱好者感兴趣的内容。
享受吧。
教程和在线课程的陷阱
Sukanta Roy 的文章触及了一个很多机器学习从业者都会涉及的话题,教程陷阱。
教程陷阱本质上是一个人承担一系列关于特定主题的教程,而忽略了对实际实践知识的需求的过程。
他不仅解释了什么是“教程陷阱”和它所创造的“能力幻觉”;他还为我们提供了四个指路明灯,我们可以坚持下去,以防止我们作为学习者反复陷入教程陷阱。
提到的一个指导信标是学习任何与机器学习相关的东西的圣杯,那就是完成一个个人项目。
Sukanta 的文章是任何通过在线课程开始获取机器学习知识之旅的人的必读之作。
教程和在线课程如何制造一种能力的假象,以及如何不落入这个陷阱
towardsdatascience.com](/the-trap-of-tutorials-and-online-courses-2b0c22e0388)
一个决策科学家给新冠肺炎的 10 条禁忌
在网上不可能避免任何关于新冠肺炎的文章。但是 Cassie Kozyrkov 的文章为目前正在进行的新冠肺炎对话添加了一个完全不同的视角。
她提出了个人在网上消费新冠肺炎相关信息时需要考虑的 20 条准则。
是的,目前的疫情上有很多信息超载,我认为这是非常需要的。但是,对于一个人来说,能够从有用的信息中分离出噪音也是至关重要的,而凯西的指导方针恰恰做到了这一点。
提出的指导方针分为两组,做和不做,每个指导方针都补充了一篇文章的链接,进一步扩展了这个主题。
我对作者之前所写的大量信息印象深刻。有些文章的日期是几个月或几年前,但它们在几年后证明是相关的。
在疫情期间,照顾好你的大脑,聪明对待数据,做出更明智的决定
towardsdatascience.com](/a-decision-scientists-10-dos-don-ts-for-covid-19-805577bccd67)
梅根·迪布尔向一个五岁的孩子解释机器学习模型
我喜欢解释文章,更喜欢简单的解释文章。梅根·迪布尔写了一篇有趣的文章,用最简单的方式解释了机器学习中的一些关键话题和概念。
虽然这篇文章是针对初学者的,但我确实相信,在机器学习中,不同水平的每个人都可以找到一些价值。
对于那些有点害怕机器学习中的数学的人,Megan 避免了包含方程或数学,而是用一些简单明了的图表来补充每个解释。
她提出了标准的监督和非监督机器学习模型,如 k-means,支持向量机和线性回归。
我仍然怀疑一个五岁的孩子会理解这篇文章的内容,也许是一个天才。
然而,尽管如此,这篇文章是对你必然会不断遇到的标准机器学习术语的简单介绍。
尽可能简单地解释 ML 模型是如何工作的
towardsdatascience.com](/machine-learning-models-explained-to-a-five-year-old-f2f540d9dcea)
Edouard Harris 数据科学就业市场在过去的一个月里发生了什么
四月已经过了一半,世界仍然被当前的疫情所控制。
我们都知道全球医疗体系面临的压力,以及疫情对全球经济的影响。
Edouard Harris 的文章写道,当前的经济和就业市场状况如何影响工作中的数据科学家或求职者。
Edouard 的文章非常有见地,内容丰富,他提供了受裁员或撤回安置影响的数据科学家数量的统计数据。
虽然这篇文章可能看起来有点黯淡,但爱德华对本月(4 月)和 3 月的比较几乎描绘了一幅充满希望的画面。
这篇文章以轻松的语气结束,强调了公司工作方式即将发生的巨大变化。
我在一家免费指导数据科学家的公司工作,直到他们被聘用。因为只有当我们的数据…
towardsdatascience.com](/whats-happened-to-the-data-science-job-market-in-the-past-month-88c748a4cd25)
凯尔·加拉丁努力寻找我作为数据科学家的第一份工作
失败的文章是非常谦虚和有趣的,因为从其他人的经验中可以发现丰富的知识。
Kyle 关于他在获得第一份工作之前所面临的困难的文章包含了传统数据科学工作角色所需的面试流程的详细信息。
这篇文章提供了凯尔的缺点和失败的信息,我们都可以从中学习。
在分享他在面试过程中的经历以及他如何最终获得一个角色的同时,他也为读者提供了一些如何接近和准备面试的技巧。
我不会破坏主要的提示是什么,但它们涉及如何处理焦虑,缺乏准备和更多的提示。
这篇文章适合求职者,但如果你只是想打发时间,从编码中休息一下,也是一篇有趣的读物。
在我选择撰写的这个古怪的个人专栏的最新部分,我分享了我兴趣的起源…
towardsdatascience.com](/the-struggle-to-find-my-first-job-as-a-data-scientist-64594c88b67e)
本周(6 月 13 日)你应该阅读的有趣的人工智能/人工智能文章
意见
这四篇文章涵盖了我本周感兴趣的机器学习主题…包括为什么数据科学可能正在失去魅力
让我从我在 2020 年观察到的一些事情开始这篇文章。
我们几乎每天都被男女同胞之间的抽象隔阂所提醒,无论是宗教、种族、文化观点等等。
但在 2020 年,我观察到了一场全球范围内前所未有的整合。
我们齐心协力应对这场我们许多人都曾目睹过的最严重的流行病之一。然而,我们再次联合起来,打击世界各地持续存在的对黑人的种族歧视。
尽管 2020 年可能不是最受欢迎的一年,但它已经展示了当地和全球社区的力量。
该材料中包含的文章的校对封面图像
又是一周,又一批媒体文章要通过了。
媒体文章的质量变得越来越令人兴奋和迷人。我读过详细描述个人经历的文章,这些文章让我产生共鸣,也读过为复杂的技术系统或技术提供简单解释的文章。
本周我感兴趣的文章涵盖了以下主题:
- 科技巨头将面部识别技术从商业用途中收回。
- TensorFlow 认证指南
- 从技术角度理解为什么抖音如此令人上瘾
- 数据科学失去吸引力的原因
为什么数据科学正在失去魅力?由 Harshit Ahuja
数据科学正在失去魅力吗?
嗯, Harshit Ahuja 在他的文章中似乎是这样认为的,这篇文章描述了曾经有利于数据科学工作角色的趋势变化。
尽管他承认围绕数据科学的宣传已经存在,但 Harshit 似乎并不认为每个人都有适合的工作角色。这与机器学习行业内的流行言论形成了鲜明对比,后者声称没有足够的供应来满足行业的需求。
通过阅读这篇文章,Harshit 展示的数据科学的魅力似乎是一个具有大量工作岗位的高要求行业的承诺。
但是,加上行业内工作需求减少和技能缺乏的现实,Harshit 提出了四个论点,说明为什么数据科学正在失去魅力。
Harshit 认为,数据科学失去魅力的主要原因如下:
- 行业的高期望与涌入的新人才的技能和要求不匹配。
- 人们对行业内工作角色和职责的误解。
- 缺乏商业环境中实际数据的经验导致个人认为数据科学很简单。
- 自动化给数据科学工作角色的寿命带来的威胁。
这些论点令人信服,在我看来,我认为这篇文章从本地的角度强调数据科学行业的问题可能是正确的,但不是从全球的角度。
然而,我确实同意 Harshit 提出的一些观点,尤其是机器学习行业的高期望值。
这篇文章是优秀的:
- 数据科学爱好者
- 数据科学学生
数据科学曾经是最受欢迎的职业选择,但趋势正在发生变化。
towardsdatascience.com](/why-is-data-science-losing-its-charm-3f7780b443f5)
我是如何通过 TensorFlow 开发者认证考试的 Daniel Bourke
Daniel Bourke 详细介绍了他获得 TensorFlow 开发者证书的旅程和学习路径,旨在为读者提供一步一步的指导,告诉他们如何才能实现与他相同的壮举。
这主要是我喜欢在媒体上阅读的文章类型。文章不仅提供知识和信息,而且提供实现成就的明确途径。
Daniels 的文章鼓舞人心,激励人心,因为我从详细的学习资源和勇气中获得了一种指导感,其中包括 Daniel 对自己学习的奉献精神的个人描述。
TensorFlow 是机器学习使用最多的工具之一,获得一个认可的证书无疑可以为你提供职业利益。
丹尼尔在他的文章中强调了获得认证的一些好处。
对于读者来说,这篇文章有两个主要的收获:丹尼尔斯的经验和相关的课程,它们设定了一个明确的学习路径。这篇文章充斥着在线资源和书籍参考。所有包含的资源都有时间和成本指标,供读者衡量获得认证的金钱和时间支出。
即使你不打算获得认证,阅读丹尼尔的旅程和道路也足以让你深入了解专业机器学习研究中的严格学习和丰富资源。
这篇文章非常适合:
- TensorFlow 开发者
- 狂热的学习者
- 计算机视觉和深度学习从业者
你也可以
towardsdatascience.com](/how-i-passed-the-tensorflow-developer-certification-exam-f5672a1eb641)
一篇 2018 年的研究论文如何导致亚马逊、微软和 IBM 遏制他们的面部识别计划
通过参考以前的研究工作、抗议、意识和国会层面的讨论,戴夫·格什高恩创造了一个当前事件发生的背景故事,在这个故事中,我们看到科技巨头们审查、限制和取消对他们面部识别系统的访问。
文章首先引用了两位研究人员及其发表的研究,该研究揭示了科技公司面部识别系统在识别肤色较深的个人和女性时的缺点。
随后发表的研究是国会对论文中提出的问题的认识,以及最初研究人员的后续论文。
这篇文章提到了所有围绕面部识别不足的活动,作为最近刚刚发生的当前事件的铺垫。
你可能听说过,几家科技公司正在收回他们的面部识别系统,有些拒绝向警方提供面部识别,直到法规到位。
这篇文章是一篇很好的阅读,因为它列出了几年前个人的行动和工作,这导致了当前事件的发生。
这对我个人来说意义重大,因为它表明即使变化不会在一夜之间发生,我们也应该尽可能地保持一致性并坚持不懈。
这篇文章以语言结束,为未来与面部识别系统及其用途的不足进行的斗争奠定了基础。
戴夫揭示了一些公司利用法律优势来使用他们的技术,以及科技巨头在提供人工智能技术方面的军事联系。
当我读到这篇文章的结尾时,我感觉虽然已经做了一些改变,但是仍然有大量的工作要做。
这篇文章非常适合:
- 寻求灵感的读者。
- 希望了解最新时事的读者。
[## 2018 年的一篇研究论文如何导致亚马逊、微软和 IBM 遏制他们的面部识别计划
但这只是面部识别行业冰山一角
onezero.medium.com](https://onezero.medium.com/how-a-2018-research-paper-led-to-amazon-and-ibm-curbing-their-facial-recognition-programs-db9d6cb8a420)
为什么抖音让它的用户如此痴迷?让你着迷的人工智能算法凯瑟琳·王
抖音仍然没有在我的智能手机上找到家,因为我甚至不能理解它周围的宣传。
我可能不是“*时髦”,*但是 Catherine Wang 已经开始从技术角度解释为什么抖音受欢迎。她的文章包括一些抖音成功秘诀的高层次概述,它的推荐算法。
抖音已经被下载了 20 亿次,根据 Catherine 的说法,机器学习可能是这款令人上瘾的移动应用背后的主要驱动力。
抖音是一个我还不了解的平台。据我所知,你随着流行音乐起舞,然后,你就像病毒一样传播开来。
但是似乎还有更多。 Catherine Wang 从以数据为中心的角度简要介绍了抖音。通过强调平台的月用户数量和标签的病毒式传播,我感觉到这个应用程序是多么令人印象深刻地受欢迎,更令人惊讶的是它是如何在短时间内积累了如此大的人气。
Catherine 解释说,抖音成功的秘诀在于它的推荐引擎为其内容提要提供动力。
本文的大多数读者都熟悉某种形式的推荐系统,如果您不熟悉的话,Catherine 用了文章的很大一部分来介绍基本推荐系统的描述和架构。
在这篇文章中,Catherine 从高层次的概述和深入的技术分析两方面深入剖析了抖音推荐算法的内部工作原理。
抖音推荐系统的技术分析由 Catherine 以结构化的形式呈现,Catherine 识别与输入到更广泛的推荐系统的内容和数据相关联的数据和特征组件。
这篇文章充满了恰当的解释和丰富的知识。如果你是推荐系统或机器学习的新手,你一定会从这篇文章中学到一些东西。
这篇文章非常适合:
- 读者了解推荐系统
[## 为什么抖音让它的用户如此痴迷?让你上瘾的人工智能算法。
Tick Tok 正在席卷全球。短视频 app 被下载了 20 亿次,那么背后的魔力是什么…
towardsdatascience.com](/why-tiktok-made-its-user-so-obsessive-the-ai-algorithm-that-got-you-hooked-7895bb1ab423)
我希望这篇文章对你有用。
要联系我或找到更多类似本文的内容,请执行以下操作:
- 订阅我的 YouTube 频道 即将上线的视频内容 这里
- 跟我上 中
- 通过 LinkedIn 联系我
我从 ICML 2020 中读到的有趣的论文
这是我从未去过的维也纳(图片由亚采克·迪拉格在 Unsplash 上拍摄)
今年的机器学习国际会议(ICML)将在网上虚拟举行,这是一个很好的机会,让人们不用花太多钱就能参加,这对于不一定在 ML 的研究人员来说很好。所有的论文演示都是预先录制的,并且还提供了两个实时放大的问答部分。
到第三天,我已经从各种论文、教程、小组讨论和指导会议中学到了很多。在这个系列中,我决定分享一些我觉得有趣的论文的笔记。这份名单绝不是在穷尽所有1086 篇被录取论文后的公正选择。论文是随机排序的,当然偏向于我感兴趣的话题。所以我们开始吧:
1.通过超球面上的几何理解对比表征学习
[ 论文 ][ 演示文稿 ][ 代码
对比表征学习是我最近最感兴趣的话题之一。我对对比损失进行了实验(见这里的和这里的和和),发现它对于在没有监督的情况下学习其他任务的有用表征非常有效。
在本文中,作者为对比目标提供了优雅的几何解释。他们将对比损失目标分解为两个量,用于评估学习表征空间的几何形状:
- 对齐(紧密度):来自正配对的嵌入彼此紧密吗?
- 均匀性:投射到嵌入空间的样本是否均匀分散?
作者发现,与使用监督目标学习的表征相比,通过优化对比目标学习的表征确实具有这两种性质。这两个量也可以用作神经网络的损失函数来进行显式优化,这与使用对比损失达到了类似的效果。他们还表明,对于学习监督任务的良好表示,对齐和一致性都是必需的。
2.连续图神经网络
[ 论文[简报
本文作者提出了一种方法来解决离散图神经网络(GNNs)在执行多个传播层的前向传递时性能下降的问题。众所周知,当 GNN 层数过多时,广义神经网络会出现过度平滑的问题。这是因为拉普拉斯平滑具有使来自具有相同程度的节点的传播信息彼此更加相似的趋势,从而掩盖了来自单个节点的独特特征。
作者设计了他们的方法连续 GNN (CGNN),该方法受神经节点的启发,在节点表示上模拟连续动力学。他们的实证结果显示,CGNN 在标准基准(Cora、Citeseer、PubMed 等)上击败了图卷积网络(GCN)和图注意力网络(GAT) 。)用于半监督节点分类任务。
虽然作者如何发明 CGNN 的推导细节很难理解,但我确实发现这篇论文是 GNNs 的一个重要进步,因为它能够开发具有多个消息传递层的“更深层次”GNNs,而不会损失性能和图上节点之间的长期依赖性。更多关于 GCN 的信息,请阅读我之前的文章。
3.无监督文本可控表征的变分学习
[ 论文 ][ 演示文稿
为什么不能对文本进行风格转换?
在这篇文章中,作者解释了为什么变分自动编码器(VAE)不能通过潜在空间操作进行文本生成。利用拓扑分析,他们发现 VAE 在文本数据上学习的潜在空间( z )比在图像数据上学习的潜在空间有更多的“漏洞”。
为了减轻这种影响,他们开发了 CP-VAE(约束后验概率),在 VAE 损失上增加了两项,以 1)鼓励学习的潜在空间具有正交基(我猜这是受 PCA 的启发?);以及 2)用类似于对比损失的结构重建损失来“填充”潜在空间。通过在损失函数中加入这些额外的术语,作者证明了合作原则-VAE 的潜在空间得到了更充分的“填充”,可以在语篇中进行“风格转移”。虽然,我认为作者提供的例子也稍微改变了输入句子的内容。
4.CURL:用于强化学习的对比无监督表示学习
[ 论文 ][ 简报 ][ 代号
对比学习的观察表征对学习有帮助吗?
答案是肯定的。在本文中,作者试图弥合 RL 代理与代理之间的差距,RL 代理可以访问底层状态,而代理只能在 DeepMind 控制环境(如 Walker)上通过像素看到观察结果。受对比表征学习最新进展的启发,作者开发了 CURL,它使用观察轨迹的重放缓冲区合并了对比表征学习,作者表明 RL 代理能够从像素观察的学习表征中注意相关区域,这有助于代理更快地学习。然而,这一结果的实现离不开三个绝妙的技巧:
- 跨观测轨迹应用一致随机裁剪以保留时间结构
- 使用双线性内积代替余弦相似性作为编码观察序列的相似性度量
- 使用指数移动平均(EMA)对观察值序列进行编码,以保留一些短期记忆
CURL 显著提高了基线 RL 算法的数据效率,在某些任务上达到最佳策略的速度提高了 5 倍。但是在 RL 代理访问真实状态方面仍然存在一些差距。作者也承认 CURL 在一些复杂动态的环境中失败了。这可能是由于来自像素的观察可能无法捕捉完整的状态信息,例如速度和接触力。
5.感知生成自动编码器
这是在我们最喜欢的 VAE 以及深度生成模型的基础上开发的又一个杰出作品。作者认为,现代深度生成模型(GANs、基于流的模型和 VAE)的不完善源于未能解释数据的内在维度和环境维度之间的差异。为了解决这个问题,作者提出了感知生成自动编码器(PGA ),它可以最小化除数据重建误差之外的潜在重建误差。
从概念上讲,这就像为潜在空间和数据空间绑定了自动编码器。使用常规符号,让我们用 x 来表示一个高维数据点, z 是它的潜在向量。我们有 encoder \ hat {z} =f(x)和 docoder \ hat {x} =g(z)。 x 的自动编码器将是\ hat {x} =g(f(x)。从 z 的角度看,编码器 f (。)实际上是解码器为 z 而解码器为 g (。)是编码器 z 。 z 的自动编码器将是\ hat {z} =f(g(z)。PGA 以这种方式看待自动编码器,并在来自数据空间的重建误差之上添加了两个潜在的重建损失项,这两个项都最小化了zf*(g(z)之间的 L2 距离。这里的 z 可以从预先定义的高斯先验或者后验q(z|x)中进行采样。*
接下来,作者展示了添加 PGA 损失项的 VAE 显著提高了通过 FID 分数测量的生成数据的质量,从而解决了 VAE 的样本模糊问题。
6.NGBoost:用于概率预测的自然梯度推进
大多数监督 ML 回归模型仅给出给定特征向量的数据点的点估计。对于某些回归问题,预测的置信区间也是至关重要的。
在这篇论文中,作者提出了一个模块算法来进行概率预测。该算法由以下部分组成:
- 基础学员( f )
- 目标 P_theta(Y|X=x)的参数化概率分布,可以是正态泊松分布
- 评分规则 S (\theta,y),可以是均方误差
作者发现,对于普通梯度,即 S w.r.t .参数\theta 的梯度,该算法不起作用,因为梯度对于参数\theta 不是不变的。换句话说,通过遵循普通梯度来更新\theta 就像朝着移动目标进行优化。为了克服这个问题,作者对自然梯度进行了梯度下降,它位于分布空间而不是参数空间。自然梯度定义为黎曼空间中的最陡上升,它是\theta 的不变量。自然梯度也可以通过用 Reimannian 度量转换普通梯度来计算,这取决于评分规则的参数形式。
通过使用自然梯度的梯度增强,NGBoost 算法能够正确地估计预测的均值和方差。作者还表明,在许多回归任务上,它与现有的更复杂的算法表现相当好。
我也会给 scikit-learn 兼容 API 加分。
7.从不规则采样的时间序列中学习:一个缺失数据的视角
临床时间序列数据通常是不规则采样的:变量既不是以均匀的间隔测量的,也不是完全随机的。本文作者通过将不规则采样时间序列视为缺失数据问题,设计了一种生成过程。具体来说,他们使用了一个编解码器框架,该框架可以是 VAE 或双向 GAN(甘比),以显式地对数据**【x】**及其索引 t 进行建模。这个框架直接作用于离散时间序列。
作者设计了一个有趣的实验,他们从 MNIST 和西里巴等数据集掩盖了大部分图像,以模拟不规则采样的离散时间序列。并且任务是让模型在给定可用像素( x )及其索引( t )的情况下,填充图像的缺失部分。他们的模型取得了相当好的性能。
为了将这个框架扩展到具有缺失数据的连续时间序列,作者在解码器上覆盖了一个内核平滑器,在编码器上覆盖了一个卷积层。这里的巧妙之处在于利用互相关将不规则采样的数据点转换为均匀间隔的信号。作者接下来表明,该框架还能够从 MIMIC-III 数据集中学习连续时间序列的有用表示,以帮助患者生理轨迹的下游分类任务(预测死亡率)。
8.使用疾病进展的深度预测聚类进行时间表型分析
沿着临床时间序列建模的思路,本研究旨在对时间序列数据进行监督聚类,以反映未来的标签。在我看来,这篇论文的问题表述非常不寻常:作者试图在给定时间点 t 分类轨迹的同时学习分类表示。作者表示,这是一个具有挑战性的问题,因为它是 NP 难的,并且在选择聚类成员时涉及采样过程。
提出的算法 actor-critic 时序表型聚类(AC-TPC)由三个神经网络组成:
- 编码器:z _ t=f(x _ { 1:t })
- 选择器:提供集群分配s _ t*=h(z _ tT7)*
- 预测器:根据编码 z_t 或嵌入进行预测
由于该算法旨在同时对数据进行聚类和分类,AC-TPC 的损失函数需要最小化真实标签和聚类分配之间的差异,同时确保每个轨迹仅分配给一个主导聚类,并防止聚类内的样本相互重叠。
他们在时态医学数据集上的实验表明,AC-TPC 具有更好的预测性能,并且比基线算法产生更好的聚类质量。通过诸如纯度、调整随机指数(ARI)和归一化互信息(NMI)的聚类度量来测量聚类质量。作者还表明,AC-TPC 允许聚类分配随着新的观察结果添加到轨迹中而改变,反映了患者表型可能因后续干预而改变的真实世界场景。
干扰:A/B 测试的棘手陷阱
来源:pixabay
虽然进行 A/B 测试来测试产品功能或营销活动的变化令人兴奋,但数据科学家应该知道 A/B 测试的常见陷阱,如干扰、内生性问题和对统计结果的误解。我对干扰特别感兴趣,因为它总是以一种非常微妙的方式出现,即使是一个有经验的数据科学家也可能无法识别这个陷阱。在这篇文章中,我想简单地谈谈这个问题,包括一个具体的干涉例子。我还将讨论在设计实验时如何识别这个问题,以及一些常见的干扰解决方案。
共享资源引起的干扰:拼车市场实例
徐战旗的功劳
假设一家虚构的拼车公司 Lyber 希望通过改变移动应用程序的用户界面来简化搭载乘客的步骤。衡量这一改变成功与否的标准是司机在一段时间内的乘车次数。数据科学团队将纽约的司机随机分配到治疗组(新 UI)和对照组(原始 UI),并运行为期 2 周的 A/B 测试。团队记录关键指标,并对其执行双样本 t 测试。在检查了统计结果后,该团队得出结论,p 值非常重要,声称新的用户界面有助于司机搭载更多的乘客,赚更多的钱。作为一名经理,你刚刚结束了与 DS 团队的会议,你必须决定产品团队是否应该根据这个实验的结果来实现新的 UI。
事实上,这个例子只不过是一个常见的 A/B 测试面试问题:我们无法从这个实验中得出任何结论,因为由于两组司机都在同一个地方(纽约),他们共同构成了市场的供应方,共同分享需求。如果接受治疗的司机利用新的用户界面,他们将影响市场的共享需求。结果,控制组的司机会比平时少坐几个人,坐几趟车。简而言之,观察到的治疗效果是对真实治疗效果的夸大。我们不知道真正的治疗效果是否有统计学意义。
干涉的想法
希望上面的例子能给你一个干扰的基本概念。背后的想法非常简单:给定多个治疗组,一个组的行为会影响其他组的行为。这正是上面案例中发生的情况:一组中去找司机的乘客越多,另一组中可供司机使用的乘客就越少。
干扰类型
一般来说,干扰可能以两种方式发生:间接连接和直接连接。
间接连接当两个单元因为潜在变量或共享资源而连接时发生。上面的 Lyber 案例是一个间接联系的完美例子,从这个意义上说,治疗组和对照组共享客户池。子用户实验单元的设计也可能导致间接连接(Kohavi et al .,2020):假设对 web UI 的新想法进行实验,并且实验单元在页面视图级别而不是在用户级别。在这种情况下,“用户”是连接治疗组和对照组的潜在变量。结果,两个版本的 web UI 都可能暴露给同一个用户,使得实验结果不可靠。
另一方面,直接连接发生在两个单元或者在同一个社交网络中或者有物理接触的时候。这可能是 LinkedIn 的工程团队将干扰视为‘网络效应’的原因。这里我想引用圣雅克(2019)提供的一个直接连接的例子:
“想象一下:我的朋友是一项实验的目标,该实验为她提供了更好的消息传递体验。我不是目标,我的消息传递体验没有改变。然而,她更好的信息体验使她花更多的时间在网站上,发送更多的信息,包括一些给我的信息。然后我回复她,并在网站上花更多的时间。这里发生了什么?我的朋友收到了一个新功能,这个事实对我产生了影响,尽管我没有参与实验。有干扰。”
在这个虚构的实验中,尽管作者没有接受治疗,但他与消息应用的互动受到了治疗组中一位朋友的影响。
设计实验时识别干扰
干扰给假设检验带来了偏倚误差,使得整个实验不可靠。为了避免干扰问题,考虑一个极端的情况:如果改变真的有效,并使治疗组的关键指标增加了 10 倍,这会影响对照组的关键指标吗?如果答案是肯定的。然后,您可能想要浏览我在下面讨论的一些解决方案:)
干扰的可能解决方案(在你意识到它之后!)
一个可能的解决方案是改变随机化单元。
如果干扰归因于单元的地理接近度,我们可以在区域级别随机化单元。Vaver 和 Koehler (2011)设计了一个实验,将感兴趣的地理区域(如国家)划分为一组区域。然后将每个区域随机分配给治疗组或对照组。作者还建议平衡其他混杂变量的治疗和对照区域(即分组随机化)以减少方差。
类似地,在社交网络的背景下,我们可以基于“它们干扰的可能性”构建网络节点的集群(Kohavi 等人,2020)。集群可以作为实验单元。
或者,我们也可以使用时间间隔作为随机化水平。别忘了考虑时间因素(工作日/周末;一天中的小时)。配对 t 检验是减少方差的好方法。(科哈维等人,2020 年)
请记住,当改变实验单位时,偏差-方差权衡仍然存在:由于干扰效应,更具体的级别(如用户)会导致较小的方差和较大的偏差。另一方面,更一般的水平,如时间间隔或区域,由于组内方差,导致更小的偏差但更大的方差。Chamandy 的文章(2016)对这种权衡给出了明确的解释。
最后但并不是最不重要的
这篇文章背后的动机是帮助人们获得干扰的基本概念。我还鼓励您阅读下面的参考列表,因为它们提供了技术行业最聪明的数据科学家如何解决干扰问题的大致情况。我也要感谢徐占奇根据和 Lyft 的标志为本文中虚构的公司 Lyber 设计了一个非常时尚的标志。我希望这不会是你对这篇文章的唯一记忆:)
参考
n . chamandy(2016 年 9 月 2 日)。拼车市场的实验。检索自https://eng . lyft . com/experimentation-in-a-ride sharing-market place-b 39 db 027 a 66 e
柯哈维,r .,唐,d .,,徐,Y. (2020)。可信的在线控制实验:A/B 测试实用指南。剑桥大学出版社。
圣雅克,G. (2019,6 月 5 日)。检测干扰:A/B 测试的 A/B 测试。2020 年 5 月 22 日检索,来自https://engineering . LinkedIn . com/blog/2019/06/detecting-interference-an-a-b-test-of-a-b-tests
Vaver,j .,& Koehler,J. (2011 年)。使用地理实验测量广告效果。
中级 Python: NumPy
通过探索数字 Python 库 NumPy,让您的 Python 技能更上一层楼。
如果您最近完成了一门关于 Python 基础的课程或一本书,现在想知道下一步去哪里,探索不同的 Python 包将是一个自然的下一步。NumPy 包(数字 Python 的缩写)非常简单,但也非常有用,尤其是对于科学计算、数据科学和机器学习应用程序。
许多数据分析和机器学习 Python 库都是建立在 NumPy 之上的,因此掌握这些基础知识对于成功利用这些库至关重要。本文并不打算作为 NumPy 的全面或深入的资源。更确切地说,这更多的是对这个包的介绍,对于那些可能想探索科学或数据科学应用程序的 Python 新手来说,这是一种正确方向的推动。
先决条件
要理解本文中的代码片段,显然需要在机器上安装 Python 和 NumPy 包。命令pip install numpy
应该可以解决问题,但是如果你有任何问题, NumPy 站点可以在入门部分帮助你设置。
此外,我建议使用 Jupyter 笔记本或 Spyder 中的 IPython 控制台来跟进,但 IDLE 也可以。Jupyter 和 Spyder 附带了 Anaconda,你可以在这里下载,这个包应该已经安装了 NumPy。
为什么是 NumPy?
使用 NumPy 包的最大优点之一是 ndarray (n 维数组)数据结构。NumPy ndarray
比 python list
强大得多,并且提供了比 python array
更多种类的操作和功能。为了理解这些优势,我们首先需要深入了解 Python 的基本数据类型。
Python 是一种动态类型的语言,这是它易于使用的特性之一。Python 允许我们给一个变量赋一个整数值,然后将同一个变量重新赋给不同的类型(比如字符串):
然而,在像 C++这样的静态类型语言中,要给一个变量赋值,我们首先必须给这个变量分配一个类型。在变量被声明后,我们不能将它的值重新赋值给不同类型的值:
这种动态类型功能非常方便,但也有代价。Python 是用 C 实现的,Python 中的基本数据类型实际上不是原始数据类型,而是指向包含许多不同值的 C 结构的指针。存储在像integer
这样的 Python 数据类型中的额外信息是允许动态类型化的,但是会带来很大的开销,当处理非常大量的数据时,性能成本会变得很明显。
高灵活性和高性能成本同样适用于 Python lists
。因为lists
可以是异构的(在同一个列表中包含不同的数据类型),所以list
中的每个元素都包含自己的类型和引用信息,就像 Python 对象一样。异构列表将从这种结构中受益,但是当列表中的所有元素都是相同的基本类型时,存储的类型信息变成了多余的,浪费了宝贵的内存。
Python arrays
在存储统一数据类型方面比lists
高效得多,但是 NumPy ndarray
提供了arrays
没有的功能(例如矩阵和向量运算)。
数组创建
首先,检查您是否安装了 NumPy 导入并检查您的版本至少是 1.8。
注意:你可以直接
*import numpy*
而不是导入为*np*
,但是对于教程的其余部分,无论你在哪里看到*np*
,都用*numpy*
代替就可以了(例如*np.array()*
→*numpy.array()*
)。此外,当使用术语“数组”或“ndarray”时,我可能会有点不一致,所以请记住这些术语指的是同一个东西。
现在让我们看看如何用 NumPy 创建多维数组(ndarrays)。既然我们将 ndarrays 与 Python 列表进行了比较,那么首先让我们看看 NumPy 如何让我们从列表中创建一个数组:
从 Python 列表创建数组
将 Python 列表[1,1,2,3,5,8,13]
传递给np.array()
会创建一个 32 位整数值的 ndarray。ndarrays 中保存的值将始终属于同一类型。对于所有 ndar array,.dtype
属性将返回数组保存的值的数据类型。** 关于数据类型的 Numpy 文档
如果我们将包含不同类型值的list
传递给np.array()
,NumPy 将向上转换这些值,这样它们就可以是相同的类型:
传递给 array()方法的列表包含整数和浮点数。从此列表创建的数组将整数转换为浮点数,以便所有值都是同一类型。
- *注意:请确保当您调用
array()
时,您提供了一个数字列表作为单个参数:np.array( [1,2,3] )
,而不仅仅是数字作为多个参数:np.array( 1,2,3 )
;这是一个非常常见的错误。
NumPy 还允许您在使用dtype
参数创建数组时显式指定数组的数据类型:
数组中的值最初是作为整数输入的,但是通过将数据类型指定为 float ( dtype = float ),Numpy 将所有值都转换为 float(例如 1 → 1.0).
创建时知道数组的大小,但不知道数组的内容是很常见的。在这种情况下,NumPy 允许创建具有占位符值的指定大小的数组:
用 np.zeros( ) 将所有值初始化为 0 的 3x3 数组。
np.ones()
和np.empty()
也可以分别用于返回全 1 或不初始化条目的数组。如果您想指定一个值作为占位符,请使用np.full(size, **placeholder**)
:
数组也可以用随机值初始化。使用np.random.random(s)
你可以创建一个大小为s
的数组,用 0 到 1 之间的随机值填充。传递一个整数值将产生一个该长度的一维数组:
长度为 5 的一维数组。
您可以传递更高维数组的维度:
传递(3,3)会产生一个二维的 3x3 数组,而传递(2,2,2)会产生一个三维的 2x2x2 数组。
如果你想要一个随机整数值的数组,使用np.random.randint(min, max, size)
。指定min
的最小值、max
的最大值,当然还有size
的数组大小,就像我们对np.random.random()
所做的那样。
In[32] :二维 3x3 数组的取值范围在 0 到 25 之间。 In[33] :一维 10x1 数组的范围在-50 到 50 之间。
还有许多其他非常有用的创建 ndarrays 的方法,包括:
- 在给定范围内用等间距值填充
- 在一个正态分布上用随机数填充一个数组
- 创建一个身份矩阵
如果您感兴趣,请查看数组创建文档,探索这些数组创建例程以及许多其他例程。
数组操作
创建数组很好,但是 NumPy 真正出色的地方是使用数组进行操作和计算的方法。这些方法不仅简单易用,而且当涉及到基于元素的操作(尤其是在大型数组上)时,这些方法具有非常出色的性能——比遍历每个元素的性能好得多,就像通常不使用 NumPy 时所做的那样。
ndarray
对象允许我们对两个相同大小的数组执行算术运算和:
从 a 中对应的元素中减去 b 中的每个元素。同样,请注意,结果数组中的所有值都是浮点型的,因为正如我们在数组创建示例中看到的那样,整数被转换为浮点型。
在两个 ndarrays 上使用 + 运算符产生元素相加。
请记住,在两个lists
之间使用+
操作符不会将它们按元素相加。这实际上导致了两个lists
的串联。此外,如果我们试图在两个lists
之间使用-
操作符,Python 将返回一个错误,因为lists
在没有使用 for 循环显式声明的情况下,自然不允许元素操作。
语句 list_a + list_b 连接两个列表,而 list_a -list_b 返回一个错误。
元素方式与矩阵乘法
如果你以前用过 MATLAB,你就会知道使用 n 维数组和矩阵是多么容易。NumPy 在提供一些方便的功能方面做得很好,并且对于 MATLAB 用户来说,可能比使用基本的 Python 更加熟悉。
MATLAB 中的矩阵乘法就像在两个矩阵上使用*
运算符一样简单(例如a * b
)。使用 NumPy,*
操作符将实际返回元素级乘法。
对于矩阵乘法,@
运算符用于arrays
:
而在矩阵乘法这个话题上,NumPy 也有一个
*matrix*
类,实际上是*array*
的子类。*array*
类用于一般用途,而*matrix*
类用于线性代数计算。文档建议在大多数情况下,您应该使用*array*
类,除非您专门从事线性代数计算。如果您想要处理更高维的数组(例如 3-D),那么*array*
类支持这一点,而*matrix*
类总是处理 2 维数组。
使用 ndarray 类表示的三维数组。
此外,
*matrix*
类不像*array*
那样使用相同的操作。因此对于本文,我们将重点关注*array*
类。
就像两个数组相乘一样,我们可以将一个数组的所有元素都乘以一个数字。NumPy 还使得获取数组的属性变得非常方便,比如数组(ndim
)的 sum 、 min / max 、 dimensions 、以及array
的 size (总元素数)。
您还可以访问阵列的基本统计值:
该数组的均值、标准差和方差很容易计算。
根据条件获取元素
一个非常酷的numpy
类方法是numpy.where()
。这允许您从数组中返回满足指定条件的元素。例如,如果您有一个从 0 到 50 的 5x5 整数数组,并且您想知道大于 25 的值在哪里,您可以执行以下操作:
np.where( ) 对于保存大于 25 的值的索引返回 1,对于小于等于 25 的值返回 0。这里的 r 是原数组
如果你想找到低值(例如< 15) and replace them with a -1:
All values less than 15 have been replace with -1. Here arr 是原始数组 in Out[71]
你可以用这个方法做很多事情,特别是用一点创造性的思维,但是只要记住它是如何工作的:np.where(cond[, x, y])
——如果cond
条件满足,返回x
,否则返回y
。
索引、切片和整形
步进的工作原理与lists
相同:
这里我们创建一个填充了 0 的三维数组,然后将索引 arr_3d[0][0][1] 的值重新赋值为 20。
要检查数组中是否有值,可以像使用lists
一样使用in
关键字:
切片与arrays
一起工作,就像它与lists
一样,并且arrays
可以在多个维度上切片:
In[8] :每行前 3 列。**【9】😗*每列前 3 行。 In[10] :第 2 列所有项目。
在转换方面,NumPy 有很多功能。例如,如果您有一个 3x5 的数组,并且想要将调整为 5x3:
若要调整数组的形状,请将所需的维度传递给 shape()方法。
您也可以使用array.T
将转置 arrays
:
数组 r 是 12x1 数组 p 的整形,为 3x4 数组。数组 q 是 r 的转置,通过使用**r.T**
Arrays
也可以使用np.transpose(a)
进行转置,其中a
是您想要转置的数组。
我们只是触及了 NumPy 库的皮毛,如果你想知道你还能做什么,官方文档有一个很棒的入门指南,当然,你可以在那里探索库的其余部分。如果您想使用 Python 进行科学计算、机器学习或数据科学,NumPy 是您应该真正熟悉的库之一。
下面是我推荐的其他几个相关的 Python 库,它们被认为是这个领域的核心:
最后,我将为您提供一些资源,让您继续掌握用于数据科学和科学应用的 Python。
Jake VanderPlas 著《Python 数据科学手册》 —这是一本真正优秀的数据科学入门入门读物。他还从一开始就介绍了 NumPy,但比本文详细得多。
用 Scikit-Learn、Keras&tensor flow byaurélien géRon——如果你真的对机器学习和深度学习感兴趣,这本书可能是入门最常推荐的书。
走向数据科学 —数据科学、机器学习、AI、通用编程。这是关于媒体的最好的出版物之一,并且是关于数据科学的大量主题的极好资源。
斯坦福大学与吴恩达 联合开设的机器学习课程——不完全是专门针对 Python 的,但如果你想真正进入机器学习,并在动手实践的同时钻研一些理论,如果你有时间致力于这门课程,这是一个绝佳的起点。吴恩达很聪明。
感谢阅读!