大数据和数据科学的 20 大最新研究问题
5 类问题陈述、研究方法和研究实验室
尽管截至 2020 年,大数据已经成为运营的主流,但研究人员仍然可以解决一些潜在的问题或挑战。其中一些问题与数据科学领域重叠。在本文中,根据我的个人经验(考虑到我所在组织的知识产权)和这些领域的最新趋势,涵盖了大数据和数据科学结合中最有趣的 20 个最新研究问题[1,2]。这些问题涵盖在 5 个不同的类别下, 即
处理规模的核心大数据领域
处理数据中的噪音和不确定性
安全和隐私方面
数据工程
大数据和数据科学的交汇点
本文还涵盖了解决特定问题的 研究方法 以及在这些领域开展工作的 顶级研究实验室 以供参考。
我鼓励研究人员解决将对整个社会产生更大影响的应用研究问题。强调这一点的原因是,我们几乎没有分析 1%的可用数据。另一方面,我们每天都在产生万亿字节的数据。这些问题不是特定于某个领域的,而是可以跨领域应用的。
我先来介绍一下 大数据的 8v(基于 Elena 的一篇有趣文章),即体量、价值、准确性、可视化、多样性、速度、粘性、病毒式。如果我们仔细观察图 1 中各个 V 的问题,它们引发了研究人员的兴趣点。即使它们是商业问题,也有潜在的研究问题。比如 02-Value:“最需要的时候能找到吗?”有资格分析可用数据,并在需要时给出上下文相关的答案。
图 1: 8V 大数据提供: Elena
理解了大数据的 8V 之后,让我们来看看要解决的研究问题的细节。通用大数据研究主题的台词是:
- 可扩展性—并行数据处理的可扩展架构
- 实时大数据分析—文本、图像和视频的流数据处理
- 用于大数据采用和分析的云计算平台—降低云中复杂分析的成本
- 安全和隐私问题
- 高效存储和转移
- 如何有效地对不确定性建模
- 图形数据库
- 用于大数据分析的量子计算
接下来,让我涵盖上面提到的五个类别中的一些具体研究问题。
与核心大数据区处理规模相关的问题:-****
- 可扩展的并行数据处理架构:
Hadoop 或 Spark 类环境用于离线或在线处理数据。行业正在寻找可扩展的架构来执行大数据的并行数据处理。近年来有了很大的进步,但是,还有巨大的潜力来提高性能。
2. 在分布式云中处理实时视频分析:
随着互联网的普及,甚至在发展中国家,视频已成为数据交换的常用媒介。在这方面,电信基础设施、运营商、物联网(IoT)的部署和闭路电视都发挥了作用。能否以低延迟和更高的准确性增强现有系统?一旦实时视频数据可用,问题是如何将数据传输到云,如何在边缘和分布式云中高效处理数据?
3. 大规模高效图形处理:
社交媒体分析就是这样一个需要高效图形处理的领域。图表数据库在大数据分析中的作用在参考文章[4]中有广泛介绍。大规模的有效图形处理仍然是一个迷人的问题。
处理数据中的噪声和不确定性的研究问题:-
4. 近实时识别假新闻:
随着假新闻像病毒一样以爆发式方式传播,实时、大规模地处理假新闻是一个非常紧迫的问题。这些数据可能来自 Twitter 或虚假网址或 WhatsApp。有时,它可能看起来像一个经过认证的来源,但仍然可能是假的,这使得解决问题更有趣。
5. 大规模数据的降维方法:
人们可以扩展现有的降维方法来处理大规模数据或提出新的方法。这也包括可视化方面。人们可以使用现有的开源贡献来开始并回馈开源。
6. 在嘈杂环境和不完全数据下的训练/推理 :
有时,人们可能得不到输入数据的完整分布,或者数据可能由于噪声环境而丢失。可以通过过采样、合成少数过采样技术(SMOTE)或使用生成式对抗网络(GANs)以有意义的方式扩充数据吗?增强有助于提高性能吗?如何训练和推断是需要解决的挑战。
7. 处理大数据处理中的不确定性:
有多种方法可以处理大数据处理中的不确定性[4]。这包括子主题,例如如何从低准确性、不完整/不精确的训练数据中学习。当数据量很大时,如何处理未标记数据的不确定性?我们可以尝试使用主动学习、分布式学习、深度学习和模糊逻辑理论来解决这些问题。
安全 和隐私【5】领域的研究问题:-
8. 超大规模系统的异常检测:
异常检测是一个非常标准的问题,但在大规模实时应用中却不是一个微不足道的问题。应用领域的范围包括医疗保健、电信和金融领域。
9. 大规模系统中敏感领域的有效匿名 :
让我举一个医疗系统的例子。如果我们有一个胸部 x 光图像,它可能包含 PHR(个人健康记录)。在一个大规模的系统中,如何匿名敏感领域以接近实时地保护隐私?这也可以应用到其他领域,主要是为了保护隐私。
10. 真实世界应用的安全联邦学习:
联邦学习能够对分散数据进行模型训练。如果由于法规/隐私问题而无法共享数据,但仍然需要在本地构建模型,然后跨边界共享模型,则可以采用这种方法。我们是否还能让联合学习大规模运行,并通过标准的软件/硬件级别的安全性来确保它的安全性,这是下一个需要解决的挑战。感兴趣的研究人员可以从 UCB 的 RISELab 获得这方面的更多信息。
11. 大数据上可扩展的隐私保护:
大规模数据的隐私保护是一个具有挑战性的研究问题,因为其应用范围从文本、图像到视频不尽相同。国家/地区级别隐私法规的差异将使问题更难处理。
与数据工程方面相关的研究问题
12. 轻量级大数据分析即服务:
一切提供即服务是行业的新趋势,如软件即服务(SaaS)。我们能否致力于提供轻量级大数据分析服务?
13. 自动转换算法到 MapReduce 问题:
MapReduce 是大数据中众所周知的编程模型。它不仅仅是一个 map 和 reduce 函数,还为应用程序提供了可伸缩性和容错性。但是直接支持 map-reduce 的算法并不多。我们能建立一个库来自动转换标准算法以支持 MapReduce 吗?
14. 火花簇的自动化部署:
最近 spark 集群的使用取得了很大的进步,但是它们还没有完全为自动化部署做好准备。这是另一个需要进一步探索的挑战性问题。
大数据与数据科学交叉的研究问题:-
15.用较少的数据样本使模型学习的方法:
在过去的 10 年里,随着更多数据和计算能力的可用性,深度学习模型的复杂性增加了。一些研究人员自豪地声称,他们在深度学习中解决了一个有数百层的复杂问题。例如,图像分割可能需要 100 层网络来解决分割问题。然而,最近的趋势是,有人能用较少的相关数据和较少的复杂性解决同样的问题吗?这种想法背后的原因是在边缘设备上运行模型,而不仅仅是在使用 GPU/TPU 的云环境中。例如,在大数据上训练的深度学习模型可能需要部署在闭路电视/无人机中以供实时使用。这从根本上改变了解决复杂问题的方法。你可以在这个副题中解决挑战性的问题。
16.神经机器翻译为本地语言:
人们可以使用谷歌翻译进行神经机器翻译(NMT)活动。然而,在政府的支持下,当地大学有很多研究用当地语言进行神经机器翻译。变压器双向编码器表示(BERT)的最新进展正在改变解决这些问题的方式。人们可以通过合作来解决现实世界的问题。
17.处理现实世界应用的数据和模型漂移:
如果我们知道数据模式在变化,模型的性能会下降,我们需要对推理数据运行模型吗?甚至在将数据传递给模型之前,我们能识别数据分布中的漂移吗?如果一个人可以识别漂移,为什么要传递模型推断的数据,浪费计算能力。这是一个迫切需要在现实世界中大规模解决的研究问题。主动学习和在线学习是解决模型漂移问题的一些方法。
18.在实时应用中处理深度学习模型的可解释性:
可解释的人工智能是最近的热门词汇。可解释性是可解释性的子集。机器/深度学习模型不再是黑箱模型。像决策树这样的模型很少是可以解释的。但是,如果复杂性增加,基础模型本身可能无法解释结果。我们可能需要依赖替代模型,如局部可解释模型不可知解释(LIME) / SHapley 附加解释(SHAP)来解释。这可以帮助决策者证明所产生结果的合理性。例如,拒绝贷款申请或将胸透归类为新冠肺炎阳性。可解释模型能处理大规模实时应用吗?
19.构建上下文相关的大型系统:
构建大规模上下文相关系统是最新的趋势。有一些开源的努力来启动。然而,它需要大量的努力来收集正确的数据集,并建立上下文敏感的系统来提高搜索能力。如果你有搜索、知识图和自然语言处理(NLP)的背景,你可以在这个主题中选择一个研究问题。这适用于所有领域。
20.构建基于大规模生成的会话系统(聊天机器人框架):
一个获得动力的特定领域是建立对话系统,如问答和聊天机器人生成系统。有很多聊天机器人框架可用。使它们具有生成性并在实时对话中准备摘要仍然是具有挑战性的问题。随着规模的扩大,问题的复杂性也在增加。这个领域正在进行大量的研究。这需要很好地理解自然语言处理和最新的进展,如来自变压器的双向编码器表示(BERT),以扩大对话系统可以大规模解决的范围。
研究方法:
希望你能从上面强调的主题中 用你的领域和技术专长 框出具体的问题。让我来推荐一种方法来解决这些问题。有些观点对研究人员来说可能是显而易见的,但是,为了让更多的读者感兴趣,让我来介绍一下这些观点:
****确定你的核心优势无论是在理论、实现、工具、安全,还是在特定领域。你可以在做研究的时候获得其他新技能。用合适的数据确定正确的研究问题差不多达到了里程碑的 50%。这可能与其他技术领域重叠,如物联网(IoT)、人工智能(AI)和云。你对研究的热情将决定你能在解决这个问题上坚持多久。趋势是跨部门的跨学科研究问题。因此,人们可以选择一个特定的领域来应用大数据和数据科学的技能。
文献调查:我强烈建议只关注经认证的出版物,如 IEEE、ACM、Springer、Elsevier、Science direct 等……不要落入“国际期刊”的陷阱,这些出版物没有经过同行评议。请不要将文献调查仅限于 IEEE/ACM 论文。许多有趣的论文可以在 arxiv.org 的和论文中找到,论文代码为。人们需要根据入围的主题检查/跟踪行业和学术界的顶级研究实验室。这提供了最新的研究更新,并有助于确定需要填补的空白。
实验室生态系统:创造良好的实验室环境,开展强有力的研究。这可以是在你的研究实验室里,与学术界的教授、博士后、博士、硕士和本科生在一起,或者与工业界的高级、初级研究人员在一起。拥有正确的伙伴关系是合作的关键,你也可以尝试虚拟团体。拥有良好的生态系统可以提高结果,因为一个人可以挑战其他人进一步改善结果的方法。
通过正确的途径发表:**正如文献调查中提到的,在正确的论坛上发表研究论文,在那里你将收到来自世界各地专家的同行评议。在这个过程中,我们可能会遭到拒绝。然而,只要你收到了建设性的反馈,你就应该感谢匿名评论者。如果方法新颖、非显而易见且有创造性,你可能会看到申请专利的潜在机会。最近的趋势是在发表论文的同时开源代码。如果您的机构允许它开源,您可以通过在 Github 中上传相关代码,并附上适当的许可条款和条件。
值得关注的顶级研究实验室:
其中一些研究领域活跃在全球顶尖的研究中心。我请求你们遵循这些建议,找出进一步的差距,以便继续开展工作。以下是全球大数据+数据科学领域的一些顶级研究中心:
英国艾伦·图灵研究所
如果你想继续你在大数据方面的学习,我有以下建议:
根据你的需要,你可以从《印度分析》杂志的总结文章中挑选出前 10 本书。
数据挑战:
在解决现实问题的过程中,人们可能会遇到与数据相关的挑战:
- 可用数据中的 相关 数据是什么?
- 缺乏数据隐私法规的国际标准
- 《通用数据保护条例》( GDPR)是一种跨国家的法规
- 遵守规则的联合学习概念——人们可以构建模型并共享,但数据仍然属于国家/组织。
结论:
在本文中,我简要介绍了大数据研究问题,并列出了 2020 年大数据和数据科学的 20 个最新研究问题。这些问题被进一步分为 5 类,以便研究人员可以根据他们的兴趣和技能来解决问题。这份清单绝非详尽无遗。但是,我希望这些输入可以激发你们中的一些人解决大数据和数据科学中的真正问题。我在网络研讨会中介绍了这些要点以及大数据的一些背景知识,供您参考[7]。你可以参考我的另一篇文章,其中列出了新冠肺炎数据科学需要解决的问题[8]。 让我们一起来用科技建设一个更美好的世界。
参考资料:
[3]https://arxiv.org/ftp/arxiv/papers/1705/1705.04928.pdf
[4]https://www . xenon stack . com/insights/graph-databases-big-data/
[5]https://journalofbigdata . springer open . com/articles/10.1186/s 40537-019-0206-3
[7]https://www.youtube.com/watch?v=maZonSZorGI
[8]https://medium . com/@ sunil . vuppala/ds 4 covid-19-用数据科学解决什么问题-新冠肺炎-a997ebaadaa6
选择正确的研究问题,运用你的技能去解决它。祝一切顺利。请在评论区分享您的反馈。如果您遇到这方面的更多主题,请随时添加。
数据科学最流行的工具和软件
数据科学家在 2020 年使用的最终工具列表
在 Unsplash 上由 Elena Rouame 拍照
数据管理
1.Hadoop
Apache Hadoop 是管理大数据的最重要的工具之一。
它还允许用户存储所有形式的数据,即结构化数据和非结构化数据。借助 Hadoop,数据科学家可以跨计算机集群对数据集中的大量数据进行可靠的分布式处理。
成为数据科学家并不迫切需要 Hadoop,但数据科学家必须知道如何首先将数据取出来进行分析,Hadoop 正是存储大量数据的技术,数据科学家可以在这方面工作。
Hadoop 由几个模块组成:Hadoop Common、Hadoop 分布式文件系统、Hadoop YARN、Hadoop MapReduce,实现灵活的数据处理。
2.MongoDB
MongoDB 是一个探索你认为合适的结构化数据的工具。作为一个 NoSQL 数据库,它不遵循 SQL 强加的严格的关系格式。通过提供通常需要向 SQL 添加层的功能,它降低了复杂性。借助动态模式,您可以一起处理差异极大的数据并整合分析。
或者,也可以使用其他 NoSQL 工具——Cassandra、CouchDB、ArangoDB、Postgre SQL 或 DynamoDB,将数据传输到提供可靠数据管理的平台。
3.关系型数据库
资料来源:DB-Engines via Statista
SQL 是数据科学中最需要的技能之一。
要从数据库中获取数据,您需要 SQL。在 SQL 平台中——MySQL、Microsoft SQL Server、Oracle Database、PostgreSQL、MongoDB、CouchBase、DB2 或其他数据库,Oracle 的数据库解决方案在 2019 年进行的大多数调查中脱颖而出。
MySQL 和微软 SQL Server 位列前三。尽管数据库管理行业包含了一些科技行业中最大的公司,如微软、甲骨文和 IBM,但一些免费的开源 DBMSs,如 PostgreSQL 和 Apache Cassandra,仍然具有很强的竞争力。
当每个人都忙于学习数据科学的 R 或 Python 时,我们往往会忘记没有数据就没有数据科学。数据科学家需要 SQL 来获取这些数据并使用它们。SQL 允许快速方便地存储、查询、创建、解析和操作数据—基本上是数据管理。
4.Neo4j
Neo4j 是由 Neo Technology Inc .开发的开源和世界领先的图形数据库管理系统,是一种使用图形结构进行语义查询的数据库,具有节点、边和属性来表示和存储数据。
它旨在优化节点和关系的快速管理、存储和遍历,具有高度可伸缩性,旨在利用数据及其关系。
Neo4j 为数据上的 CRUD 操作提供了可伸缩性、高可用性和灵活性。这个工具是用 Java 编写的。并提供灵活的数据模型以给出实时输出。
5.SAP HANA
SAP HANA(高性能分析设备)是一个 RDBMS,由 SAP 开发和销售。它作为数据库服务器的主要功能是根据支持应用程序的请求存储和检索数据。
SAP HANA 是一种基于 ETL 的复制,使用 SAP 数据服务从 SAP 或非 SAP 源迁移数据到 HANA 数据库。在其生物圈中使用 SAP 的企业使用 HANA 在短时间内处理大量实时数据。
由于 SAP 是一个闭源生态系统,HANA 可能不是独立数据科学家的工具,但对于 SAP 中的业务或职业来说,HANA 可能是一个值得炫耀的好技能。
6.储备
Apache Hive 是一个建立在 Apache Hadoop 之上的数据仓库软件项目,用于提供数据查询和分析。Hive 类似于一个 SQL 接口,用于查询跨数据库和文件系统存储的数据,以便以后与 Hadoop 集成。
Hadoop、Hive、Pig 本质上在数据管理层紧密合作。
Hive 以提供数据汇总和数据查询而闻名。HIVE 是为工作的人构建的,在 SQL 知识方面,不需要学习一种全新的语言来获取 Hadoop 生态系统中的数据并与之交互。
7.阿帕奇火花
Apache Spark 是一个用于大规模数据处理的统一分析引擎。它可以跨多种语言编写应用程序,这使得它非常健壮——Java、Scala、Python、R 和 SQL。
数据科学家使用 Spark 进行数据清理和转换、功能工程、模型构建、模型评估评分和“生产化”数据科学管道。我从 Python 中读到 Spark 致力于提供类似熊猫的体验,这让我很感兴趣。
我不太了解 Apache Spark,但我会在秋季学习它🙈。如果你有兴趣了解更多关于 Apache Spark 的知识,这里的是一个很好的参考资源。
8.快速采矿机
RapidMiner 是一款开源、完全透明、功能强大的端到端数据挖掘工具,用于快速构建预测模型。该工具支持数百种数据准备和机器学习算法,以支持一系列数据挖掘项目。
RapidMiner 可用于准备数据、机器学习和模型开发。它支持多种数据管理技术和机器学习步骤,如数据准备、数据可视化、预测分析、部署等。这个工具是用 Java 编写的。
数据可视化
9.Microsoft Power BI
Microsoft Power BI 是一款用于商业智能的交互式数据可视化和分析工具。我在 2017 年在 Larsen & Toubro 实习时听说过 Power BI,使用 Power BI 进行跨部门的收入支出分析、员工效率、焊接和拱架轮班的实时数据处理。
数据科学家可以从广泛的来源提取数据,并创建漂亮的仪表板来跟踪对业务非常重要的指标
微软关于为什么 PowerBI 的博客非常清楚地解释了为什么 Power BI 对数据科学家来说是事实。Power BI 可轻松连接、建模和可视化数据,创建难忘的报告,并根据品牌的 KPI 进行个性化设置。
Power BI 可以轻松地与 Microsoft Office 应用程序(Microsoft Teams 和 Excel)集成,使组织能够做出数据驱动的业务决策,从而推动他们采取战略行动。
10.(舞台上由人扮的)静态画面
Tableau 是目前商业智能中非常流行和强大的数据可视化工具。Tableau 的数据分析快速而强大。通过可视化仪表板和工作表,Tableau 涵盖了将原始数据简化为非常容易理解的格式、清理数据以及识别潜在趋势和模式。
很长一段时间以来,像百事可乐、威瑞森、查尔斯·施瓦布、可口可乐、Chipotle 这样的大公司都在使用 Tableau 来利用他们的数据并做出结论性的明智决策。对于任何对数据科学或数据分析职业感兴趣的人来说,Tableau 这样的工具是必不可少的。
11.QlikView
想想饼图、折线图、数据透视表、条形图等等📊,QlikView 是一款在行业中广泛使用的工具。
QlikView 也是一个商业智能和数据发现工具,其目标是为目标业务挑战创建导向分析应用程序和仪表板。该软件使用户能够揭示各种变量之间的数据洞察力和关系。
关于 Tableau 和 QlikView 的争论相当激烈。虽然 Tableau 口袋里有 bog 品牌,但 QlikView 使用内存数据模型,使其能够即时准确地处理庞大的数据集,这是 Tableau 的改进范围。
12.TIBCO Spotfire
Spotfire 是一家位于马萨诸塞州萨默维尔的商业智能公司,于 2007 年被 TIBCO 收购(维基百科)。Spotfire 具有与 Tableau 或 QlikView 相同的通用可视化功能。
虽然 Tableau Public 和 Power BI Desktop 可以免费使用,但 TIBCO Spotfire 的价格为每位用户每年 650 美元。没有免费版本可能会使它在独立数据科学家中不那么受欢迎。然而,我最近看到了这个故事,讲述了雅高酒店如何使用 TIBCO Spotfire 改善客户体验,以及更快、更容易、更简单的整合。
TIBCO 最初是集成和分析领域的全球领导者,拥有庞大的客户群。你可以点击这里访问 TIBCO 客户名单。
数据分析
来源:2019 年 6 月最受欢迎的数据科学技能[1]
13.计算机编程语言
你认为这不会在清单上吗?Python 在数字方面压倒了一切。
Python 面向对象的特性有助于数据科学家以更好的稳定性、模块化和代码可读性来执行任务。虽然数据科学只是多样化的 Python 生态系统的一小部分,但 Python 拥有丰富的专业深度学习和其他机器学习库以及流行的工具,如 scikit-learn、Keras 和 TensorFlow。
毫无疑问,Python 使数据科学家能够开发出可以直接插入生产系统的复杂数据模型。Python 有大量的包和库,不仅仅是为了数据分析,而是为了数据分析。
Python 的数据分析库, Pandas 无疑是数据探索的最佳选择。通过组织成数据框, Pandas 可以轻松地过滤、排序和显示数据。
14.稀有
作为数据科学的典型统计工具,R 不仅仅是一种语言,它本身就是一个执行统计计算的完整生态系统。它有助于执行数据处理、数学建模、数据可视化等操作。
r 是为了对大型数据集进行统计和数值分析而构建的,因此,有大量的操作可用于数据分析和探索——排序数据、转置表、创建图表、生成频率表、采样数据、概率分布、合并数据、变量转换等等。探索封装 dplyr 和 tidyr 以获得最佳结果。
15.斯堪的纳维亚航空公司
SAS —统计分析系统
和 R 一样,SAS 是为高级数据分析和复杂的统计操作开发的工具。它是一个闭源的专有工具,提供了各种各样的统计功能来执行复杂的建模。由于其高可靠性,SAS 主要由大型组织和专业人员使用。
虽然 SAS 不是最适合初学者和独立数据科学爱好者的工具,但它 SAS 是为满足高级业务需求而量身定制的,如果你在职业生涯中寻找特定的数据科学角色,良好的 SAS 知识将为你的档案增添光彩。
SAS 在企业分析领域一直是无可争议的市场领导者,但是,要将其功能与 Python 或 R 进行比较,SAS 似乎很难对数据进行建模和可视化。此外,学习曲线是棘手的,有时很难,主要是由预算庞大的大公司使用。
16.矩阵实验室
MATLAB 是我用于数据科学的第一个工具。当我发现 MATLAB 是进行深奥的数学运算的有效工具时,我在我的一门本科课上把 MATLAB 作为图像处理工具。虽然数据科学也与数学有关,但我抓住机会探索是什么使这项技术成为数学建模、图像处理和数据分析的强大工具。
MATLAB 拥有一个庞大的数学函数库,用于线性代数、统计、傅立叶分析、滤波、优化、数值积分和求解常微分方程。MATLAB 提供了用于可视化数据的内置图形和用于创建自定义绘图的工具。
我不认识很多用 MATLAB 的数据科学家。说了这么多,不可否认对于数学和建模来说是很棒的。随着 R 和 Python 在数据科学领域的出现,MATLAB 一直在走下坡路,但正如我们在上面的统计数据中看到的那样,它仍然在那里。
17.附加电源装置(Supplementary Power Supply Set 的缩写)
IBM SPSS 软件平台提供高级统计分析、庞大的机器学习算法库、文本分析、开源可扩展性、与大数据的集成以及无缝部署到应用程序中。
我可以说,IBM SPSS 是一个相对较少使用的工具。它更受社会科学、心理学、金融、人力资源等领域的研究学者和学者的欢迎。虽然大多数数据科学家和行业使用 R、Python 或 SAS 作为主要工具,但如果你在心理学或相关领域工作,SPSS 是一个很好的工具。
18.斯塔塔
Stata 是一个强大的统计软件,使用户能够分析、管理和生成数据的图形可视化。它主要由经济学、生物医学和政治学领域的研究人员用来检查数据模式。
正如 Stata 的官网所说“数据科学家依赖 Stata 是因为它强大的编程能力、可再现性、可扩展性和互操作性。从数据争论到报告,Stata 为您提供完成分析所需的工具。许可授权允许您轻松地将其集成到您的专有工作流程中。”
19.河流逻辑
RiverLogic 是一个建模和分析平台,它利用诊断、预测和说明性分析来进行假设分析和优化分析。
其规范性分析平台使用户能够通过协作、快速、基于云的场景分析来解决无限数量的决策挑战。
来源:河逻辑官方网站
20.SAP Lumira
SAP Lumira 让数据科学家和分析师能够构建有影响力的商业智能可视化,以评估风险、提高效率、突出独特见解并发现机会。
SAP Lumira 还支持用于高级分析的 OLAP 技术。Lumira 的可视化为交互式和有效的数据分析提供了自适应布局容器。
官方网站引用:
创建分析应用程序和仪表盘 开发可移动的交互式仪表盘和分析应用程序,与用户及其数据故事进行协作,并提供可操作的洞察。
开发支持移动的交互式仪表盘和分析应用,与用户及其数据故事进行协作,并提供对可操作洞察的指尖访问。
感谢您的阅读!我希望你喜欢这篇文章。请务必让我知道您以前知道或不知道哪些工具,并且希望在您的数据科学之旅中学习或探索这些工具。
数据帐篷快乐!
免责声明:本文表达的观点是我自己的观点,不代表严格的观点。
了解你的作者
拉什是芝加哥伊利诺伊大学的研究生。她喜欢将数据可视化,并创造有见地的故事。当她不赶着赶学校的最后期限时,她喜欢喝一杯热巧克力,写一些关于技术、UX 等的东西。
必看的 20 部人工智能电影
人工智能
这里有一些必看的人工智能电影,以了解人工智能的能力。
埃里克·维特索在 Unsplash 上的照片
M 电影不仅仅是爆炸和超能力的大片,它是电影背后的主要思想,它改变了人们,并在观众的头脑中注入了一种观念。
举例来说,电影《小丑》并不是一部英雄与反派的电影,与超能力者战斗,给纽约市带来巨大灾难。它描绘了富人和穷人、幸运者和不幸者之间的明显鸿沟,以及精神疾病如何扭曲一个人的道德和价值体系。
因此,电影不仅仅是一种享受和娱乐的活动,它在塑造我们的世界观和公共意识方面起着不可或缺的作用。
简而言之,电影教育人们,传播思想,就像今天的平装本书一样。
为什么是电影?
电影有效的一个原因也是电影和书的鲜明区别,就是可视化。与书籍相比,视觉内容显示的内容更快地记录到我们的视觉刺激,这解释了为什么人们会花几个小时在 YouTube 上,而不是阅读一本书。此外,电影有助于生成具体的图形,帮助人们更长时间地坚持这个想法。显然,电影是了解一个想法或首先用你的头脑深入一个话题的完美媒介。
好莱坞的艾
人工智能、机器学习、数据科学都是这个时代的流行名词。了解它是什么以及它在未来几年的价值比以往任何时候都更加重要。
尽管好莱坞电影往往为了戏剧效果而夸大其词,例如终结者电影,天网的杀手机器人变得有知觉并开始毁灭人类,但这些电影仍然有一些道理。今天,该领域的专家担心一个超级智能的人工智能会比我们聪明,并最终决定将我们从地球上抹去。
另一方面,人工智能被描述为一项奇迹发明,即能够比人类更好地执行模拟和预测等分析任务的智能机器。在电影中,你看到人工智能是人类的助手,协助我们完成各种任务,从太空探险的助手到爱人。
如果你对人工智能、机器学习和数据科学感兴趣,请查看下面的电影列表(排名不分先后)并观看它们。
我写关于数据科学和人工智能的文章。如果你想在我发帖时得到通知,现在就订阅我的媒体简讯吧!
如果你不是普通会员,考虑一下今天只需 5 美元就可以订阅。你将直接支持我,你将获得大量的优秀作品!
20 大人工智能电影
1.银翼杀手(1982)
《银翼杀手》是一部经典的反乌托邦电影,在这部电影中,由人工智能驱动的生物工程复制人生活在真实的人类中间,他们之间的唯一区别是他们只能活 4 年。这部电影的续集,《银翼杀手 2049》也是一部伟大的电影,它更深入地探讨了人工智能及其未来的主题。
收视率最高的电影#168 |获得两项奥斯卡提名。另外 12 场胜利和 16 项提名。查看更多奖项“演员概况…
www.imdb.com](https://www.imdb.com/title/tt0083658/)
2.西部世界(1973)
《西部世界》是一部关于人工智能如何被用来娱乐我们并让我们实现梦想的电影。它让我们想起了技术和伦理的微妙冲突,并让我们质疑自己。
演员概况首先只宣传:有钱度假者的游乐园。公园为顾客提供了一种生活方式…
www.imdb.com](https://www.imdb.com/title/tt0070909/)
3.2001:太空漫游
HAL 9000 是一台安装在前往木星的宇宙飞船上的超级计算机,它负责大多数操作,当它出现故障并决定毁灭世界时,会导致可怕的事件。随着哈尔一个接一个地杀死船员,我们被提醒让人工智能控制我们的世界的危险,并注意后果。
由斯坦利·库布里克导演。与凯尔·杜拉,加里·洛克伍德,威廉姆·西尔维斯特,丹尼尔·里希特。在发现一个…
www.imdb.com](https://www.imdb.com/title/tt0062622/)
4.月亮(2009 年)
《月亮》和《2001:太空奥德西》很相似,因为这部电影有自己的哈尔 9000,名字叫柯里。葛蒂是山姆·贝尔的电脑和伴侣,山姆·贝尔是月球表面上的一名孤独的宇航员。当他在月球上的任期即将结束时,他面临一场事故,并遇到了年轻的自己。这部电影的简约品质,加上富有哲理和发人深省的场景,使其成为最好的科幻电影之一。
由邓肯·琼斯导演。和山姆·洛克威尔,凯文·史派西,多米妮克·麦克艾丽戈特,罗西·肖一起。
www.imdb.com](https://www.imdb.com/title/tt1182345/)
5.黑客帝国(1999 年)
黑客帝国典型的反乌托邦,人类对超级智能人工智能的恐惧成为现实。在《黑客帝国》(The Matrix)中,人工智能创造了一个模拟现实的场景来让我们保持克制,尼奥遇到了墨菲斯,这让他从模拟中解脱出来,并开始了他人生的新篇章,他以特工的形式与智能开始战斗,并发现了他的真实身份。《黑客帝国》让我们看到了人工智能黑暗面的可怕未来,以及一些值得思考的人生教训。
托马斯·安德森是一个过着双重生活的人。白天,他是一个普通的电脑程序员,晚上,他是一个黑客…
www.imdb.com](https://www.imdb.com/title/tt0133093/)
6.星球大战(1977)
《星球大战》中著名的机器人二人组——深受喜爱的 C3·阿宝和他的机器人伙伴 R2D2——都是有感知能力的人工智能机器人,具有类似人类的人格,能够表达情感。有趣的是,他们被当作宠物,甚至是奴隶。这类似于狗和人之间的关系,除了狗可以说话和表达自己的意见。《星球大战》对人工智能的这种看法让我们思考它们将如何嵌入我们的社会结构,以及未来社会将如何对待人工智能,要么将其视为助手、宠物、朋友,要么根本不信任它们。
[## 《星球大战:第四集——新的希望》(1977)——IMDb
乔治·卢卡斯导演。和马克·哈米尔,哈里森·福特,凯丽·费雪,亚历克·伊兹高尼一起。卢克·天行者加入部队…
www.imdb.com](https://www.imdb.com/title/tt0076759/)
7.《星际迷航:世代》( 1994)
电影中的人工智能明星是少校·数据,一个有感知、有自我意识的机器人,在企业号航空母舰上担任高级军官。这个由人工智能驱动的超级大脑还配备了一个模拟人类情感的情感芯片。这使得数据成为一个类似人类的机器人,可以像我们一样感觉,但有一个复杂的大脑,可以比任何人都更好地计算风险。
由戴维·卡森导演。与帕特里克·斯图尔特,威廉·夏特纳,马尔科姆·麦克道威尔,乔纳森·弗雷克斯。在…的帮助下
www.imdb.com](https://www.imdb.com/title/tt0111280/)
8.终结者(1984)
《终结者》是最受欢迎的电影之一,它描绘了一个 AI 突然变得邪恶并开始杀害所有人的黯淡未来。它说明了人工智能成为一种生存威胁的可能性。在这部电影中,天网,一个引发核浩劫的人工智能系统,派回了一个机器人刺客(终结者)来阻止约翰·康纳的出生,他将引发一个反抗天网的反叛组织。这部电影提醒人们创造一个安全的人工智能,并在创造一个可以消灭我们的人工智能时三思。
由詹姆斯·卡梅隆执导。阿诺德·施瓦辛格,琳达·汉密尔顿,迈克尔·比恩,保罗·温菲尔德。1984 年,一个人类…
www.imdb.com](https://www.imdb.com/title/tt0088247/)
9.机械战警(1987)
《机械战警》据说是一部真正揭露人工智能伦理的电影。这是因为 Robocop 是 AI 和人类的融合,它证明了一个事实,即道德和伦理不能是人工的或自动化的。我们潜在的人性仍然需要成为等式的一部分,否则后果将接踵而至。这涉及到将人工智能武器化(致命的自主武器系统)的危险,以及为什么必须制定人工智能使用的法规以防止人工智能的滥用。
获得两项奥斯卡提名。另外 11 场胜利和 10 项提名。查看更多奖项“未来的底特律充满犯罪…
www.imdb.com](https://www.imdb.com/title/tt0093870/)
10.瓦力
瓦力是我们今天看到的人工狭义智能的缩影,尽管没有电影中的那些复杂(瓦力能够表达孤独和爱等情感)。狭义的 AI 是一个非常擅长做一件特定事情的智能系统。我们在今天的日常生活中看到,比如自动驾驶汽车和语音助手。在这部电影中,瓦力清理垃圾,夏娃寻找生命,自动驾驶飞船。《瓦力》( WALL-E)是为数不多的展示人工智能光明一面及其给世界带来的好处的科幻电影之一。
在一个遥远但并非不切实际的未来,人类已经放弃了地球,因为它已经被垃圾覆盖…
www.imdb.com](https://www.imdb.com/title/tt0910970/)
11.玛奇纳除外
艾娃是天才程序员凯勒·史密斯创造的 AGI(人工通用智能)。AGI 是一个拥有比人类多得多的技能和知识的人工智能。艾娃和我们一样善于交谈,甚至能控制他人的情绪。这部电影引发了对像艾娃这样有自我意识的机器人的治疗和实验的伦理关注,导致了一个黑暗的结局。
由亚历克斯·嘉兰导演。与艾丽西卡·维坎德,多姆纳尔·格里森,奥斯卡·伊萨克,水野索诺娅。一个年轻的程序员…
www.imdb.com](https://www.imdb.com/title/tt0470752/)
12.查皮
设定在一个专制的未来,警察部队现在是机械化的,有自主机器人在街上巡逻,处理违法者。其中一个机器人被盗,并被从阿尼升级到 AGI,这意味着它变得有知觉。这个机器人,查皮,带着他新发现的情感,与社会中的腐败作斗争,并被贴上了威胁人类秩序的标签。这也带来了伦理问题,以及 AGI 如何通过探索周围环境来自我学习,就像查皮在电影中所做的那样。
由尼尔·布鲁姆坎普导演。与沙尔托·科普雷,戴夫·帕特尔,休杰克曼,西格妮·韦弗。在不久的将来,犯罪…
www.imdb.com](https://www.imdb.com/title/tt1823672/)
13.我,机器人
VIKI(虚拟互动运动智能)是一台超级计算机,它使用从世界各地收集的数据,其计算能力控制世界各地的机器人。在这个世界上,机器人无处不在,它们被赋予嵌入其系统中的法律,以确保社会的安全。但是有了 VIKI,这些法律不再阻止机器人,这取决于一个技术恐惧的警察和一个好的机器人阻止 VIKI 结束世界。这部电影带来了人工智能接管世界的可怕可能性,以及即使制定法律来控制它们也会适得其反。
获得 1 项奥斯卡提名。又一个 1 胜 13 提名。查看更多奖项“2035 年,技术恐惧症杀人侦探德尔…
www.imdb.com](https://www.imdb.com/title/tt0343818/)
14.星际穿越
《星际穿越》采取了完全不同的方式在科幻电影中呈现 AI。这对名为 TARS 和 CASE 的四边形机器人没有像 HAL 9000 或终结者那样成为对手,而是令人惊讶地呈现出与《星球大战》和《星际迷航》中常见的类人形态毫无相似之处的形态。TARS 和 CASE 的设计代表了将功能置于人性之上的设计,它代表了机器人和人工智能中复杂设计的许多可能性。
地球的未来已经被灾难、饥荒和干旱弄得千疮百孔。只有一种方法可以确保人类的…
www.imdb.com](https://www.imdb.com/title/tt0816692/)
15.她
《她》讲的是一个男人爱上了一个人工智能操作系统。我们今天在智能手机中看到虚拟助手,但技术没有“萨曼莎”复杂,“她”中的智能操作系统。像 Siri 和 Google Assistant 这样的语音助手只能完成简单的任务,如设置闹钟或给朋友发短信,但 Samantha 是一个令人印象深刻的健谈者,对语言、常识和情感有着惊人的掌握,能够处理复杂的任务,如过滤电子邮件和在一秒钟内下载数百万本书。像她这样高度先进的操作系统能够通过经验学习和进化,这是我们今天的技术水平无法实现的。这部电影让我们看到了语音助手在未来会是什么样子,我们甚至可以爱上它们。
获得 1 项奥斯卡。另外 81 场胜利和 184 项提名。查看更多奖项“演员概况,仅第一张账单:西奥多是一个…
www.imdb.com](https://www.imdb.com/title/tt1798709/)
16.钱球
“Moneyball”展示了预测分析的惊人力量及其在现实世界中的能力。在这部电影中,数据分析和“钱球理论”被用来在最小的预算下挑选出被低估的球员的最佳团队。通过对球员的数据挖掘的力量,以及两个显著的数据点(击球率和上垒率),形成了冠军棒球队。这部电影展示了数据在决策中的重要性,以及在预测建模中选择正确的统计数据。但更重要的是,基于分析做出决策的勇气,以及对数据做出改变的信心。
获得 6 项奥斯卡提名。另外 30 场胜利和 75 项提名。查看更多奖项“奥克兰运动家队的总经理比利·比恩是残疾人…
www.imdb.com](https://www.imdb.com/title/tt1210166/)
17.追加保证金通知
“追加保证金通知”展示了错误的预测模型对社会中每个人的影响。显然,技术不是生活在泡沫中,一个微小的错误都会导致可怕的后果。这部电影以 2008 年金融危机为中心,在银行工作的风险分析师和金融分析师发现,他们的风险模型正导致公司陷入金融灾难。这部电影讲述了贪婪的危险,以及对预测模型的各个方面进行故障检测以防止灾难发生是多么重要。
获得 1 项奥斯卡提名。另外 8 次获奖和 23 次提名。查看更多奖项“演员概况,第一单只:一个受尊敬的…
www.imdb.com](https://www.imdb.com/title/tt1615147/)
18.少数派报告
《少数派报告》展示了数据科学的最佳状态。在这部电影中,一组具有精神能力的人类或称为 PreCogs 的“数据科学家”能够通过分析大量数据来预测未来的犯罪。通过这种分析,视觉数据被传输到预防犯罪中心,这是一个被派去防止犯罪的警察单位。这就引出了数据如何在现实世界中做大事的想法,比如预防灾难和拯救数百万人的生命。
史蒂文·斯皮尔伯格导演。汤姆·克鲁斯,科林·法瑞尔,萨曼莎·莫顿,马克斯·冯·赛多。在未来,一个…
www.imdb.com](https://www.imdb.com/title/tt0181689/)
19.模仿游戏
著名的“图灵测试”的创造者、现代计算机科学之父艾伦·图灵出现在这部电影中。以二战为背景,艾伦·图灵是破解谜题的传奇数学家。“谜”是纳粹用来对他们的信息进行编码的一种战略代码,图灵决定建造一台能够比任何人都更快地执行复杂排列的计算机。凭借这台计算机,图灵为创造机器以及加强密码学和网络安全领域铺平了道路。此外,电影中的一个重要教训是解决“谜”时创造力和新颖性的重要性,以及对沟通和人类行为的理解,这是解决任何问题的关键组成部分。
获得 1 项奥斯卡。另外 48 场胜利和 159 项提名。查看更多奖项“演员阵容概述,仅限第一张账单:基于真实…
www.imdb.com](https://www.imdb.com/title/tt2084970/)
20.《美丽心灵》
《美丽心灵》的主角是诺贝尔经济学奖得主约翰·纳西。他因对博弈论或经济理论的贡献而闻名,这些贡献导致了经济学领域的突破。他的工作在计算机科学中被大量利用。在这部电影中,看看博弈论是如何慢慢被解开,并发现它的意义,不仅是数学世界,但在日常生活中。
演员概况首次仅公布:从恶名的高度到堕落的深度,小约翰·福布斯·纳什…
www.imdb.com](https://www.imdb.com/title/tt0268978/)
21. 21
讽刺的是,《21》是一个的真实故事,讲述了 6 名来自麻省理工学院的学生前往拉斯韦加斯,用暗号、手势和锐利的目光算牌。这部电影展示了预测分析的力量,并教导观众如何基于数据的决策可以为任何企业带来利润。
行动计划
马特·邓肯在 Unsplash 上拍摄的照片
我希望通过这些令人惊叹的科幻电影,你能够完全沉浸在一个人工智能成为朋友、爱人、杀手、士兵、奴隶的世界中,并发现数学和算法的力量及其实现令人惊叹的事情的能力,如停止战争和在赌场中赢得大奖。
人工智能确实是人类最伟大的发明。正如电影中所见,人工智能要么是我们的死亡,要么是我们人类认知和身体能力的增强,让我们可以做不可思议的事情。
艾的神话
在不久的将来,人工智能将无处不在,了解它的第一步是打破人工智能的神话。
一个最重要的神话是,人工智能会变得有良知并变得邪恶,杀死每一个经过它的人,尽管这令人不安,真正的担心是人工智能会有与我们不一致的目标。当这种情况发生时,我们无法阻止他们。
另一个大神话是超级 AI 即将到来,我们现在应该都很担心。事实是,没有人,即使是该领域最聪明的专家也不知道超级人工智能何时会实现。可能是几十年,几个世纪,甚至永远不会。
电影总是把 AI 描绘成一个令人生畏的机器人形象,它能发射激光,坚不可摧。然而,一个人工智能不需要一个身体来做它最糟糕的事情,它需要的只是互联网上的一个地方,所有的地狱都可以逃脱。
如何从看电影中获得更多
- 在推特上发布电影对白/把它们保存在笔记应用或记事本中(如果你是守旧派)
- 拥抱电影,运用你的五种感官,想象你就在电影中
- 反思你所学到的东西
- 检查电影中的信息以防止任何误解
- 去 Reddit 上看看其他人对这部电影的看法
我希望这篇文章对你有用,并且你得到了一个令人惊奇的“电影观看列表”!在家注意安全,万事如意。
最后,我引用一段埃隆·马斯克关于 AGI 的话
“我越来越倾向于认为,应该有一些监管监督,也许是在国家和国际层面,只是为了确保我们不会做一些非常愚蠢的事情。我的意思是,有了人工智能,我们在召唤恶魔。”——埃隆·马斯克在麻省理工学院航空航天百年研讨会上警告说
下面是另外几篇文章,供你今天开始学习数据科学!
这是你从头开始学习数据科学应该读的书。
towardsdatascience.com](/the-best-book-to-start-your-data-science-journey-f457b0994160) [## 机器学习和数据科学的 20 大网站
这里是我列出的最好的 ML 和数据科学网站,可以提供有价值的资源和新闻。
medium.com](https://medium.com/swlh/top-20-websites-for-machine-learning-and-data-science-d0b113130068) [## 互联网上 20 大免费数据科学、ML 和 AI MOOCs
以下是关于数据科学、机器学习、深度学习和人工智能的最佳在线课程列表
towardsdatascience.com](/top-20-free-data-science-ml-and-ai-moocs-on-the-internet-4036bd0aac12)
联系人
如果你想了解我的最新文章,请通过媒体关注我。
其他联系方式:
快乐流媒体!
2021 年数据科学 22 大播客
数据科学|播客
数据科学、机器学习和人工智能最新消息的最佳播客列表。
在 Unsplash 上由 Austin Distel 拍摄的照片
视频直播是学习新事物的最佳方法之一,也是培养好奇心和激情的便捷工具。我喜欢在上下班的火车上和散步的时候听 TED 广播一小时。这确保了我每天都有足够的知识,睡觉时比醒来时更聪明,这是我从美国亿万富翁投资者查理芒格那里学到的。
“睡觉时比醒来时更聪明。”
―查理·芒格
随着数据科学的不断发展,了解该领域的最新创新和发明至关重要,这样您才不会在这个快节奏的时代中落后。
播客的伟大之处在于,你可以在通勤、排队、散步等时候听它。这就像在会议上听数据科学家和人工智能专家的对话,但你可以随时暂停、播放和倒带。随时随地提供建议和新闻的图书馆。
因此,无论你只是一个数据科学爱好者,还是一名首席数据科学家,播客都可以为你提供该领域的各种观点和新发展。像这样一个复杂的多学科领域需要大量的研究和学习,还有什么比听播客更好的方法呢?
你还在等什么?现在就向下滚动查看列表吧!
目录
**General**
1\. Freakonomics**Data Science** 2\. Data Science Salon
3\. Data Crunch
4\. Data Skeptic
5\. Data Stories
6\. DataFramed7\. Linear Digression
8\. Not So Standard Deviations
9\. Making Data Simple
10\. Data Engineering Podcast
11\. Super Data Science
12\. Data Science at Home
13\. The Digital Analytics Power Hour
14\. O’Reilly Data Show**AI and ML** 15\. HumAIn Podcast
16\. Talking Machines
17\. The TWIML AI Podcast
18\. Learning Machines 101
19\. Artificial Intelligence (AI Podcast) with Lex Fridman
20\. AI Today Podcast: Artificial Intelligence Insights, Experts, and Opinion
21\. Artificial Intelligence in Industry with Daniel Faggella
22\. Gradient Dissent
在我们开始进入播客列表之前,如果你还不知道,走向数据科学有他们自己的播客,在那里他们分享关于数据科学的概念、想法和代码。每周都有该领域的不同专家,他们在那里分享建议、经验和见解。
在 Spotify 上收听《走向数据科学》。分享概念、想法和代码
open.spotify.com](https://open.spotify.com/show/63diy2DtpHzQfeNVxAPZgU)
一般
1.魔鬼经济学
《魔鬼经济学》一书的合著者斯蒂芬·j·杜布纳是本期播客的主持人。每周,Dubner 都会带你踏上探索一切事物隐含的一面的旅程,从你一直以为你知道的事情到你从未想过你想知道的事情。在数据科学中,你会发现数据的隐藏价值,因此了解更多并扩展你的思维不会有什么坏处。
与《魔鬼经济学》的合著者斯蒂芬·j·杜布纳一起探索一切事物隐藏的一面。每周…
open.spotify.com](https://open.spotify.com/show/6z4NLXyHPga1UmSJsPK7G1)
数据科学
2.数据科学沙龙
数据科学沙龙是一个独特的垂直聚焦会议,已发展成为该领域最多元化的高级数据科学、机器学习和其他技术专家社区
他们有一个令人惊叹的播客,其中包括与数据科学、人工智能和机器学习领域的顶尖和后起之秀进行采访和咖啡聊天,讨论推动该领域向前发展的趋势和商业用例。
数据科学沙龙系列是一个独特的垂直聚焦会议,汇集了专家面对面地相互教育,阐明最佳实践,并在休闲的氛围中创新新的解决方案,提供食物、咖啡和娱乐。
他们的最新一期是关于人工智能在零售行业的趋势和挑战,包括顶级数据科学家的参与,如菲利普·罗西(Shopify 数据科学负责人)、赖雅·沙姆加(Lowe’s 公司的数据科学家)或杰弗里·邱(沃尔玛实验室数据科学负责人)。
数据科学沙龙官方播客。我们采访数据科学、机器学习领域的顶尖和后起之秀…
data-science-salon-podcast.simplecast.com](https://data-science-salon-podcast.simplecast.com/episodes)
3.数据紧缩
Data Crunch 是为那些数据科学、人工智能、ML 和 DL 爱好者准备的,他们希望更多地了解它对世界的影响,以及它们如何在社会的每个部分得到利用,从医学到金融。这个节目通常以企业家和专家为特色,他们在这里分享他们处理这项惊人技术的经验——他们的失败、成功和影响。
如果你想了解数据科学、人工智能、机器学习和深度学习是如何被用来…
open.spotify.com](https://open.spotify.com/show/5Kqi6CV44DNi85N4c9Lv5P)
4.数据怀疑论者
Data 怀疑论者每周都会为您带来一些故事,讲述如何更多地了解我们的数据驱动世界,以及对统计、ML、大数据、人工智能和数据科学等主题的展望。
数据怀疑论者是你对统计学、机器学习、大…
open.spotify.com](https://open.spotify.com/show/1BZN7H3ikovSejhwQTzNm4)
5.数据故事
由 Enrico Bertini 和 Moritz Stefaner 主持,这个播客谈论数据及其对我们生活的影响。
[## 数据故事— Enrico Bertini 和 Moritz Stefaner
在 Spotify 上听数据故事。一个关于数据及其如何影响我们生活的播客 Enrico Bertini 和 Moritz…
open.spotify.com](https://open.spotify.com/show/0aIvhK1ANin1kSOKRhWG1M)
6.数据框架
由 DataCamp 和 Hugo Bowne-Anderson 带来的这个节目探讨了数据科学实际上可以解决什么样的问题,而不是解释什么是数据科学(这可能是肤浅和难以理解的)。
数据科学是发展最快的行业之一,被称为“21 世纪最性感的工作”。但是…
open.spotify.com](https://open.spotify.com/show/02yJXEJAJiQ0Vm2AO9Xj6X)
7.线性离题
线性离题是所有关于 ML 和数据科学,并集中在 ML 是如何解决世界各地的众多问题,并实现大规模突破被认为是不可能的。
在 Spotify 上听线性题外话。线性离题是一个关于机器学习和数据科学的播客…
open.spotify.com](https://open.spotify.com/show/1JdkD0ZoZ52KjwdR0b1WoT)
8.不那么标准偏差
由 Roger Peng 和 Hillary Parker 主持,该节目强调了学术界和工业界在数据科学和分析方面的全新理念,这对于在该领域工作至关重要。
在 Spotify 上听不那么标准的偏差。Roger Peng 和 Hilary Parker 谈论数据科学的最新发展和…
open.spotify.com](https://open.spotify.com/show/1NJ6li5ZpNVBBQfpd3D6bi)
9.简化数据
IBM 数据和人工智能开发副总裁 Al Martin 是该节目的主持人,他提供了关于大数据、人工智能及其对全球公司的影响的最新信息。
在 Spotify 上听“简化数据”。由 IBM 数据和人工智能开发副总裁 Al Martin 主持,让数据变得简单…
open.spotify.com](https://open.spotify.com/show/6i8sGQUN5PNzyExrQJtndx)
10.数据工程播客
本播客每周为工程师和塑造行业的企业家带来关于数据管理的摘要。这个播客更适合专家和已经在这个领域的人。
在 Spotify 上收听数据工程播客。每周与工程师和…深入探讨数据管理
open.spotify.com](https://open.spotify.com/show/2iLvljRGVVIGlJshT5vNDS)
11.超级数据科学
由数据科学教练兼生活方式企业家基里尔·叶列缅科主持。本播客的主要目的是聚集世界各地的领先数据科学家和分析师,提供您的见解和建议,以推动您在这一充满挑战的领域的职业生涯。对于所有渴望在数据分析领域取得成功的人,请听听叶列缅科的观点,并做好笔记。
[## 超级数据科学——基里尔·叶列缅科:蔻驰数据科学,生活方式企业家
基里尔·叶列缅科是一名数据科学教练和生活方式企业家。超级数据科学播客的目标是…
open.spotify.com](https://open.spotify.com/show/1n8P7ZSgfVLVJ3GegxPat1)
12.家庭数据科学
主持 Francesco Gadaleta 《数据科学在家中》为您带来关于技术、人工智能和人工智能的有趣讨论和发人深省的问题。一个完美的例子就是这个关于 AI 阴暗面的系列。
在家通过 Spotify 收听数据科学。技术、机器学习和算法。来加入讨论吧…
open.spotify.com](https://open.spotify.com/show/57AJ6GiMDPVBLGRqvjeoz6)
13.数字分析动力时刻
由三位分析师主持——迈克尔·赫尔布林、莫伊·基斯和蒂姆·威尔森,每一集都是一场开放式的讨论,偶尔会有嘉宾来讨论数字分析。在节目中,他们四个人倾吐了他们对这个话题的想法、经历和疑问。
[## 数字分析的力量时刻——迈克尔·赫尔布林、莫·基斯和蒂姆·威尔逊
三位分析师和一位偶尔来访的嘉宾讨论当今的数字分析话题。每集都是一个封闭的话题…
open.spotify.com](https://open.spotify.com/show/2ReJKUbDtcom5U0GgpOlAz)
14.奥赖利数据显示
声名狼藉的 O’Reilly 带来了数据科学、编程、AI、机器学习等方面最好的书籍。这个节目探索了推动数据科学、大数据和人工智能的机会和方法。
奥赖利数据秀播客探讨了推动大数据、数据科学和人工智能的机遇和技术
www.oreilly.com](https://www.oreilly.com/topics/oreilly-data-show-podcast)
人工智能和机器学习
15.HumAIn 播客
由 David Yakobovitch 主持,这个播客通过与业界思想领袖在 HumAIn 上的炉边对话,探索消费者的人工智能。本播客的演讲者包括首席数据科学家和人工智能顾问,他们是推进人工智能的领导者,HumAIn 播客是发布新的人工智能产品,了解行业趋势,以及在第四次工业革命中弥合人类和机器之间差距的渠道。
HumAIn 播客-人工智能、数据科学、工作的未来和开发者教育
linktr.ee](https://linktr.ee/humain)
16.会说话的机器
由凯瑟琳·戈尔曼和尼尔·劳伦斯主持的“会说话的机器”是通向机器学习世界的门户。每一集都为你带来该领域专家的精彩见解,有见地的讨论,以及对你的问题的回答。随着机器学习不断改变世界,我们必须开始学习如何提出正确的问题,以及如何处理这些答案。这些播客可以帮助你做到这一点。
会说话的机器是你进入机器学习世界的窗口。你们的主持人,凯瑟琳·戈尔曼和尼尔·劳伦斯…
open.spotify.com](https://open.spotify.com/show/0gKf364z7Vri0wbNXsHd2B)
17.TWIML 人工智能播客
行业分析师、演讲人、评论员和思想领袖 Sam Charrington 主持 TWIML 人工智能播客,介绍人工智能和人工智能领域的顶尖人物,并为世界各地的研究人员、数据科学家、工程师和数据驱动领导者提供丰富的信息。这个播客涵盖了所有的主题,从 ML 和 AI 到神经网络和深度学习。
[## TWIML 人工智能播客(原本周机器学习&人工智能)——山姆…
机器学习和人工智能正在极大地改变企业运营和人们生活的方式。的…
open.spotify.com](https://open.spotify.com/show/2sp5EL7s7EqxttxwwoJ3i7)
18.学习机器 101
本期节目的主持人理查德·m·戈登(Richard M. Golden)为你解答了自动驾驶汽车和虚拟助手等人工智能设备和机器如何工作,它们来自哪里,以及它们如何变得更像我们。人工智能和机器学习正在呈指数增长,知道它们能做什么和不能做什么是至关重要的,这样你才能为即将到来的事情做好准备。
[## 学习机器 101 —理查德·m·戈尔登博士,电气工程硕士,电气工程学士
基于人工智能和机器学习原理的智能机器现在在我们的生活中很普遍…
open.spotify.com](https://open.spotify.com/show/1MVjzhCjFB9y2qENVKDPoP)
19.Lex Fridman 的人工智能(AI 播客)
莱克斯·弗里德曼是最好的人工智能播客主持人之一。每集都有一段与著名专家(如埃隆·马斯克)关于技术、科学和人类状况的精彩对话。
[## Lex Fridman 的人工智能(AI 播客)——Lex frid man
在 Spotify 上听 Lex Fridman 的人工智能(AI 播客)。关于技术、科学的对话…
open.spotify.com](https://open.spotify.com/show/2MAi0BvDc6GTFvKFPXnkCL)
20.今日人工智能播客:人工智能见解、专家和观点
今天的人工智能提供了大量关于现实世界、行业和采用人工智能的市场研究和情报的信息。如果你需要了解更多关于人工智能的信息,请收听今天的人工智能。
[## 今日人工智能播客:人工智能见解、专家和观点——认知分析
收听 AI Today 播客:人工智能见解、专家和对 Spotify 的看法。现实世界、工业和…
open.spotify.com](https://open.spotify.com/show/4z2M4S9e0K6yk3KB9XrO7h)
21.人工智能在工业中的应用
Emerj 的创始人丹尼尔·法盖拉(Daniel fag gella)将带你踏上一段旅程,探索什么是可能的,什么是人工智能在行业中的应用。拥有顶尖的人工智能和以人工智能为中心的高管以及金融、国防、零售等领域的研究。找出当今人工智能的趋势,并了解如何在这个人工智能时代茁壮成长。
了解人工智能在企业中的可能性和作用。每周,Emerj 创始人…
open.spotify.com](https://open.spotify.com/show/4gD9xiYU9iC24vnjUx1PTg)
22.梯度异议——一个机器学习播客
gradient dissubmission 是一个每周一次的机器学习播客,它让你看到行业领导者如何在现实世界中使用深度学习的幕后场景。这个很棒的播客邀请了像
- Fast.ai 的杰瑞米·霍华德
- 谷歌研究总监彼得·诺维格
- 卡格尔首席执行官安东尼·戈德布卢姆
- Insitro 首席执行官兼 Coursera Daphne 柯勒联合创始人
- 还有更多!
梯度异议是一个机器学习播客,我们采访行业领袖,并讨论机器学习在…
wandb.ai](https://wandb.ai/site/podcast)
行动计划
照片由 Patrik Michalicka 在 Unsplash 上拍摄
D ata 科学不易。尽管如此,在播客的帮助下,你会遇到发人深省的问题,并激发数据科学领域专家之间的辩论。播客可以帮助你理解复杂的概念,让你了解最新的突破,而不是练习灌输式的研究新课题的方法——教科书和测试。因此,将播客融入到你的日常生活中,并开始看到你思维过程的变化。
建议/提示
在听播客的时候,不要只是被动地听,试着在你的头脑中想象这个想法,积极地处理进入你大脑的信息并将这些想法拼凑起来。听完播客后,把你学到的东西写在一张纸上或电脑上,并存放在安全的地方。
通过积极倾听和回忆大脑中的信息,你可以对所听的事实和内容有更高的记忆力。这可以确保你确实从这些播客中受益,因为与阅读相比,听的人往往对想法的记忆力较低。
通过几个小时的倾听,你获得了所有这些新的想法和原则,你能够将它们融合在一起,为你生活中的问题提供新的解决方案。
所以,当你戴上耳机按下播放键时,确保你真的在集中注意力,而不只是被动地消费。
总结一下,下面是 Gimlet Media 首席执行官 Alex Blumberg 的一段话,
“很多人听播客是因为他们想学习一些东西,并在途中得到娱乐。”
感谢阅读这篇文章,我希望它能启发你开始听播客。
请在下面留下你想分享的任何其他播客的评论!
如果你对学习数据科学感兴趣,就从这两个伟大的系列开始吧!
这是一个简短的指南,基于《超学习》一书,应用于数据科学
medium.com](https://medium.com/better-programming/how-to-ultralearn-data-science-part-1-92e143b7257b) [## 数据科学简介
关于什么是数据科学、大数据、数据和数据科学过程及其应用。
towardsdatascience.com](/the-data-scientists-toolbox-part-1-c214adcc859f)
查看这些关于数据科学资源的文章。
分享我用来学习 Python 的资源,从书籍、课程、播客到编码网站和…
towardsdatascience.com](/everything-you-need-to-learn-python-from-zero-to-hero-3dc950cb1b4c) [## 2020 年你应该订阅的 25 大数据科学 YouTube 频道
以下是你应该关注的学习编程、机器学习和人工智能、数学和数据的最佳 YouTubers
towardsdatascience.com](/top-20-youtube-channels-for-data-science-in-2020-2ef4fb0d3d5) [## 互联网上 20 大免费数据科学、ML 和 AI MOOCs
以下是关于数据科学、机器学习、深度学习和人工智能的最佳在线课程列表
towardsdatascience.com](/top-20-free-data-science-ml-and-ai-moocs-on-the-internet-4036bd0aac12) [## 机器学习和数据科学的 20 大网站
这里是我列出的最好的 ML 和数据科学网站,可以提供有价值的资源和新闻。
medium.com](https://medium.com/swlh/top-20-websites-for-machine-learning-and-data-science-d0b113130068) [## 开始数据科学之旅的最佳书籍
这是你从头开始学习数据科学应该读的书。
towardsdatascience.com](/the-best-book-to-start-your-data-science-journey-f457b0994160)
联系人
如果你想了解我的最新文章,请通过媒体关注我。
其他联系方式:
快乐聆听!
数据科学的 20 大技能和关键词
在隔离即将结束的时候,你想学习新技能还是重温旧技能?
全球疫情和经济放缓对就业市场的影响非常不均衡。虽然 Slack 和 Zoom 等远程工作支持者正在加速招聘,但我们必须解决裁员和职位取消的问题。在这样一个时代,我们都想为那些仍然空缺的职位全力以赴。
众所周知,最大的战斗是与 ATS 的战斗。每个数据科学职位都有一个被雇佣者必须遵守的角色和职责。如果 ATS 无法从你的简历中识别出任何重要的技能或关键词,认为你不适合这份工作,那么你可能无法通过 ATS 可读性测试。
为了顺利通过 ATS 并突出您的技能,我按照字母顺序研究了您下一个数据科学职位*的 30 项顶级技能和关键词。*让我们看看它们是什么。
1.自动警报系统
云服务对于各种规模的企业来说都非常有用,可以帮助他们准备后端基础架构,通过只在需要时付费来显著降低云存储开支。云计算的先驱 AWS 已经成为数据科学家的一个充满活力的工具。
- 弹性计算云(EC2)
- 简单存储服务(S3)
- 关系数据库服务
- 红移
- 弹性 MapReduce
是 AWS 使用的一些实例。使用云服务的经验,尤其是像 AWS 这样受欢迎的服务,在你的数据科学职业生涯中是一个巨大的优势。
大多数技术公司现在都依赖这些服务,并坚持不懈地使用它们。因此,如果你熟悉这些服务中的一个,它肯定会给他们信心,你需要更少的培训来加入。随着越来越多的人进入数据科学领域,您希望您的简历尽可能突出!
2.大数据
数据科学是一个包含与数据相关的一切的领域。从清理、挖掘、准备和分析,数据科学是一个过程。
大数据是指难以实时存储和处理的海量数据。这些数据可用于分析洞察力,从而做出更好的决策。数据科学的原则保持不变,数据量成倍增长。
在真实的商业世界中,需要处理的是大数据。因此,从现在开始,无论你做什么项目,大数据都是你可以关注分析的东西。
3.商业智能(BI)
我不是说商业智能是数据科学的一部分。
然而,由于两者都必须做大量的工作来检查仅由业务流程使用的数据,因此 BI 通常与数据科学一起使用。简而言之,虽然 BI 帮助解读过去的数据,但数据科学可以分析过去的数据,识别趋势或模式,以做出未来预测。
BI 主要用于报告或描述性分析,这也可以通过数据科学来完成,因此,这是一项很好的学习技能。
热门 BI 工具:
4.云计算
数据科学实践通常包括使用云计算产品和服务来帮助数据专业人员访问管理和处理数据所需的资源。
数据科学家的日常工作通常包括分析和可视化存储在云中的数据。您可能已经读到过数据科学和云计算携手并进,这通常是因为云计算帮助数据科学家使用提供数据库、框架、编程语言和操作工具的平台。
- 亚马逊— AWS
- 谷歌云平台——GCP
- 微软— Azure
- 阿里巴巴——阿里云
5.数据分析
数据科学是一个涵盖多个相关学科的总称,包括数据分析。虽然数据科学家应该根据过去的模式预测未来,但数据分析师可以从各种数据源中提取有意义的见解。
数据分析跨越描述性、诊断性、规范性和预测性分析,每种分析都有自己的应用。
数据分析的应用似乎永无止境。每天收集的数据越来越多,这为将数据分析应用于商业、科学和日常生活的更多领域带来了新的机遇。
6.数据探索
仓库中有数据,但是这些数据非常不一致。所以你必须清理和统一杂乱复杂的数据集,以便于访问和分析。
探索性数据分析(EDA) 是数据分析过程的第一步。在这里,你要弄清楚你所拥有的数据,然后弄清楚你想问什么问题,如何设计这些问题,以及如何最好地操作你可用的数据源来得到你需要的答案。
7.数据管理
您将处理的许多数据将会很混乱,可能会丢失值,可能会出现日期和字符串格式不一致的情况。在开始处理之前,您需要清理和整理您的数据。
数据的价值不是基于其来源、质量或格式;它的价值取决于你用它做什么!
数据管理包括获取、验证、存储、保护和处理所需的数据。数据管理可以包括以下技能—
- 数据争论—为下游运营转换和映射数据
- 数据处理—从原始数据中检索、转换和分类信息
- 数据安全性—防止未经授权的访问和数据损坏
- 数据治理—管理可用性、可用性、完整性和安全性
- 数据操作—使数据更容易阅读或更有条理
- 数据建模——数据、查询、设计数据流之间的关联
- 数据迁移—选择、准备、提取、转换和传输数据
- 数据仓库—存储来自数据源的数据,用于报告和分析
- 数据转换等等…
8.数据可视化
数据可视化是数据分析最重要的部分之一。以一种可理解的、视觉上吸引人的格式呈现数据一直是很重要的。数据可视化是数据科学家为了更好地与最终用户沟通而必须掌握的技能之一。有多种工具,如 Tableau、Power BI,它们给你一个很好的直观界面。
当然,这是数据科学的重要组成部分,因为它让科学家向技术和非技术受众描述和交流他们的发现。像 matplotlib、ggplot 或 d3.js 这样的工具让我们可以做到这一点。另一个很好的工具是 Tableau。
9。DevOps
我一直听说并相信数据科学是为那些懂数学、统计学、算法和数据管理的人准备的。然而,最近,我发现 DevOps 对于数据科学越来越重要。
DevOps 是一套结合软件开发和 IT 运营的方法,旨在缩短开发生命周期,并提供高质量的不间断交付。
DevOps 团队与开发团队紧密合作,有效地管理应用程序的生命周期。数据转换要求数据科学团队与 DevOps 紧密协作。DevOps 团队预计将提供高度可用的 Apache Hadoop、Apache Kafka、Apache Spark 和 Apache Airflow 集群来处理数据提取和转换。
DevOps 可以为数据科学做些什么?
- 调配、配置、扩展和管理数据集群
- 通过持续集成、部署和监控数据来管理信息基础架构
- 创建脚本,为各种环境自动提供和配置基础。
10.HADOOP
Hadoop 是数据科学家的必备品。
Hadoop 的主要功能是存储大数据。它还允许用户存储所有形式的数据,即结构化数据和非结构化数据。Hadoop 还提供了像猪和蜂巢这样的模块来分析大规模数据。
现在,我不会说 Hadoop 是成为数据科学家的必要条件,但数据科学家必须知道如何首先将数据取出来进行分析,Hadoop 正是存储大量数据的技术,数据科学家可以在这方面工作。
11.机器学习
顾名思义,机器学习是让机器变得智能的过程,这些机器具有思考、分析和决策的能力。通过建立精确的机器学习模型,一个组织有更好的机会识别有利可图的机会——或避免未知的风险。
您应该对各种监督和非监督算法有很好的实践知识。
深度学习将传统的机器学习方法提升到了一个新的水平。它受到生物神经元(脑细胞)的启发。这里的想法是模仿人脑。使用这种人工神经元的大型网络,这被称为深度神经网络。现在的机构大多要求深度学习的知识,这个不要错过。
12.多元微积分和线性代数
大多数机器学习,总是数据科学模型,是建立在几个预测器或未知变量的基础上的。多元微积分的知识对于建立机器学习模型是很重要的。以下是在数据科学领域工作时您可能会熟悉的一些数学主题:
- 导数和梯度
- 阶跃函数、Sigmoid 函数、Logit 函数、ReLU(校正线性单位)函数
- 成本函数(最重要)
- 功能绘图
- 函数的最小值和最大值
- 标量、矢量、矩阵和张量函数
对于不喜欢或者不精通数学的人来说,数据科学很可能不是一个好的职业选择。数据科学家奇才擅长数学和统计学,同时能够与业务线高管密切合作,交流复杂方程的“黑匣子”中实际发生的事情
13.矩阵实验室
由 MathWorks 开发的 MATLAB 展示了深度学习的全套能力,并提供了从研究到原型的端到端集成工作流
数据科学和机器学习必须与矩阵打交道,MATLAB 最适合矩阵计算,用较少的代码行轻松设计复杂的神经架构。
Coursera 上吴恩达的 ML 课程在 Octave 上教授机器学习,Octave 是 MATLAB 的同义词。增加一项技能会让你的简历更引人注目,不是吗?
14.Python 河
当然啦!数据科学本质上是关于编程的。数据科学编程技能汇集了将原始数据转化为可操作见解所需的所有基本技能。虽然编程语言的选择没有特定的规则,但是 Python 和 R 是最受欢迎的。
我不是一个对编程语言偏好或平台有宗教信仰的人。数据科学家选择一种编程语言来满足手头问题陈述的需要。然而,Python 似乎已经成为最接近数据科学通用语言的东西。
点击阅读更多关于十大数据科学 Python 库 。
15.斯堪的纳维亚航空公司
就分析软件而言,SAS 是最老的软件之一。SAS 有自己的类似 SQL 的编程语言。任何数据分析语言的未来在未来几年都是非常光明的,因为根据高需求,训练有素的专业人员是不可用的。加入 SAS 的主要原因是—
SAS 工作——SAS 编程技能的需求是惊人的。统计显示,70%的分析工作是在 SAS 编程,其次是 R,然后是 Python。它根据行业需求不断演变的功能是其受欢迎的一个主要因素。
对于大一新生来说,情景会话的范围很广。银行大量使用情景应用程序,保险和其他金融服务公司如汇丰、花旗、摩根大通和富国银行也是如此。SAS 提供多种认证项目,让你接受技能培训。
16.附加电源装置(Supplementary Power Supply Set 的缩写)
IBM SPSS 软件平台提供高级统计分析、庞大的机器学习算法库、文本分析、开源可扩展性、与大数据的集成以及无缝部署到应用程序中。
我可以说,IBM SPSS 是一个相对较少使用的工具。它更受社会科学、心理学、金融、人力资源等领域的研究学者和学者的欢迎。虽然大多数数据科学家和行业使用 R、Python 或 SAS 作为主要工具,但如果你在心理学或相关领域工作,SPSS 是一个很好的工具。
也有人说,随着 R 接管,SPSS 正在消亡
17.统计数字
作为一名数据科学家,你应该能够使用统计测试、分布和最大似然估计等工具。一个优秀的数据科学家会意识到什么技术是解决他/她的问题的有效方法。有了统计数据,你可以帮助利益相关者做决定,设计和评估实验。
18.结构化查询语言
SQL 是第四代语言;一种特定领域的语言,设计用于管理存储在 RDMS(关系数据库管理系统)中的数据,并用于 RDSMS(关系数据流管理系统)中的流处理。在数据变量相互关联的情况下,我们可以用它来处理结构化数据,这是数据科学的核心
19.(舞台上由人扮的)静态画面
Tableau 是目前商业智能中非常流行和强大的数据可视化工具。Tableau 的数据分析快速而强大。通过可视化仪表板和工作表,Tableau 涵盖了从简化原始数据到非常容易理解的格式,清理数据和识别潜在的趋势和模式。
很长一段时间以来,像百事可乐、威瑞森、查尔斯·施瓦布、可口可乐、Chipotle 这样的大公司都在使用 Tableau 来利用他们的数据并做出结论性的明智决策。对于任何对数据科学或数据分析职业感兴趣的人来说,Tableau 这样的工具是必不可少的。
20.VBA
Excel 是各种业务中最常用的工具之一。Excel 本身非常灵活和强大,然而,当甚至复杂的功能都不够好时,VBA 就出现了。
你可以在 VBA 计算、模拟或测试这些数据。Excel VBA 有自己的局限性和替代方案。同样的工作也可以在 SQL 或 Python 中高效地完成,但是,这显然取决于您的业务需求。
注意:如果你在一个 excel 文件在工作流程中占很大比重的环境中工作,特别是你自己的工作输出必须是 excel 文件本身的环境中,你可能想要学习 VBA。
感谢您的阅读!我希望你喜欢这篇文章。请务必告诉我,在您的数据科学之旅中,您期待学习或探索什么技能?
数据帐篷快乐!
免责声明:本文表达的观点仅代表我个人,不代表严格的观点。
了解你的作者
拉什是芝加哥伊利诺伊大学的研究生。她喜欢将数据可视化,并创造有见地的故事。当她不赶着赶学校的最后期限时,她喜欢喝一杯热巧克力,写一些关于技术、UX 等的东西。
编码挑战和竞赛前 25 名网站[2021 年更新]
编码
这里是我列出的最好的编码挑战和练习编码的比赛的网站。
现在是 2020 年,一个十年的结束,另一个十年的开始。在人类在地球上繁荣昌盛的 10 年里,我们在科学和技术方面取得了惊人的突破。
仅举几个例子:好奇号火星车首次登陆火星(2012 年),探测来自深空的引力波(2015 年),引入基因编辑超能力——CRISPR(2018 年),用视界望远镜“拍摄”第一张黑洞照片(2019 年)。
人工智能的崛起
同样,2010 年代最重大的突破是人工智能的兴起,或者更为人熟知的人工智能。有了人工智能,科幻小说变得栩栩如生。
机器学习赋予了机器学习和深度学习的能力——这是一项用人工神经网络重建人脑复杂性的繁重工作——赋予了机器自己的思想。
随着技术不断进步,深度学习专家们都倾向于一个目标,即创造一种人工通用智能——一种能够执行任何形式操作的机器,类似于人类。
代码的力量
你在上面读到的每一个量子飞跃都是因为计算机编程而成为可能的。举例来说,好奇号火星车事先被预编程,这样它就可以在没有人类干预的情况下独自探索火星;产生黑洞的图像需要一种算法从地球表面的卫星网络收集图像数据。
这种与计算机交流的媒介导致了我们今天看到的许多科学突破。没有它,我们的社会将停滞不前。
我写关于数据科学和人工智能的文章。如果你想在我发帖时得到通知,现在就订阅我的媒体简讯吧!
如果你不是普通会员,考虑一下今天就订阅,只需 5 美元。你将直接支持我,你将获得大量的优秀作品!
每个人都会编码
Adi Goldstein 在 Unsplash 上拍摄的照片
在这个指数数据增长的时代,我相信每个人都应该掌握编码的艺术。创始人、首席执行官、商业领袖、风投,甚至老年人和年轻人。随着经济差距继续扩大,不平等现象持续存在,编码技能将是生存所不可或缺的。
好消息是任何人都可以学习如何编码!坏事吗?编码很难。但是只要你拥有这些特质:好奇心、决心和纯粹的意志,你就能做到。写代码也是为了解决问题。这是编程背后的基本概念。它通常用于自动化一项单调的任务。
此外,学习如何编码的最好方法之一是实践,大量大量的实践,让编码成为一种习惯。那么,在学习编码时,有什么比通过编码挑战和竞赛来提高技能更好的方法呢?
这里是我收集的 20 个网站,它们可以帮助你练习编程,并赋予你解决复杂算法问题的机会。
该列表没有任何排名顺序。所以现在向下滚动,享受它吧!
我用来查看网站的模板
简介 :
特点:
最佳品质:
编码网站列表
1.黑客地球
HackerEarth 是一个流行的编码平台,拥有 8000 多个问题、2000 个挑战和 1000 个黑客马拉松。它还受到 1000 多家公司的招聘经理的信任。这个平台拥有一个由 300 万开发者组成的繁荣社区。
特点:
- 练习(基本编程问题)
- 竞赛(从初学者到长达一周的马拉松)
- 黑客马拉松(解决现实世界的问题和商业挑战)
- 数据科学竞赛(测试您的数据科学技能)
最佳品质:网站显示比赛和竞赛的剩余天数,它有一个开发者评估软件,显示你的进步。还有一个远程面试功能加上分析,让公司看到你的统计数据。
[## HackerEarth |帮助 300 多万开发人员升级,1000 多名招聘人员雇佣顶级技术人才。
通过编码竞赛、数据科学竞赛和黑客马拉松帮助 3M+开发者变得更好。信任者…
www.hackerearth.com](https://www.hackerearth.com/)
2.黑客银行
HackerRank 是一个招聘平台,事实上是为全球 2000 多家公司评估开发人员技能的平台。通过使技术招聘人员和招聘经理能够在招聘过程的每个阶段客观地评估人才,HackerRank 帮助公司雇佣熟练的开发人员,并更快地创新。
功能:
- 编码实践
- 面试准备
最佳品质: HackerRank 是最顶尖的编码实践网站之一。这是众所周知的匹配开发商与伟大的公司,对雇主和雇员都有用。
加入 700 多万开发者。练习编码,准备面试,然后被录用。
www.hackerrank.com](https://www.hackerrank.com/)
3.练习
Exercism 是一句话——“代码实践和每个人的导师”。它有跨越 51 种语言的 3,173 个练习来提高您的编程技能,并与他们热情的导师团队进行富有洞察力的讨论。最棒的是,它永远 100%免费。
功能:
- 语言轨迹
- 个人辅导
- 实践模式
**最佳品质:**exercim 从语言轨道开始,允许用户选择他们喜欢的语言。此外,还有人类导师会检查你的代码,并在你进步时帮助你改进。这使得该平台非常适合希望加深对新编程语言理解的初学者。
通过 52 种语言的 3,133 个练习提升您的编程技能,并与我们专门的…
练习 10](https://exercism.io/)
4.SPOJ
SPOJ 是一个简单的网站,有大量的编码挑战。这些挑战帮助你成为一名真正的编程大师,并给予你构建高效算法的技能。
功能:
- 比赛
- 算法
- 级别
- 状态
- 讨论页面
最佳品质: SPOJ 有大量令人难以置信的编码挑战,这些挑战将真正考验你的技能。你也可以参加比赛来展示你的技能。
SPOJ (Sphere Online Judge)是一个在线裁判系统,拥有超过 315,000 名注册用户和超过 20,000 个问题。的…
www.spoj.com](http://www.spoj.com/)
5.方案 mr
Programmr 是一个在线互动平台,任何人都可以学习和练习编码。他们认为最好的学习方法是在自学环境中按照自己的速度学习。Programmr 声称要做世界上最好的编码模拟器,在这里你可以编码和运行各种程序。
功能:
- 挑战
- 项目
- 比赛
- 证书
最佳品质: Programmr 有一个惊人的在线编码模拟器和一个 B2B API,允许任何人将编码小部件集成到网站中。
[## 编程挑战|编程先生
通过解决 Programmr 的编码挑战,以最有趣的方式提高您的编码技能!不要忘记…
www.programmr.com](http://www.programmr.com/exercises)
6.TopCoder 挑战
TopCoder 是一个有竞争力的编程平台。它提供了一系列算法挑战,您可以在他们自己的代码编辑器中解决这些挑战。网站上总是有挑战,如果你准备好了,你可以随时参与。
功能:
- 挑战
- 零工
最佳品质:挑战有明确的截止日期,每个挑战上都有明确的奖品。它们还显示了需要什么样的语言或库。虽然这些挑战并不适合初学者,但它们的构建非常好。
Topcoder 是一个众包市场,它将企业与难以找到的专业知识联系起来。Topcoder 社区…
www.topcoder.com](https://www.topcoder.com/challenges)
7.代码力
CodeForces 是一个协作平台,编码人员可以参与“回合”,设定时间限制并将分数分发给参与者。CodeForces 也有竞赛、习题集以及程序员小组。
特色:
- 比赛
- 体育馆
- 问题集
- 组
最佳品质: CodeForces 非常适合寻求有趣挑战的程序员,他们可以提高自己的技能,加入适合自己需求的团队。健身房的功能也非常独特,程序员可以在特定的挑战中训练他们的技能,并在最后看到他们的地位。
你好,Codeforces 社区!我很高兴邀请你加入 Codeforces
codeforces.com](https://codeforces.com/)
8.代码战争
Codewars 是一个设计良好的平台,用户可以在这里一起工作,创造挑战。有两组人让它工作,创作者授权卡塔教授各种技术,用启发他人的解决方案解决卡塔,并用建设性的反馈进行评论,领导者将调节内容和社区。
类别:
- Kata(编码实践)
- 对打(1v1 挑战)
- 论坛
- 维基网
最佳品质: Codewar 有一个迷人的界面,以独特的方式呈现挑战,命名为 Katas,程序员在这里获得技能,并在对打中挑战其他程序员。这是学习编码并同时享受乐趣的最好地方之一。
Codewars 是开发人员通过挑战掌握代码的地方。在道场训练形,达到你的最高境界…
www.codewars.com](https://www.codewars.com/users/sign_in)
9.厨师长
CodeChef 是一个有竞争力的编程平台,旨在帮助程序员提升他们在算法、编程和竞赛领域的技能。他们提倡学习和友好编程的文化,拥有一个庞大的问题管理员社区。
功能:
- 实践
- 竞争
- 讨论
- 主办竞赛
- 校园分会
最佳品质: CodeChef 已经是最大的竞争编程平台之一。他们开放自己的平台,让任何人都可以举办编程竞赛,并有一个名为 campus chapter 的功能,作为编程俱乐部使用的工具。他们每个月还会举办 3 次颁奖比赛。
[## CodeChef |编程竞赛、编程竞赛、在线计算机编程
CodeChef——一个为有抱负的程序员提供的平台 code chef 是一个帮助程序员在…
www.codechef.com](https://www.codechef.com/)
10.CodeGym
CodeGym 是一个在线 Java 编程,80%基于实践。任何想学 Java 的人,这里都是可以去的地方。
特性:
- 课程
- 任务
- 比赛
- 闲谈
- 论坛
最佳品质: CodeGym 为 Java 初学者提供了实用的任务,让他们了解所有他们需要知道的东西。他们还提供即时解决方案验证,以便可以立即发现错误。CodeGym 还利用最新的教学技术,令人惊叹的可视化和游戏。
[## CodeGym 是一门学习 Java 编程的在线课程
CodeGym 是一个在线 Java 编程课程,80%是基于实践的
codegym.cc](https://codegym.cc/)
11.CodePen 挑战
CodePen 是一个很酷的在线 IDE,它允许你在浏览器中编写代码,并在你构建代码时看到结果。CodePen challenges 是一个通过构建东西来提升你的技能的地方。每周都有新的挑战出现在你面前,最好的“钢笔”会被挑选出来。
功能:
- 组
- 播客
- 教育
最佳品质: CodePen 挑战非常有趣,是一个创造力和协作的地方。根本没有竞争,因为没有什么可失去的,但你确实通过这些挑战获得了技能。
一个在线代码编辑器、学习环境和社区,用于使用 HTML、CSS 和 JavaScript 的前端 web 开发…
codepen.io](https://codepen.io/)
12.编码游戏
CodinGame,我们的目标是让程序员通过解决世界上最具挑战性的问题来不断提高他们的编码技能,学习新概念,并从最好的开发人员那里获得灵感。
功能:
- 实践
- 竞争
- 捐助
- 学习
**最佳品质:**coding game 以游戏的形式帮助人们学习编码,让他们以有趣的方式学习。开发人员也可以向导师寻求帮助,以审查他们的代码并相互比较解决方案。
通过用 25 种以上的语言解决有趣的挑战来学习新概念,解决所有热门的编程话题。就…而言
www.codingame.com](https://www.codingame.com/start)
13.LeetCode
LeetCode 是帮助你提升技能、拓展知识面、准备技术面试的最佳平台。它被成千上万的程序员用来收集亚马逊、脸书、谷歌、LinkedIn 等的算法实践。有 1400 多个问题需要练习。
功能:
- 算法
- 数据库ˌ资料库
- 壳
- 并发
- 比赛
最佳品质: LeetCode 有一个 explore 工具,可以帮助程序员迈向编程生涯的下一步。LeetCode 帮助他们准备技术面试,并帮助公司雇佣顶尖人才。
提高你的编码技能,迅速找到工作。这是扩展你的知识和做好准备的最好地方…
leetcode.com](https://leetcode.com/problemset/all/)
14.极客工作室
GeeksForGeeks 是一个为极客服务的网站。它有大量关于编程和算法的资源。它还有一个面试部分,帮助程序员赢得他们梦想的工作。还有一个优秀的 C 和 C++谜题集合供程序员解答。
特性:
- 算法
- 采访
- 学生
- 盘问
最佳品质: GeeksforGeeks 有大量的文章,教授数据结构、算法、计算机科学等主题,以及测试知识和理解能力的测验。这是一个吸收一些 CS 知识的好地方。
最近的谜题!拼图 C 拼图 C++拼图:拼图 1 |用两根相同的线测量 45 分钟拼图…
www.geeksforgeeks.org](https://www.geeksforgeeks.org/puzzles/)
15.投影欧拉
如果你正在学习算法和计算机编程,那么你可能听说过“欧拉工程”。一个数学问题的集合,是为有兴趣将数学和编程结合起来的问题解决者而制作的,Project Euler 要求使用数学来形成算法并获得有效的解决方案,并使用计算机编程来实际解决它。这些问题难度很大,而且不是在公园里散步。
功能:
- 存档的问题
- 新闻
最佳品质:虽然网站没有内置的代码编辑器或解决方案检查器,但这将是程序员下载 IDE 并在其上编码的好机会。此外,解决这些问题有助于开发作为程序员不可或缺的技能,因为数学是算法和数据结构的基础。
[## 存档的问题—欧拉项目
问题档案表显示了问题 1 到 684。如果你想解决最近出版的 10 本书…
projecteuler.net](https://projecteuler.net/archives)
16.URI 在线法官
URI 在线法官是由 URI 大学计算机科学系开发的。该项目的主要目标是提供编程实践和知识共享。他们的网站有一个友好的用户界面,包含 1000 多个问题,分为 8 大类,用 11 种语言解决。
功能:
- 问题存储库
- 论坛
- 竞争和排名
- 学术的
- 比赛
最佳品质: URI 是由大学生开发的,这意味着他们拥有想要以有趣的方式学习编码的初学者心态。而且问题结构合理,划分也相应,从初学者的类别开始,逐渐进入计算几何、图学等更复杂的题目。
URI 在线法官是为你开发的项目!我们的目标是提供一个平台,在那里你可以学习,实践和…
www.urionlinejudge.com.br](https://www.urionlinejudge.com.br/judge/en/login)
17.回复挑战
回复挑战(Reply Challenges)是由“回复者”设计的一系列挑战,面向任何热爱技术和网络竞赛的人开放。回复挑战都是关于在编码、网络安全、创造力和投资等领域获得乐趣和展示才华。每个挑战都有丰厚的奖品——Macbook Pro 16、Airpods Pro 等。挑战对学生和专业人士开放。
特性:
- 投资挑战
- 代码挑战标准
- 代码挑战青少年
- 网络安全挑战(即将推出)
- 创意(即将推出)
**最佳品质:**回复挑战是有趣的挑战,有诱人的奖品。他们非常多样化,任何人都可以自由加入。
由 Replyers 设计的一系列挑战,向任何热爱技术和在线竞赛的人开放。回复…
challenges.reply.com](https://challenges.reply.com/tamtamy/home.action)
18.KickStart——谷歌的编码竞赛
Kick Start 是 Google 举办的一项竞赛,它为全世界的程序员提供了一个通过在线竞赛发展技能的机会。每一轮持续 3 个小时,他们的特色是由谷歌工程师开发的算法挑战,这样你就可以尝到在谷歌工作的滋味。他们的轮次定期举行,以便每个人都有机会参与。
特色:——
最佳品质:排名第一的程序员有机会参加面试,甚至可能在谷歌找到工作。
Hashcode 是 Google 举办的又一次伟大的编码比赛。
用面向学生和编码竞赛新手的算法难题磨练你的编码技能。参与…
codingcompetitions.withgoogle.com](https://codingcompetitions.withgoogle.com/kickstart/about)
19.代码堵塞
Code Jam 是谷歌历史最长的全球编码竞赛,各种水平的程序员在这里测试他们的技能。参与者必须通过一系列的算法难题来赢得世界总决赛的席位,有机会成为冠军并赢得 15,000 美元的高额奖金。
功能:——
最佳素质: Code Jam 以 4 轮在线的形式挑战全球程序员解决高难度算法问题,每年在不同的国际 Google 办事处举办年度 Code Jam 世界总决赛。这个巨大的挑战让所有级别的程序员都可以获得经验,并激励他们提高技能,争取进入决赛。
把你的编码技能的测试,因为你的工作方式,通过多轮的算法编码难题,为…
codingcompetitions.withgoogle.com](https://codingcompetitions.withgoogle.com/codejam)
20.Kaggle Learn
Kaggle 因成为数据科学家相互合作和竞争的地方而闻名。但是他们也有一个叫做 Kaggle Learn 的平台,在那里提供微课。它们是迷你课程,数据科学家可以在其中学习可以立即应用的实用数据技能。他们称之为成为数据科学家或提高现有技能的最快(也是最有趣的)方式。提供的课程有:Python、Pandas、SQL 和数据可视化。
特性:
- 教程
- 练习
**最佳品质:**这些微型课程将复杂的主题归结为关键的组成部分,帮助初学者快速学习重要的主题并获得必要的技能。他们内置的代码编辑器 kernel 易于使用,非常适合初学者。
[## 学习 Python,Data Viz,Pandas &更多|教程| Kaggle
你可以立即应用的实用数据技能:这就是你将在这些免费的微型课程中学到的东西。他们是…
www.kaggle.com](https://www.kaggle.com/learn/overview)
21.SoloLearn
SoloLearn 是学习如何编码的最佳场所之一,拥有超过 3900 万学习者、1784 节课和 14k 测验。我开始在这个网站上学习如何编写 HTML 和 CSS 代码,这太棒了。
特色
- 伟大的网站与代码操场和论坛
- 移动应用,随时随地学习
- 免费证书
最好的品质:【SoloLearn 最好的一点就是所有的课程都是免费的,在网站和移动应用上。
立即加入,学习基础知识或提升现有技能
www.sololearn.com](https://www.sololearn.com/)
22.极客
Geektastic 与其他平台不同,因为他们还提供同行评审的带回家挑战,这些挑战由来自谷歌和亚马逊等公司的专家评审。
特征
- 当你作为开发人员加入 Geektastic 时,你完成了他们的快速挑战,这是简短的多项选择挑战。
- 挑战由社区创建,并使用 ELO 评级系统(用于计算零和游戏(如国际象棋)中玩家的相对技能水平)对挑战和开发者进行评级,允许您将自己与他们全球社区的其他人进行比较。
最佳品质
- 如果你被选中加入他们的付费评论团队(如果你这样做,恭喜你!!)您可以获得一份不错的兼职工作,审查社区和高端技术企业客户群提交的代码挑战,他们使用该平台测试软件工程和开发运维职位求职者的技能。
我们分析你的候选人的代码质量,解决问题的技能,可维护性,测试覆盖率和解决方案设计…
geektastic.com](https://geektastic.com/)
23.编码球棒
CodingBat 是一个免费的现场编码问题网站,用于构建 Java 和 Python 的编码技能(示例问题)。CodingBat 是斯坦福大学计算机科学讲师尼克·帕兰特的一个项目。
特色
- 编码 Bat 问题被设计为具有低开销:
- 简短的问题陈述(如考试)
- 没有要安装的内容
- 浏览器中的即时反馈
最佳品质:【CodingBat 最大的优点是它的简单性,以及如何构建和实践小代码问题来巩固您的代码技能。
[## 编码 Bat Java
代码实践
codingbat.com](https://codingbat.com/java)
24.暗号
CodeSignal 有一个技术面试练习,通过在高级 IDE 中完成真实世界的评估,帮助您为技术面试做好准备。它从定制个人学习计划开始,然后通过解决现实世界的问题来帮助你掌握关键主题。
特性
- 练习并理解如何应用技术面试中提出的核心概念
- 了解你的优势和劣势,知道在面试前你应该把大部分时间花在哪里
- 刷新您的面试知识,验证您对技术面试中常见的重要技能和概念的理解
**最佳品质:**coding bat 最大的优点是它的可靠性,它被世界各地的许多科技公司所使用。
技术面试练习-用高级编码中的真实问题模拟完整的评估…
codesignal.com](https://codesignal.com/developers/interview-practice/)
25.埃达比特
Edabit 是一个新的编码平台,以 JavaScript(Python 和 C#即将推出)的交互式教程和 C#、Java、JavaScript、PHP、Python、Ruby 和 Swift 的挑战为特色。这是最快、最简单、最容易上瘾的学习方式。
功能
- 无限的挑战,让你可以快速提升自己的能力。
- 从简单开始,按照你自己的速度前进,直到你能够战胜最艰难的挑战。
- 简单的游戏机制,使学习过程有趣和上瘾。获得经验,解锁成就和水平。
**最佳品质:**EDA bit 最棒的地方在于它易于使用和清理界面,以及为编码教程增添乐趣的 shuffle 特性。
[## Edabit //通过 10,000 多个交互式挑战学习编码
通过有趣的小挑战学习编码。获得经验,解锁成就和水平。这就像多林哥的…
edabit.com](https://edabit.com/)
呼吁采取行动
伊森·埃利萨拉在 Unsplash 上拍摄的照片
在这个时代,编程是一项和原始时代生火和狩猎一样重要的技能。
这并不是说一个没有这种技能的人将注定失败,这只是意味着拥有这种技能的人将会占据主导地位并取得成功。这就像喝了一种特殊的药水,赋予你神奇的力量或者被闪电击中,被赋予超高速。
鉴于编码给我们的世界带来的影响,以及它使之成为可能的技术,编码应该被视为一种超级力量。
行动计划
- 如果你是一个完全的初学者,首先选择一种编程语言。
- 参加像#100DaysofCode 这样的挑战,它可以给你作为一个完全的初学者开始编码的动力,并继续编码。或者你可以找个朋友和你一起编码。
- 从上面的列表中选择一两个,找到适合自己的,坚持到最后。
- 卡住的时候不要看对答案,什么都学不到。相反,确保你做对了基础,然后再尝试挑战。
- 加入 Reddit、Discord 等社区,提出问题。
- 安装一个 IDE 来解决一些问题,或者使用 Jupyter 笔记本。
今天开始编码永远不会太晚。如果你已经是一名程序员,或者是这个领域的专家,那么恭喜你,我希望你在你的旅程中蒸蒸日上!
我希望你发现这个列表是有用的,并且我已经激励你开始编码。
感谢阅读,并保持安全!
这里有一些我写的关于学习数据科学的文章
这是你从头开始学习数据科学应该读的书。
towardsdatascience.com](/the-best-book-to-start-your-data-science-journey-f457b0994160) [## 机器学习和数据科学的 20 大网站
这里是我列出的最好的 ML 和数据科学网站,可以提供有价值的资源和新闻。
medium.com](https://medium.com/swlh/top-20-websites-for-machine-learning-and-data-science-d0b113130068) [## 互联网上 20 大免费数据科学、ML 和 AI MOOCs
以下是关于数据科学、机器学习、深度学习和人工智能的最佳在线课程列表
towardsdatascience.com](/top-20-free-data-science-ml-and-ai-moocs-on-the-internet-4036bd0aac12)
联系人
如果你想了解我的最新文章,请关注我的媒体。
其他联系方式:
2020 年你应该订阅的 26 大数据科学 YouTube 频道[2021 年更新]
数据科学| Youtube
这里是你应该关注的学习编程、机器学习和人工智能、数学和数据科学的最佳 YouTubers。
Szabo Viktor 在 Unsplash 上拍摄的照片
Y ouTube 是一个娱乐和教育的绝佳平台。最棒的是,在 Youtube 上观看视频不需要每月 10 美元的订阅费,而是完全免费的。除了唯一的货币,你花钱看他们是你的时间,你决定看什么完全取决于你。关于 YouTube 的事情是,如果你知道如何明智地使用它,珍惜你的时间并意识到你观看的视频,你实际上从它那里获得了一些有用的东西,为你的生活增加了价值。这是一个叫做机会成本的概念。
“我们所做的一切都有机会成本。这就是为什么我们必须有意识,以确保我们所追求的是我们真正重视的,因为追求会留下无数失去的机会。我们选择了一种体验,而牺牲了所有其他体验。”——克里斯·马塔卡斯
YouTube 上的数据科学
价格令人质疑的数据科学在线课程充斥网络,大部分不可信,只是一种营销策略。与其在网上淘,为什么不去 YouTube?YouTube 是一个很好的学习平台,因为它能够可视化复杂的主题。如果你要学习 NLP,你会读一本关于它的书还是看一个经验丰富的程序员用代码和直观的例子向你解释它?我本人更喜欢后者。
尽管 YouTube 也遭遇了类似的 clickbait 视频问题,但这个平台上有一些非常好的宝石,足智多谋的人们几乎免费提供教程和课程。因此,在本文中,我将分享这些创造数据科学最佳视频的瑰宝,无论是其建议、编码教程、项目等。
新冠肺炎让每个人都呆在家里,这是开始学习新东西的绝佳机会,为什么不把数据变成科学呢?一个正在蓬勃发展并在社会中发挥巨大作用的领域。不要照本宣科,跟随这些 YouTubers,从他们多年的经验中获得见解和建议。此外,您可以通过阅读他们的教程来学习如何编码,并掌握一项新技能。
所以,在下一个标签中打开 YouTube,订阅下面这些 YouTube!
YouTubers 上的
走向数据科学
说到 youtube 频道, TDS 有自己的 Youtube 频道!通过这个平台,他们带来了数据科学方面最优质的内容,包括采访、工作-生活、新工具等。TDS 是媒体上最大的数据科学出版物,所以为什么不在 YouTube 上查看一下,看看他们在做什么!
最喜欢的播放列表:我们在 YouTube 上找到的一些最好的视频。
www.towardsdatascience.com 东方数据科学有限公司是一家在加拿大注册的公司。利用媒介,我们提供…
www.youtube.com](https://www.youtube.com/channel/UCuHZ1UYfHRqk3-5N5oc97Kw)
1.蒂姆的技术
Tech With Tim 是一名出色的程序员,他教授 Python、Pygame 游戏开发、Java 和机器学习。他在 Python 上创建了一流的编码教程。
最喜欢的播放列表: Python 搭配机器学习教程。
Python 编程,游戏开发,Pygame,Java 教程,机器学习。这是一些…
www.youtube.com](https://www.youtube.com/channel/UC4JX40jDee_tINbkjycV4Sg)
2.Sentdex
Sentdex 创建了 YouTube 上最好的 Python 编程教程之一。他的教程涵盖了完全的初学者,不仅仅是基础知识。了解机器学习、金融、数据分析、机器人、网页开发、游戏开发等等。看看他在新冠肺炎·卡格尔挑战赛上的最新视频
最喜欢的播放列表:用 Python 进行机器学习
Python 编程教程,不仅仅是基础知识。了解机器学习、金融、数据分析…
www.youtube.com](https://www.youtube.com/user/sentdex/)
3.科里·斯查费
科里斯查费为程序员和开发人员创建教程,涵盖从初学者到高级水平的主题。各种主题,如 Python,SQL,JavaScript,Git,以及技巧和窍门都涵盖了,以帮助你的职业生涯。科里的视频有
最喜欢的播放列表: Python 教程
欢迎来到我的频道。这个频道专注于为软件开发人员创建教程和演练…
www.youtube.com](https://www.youtube.com/channel/UCCezIgC97PvUuR4_gbFUs5g)
4.Python 程序员
Python 程序员是一个 YouTuber,你猜对了,他提供与 python 相关的内容。他的内容包括 Python、数据科学、机器学习、书籍推荐等方面的教程。如果你在学习 Python 时需要帮助,他将会帮助你。
最喜欢的播放列表:数据科学课程
我是 Giles McMullen-Klein,这是我的 YouTube 频道。我的内容包括 python、数据科学、机器…
www.youtube.com](https://www.youtube.com/channel/UC68KSmHePPePCjW4v57VPQg)
5.基思·加利
Keith Galli 是麻省理工学院的毕业生。他制作关于计算机科学、编程、棋盘游戏等的教育视频。
最喜欢的播放列表: Python 熊猫数据科学
刚从麻省理工毕业。我制作关于计算机科学、编程、棋盘游戏等等的教育视频!我在网上找到的…
www.youtube.com](https://www.youtube.com/channel/UCq6XkhO5SZ66N04IcPbqNcw/about)
6.大卫·兰格
David Langer 的频道发布了关于数据科学各个方面的精彩视频。他的视频涵盖了数据挖掘项目的整个生命周期——数据争论、数据探索、数据清理、数据可视化、数据分析、特征工程和机器学习。讲授的主要编程语言是 R 编程语言,他还涉及到许多相关的库,如 ggplot2、randomForest 和 rpart。
最喜欢的播放列表:带 R 的数据科学简介
该频道的重点是发布关于数据科学各个方面的高质量教育内容。视频……
www.youtube.com](https://www.youtube.com/channel/UCRhUp6SYaJ7zme4Bjwt28DQ)
7.安德烈亚斯·克雷茨
Andreas Kretz 是一名数据工程师,也是数据科学管道公司的创始人。对他来说,数据工程就是摄取、处理和存储数据,以帮助数据科学家做他们最擅长的事情。在他的频道里,他做直播,关于如何获得数据工程实践经验的教程,以及关于 Hadoop、Kafka、Spark 等数据工程的 Q & A 视频。
最喜欢的播放列表:数据工程在线课程
我帮助你进入数据工程,数据科学的管道。构建大数据平台。的故乡…
www.youtube.com](https://www.youtube.com/channel/UCY8mzqqGwl5_bTpBY9qLMAA/videos)
8.自由代码营
FreeCodeCamp 是一个令人惊叹的非营利组织和开源社区,它收集了帮助人们免费学习编码和构建自己的项目的资源。他们的网站对任何人学习编程都是完全免费的,他们有自己的新闻平台,分享关于编程和项目的文章。
最喜欢的播放列表:数据科学
我们是一个由忙碌的人们组成的开源社区,他们为非营利组织学习编码和构建项目。
www.youtube.com](https://www.youtube.com/channel/UC8butISFwT-Wl7EV0hUK0BQ)
9.跳板
跳板 YouTube 频道发布了对谷歌、优步、Airbnb 等顶级公司的数据科学家的采访。从这些视频中,您可以一窥作为数据科学家的感受,并获得应用于生活的宝贵建议。
最喜欢的播放列表:数据科学,机器学习工程热门话题
在线学习,有工作保障。找份工作或者把你的钱要回来。深入数据科学、UX 设计等领域…
www.youtube.com](https://www.youtube.com/channel/UCqd6TofKNjqagInm5Waeu7w)
10.数据科学道场
数据科学 Dojo 是一个致力于向所有人教授数据科学的频道。他们致力于剥离数据科学的复杂性,并以一种更容易接受的形式呈现出来。在这个频道中,您可以找到大量关于数据工程和科学的教程、讲座和课程。
最喜欢的播放列表: Python 编程教程
在 Data Science Dojo,我们相信数据科学适合所有人。以下人员参加了我们的现场数据科学训练营…
www.youtube.com](https://www.youtube.com/user/DataScienceDojo)
11.CS 道场
CS Dojo 由 YK·苏格创建,他是一名多伦多的软件开发人员和数据科学家,在包括谷歌和微软在内的多家软件公司工作过。他制作关于编程和计算机科学的视频。
最喜欢的视频:获得数据科学工作的 5 个技巧【面试】
你好。我的名字叫 YK,我在这里制作的视频大多是关于编程和计算机科学的。如果你还没有,你…
www.youtube.com](https://www.youtube.com/channel/UCxX9wt5FWQUAAz4UrysqK9A)
12.365 数据科学
365 数据科学是一个致力于帮助数据科学爱好者的频道,他们在资格和可信度方面遇到了困难。这个频道希望帮助那些想成为数据科学家的人做好充分准备,并开始他们的职业生涯。
最喜欢的播放列表:2020 年数据科学生涯
从 365 数据科学到 2020 年 4 月 15 日免费数据科学课程✅在这里注册:http://bit.ly/2J0IEjy 从…
www.youtube.com](https://www.youtube.com/channel/UCEBpSZhI1X8WaP-kY_2LLcg)
13.爱德华卡。
Edureka 是一个电子学习平台,包含大量关于 python、R、机器学习、数据科学等主题的教程和演练。
最喜欢的播放列表:Python 中的机器学习教程
感谢您的订阅!如果你还没有,现在就订阅吧!我们是一个实时互动的电子学习平台…
www.youtube.com](https://www.youtube.com/user/edurekaIN)
14.数据学校
凯文·马卡姆创立了数据学校。他致力于帮助初学者学习正确的东西,并专注于他们首先需要掌握的主题。他的频道包含面向所有技能水平的顶级教程。Kevin 拥有在物理课堂和网络上使用 Python 的教学经验。
最喜欢的播放列表:Python 中的数据分析与熊猫
你是否在努力学习数据科学,以便获得你的第一份数据科学工作?你可能对…感到困惑
www.youtube.com](https://www.youtube.com/user/dataschool/featured)
15.数据营
DataCamp 的频道推广成熟的教程,帮助学生从世界顶级数据科学家那里学习和获得技能。他们提倡的原则是,在每节课结束后,立即应用学生所学的知识,确保学生记住并理解手头的主题。
最喜欢的播放列表: R 教程
DataCamp 通过更好地利用数据,帮助企业回答最具挑战性的问题。我们的用户获得并…
www.youtube.com](https://www.youtube.com/channel/UC79Gv3mYp6zKiSwYemEik9A)
16.数据虚线
DataDash 是一个与加密货币、数据分析和科学以及利用最新分析技术检测全球趋势相关的所有事物的频道。
最喜欢的播放列表: SQL &初学者数据分析
DataDash 是一个一站式商店,提供与加密货币、数据分析和科学以及发现全球…
www.youtube.com](https://www.youtube.com/channel/UCCatR7nWbYrkVXdxXb4cGXw)
17.数据教授
数据教授 Chanin Nantasenamat 是一所研究型大学的生物信息学副教授,他在那里经营着一个研究实验室,该实验室利用数据科学来揭示医学中大数据的隐藏知识。通过他的渠道,他提供了解释概念、教程以及回答大数据相关问题的优秀内容。他的主要目标是帮助学生和爱好者学习数据科学,并具备理解数据的能力。
最喜欢的播放列表:数据科学 101
Chanin Nantasenamat 帮助学生和感兴趣的个人了解数据科学以及如何使用它来制作…
www.youtube.com](https://www.youtube.com/channel/UCV8e2g4IWQqK71bbzGDEI4Q/featured)
18.3 蓝色 1 棕色
格兰特·桑德森创建的 3blue1brown 是 YouTube 上最好的数学可视化工具。他的目标是用动画向观众解释复杂的数学概念,希望帮助他们从不同的角度看待事物,并对这些概念有更深的理解。
最喜欢的播放列表:神经网络
格兰特·桑德森的《3blue1brown》是数学和娱乐的结合,这取决于你的喜好。目标是…
www.youtube.com](https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw)
19.霍马理工大学
霍马理工大学是一个制作视频来帮助人们进入科技行业的优步。作为一名数据科学家和软件工程师,他体验过在大型科技公司工作的生活。凭借这段经历,他制作了关于专家采访、硅谷生活方式的视频,并让数据科学变得更加平易近人。
最喜欢的视频:什么是数据科学?
我谈论硅谷的生活、大型科技公司、数据科学和软件工程。霍马创业公司:一个网络…
www.youtube.com](https://www.youtube.com/channel/UCV0qA-eDDICsRR9rPcnG7tw)
20.马特·特兰
Matt Tran 提供了对真实世界的见解,并与在该领域工作的人们进行了交谈,向您提供了成为数据科学家所需的未经过滤的现实,作为一名数据科学家工作是什么样的,以及工资和爱好等细节。
最喜欢的视频:如何在科技行业找到工作
最喜欢的播放列表:如何成为数据科学家(不需要大学)
你知道你的职业幸福是决定你幸福的首要因素吗?你有一半的可能性…
www.youtube.com](https://www.youtube.com/user/EngineeredTruth)
21.乔丹·哈罗德
乔丹·哈罗德是哈佛和麻省理工学院的研究生,研究脑机接口和医学机器学习。她一直对人工智能融入我们生活的方式着迷,从社交媒体到军事。在她的频道中,她探索了我们人类与人工智能和算法互动的方式,以及它们在我们日常生活中的用途。乔丹擅长向大众传达复杂的话题,如人工智能,并使其更容易理解。在 AI 上查看她的播放列表!
最喜欢的播放列表: AI 101
探索我们每天与人工智能、算法和其他新技术互动的方式,为…
www.youtube.com](https://www.youtube.com/channel/UC1H1NWNTG2Xi3pt85ykVSHA/featured)
22.肯·吉
Ken Jee 在过去的 5 年里一直在数据科学领域从事体育分析,并在从初创公司到财富 100 强企业的公司中工作过。当他刚开始学习数据科学时,他发现可供学习的资源非常少,因此作为回报社会的一种方式,他正在 YouTube 上制作视频,以分享他的经验,并帮助其他人进入该领域。我最近才发现关于肯吉和他的渠道是非常翔实和足智多谋的,一定要检查他!
最喜欢的视频:我是如何学习数据科学的
最喜欢的播放列表:
数据科学和体育分析是我的爱好。我叫 Ken Jee,一直在数据科学领域工作…
www.youtube.com](https://www.youtube.com/channel/UCiT9RITQ9PW6BhXK0y2jaeg)
23.Josh Starmer 的 StatQuest
统计学可能是一个非常具有挑战性的话题,这也是数据科学难以学习的原因之一。像随机过程和统计极限理论这样的概念可能很难理解。这就是 StatQuest 的拯救之路,通过他令人惊叹的视频,他将主要方法分解为易于消化的部分。最重要的是,他没有把话题弄得很枯燥,而是让你变得更聪明,提高你的统计能力。今天就去看看他!
最喜欢的播放列表:
统计学、机器学习和数据科学有时看起来是非常可怕的话题,但由于每种技术都是…
www.youtube.com](https://www.youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw)
24.贾布里勒
正如贾布里勒在他的简历中所说,他只是一个知道得很少但想知道很多的人。他的视频主要是对人工智能在不同应用中的使用进行妥协,例如制作一个人工智能应用程序来拯救生命,以及编写一个人工智能无人机来跟随他。他还制作编程视频。
最喜欢的播放列表:
哟!我只是一个知道的很少,但想知道很多的人。帮助电脑。想要什么吗?联系我!(我……
www.youtube.com](https://www.youtube.com/channel/UCQALLeQPoZdZC4JNUboVEUg)
25.真由子
Mayuko 在 Intuit、Patreon 和网飞等硅谷公司担任了六年的高级 iOS 软件工程师。现在,她主要在 YouTube 上全职创作内容,帮助她的观众打入科技行业。她的视频还涉及生活方式、职业和技术建议,以及文化身份和冒名顶替综合症等话题。检查她的播放列表开始阿瑟职业生涯!
最喜欢的播放列表:如何开始你的软件工程生涯
嗨!我是 Mayuko。我制作关于我的生活和科技之类的视频!
www.youtube.com](https://www.youtube.com/channel/UCEDkO7wshcDZ7UZo17rPkzQ)
26.数据科学沙龙
数据科学沙龙是一个独特的垂直聚焦数据科学会议,它发展成为一个由高级数据科学、机器学习和其他技术专家组成的多元化社区。他们面对面地聚在一起,在一种随意的氛围中相互学习,阐明最佳实践并创新新的解决方案。
他们的 YouTube 频道为那些想随便获得新技能的数据科学从业者和管理者提供了精选的见解。最近,他们发布了两条路线(一条技术路线和一条业务路线),每周发布 2 个视频(完整会议),包括将人工智能和人工智能应用于不同垂直行业的最佳实践和见解。
这些视频以前只对付费会员开放,现在就去看看吧!
数据科学沙龙是一个独特的垂直聚焦数据科学会议,发展成为一个多元化的社区…
www.youtube.com](https://www.youtube.com/c/DataScienceSalon/featured)
行动计划
由 Leon Bublitz 在 Unsplash 上拍摄的照片
不要让呆在家里的痛苦导致任何内心的不适,这是我们总是分心的根本原因。事实是,我们想分散注意力。与其连续 10 个小时狂看最新的网飞节目,为什么不试试在 YouTube 上学习呢?今天学习数据科学是对您的时间和精力的巨大投资回报(ROI ),因为数据将呈指数级增长,从数据中发现意义的能力将是不可或缺的。所以,订阅这些频道,看看他们的视频,学习一项有市场价值的技能或者学习一些新的东西。
为了确保你能最大限度地从 YouTube 上学习,这里有一些提示和技巧:
- 为了确保你只获得数据科学内容,创建一个新的谷歌账户,只订阅这些频道和更多频道(如果你愿意的话)
- 如果你正在看一步一步的编码教程,将视频放在屏幕的一半,你的编辑器/Jupyter 笔记本放在另一半,跟着视频一起编码。这样,你就可以学以致用了。
- 如果你在看一个建议/采访类型的视频,在视频结束后停下来思考一下,想想如何将你刚刚听到的应用到你的生活中。例如,你听说你可以通过展示你的投资组合项目获得一份数据科学方面的工作,你的下一步应该更多地关注于做数据科学项目,而不是记住不同神经网络的名称
- 如果你在看一个基于概念/事实的视频,比如数学或机器学习,不要被理论和术语弄得不知所措。成为一名数据科学家并不是在一次一年后你会忘记的测试中获得满分,而是了解数据,清理数据,可视化数据,并向他人展示最终结果。最后,重要的是如何和为什么而不是什么。
我希望这篇文章对你有用,希望你学习数据科学和成为一名出色的数据科学家的旅程更加容易。最后,让我给你一段关于视觉学习的引言。
“据说人们所学的 80%是视觉上的.”
—艾伦·克莱因
感谢您的阅读,上帝保佑。
点击这里查看我的其他文章!
数据科学工具箱—数据科学介绍系列
关于什么是数据科学、大数据、数据和数据科学过程及其应用。
towardsdatascience.com](/the-data-scientists-toolbox-part-1-c214adcc859f)
请阅读我的超学习数据科学系列,其中提供了大量关于有效学习的建议和技巧。
这是一个简短的指南,基于《超学习》一书,应用于数据科学
medium.com](https://medium.com/better-programming/how-to-ultralearn-data-science-part-1-92e143b7257b)
这里有一些很棒的数据科学资源!
这里是我列出的最好的 ML 和数据科学网站,可以提供有价值的资源和新闻。
medium.com](https://medium.com/swlh/top-20-websites-for-machine-learning-and-data-science-d0b113130068) [## 开始数据科学之旅的最佳书籍
这是你从头开始学习数据科学应该读的书。
towardsdatascience.com](/the-best-book-to-start-your-data-science-journey-f457b0994160) [## 数据科学 20 大播客
面向数据爱好者的最佳数据科学播客列表。
towardsdatascience.com](/top-20-podcasts-for-data-science-83dc9e07448e) [## 关于人工智能和大数据的 20 大电影。
这里有一些人工智能和大数据电影,你应该在新冠肺炎封锁期间在家观看。
towardsdatascience.com](/top-20-movies-about-machine-learning-ai-and-data-science-8382d408c8c3)
联系人
如果你想了解我的最新文章,请通过媒体关注我。
其他联系方式:
看的开心!
25 大 Selenium 功能,让你成为网页抓取专家
W
获取数据,然后按照你想要的方式进行处理。
这就是为什么今天我想向大家展示 Selenium 的一些顶级功能,Selenium 是一个用于 Web 抓取的库。
我以前写过关于 Selenium 和 Web Scraping 的文章,所以在你开始之前,我建议你阅读这篇文章“关于 Web Scraping 的一切”,因为它的设置过程。如果你已经比较精通网络抓取,可以试试我的高级脚本,比如“如何用 Python 省钱”和“如何用 Python 制作分析工具”。
让我们直接投入进去吧!
获取()
我以前写过这个,但是 get 函数很重要,没有它你什么都做不了。
get 命令启动一个新的浏览器,并在您的 Webdriver 中打开给定的 URL。它只是将字符串作为您指定的 URL,并打开它进行测试。
如果您使用的是 Selenium IDE,它类似于 open command。
示例:
driver.get(“https://google.com");
“驱动程序”是您的 web 驱动程序,您将在其上执行所有操作,在执行上面的命令后,它看起来像这样:
测试目的窗口
find_element()
当您想要访问页面上的元素时,这个函数非常重要。假设我们想要访问“Google search”按钮来执行搜索。
有许多方法可以访问元素,但是我更喜欢的方法是找到元素的 XPath。XPath 是元素在网页上的最终位置。
通过点击 F12,您将检查该页面,并获得关于您所在页面的背景信息。
通过单击选择工具,您将能够选择元素。
找到按钮后,单击右边蓝色标记的部分,复制元素的“完整 Xpath”。
self.driver.find_element_by_xpath('/html/body/div/div[4]/form/div[2]/div[1]/div[3]/center/input[1]')
这是查找特定元素的完整命令。与常规 XPath 相比,我更喜欢完整的 XPath,因为如果新会话中的元素发生变化,常规的 XPath 可能会发生变化,而下次执行脚本时,它就不起作用了。
其他 find_element 函数概述。(还有 find _ elementss)
find_element 函数的所有选项
发送键()
Send_keys 函数用于将文本输入到您使用 find_element 函数选择的字段中。
假设我们想在 google 中输入“plate ”,这就是我们使用 send_keys 函数的原因。
google_tray = self.driver.find_element_by_xpath('/html/body/div/div[4]/form/div[2]/div[1]/div[1]/div/div[2]/input')google_tray.send_keys("plate")google_search = self.driver.find_element_by_xpath('/html/body/div/div[4]/form/div[2]/div[1]/div[3]/center/input[1]')google_search.click()
为了更加清晰,我将元素保存在各自的变量中,然后对它们执行函数。
最后你会得到这个:
单击()
该函数使用找到的元素,并对其执行“单击”操作。简单的东西。
这是一个点击“谷歌搜索”按钮的代码示例。
google_search = self.driver.find_element_by_xpath('/html/body/div/div[4]/form/div[2]/div[1]/div[3]/center/input[1]')google_search.click()
getClass()
该命令用于检索表示该对象的运行时类的类对象。这意味着您执行这个函数来获取某个元素的类。
driver.getClass()
当前网址()
当你已经在某个页面上使用这个命令时,你可以检索你所在的 URL。
这个命令不需要参数,它返回字符串。
driver.current_url()
getPageSource()
使用这个命令,您将能够检索页面的源代码。
这个命令不需要参数,它返回字符串。
driver.getPageSource()
该命令可以与 contains()等其他命令结合使用,以检查该过滤器下是否存在该字符串。
driver.getPageSource().contains("Example");
在这种情况下,这将是一个布尔值,所以不是真就是假。
getTitle()
检索您当前所在网站的标题。
这个命令不需要参数,它返回字符串。如果找不到标题,将返回 null。
driver.getTitle()
getText()
使用这个命令,您将获得 Web 元素的文本部分。
这个命令不需要参数,它返回字符串。
driver.findElement(By.id("Price")).getText()
getAttribute()
使用这个命令,您将获得 Web 元素的属性。
我们传递一个字符串参数,它应该是我们想要知道的属性,然后返回一个字符串值。
driver.findElement(By.id("Price")).getAttribute("val");
getWindowHandle()
当我们有多个窗口要处理时,使用这个命令。
该命令帮助我们切换到新打开的窗口,并在新窗口上执行操作。
如果他/她愿意,您也可以切换回上一个窗口。
String winHandleBefore = driver.getWindowHandle()
driver.switchTo().window(winHandleBefore)
getWindowHandles()
这个命令类似于 getWindowHandles(),但是基本的区别是我们在这里处理多个窗口。所以不止两个。
driver.getWindowHandles()
链接文本()
此命令用于根据页面上的超链接及其包含的文本来查找页面上的元素。
假设我们想在谷歌搜索中找到第一个链接。
driver.findElement(By.linkText(“Car - Wikipedia”))
这种链接搜索还有另一个选项:
partialLinkText()
您也可以在页面上搜索部分或子字符串,而不是键入要查找的整个字符串。
driver.findElement(By.partialLinkText(“BMW”))
这个命令将在谷歌上找到头条的第一个链接。
提交()
在表单的字段中输入文本后,可以使用 submit 函数单击该按钮并完成表单。
driver.findElement(By.<em>id</em>("submit")).submit();
关闭()
该方法关闭用户正在操作的当前窗口。
该命令不需要任何参数,也不返回值。
driver.close()
退出()
它可能看起来非常类似于 close 命令,但是主要的区别是它关闭了用户当前打开的所有窗口。
该命令不需要任何参数,也不返回值。
driver.quit()
I 启用()
当您想要检查 Web 驱动程序中是否启用了该元素时。
首先,你必须找到元素,然后检查它。
它有一个布尔值,所以不是真就是假。
driver.findElement(By.id("Price")).isEnabled()
大小()
使用这个函数,您可以获得所选 Web 元素的大小。
driver.findElements(By.id("Price")).size()
它返回元素的大小,输出如下所示:
{'width': 77, 'height': 22}
睡眠()
这个函数用于暂停线程执行一段时间。
例如,您输入登录凭证,在下一个页面加载之前,会有一个时间延迟。这就是为什么我们使用睡眠来克服这些加载时间。
这个函数通常是有用的,它不是来自 Selenium,但是有一些 Selenium 内置的函数。
sleep(1)
这将暂停执行 1 秒钟。
pageLoadTimeout()
使用 sleep 函数,你必须基本上猜测你想要克服的加载时间,但是使用 pageLoadTimeout()你可以将其设置为特定的。
driver.manage().timeouts().pageLoadTimeout(3, SECONDS);
该命令将等待 3 秒钟以加载页面。
隐式等待()
这是那些睡眠/等待函数的又一次迭代,将帮助你实现完美多线程。
为了避免抛出错误和异常,我们在页面上定位元素之前,在特定的时间内向添加一个命令。
driver.manage().timeouts().implicitlyWait(3, TimeUnit.SECONDS);
执行下一个命令前等待 3 秒钟。
导航()+前进()+后退()
这些被组合在一起,以便在 URL 之间切换,并按照您的意愿后退和前进。
所以您想打开另一个页面,但是您不想使用 get(),而是想使用 navigate here 并轻松地在这些页面之间进行操作。
driver.navigate().to("https://www.facebook.com");
driver.navigate().back();
driver.navigate().forward();
临终遗言
如前所述,这不是我第一次写关于 Selenium 和 Web 抓取的文章。我还想介绍更多的功能,还会有更多的功能。我希望你喜欢这个教程,为了跟上进度,请继续关注我!
感谢阅读!
查看我的其他文章并关注我的媒体
当我发布一篇新文章时,请在 Twitter 上关注我