TowardsDataScience 博客中文翻译 2020(八百九十六)

原文:TowardsDataScience Blog

协议:CC BY-NC-SA 4.0

Github 上的十大趋势数据科学项目

原文:https://towardsdatascience.com/top-10-trending-data-science-projects-on-github-ec1d4d4119f?source=collection_archive---------15-----------------------

少数几个 GitHub 存储库通过它们的各种项目突出了数据科学的能力。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Unsplash 上由 Austin Distel 拍摄的照片

数据科学领域带来了各种科学工具、流程、算法和从结构化和非结构化数据中提取知识的系统,用于识别其中有意义的模式。

数据科学是一个快速增长的行业,目前是这十年来最令人向往的领域之一。这就转化为成千上万拥有不同水平的数据科学相关技能的人 积极尝试进入数据科学的世界。如果你也热衷于了解数据科学所能提供的东西,并希望获得新的技能来增加你的投资组合,那么不要再犹豫了。

在整篇文章中,我们将浏览一些 GitHub 存储库,这些存储库突出了数据科学的能力,以及它们针对一系列用例的各种项目。像这样的开源项目非常适合研究数据科学的各个方面,同时让您可以选择修补它们,这样一旦您有信心,您就可以构建自己的项目。

数据真正推动了我们所做的一切。

——杰夫·韦纳

[## Github 上的 10 个流行数据科学资源

一些顶级的 GitHub 库将教你所有关于数据科学的知识。

towardsdatascience.com](/10-popular-data-science-resources-on-github-7ae288ff4a75) [## GitHub 上十大热门 Python 项目

像这样的 GitHub 项目是人们创造力和才华的完美展示

towardsdatascience.com](/top-10-trending-python-projects-on-github-fb852cd58262)

Github 上的顶级数据科学项目

GitHub 无疑是让你熟悉开源代码的最好地方之一,不仅是数据科学,还有任何技术。作为一个相当广泛的领域, 数据科学充满了各种工具 、框架、技术和算法来从数据中提取有见地的知识。

本节涵盖的项目在描绘数据科学如何部署在各行各业以及您如何轻松从中获取所需信息方面做了令人惊叹的工作。但是在深入研究这个之前,先看看 12 个适合初学者和专家的数据科学项目想法。

[## 12 个适合初学者和专家的酷数据科学项目创意

“到目前为止,您已经完成了多少个数据科学项目?”

towardsdatascience.com](/12-cool-data-science-projects-ideas-for-beginners-and-experts-fc75b5498e03)

1.艾伯特

  • GitHub 链接:【https://github.com/brightmart/albert_zh】T4
  • 星星: 2.9k
  • 分叉者: 582

Lite BERT(变压器的双向编码器表示)的缩写, ALBERT 是一款轻量级 BERT ,旨在通过克服满量程 BERT 的内存限制来实现更好的性能。ALBERT 通过使用比常规 BERT 少得多的参数来做到这一点。

虽然谷歌的 BERT 允许任何人高精度地训练自己的模型,但 ALBERT 已经领先一步,只用 10%的参数就实现了更高的性能产出。伯特和阿尔伯特都允许你在 GPU 或 TPU 上训练你的模型。如果您的任何任务需要与一个NLP 一起工作,我们强烈建议您让 ALBERT 尝试一下,亲自看看性能的提高。

2.秘密集会的看守人

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:平铺器

  • ****GitHub 链接:https://github.com/nuno-faria/tiler
  • 星星: 4.4k
  • 分叉者: 247

如果你喜欢艺术项目,我们建议给 Tiler 一个机会。Tiler 是一个有趣而令人兴奋的开源项目**,它使用 Python 构建而成允许任何人创建有趣而独特的图像。这个项目的工作方式是为你提供一系列不同颜色的形状,这些形状可以以不同的角度旋转来创建更复杂的图像。您所要做的就是将您想要平铺的图像作为参数传递,让 Tiler 发挥它的魔力。Tiler 还有一系列其他参数,您可以使用它们来微调您的最终图像。**

Tiler 提供了许多不同种类的开箱即用的形状,如波浪、十字绣、圆形、乐高、心形等等,并且有多种颜色。Tiler 的设计考虑到了灵活性,因为它可以让用户创建自己的各种颜色的瓷砖,如果他们觉得特别有创意的话。

3.PLM Papers——预训练语言模型研究论文集

  • ****GitHub 链接:**【https://github.com/thunlp/PLMpapers **
  • 星辰: 2k
  • 分叉者: 280

这个数据科学 GitHub repo 专注于为一系列问题提供各种预训练模型**。对于门外汉来说,预先训练的模型是迁移学习的生命线,人们可以使用其他人的模型,只需稍加修改,就可以解决类似的问题。**

预训练模型对于将训练成本保持在最低水平至关重要,因为它们可以帮助您不需要在任何专用训练硬件(GPU)上花费时间,同时还可以帮助您减少总花费时间。****

repo 是一百多个模型的研究论文的家园,可以帮助你更深入地理解问题及其建议的解决方案。repo 还包含一个信息图来表示这些 PLM 之间的关系。

4.TubeMQ

如果你曾经对大公司如何实时地将数据从一个站点转移到另一个站点感兴趣,这个项目也许能让你一窥其中的秘密。TubeMQ 是一个企业级分布式消息队列(MQ)系统,它在大约一年前开源,现在被 Apache Software Foundation 采用,旨在提供高性能存储和传输海量数据。

TubeMQ 可以帮助组织在保持完全可伸缩性的同时,在吞吐量、延迟、稳定性、性能和成本方面提供几个关键优势,从而占据上风。该项目的其他显著特性包括功能丰富的仪表盘、认证和授权、对大数据和流媒体生态系统的支持、与 TCP 和 SSL 等传输协议兼容、高效的推拉式消费模式等等。

5.深度隐私

  • ****GitHub 链接:https://github.com/hukkelas/DeepPrivacy
  • 星星: 919
  • 分叉者: 131

现代世界与互联网紧密相连,在这里,这个词已经失去了意义,现在只是一个神话。你使用的每一个应用程序或服务都在某种程度上跟踪你的一举一动,在你提出要求之前,为你提供更好的服务和建议。

DeepPrivacy 就是这样一个 GitHub 项目,旨在自动匿名化图像中的人脸。DeepPrivacy 使用 生成对抗网络(GAN) 通过使用包围盒识别敏感区域和稀疏姿态信息在各种场景下引导网络来实现人脸匿名化。该项目使用同类最佳的检测模型,Mask-R-CNN用于生成稀疏姿态信息, DSFD 用于人脸识别。如果你有兴趣研究 DeepPrivacy 的研究论文,你也可以通过 GitHub repo 来完成。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源: Github 深度隐私

6.DeepCTR

  • ****GitHub 链接:https://github.com/shenweichen/DeepCTR
  • 星辰: 752
  • 分叉者: 222

这个数据科学项目是通过预测用户的点击率(CTR) 来解决向用户提供正确推荐或搜索结果这一主要问题的重要一步。DeepCTR 项目提供了对许多易于使用、模块化和可扩展的深度学习模型的访问,这些模型具有许多核心组件层,您可以使用它们来构建定制模型。许多受支持的模型包括:

DeepFM

●基于产品的神经网络

●深度和交叉网络

●深度兴趣网络

● FLEN

● FGCNN

●卷积点击预测模型

虽然 DeepCTR 的这个变体可能因为其 TensorFlow 实现而看起来并不适合每个人,但是还有 DeepCTR-Torch,它使用了这个项目的 PyTorch 实现。

7。人脸识别

****面部识别工具可以与来自一个人的图像的面部数据一起使用,以分析和提取许多关键信息,如**性别、年龄、**等等。利用最新技术的现代工具可以从视频和图像中识别人脸。 Alexandre Attia 的现代人脸识别工具利用深度学习,由 梯度方向直方图方法 提供支持。该人脸识别工具使用的更详细的步骤列表包括:

●使用 HOG 算法在图像中查找面部,以获得面部结构的基本表示

●剪切、旋转、缩放等变换,使眼睛和嘴巴居中

●使用深度学习和经过训练的神经网络对检测到的面部进行编码

●最后,使用分类器(LVM 或任何其他)在数据库中找到与测试图像最匹配的人

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源: Github 人脸识别

8.墨西哥政府报告文本分析

使用 Python 构建,这个项目提供了一个关于【NLP】系统如何为文本挖掘工作的实践经验。该项目已经由墨西哥政府在 2019 报告中进行了演示,并包括许多从报告中清晰提取文本并在以后可视化的活动。****

为了实现这一点,该项目使用了多个 Python 库。每个库的简要说明如下:

PyPDF2: 一个高度可定制的库,用于可靠地从 PDF 中提取干净的文本

**● **空间:现实世界中自然语言处理工作负载的高速库

NumPy: 为项目提供必要的计算能力

pandas: 用于从数据集中提取和分析有价值的见解

matplotlib: 用于创建令人惊叹且富有洞察力的数据可视化

seaborn: 用于更精确地控制用 matplotlib 构建的图形和绘图

geopandas: 用于处理空间数据库和绘制视觉上吸引人的地理地图

9.提绳器

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源: Github 字符串筛选器

这个数据科学项目的目标是应用安全**,其目标用户主要是恶意软件分析师和网络安全专家。StringSifter 项目利用 Python 中的 strings 程序和机器学习的能力,使得在各种大小的程序二进制文件中找到一系列隐藏的字符串变得更加容易。**

这些隐藏的字符串经常被恶意使用,通过将它们作为 StringSifter 程序的输入,几乎可以毫不费力地找到它们。一旦列表被输入到程序中,它就会深入地筛选二进制文件,并向分析人员报告任何相关的发现。作为一款易于使用的工具,安全专家可以毫不费力地将 StringSifter 集成到他们现有的恶意软件分析堆栈中。用户还可以选择将 StringSifter 与 Docker 映像一起使用,因为所有必需的命令行实用程序都是现成的。

10。IMDb 电影分级预测系统

这个列表中的另一个项目来自为我们带来人脸识别项目的开发者,这个评级预测系统试图在电影上映前预测电影在的电影评级。在机器学习的支持下,ProjectMovieRating 项目试图通过以下三个部分来实现这一点:

****● 第 1 部分:它试图解析来自 IMDb 和目标电影数字网站的数据,如演员信息、奖项、导演、类型、预算等

****● 第 2 部分:然后,它试图分析数据,以识别第 1 部分中变量之间的任何相关性。

****● 第三部分:在最后一步,该项目使用机器学习算法 Random Forests 来预测电影的 IMDb 评分

**** [## 机器学习算法之旅

阅读机器学习算法的介绍性列表

towardsdatascience.com](/a-tour-of-machine-learning-algorithms-466b8bf75c0a)****

结论

数据科学已经成为一个竞争非常激烈的领域,需要不断了解最新和最好的技术才能完成工作。要想在竞争中保持领先,你需要提高自己的水平。理论教育固然很好,但如果你不把这些知识用于解决现实世界的问题,这些知识对你就没有任何用处。

在这篇文章中,我们试图涵盖 GitHub 上的一系列数据科学项目,这些项目涉及一些有趣且受欢迎的主题,试图为多个领域中一些具有挑战性的现实问题提供有效的解决方案。我们祈祷这些项目会激发你涉足数据科学,创造你自己版本的解决方案,或者可能是一个有趣的项目?

注: 为了消除各种各样的问题,我想提醒你一个事实,这篇文章仅代表我想分享的个人观点,你有权不同意它。

如果你有更多的建议,我很想听听。

更多有趣的读物

我希望这篇文章对你有用!以下是一些有趣的读物,希望你也喜欢

**** [## 2020 年你必须使用的最好的 Python IDEs 和代码编辑器

具有显著特性的顶级 Python IDEs 和代码编辑器

towardsdatascience.com](/best-python-ides-and-code-editors-you-must-use-in-2020-2303a53db24) [## 2020 年必读的数据科学书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/data-science-books-you-must-read-in-2020-1f30daace1cb) [## 给 Python 开发者的 10 个很酷的 Python 项目想法

您可以使用 Python 构建的有趣想法和项目列表

towardsdatascience.com](/10-cool-python-project-ideas-for-python-developers-7953047e203) [## 2020 年必读的 Python 书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/python-books-you-must-read-in-2020-a0fc33798bb) [## 你必须知道的 12 项 Python 开发者技能

Python 开发人员必备的顶级技能

towardsdatascience.com](/top-12-python-developer-skills-you-must-need-to-know-9e2b6c7fc6c) [## 面向所有人的顶级谷歌人工智能工具

使用谷歌人工智能中心将想法变为现实

towardsdatascience.com](/top-google-ai-tools-for-everyone-60346ab7e08) [## 2020 年人工智能工程师的顶级编程语言

从几种编程语言中,人工智能工程师和科学家可以挑选出适合他们需要的语言

towardsdatascience.com](/top-programming-languages-for-ai-engineers-in-2020-33a9f16a80b0)

关于作者

克莱尔 D 。在digital ogy—***是一个内容制作者和营销人员,这是一个技术采购和定制匹配市场,根据全球各地的特定需求,将人们与预先筛选的&顶尖开发人员和设计师联系起来。与我连线上 Linkedin&推特 *****

GitHub 上十大热门 Python 项目

原文:https://towardsdatascience.com/top-10-trending-python-projects-on-github-fb852cd58262?source=collection_archive---------2-----------------------

像这样的 GitHub 项目是人们创造力和才华的完美展示

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

李·坎贝尔在 Unsplash 上的照片

编写 Python 代码的乐趣应该在于看到短小、简洁、易读的类,这些类用少量清晰的代码表达大量的动作——而不是让读者厌烦得要死的大量琐碎代码。

——吉多·范·罗苏姆

在相当长的一段时间里,全世界的开发人员都倾向于将Python用于他们的大多数项目。编程语言的易用性,它在实时和非实时系统中的效率,以及它广泛的救生包集合,这些都是开发人员喜欢 Python 的部分原因。

像 Python 这样的编程语言给了你将梦想变成现实的自由,并向世界展示你的才华。这就是为什么我们要探索 GitHub 上的几个顶级 Python 项目,不仅是为了启发你,也是为了让你体验一下用创新思维和 Python 可以做什么。****

你知道吗?

  • 根据 Stackoverflow 的说法,python 是最受青睐的语言,也就是说大多数开发者使用 Python。
  • Python 是 GitHub 第二流行的语言,也是最流行的机器学习语言。

** [## 2020 年大一新生热门 Python 面试问答

这里列出了大一新生最常被问到的 python 面试问题和答案,涵盖了核心…

blog.digitalogy.co](https://blog.digitalogy.co/python-interview-questions-and-answers-for-freshers/)**

GitHub 上的顶级 Python 项目

GitHub 显然是大多数在线代码的所在地。Python 作为一种令人惊叹的通用编程语言,已经被成千上万的开发人员用来构建各种有趣而有用的项目。在下一节中,我们将尝试介绍 GitHub 上一些使用 Python 构建的最佳项目。

但是在深入研究这个之前,你也可以在这里为 Python 开发人员查看一些很酷的 Python 项目创意—

** [## 给 Python 开发者的 10 个很酷的 Python 项目想法

您可以使用 Python 构建的有趣想法和项目列表

towardsdatascience.com](/10-cool-python-project-ideas-for-python-developers-7953047e203)**

1.马尼姆

星星: 26.2k

分叉者: 3.4k

研制者: 格兰特·桑德森

****GitHub 链接:https://github.com/3b1b/manim

Manim 代表数学动画引擎。这个项目背后的想法是让人们更容易将有趣和直观的动画与数学教材中的图形和图表相结合,摆脱学习数学必须枯燥的刻板印象。

格兰特运营着一个名为 3Brown1Blue 的 YouTube 频道,在那里他使用 manim 库根据需要创作和控制这些动画,向观众教授高等数学。使用 manim,您还可以创建动画视频,精确控制图表和插图中使用的动画。如果你觉得这是一个有趣的想法,你应该看看他的频道,看看图书馆的运作。

****Youtube 链接:https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

2.DeepFaceLab

星星: 20.4k

分叉者: 4.8k

****开发人:伊佩罗夫

****GitHub 链接:https://github.com/iperov/DeepFaceLab

DeepFaceLab 是这个列表中 Python 上最好玩的 GitHub 项目之一。DeepFaceLab 是一个可以创建深度假像图像和视频的工具,允许你做很多有趣的事情,比如改变、 去老化、交换面孔。为了让事情更引人注目,你甚至可以改变他们的发言,尽管这需要熟练掌握视频编辑软件。

开发者声称互联网上超过 95%的深度造假视频都是用这个工具制作的。您可以在该项目的 GitHub 页面上找到设置指南和一些 facesets 来帮助您开始。

3.气流

恒星: 18.6k

分叉者: 7.3k

****由开发:Apache 软件基金会

****GitHub 链接:【https://github.com/apache/airflow】T4

Airflow 是来自Apache Software Foundation的一款开源工作流管理工具,由 Python 提供支持。Airflow 允许您在工作流上执行一系列活动,例如创作、调度和监控它们。当定义为代码时,工作流变得更容易管理、测试和协作。

它提供了可伸缩性、动态管道生成和可扩展性**。简单的用户界面使使用 Airflow 更加顺畅,其与其他工具和服务的强大集成功能有助于通过节省时间来充分利用它。业界的一些大公司正在积极使用 Airflow,比如 Adobe、Lyft、Slack、Expedia 等等。**

** [## 10 家使用 Python 的世界级公司

Python 正被 IT 界的一些巨头积极使用

towardsdatascience.com](/10-world-class-companies-using-python-26cde24919a8)

4.GPT-2

星星: 13.4k

分叉者: 3.4k

**GitHub 链接:**https://github.com/openai/gpt-2

GPT-2 是一个巨大的基于 transformer 的语言模型,它是在一个同样庞大的数据集上训练的,准确地说是来自的文本和超过 80 亿个网页的。目标?给定上下文中的一组或所有前面的单词,预测下一个单词。

更简单地说,你给 GPT-2 一些文本,语言模型将预测并生成一个质量非凡的文本的冗长延续。

GitHub repo 拥有 OpenAI 论文“语言模型是无监督的多任务学习者”的代码和模型,而页面提到了 GPT-2 的描述和一些警告。

[## 2020 年必读的 Python 书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/python-books-you-must-read-in-2020-a0fc33798bb)

5.XSStrike

星星: 8.5k

分叉者: 1.2k

开发人: Somdev Sangwan

GitHub 链接:https://github.com/s0md3v/XSStrike

跨站点脚本, 又名 XSS ,是一个对网站来说极其恼人和有害的漏洞。通过从客户端注入恶意代码,攻击者可以对网站和数据造成无法控制的破坏。 s0md3v 的 XSStrike 本质上是一个 XSS 检测套件,它本身是独一无二的。

开发者声称,他的工具不是简单地测试随机的有效载荷,而是分析网站并生成特别设计的有效载荷。该工具的一些不同功能包括:

  • 语境分析
  • 强大的起毛引擎
  • 支持多线程分析
  • 支持从文件中强制有效负载
  • 定制的 HTML 和 JavaScript 解析器
  • 扫描任何过期的 Javascript 库

** [## 机器学习和深度学习的最佳 Python 库

现代机器学习模型和项目的 Python 库

towardsdatascience.com](/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c)

6.谷歌图片下载

星星: 7.1k

分叉者: 1.7k

**开发人:**哈迪克·瓦萨

GitHub 链接:https://github.com/hardikvasa/google-images-download

Hardik Vasa 的脚本可以让你一次从谷歌下载数百张图片到你的电脑上。这个工具的工作方式是你安装这个库,使用这个命令,把你想要的关键字作为参数,让这个工具发挥它的魔力。rebound 本质上是在 Google Images 的索引中搜索带有指定关键字的图片,一旦找到就下载它们。

您也可以使用另一个 Python 文件中的库,它仍然可以照常工作。如果你需要一次性从谷歌上下载大量图片,这确实是一个有趣而有用的项目。

7.光子

星星: 7k

分叉者: 965

开发人: Somdev Sangwan

**GitHub 链接:**https://github.com/s0md3v/Photon

Photon 是一个强大且易于使用的网络爬虫,它是使用 Python 构建的。 s0md3v 的 轻量级快速爬虫遵循开源智能框架的指导方针和方法,允许收集和分析从开放或公共来源获取的信息。

Photon 可以从许多来源获取信息,其中包括:

  • URL,包括带参数的 URL
  • 社交媒体账户、电子邮件
  • pdf、png、XML 文档等文件
  • 子域
  • JavaScript 文件

Photon 将所有提取的信息有条不紊的保存起来,甚至可以导出为 JSON 文件。该工具还提供了各种选项来**定制其工作,如控制超时,排除一些网址,**等等,我们建议您深入研究一下。

[## 2020 年你必须使用的最好的 Python IDEs 和代码编辑器

具有显著特性的顶级 Python IDEs 和代码编辑器

towardsdatascience.com](/best-python-ides-and-code-editors-you-must-use-in-2020-2303a53db24)

8.神经语言

星星: 5k

分叉者: 1.2k

**开发人:**安德烈·卡帕西

GitHub 链接:https://github.com/karpathy/neuraltalk2

在其核心,NeuralTalk 是一个用 Python 和 NumPy 编写的图像字幕项目,它使用了多模态递归神经网络。由于技术的改进和更好的硬件支持,开发者发布了比最初的 NeuralTalk 更好更快的 NeuralTalk2,

使用批量实现,NeuralTalk2 仍然使用 RNN s 的**,并且是基于 Torch** 的**,并且可以在 GPU 上运行,同时**支持 CNN 微调。虽然开发者已经弃用了最初的 NeuralTalk,但它仍然可以在 GitHub 上找到,任何人都可以看看。

9.Xonsh

星星: 3.9k

分叉者: 434

GitHub 链接:https://github.com/xonsh/xonsh

读作 conch ,你可以把 Xonsh 看作是一种由 Python 驱动的跨平台 shell 语言。Xonsh 使得使用 Python,甚至是最基本的任务,变得更好,因为它深深地集成在 Xonsh 中。

使用 Xonsh,不用输入“$ echo 2+2”,您可以只使用$ 2+2,它仍然会给出正确的结果。多简单啊!

开始使用 Xonsh shell 也非常简单,只需根据您的环境使用正确的命令安装它,一切都准备好了。Xonsh 可用于许多包管理器,**包括 pip、Conda、Apt、Brew、等等。至于它的特性,Xonsh 是易于脚本化的,有一个大型的标准库,带有类型化变量、**等等。

10.篮板球

星星: 3.3k

分叉者: 299

开发人员:乔纳森·肖布鲁克

GitHub 链接:【https://github.com/shobrook/rebound

编译器错误通常会令人非常沮丧和困惑。唯一的解决方法是前往 栈溢出 或者阅读文档。Jonathan Shobrook 和他著名的工具 rebound 已经找到了一种方法,可以让你在处理那些烦人的编译器错误时更加轻松。

rebound 的工作方式是用这个工具运行你的文件,它会检查文件中存在的任何编译器错误,并获取它能找到的任何相关的堆栈溢出线程。

Rebound 在终端和浏览器中加载线程的能力不仅对新手来说是救命稻草,对资深程序员来说也是如此,节省了他们无休止地寻找答案的时间。目前反弹只支持 Python、node . jsRubyGolang,以及Java

结论

创造力也没有限制。像这样的 GitHub 项目是人们创造力和才华的完美展示。但是这仅仅是冰山一角,因为 Python 可以被用于执行广泛的活动,假设你有专业知识和你想要实现的清晰的图片。随着 Python 的不断发展,越来越多的开发人员将开始使用它来构建惊人的、足智多谋的项目,就像我们上面提到的那些项目。让这篇文章成为你的灵感之源,唤醒你头脑中沉睡的想法,让事情运转起来。

注: 为了消除各种各样的问题,我想提醒你一个事实,这篇文章仅代表我想分享的个人观点,你有权不同意它。

如果你有更多的建议或想法,我很乐意倾听。

更多有趣的读物

我希望这篇文章对你有用!以下是一些有趣的读物,希望你也喜欢

[## 面向所有人的顶级谷歌人工智能工具

使用谷歌人工智能中心将想法变为现实

towardsdatascience.com](/top-google-ai-tools-for-everyone-60346ab7e08) [## Python vs. Node。JS:哪个最适合你的项目?

使用一组预定义的因素对 Python 和 Node.js 进行详细比较

towardsdatascience.com](/python-vs-node-js-which-one-is-best-for-your-project-e98f2c63f020) [## 2020 年必读的数据科学书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/data-science-books-you-must-read-in-2020-1f30daace1cb) [## 面向数据科学的顶级 Python 库

面向数据科学的流行 Python 库概述

towardsdatascience.com](/top-python-libraries-for-data-science-c226dc74999b) [## 数据科学家的最佳数据科学工具

数据科学工具,使任务可以实现

towardsdatascience.com](/best-data-science-tools-for-data-scientists-75be64144a88) [## 2020 年必读的机器学习书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/machine-learning-books-you-must-read-in-2020-d6e0620b34d7)

关于作者

克莱尔维。是位于Digitalogy的内容制作者和营销人员,这是一个技术采购和定制匹配市场,根据全球各地的特定需求,将人们与预先筛选的&顶尖开发人员和设计师联系起来。在 上跟我连线Linkedin&Twitter。********

寻找数据科学工作的 10 大网站和资源

原文:https://towardsdatascience.com/top-10-websites-resources-for-your-data-science-job-hunt-988cfe62a3c5?source=collection_archive---------19-----------------------

利用这些资源让你的求职更上一层楼

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

克里斯多佛·萨丁纳在 Unsplash 上的照片

我知道许多人因为冠状病毒而被解雇,并且正在寻找工作。在过去的几年里,我和我的朋友们发现了一些惊人的资源,它们真的对我的求职很有帮助。下面是几个求职板、论坛和网站,你可以在找实习或全职工作时加以利用!

这篇文章有两个部分: 求职板面试准备 资源我强烈建议你特别利用面试准备资源!

工作公告板

1.y 组合公司(YC)

网站链接 此处

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Y Combinator 是世界上最大的种子加速器之一,已经投资了一些非常成熟的科技公司,如 Stripe、Airbnb 和 DoorDash。他们也有一个求职平台,可以帮你联系到 400 多家由 YC 资助的创业公司。

2.天使列表

网站链接 此处

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

AngelList 是为创业公司提供投资和招聘的最大平台之一。像 LinkedIn 一样,你可以创建自己的个人资料,填写自己的信息,并获得一些创业职位。我发现,如果你在寻找较小的创业公司(1-10 人),这个网站特别好。

3.超狗 io

网站链接 此处

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

超狗 io 主页

《超狗》的独特之处在于,它只在纽约、旧金山和洛杉矶等少数几个城市提供创业职位。也就是说,他们专注于保持招聘信息的高质量,他们有大量顶级科技初创公司,如 Instacart、Lever 和 Airtable。

4.StackOverflow

网站链接 此处

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

StackOverflow 是最大的编程和工程问答网站之一。碰巧他们也有一个就业委员会!这不仅是数据科学家的绝佳去处,也是软件工程师和开发人员的绝佳去处。

面试准备

5.Leetcode

网站链接 此处

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Leetcode 类似于 HackeRank 和 InterviewBit,是一个可以通过完成编码挑战来练习编码技能的网站。这是复习排序算法和 SQL 的好地方。他们还增加了一个新功能,你可以在那里练习模拟面试!总的来说,我强烈建议你用这个来帮助你准备技术面试。

6.面试查询

网站链接 此处

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我想我会分享这个网站,因为它是一个非常新的和独特的资源。你可以把它想象成 Leetcode,但它是专门为数据科学家设计的。它有一个巨大的技术问题库,您可以使用它来帮助准备您的数据科学工作。如果您注册,他们会在每周一、周三和周五向您发送一个数据科学问题。如果这还不够,你还可以支付一个高级帐户。

7.助推启动法

网站链接 此处

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Jumpstart 是一个非常好的资源,我最近才通过一个朋友看到它。你可以把它想象成 Reddit,但是是为了技术工作。虽然主要用作论坛,但他们也有自己的工作板,并有一个充满各种技术活动的日历,你可以报名参加!

8.玻璃门

网站链接 此处

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

是的,我知道 Glassdoor 是一个工作板。但就我个人而言,我从来没有真正把它用于那个目的。相反,我喜欢用它的独特功能,如查看公司评论和为众多公司面试提问的能力。如果你申请的是你从未听说过的公司,利用这一点,知道你将进入什么样的公司。如果你想更好地了解一家公司的面试过程,这也是一个很好的资源。

9.屋顶积雪

网站链接 此处

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

屋顶雪泥在保持匿名的意义上类似于玻璃门,但是它的用途是非常不同的。这是一个很好的资源,你可以向专业人士提问,而不必担心暴露自己。同时,专业人士能够提供诚实的答案,因为他们的身份也是匿名的。你也可以用它来获得员工推荐、简历评论、工作面试建议等等。

10.盲目的

网站链接 此处

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

与 Rooftop Slushie 类似,Blind 是一个由专业人士组成的匿名网络,在这里你可以提出问题,接受建议,了解工作、公司和行业。

奖金

感谢阅读!

如果你喜欢我的工作,想支持我…

  1. 支持我的最好方式是在媒体这里跟随我
  2. 成为第一批在TwitterT2 上关注我的人之一。我会在这里发布很多更新和有趣的东西!
  3. 此外,成为第一批订阅我的新 YouTube 频道 这里目前还没有视频,但即将推出!
  4. LinkedIn 这里关注我
  5. 在我的邮箱列表 这里报名。
  6. 查看我的网站,【terenceshin.com】T21

2021 年要学习的 12 大数据科学技能

原文:https://towardsdatascience.com/top-12-data-science-skills-to-learn-in-2020-5f635d7d98bf?source=collection_archive---------7-----------------------

用这些数据科学技能提升自己

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

斯科特·格雷厄姆Unsplash 上拍照

数据科学领域带来了各种科学工具、流程、算法和从结构化和非结构化数据中提取知识的系统,用于识别其中有意义的模式。

数据科学处于最近引领信息技术领域创新的最前沿。作为 人工智能及其一系列智能工具 带来的变化的关键因素,数据科学通过为分析师和研究人员配备 强大的工具 和技术来帮助他们从数据中提取关键的洞察力。

随着数据科学领域的竞争日益激烈,跟上最新创新的需求也在增加。为了利用数据科学最大限度地利用数据,你必须用各种常用工具和技能提升自己的技能,这样你才能在一些可靠信息的支持下自信地回答手头的问题。这篇文章背后的目标是让你熟悉一些在 2020 年受欢迎的最新数据科学技能

数据科学是让数据变得有用的学科

[## 2020 年必读的数据科学书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/data-science-books-you-must-read-in-2020-1f30daace1cb) [## 2020 年的数据科学趋势

新十年的关键数据科学趋势

towardsdatascience.com](/data-science-trends-for-2020-9b2ee27af499)

2020 年要学习的数据科学技能

“我们正在进入一个数据可能比软件更重要的新世界。”——
——蒂姆·奥莱利

数据科学使用一系列的方法、算法和系统,处理从各种数据来源中提取有洞察力的和改变游戏规则的知识,而不管其存在时间。如果你想在这个快速发展的领域保持竞争力,你需要定期根据最新的变化更新你的技能。

在接下来的部分中,我们将分享顶级数据科学技能,这些技能不仅会让从业的数据科学家受益,也会让任何热衷于处理大量数据的人受益。

但是在深入研究之前,你也可以在这里查看一些很酷的数据科学项目创意—

[## 12 个适合初学者和专家的酷数据科学项目创意

“到目前为止,您已经完成了多少个数据科学项目?”

towardsdatascience.com](/12-cool-data-science-projects-ideas-for-beginners-and-experts-fc75b5498e03)

1. GitHub

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图片来源— Github

如果你编写过任何代码,我们相信你一定听说过 GitHub 。GitHub 是继 栈溢出 之后,今天开发者最常用的工具之一。GitHub 不仅允许开发者毫不费力地在网上托管他们的代码以方便随时访问,还提供版本控制以有效管理他们代码的众多构建通道和版本。

作为开发人员的强大工具,GitHub 还提供了几个企业级特性,例如团队成员之间的安全协作和访问控制,数百个服务的集成支持,以及支持个人开发人员和企业的友好社区。

2.敏捷

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

照片由 Bonneval SebastienUnsplash 上拍摄

敏捷是一种软件开发和项目管理模型,它通过交付较小但功能性的迭代,而不是一次性开发整个项目,来承认和响应软件开发生命周期中的变化。敏捷在交付迭代之前遵循系统化的方法,通过组织定期的团队会议让每个人都在同一页面上。

随着项目逐渐转化为最终的可交付成果,开发团队会确认任何反馈或变更请求,并在完成每个迭代之前实现它们。

作为一名数据科学家,你可以使用敏捷来计划项目的里程碑并对其进行优先级排序,方法是用估计的时间表明确地定义它们,最后,演示一切并从团队那里收集关于哪里出错的反馈。

3.编程(Python/R)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Unsplash 上拍摄的照片

编程是数据科学的核心。将未处理的数据转化为有用的信息是数据科学家必须具备的核心技能之一。虽然数据科学家可以使用多种编程语言,例如 Julia ScalaSwiftPython R 一直是最受欢迎的编程语言

选择 Python 和 R 的主要原因包括减少开发人员生活中混乱的大量第三方库,这些编程语言在众多面向数据科学的任务中的成功历史清晰易懂的语法,代码的效率以及资源的有效利用。

也读出这些文章—

[## 面向数据科学的顶级 Python 库

面向数据科学的流行 Python 库概述

towardsdatascience.com](/top-python-libraries-for-data-science-c226dc74999b) [## 数据科学的顶级 R 库

面向数据科学的流行 R 库概述

towardsdatascience.com](/top-r-libraries-for-data-science-29b4e9f4907c) [## 2020 年人工智能工程师的顶级编程语言

从几种编程语言中,人工智能工程师和科学家可以挑选出适合他们需要的语言

towardsdatascience.com](/top-programming-languages-for-ai-engineers-in-2020-33a9f16a80b0)

4. SQL

在之前的指针中,我们讨论了 编程语言在数据科学 中的重要性,但同样必要的是从数百个来源中提取和处理原始数据的能力。

SQL结构化查询语言直接与数据仓库交互,并将它们转换成有用的信息,然后由开发人员使用。

SQL 通过它的查询提供了各种高级的数据操作技术**,使开发人员不仅可以根据自己的喜好重构数据,还可以对数据进行处理。你可以说,除了能够编码之外,数据科学家还必须具有很强的 SQL 知识,以获得必要的有意义的见解。精通这两种语言的数据科学家可以聪明地利用各种可用的库,比如说 Python 或 R ,用 SQL 更快地获得结果。**

5.生产准备

现代数据科学家总是在编写代码,无论是商业利益相关者的临时代码还是新的机器学习模型,但并不是每个人都精通代码。很有可能一小部分数据科学家没有充分接触软件工程,从而导致糟糕的代码。

众所周知,产品代码在其整个生命周期中会被几个开发人员接触到,这就是为什么它必须遵循定义良好的编码标准,以保持代码的可重复性和模块化,同时保持一切都有良好的文档记录。

通过瞄准上述标准,数据科学家可以克服为生产编写糟糕代码的障碍。毫无疑问,这一开始看起来很有挑战性,但是一旦你开始将这些方面整合到你的代码中,你将会看到你的工作质量有了根本性的提高。

** [## 2020 年最佳数据科学博客

最值得信赖和享有盛誉的来源,让您了解数据科学领域的最新动态。

towardsdatascience.com](/best-data-science-blogs-to-follow-in-2020-d03044169eb4)

6.自然语言处理、神经网络和深度学习

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

照片由像素皮克斯拜拍摄

鉴于人工智能的发展速度,随着其使用越来越广泛,数据科学家越来越有必要对神经网络深度学习 有深入的了解。

自然语言处理在管理和处理人与计算机之间的自动化交互中起着关键作用。这里你最好的例子包括 聊天机器人**语音助手电子邮件过滤工具、语言翻译器**等等。****

人工神经网络 模拟人脑中的神经元网络,帮助解决复杂问题。它的一些现实应用可以在预测股票价值、图像压缩技术、人脸和语音识别中找到。

**而深度学习在更深层次上使用多层人工神经网络来解决问题,例如**欺诈检测、像素恢复、黑色着色&白色图像、等等。

**** [## 用于自然语言处理的 Python 库

用于自然语言处理的流行 python 库概述

towardsdatascience.com](/python-libraries-for-natural-language-processing-be0e5a35dd64)

7.数学和统计技能

数学和统计学是数据科学的先决条件之一。你会惊讶地发现,数据科学中涉及的大部分过程、算法、模型和系统都需要强大的数学和统计背景。

获得这些知识不仅会让你理解这些算法和方法背后的逻辑,还会确保你的洞察力是准确的、可信的,并且没有离群值。更重要的是,您将能够更详细地探索数据,找出任何隐藏的模式和趋势,并找到数据中变量之间的任何关系或依赖关系。

8.机器学习

数据科学是一个更广泛的术语,包括机器学习。简而言之,数据科学处理从数据中提取知识,然后可以在机器学习模型中用作输入数据集。根据这些知识,您可以训练您的系统根据识别的模式执行操作,甚至使用系统进行预测。

现代数据科学家非常希望理解机器学习 中涉及的概念和 算法,例如各种监督和非监督学习算法**。由于您可以使用 Python 或 R 中的各种可用库轻松地应用它们,因此您应该能够确定哪些问题需要什么类型的解决方案。**

[## 2020 年必读的机器学习书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/machine-learning-books-you-must-read-in-2020-d6e0620b34d7) [## 12 个最好的免费在线机器学习课程

在经历了无数免费的在线课程后,我们已经为…策划了一些最好的机器学习免费课程

blog.digitalogy.co](https://blog.digitalogy.co/best-and-free-online-machine-learning-courses/)

9.AutoML

机器学习 由于行业内的各种创新,机器学习在过去几年中有了相当大的发展,但它仍然依赖人类专家来执行各种相关任务。对于刚接触机器学习的数据科学家来说,应用和优化模型起初似乎很有挑战性。

为了克服这一点, AutoML 被开发出来,它接管了将机器学习模型应用于现实生活问题所涉及的任务,例如预处理和清理数据、选择正确的特征、优化模型的超参数、问题检查以及分析结果。通过自动化这些乏味的任务,数据科学家可以节省大量的时间,而不必担心训练甚至最复杂的机器学习模型,最终提高生产力,即使只有一个小团队。

也看看这些文章—

[## 10 大人工智能技术趋势,可将您的业务推向新的高度

最后更新由克莱尔 d。人工智能无处不在,它已经影响到我们的生活。这是无法逃避的,因为人工智能…

blog.digitalogy.co](https://blog.digitalogy.co/artificial-intelligence-technologies/) [## 日常生活中人工智能的 10 个最佳例子

在过去的几十年里,人工智能一直在发展,它积极地使人们和…

blog.digitalogy.co](https://blog.digitalogy.co/best-examples-of-artificial-intelligence-in-everyday-life/)

10.数据可视化

数据可视化是整个数据科学过程中的关键阶段之一,因为它通过使用各种可视化工具,如图表、图形、直方图,以图形方式让我们第一眼看到数据。正是在这个过程中,数据开始描绘一些模式,我们开始从中汲取有意义的见解,以解决手头的问题。

这些可视化几乎不需要技术技能,非常适合发送给组织中的各种利益相关者。要为您的数据创建信息可视化,您必须了解一些编程语言,如 R 和 Python、以及它们相关的可视化包

11.数据库管理

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

照片由马库斯·斯皮斯克佩克斯拍摄

一个 DBMS 或数据库管理系统本质上支持 SQL ,允许开发人员创建、操作和查看结构化关系数据,但是在此之上, DBMS 添加了数据库和存储数据的表的创建、管理和操作。

此外,DBMS 还可以充当请求数据的应用程序和数据之间的桥梁,舒适地存放在某个数据存储中。除此之外,DBMS 还可以为数据科学家提供一些有用的功能,其中一些功能包括多用户环境、在粒度级别访问甚至修改数据结构的能力、数据库的备份和恢复。

12.云和大数据

组织喜欢在上运行他们的业务,他们正在积极地从内部基础设施转向云计算

你知道为什么吗?

这是因为云为复杂和资源饥渴的领域提供了强大而又负担得起的计算资源,如人工智能、数据科学、机器学习。这背后的另一个原因是,一些处于创新前沿的行业领先企业,如微软、亚马逊、谷歌、IBM 和英伟达,正在积极致力于使这些服务易于每个人使用。

大数据也从向云计算的转变中受益匪浅,因为它允许数据科学家远程管理遍布全球的节点上存储的数据,并扩展他们的数据流程,而不必担心资源的限制。

更多技术和非技术数据科学技能—

  • 数据争论
  • 数据分析
  • 数据讲述技巧
  • 数据摄取
  • 多变量微积分和线性代数
  • 数据直觉
  • 有效的商务沟通
  • 实验
  • 商业头脑
  • Hadoop 平台
  • 商业智能

结论

随着越来越多的企业开始采用现代数据科学技术,对熟练数据科学家的需求也在增加。为了迎合这种不断扩大的需求,我们分享了 12 项必备技能,这些技能不仅能提高您的数据提取和处理技能,还能大大提高您收集更好见解的分析技能。事实证明,你会在一生中不断学习,在数据科学这样一个不断发展的行业中,你对数据科学领域的当代工具和技术越有经验和技能,你就越有可能在一家知名的不断发展的公司中获得一份高层工作。如果你坚持到了最后,请分享你对这些技能的看法。

注: 为了消除各种各样的问题,我想提醒你一个事实,这篇文章仅代表我想分享的个人观点,你有权不同意它。

如果你有更多的建议或想法,我很乐意倾听。

更多有趣的读物

我希望这篇文章对你有用!以下是一些有趣的读物,希望你也喜欢

[## 2020 年你必须使用的最好的 Python IDEs 和代码编辑器

具有显著特性的顶级 Python IDEs 和代码编辑器

towardsdatascience.com](/best-python-ides-and-code-editors-you-must-use-in-2020-2303a53db24) [## 给 Python 开发者的 10 个很酷的 Python 项目想法

您可以使用 Python 构建的有趣想法和项目列表

towardsdatascience.com](/10-cool-python-project-ideas-for-python-developers-7953047e203) [## 2020 年必读的 Python 书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/python-books-you-must-read-in-2020-a0fc33798bb) [## Python vs. Node。JS:哪个最适合你的项目?

使用一组预定义的因素对 Python 和 Node.js 进行详细比较

towardsdatascience.com](/python-vs-node-js-which-one-is-best-for-your-project-e98f2c63f020) [## 10 家使用 Python 的世界级公司

Python 正被 IT 界的一些巨头积极使用

towardsdatascience.com](/10-world-class-companies-using-python-26cde24919a8)

关于作者

克莱尔 D 。在digital ogy—***是一个内容制作者和营销人员,这是一个技术采购和定制匹配市场,根据全球各地的特定需求,将人们与预先筛选的&顶尖开发人员和设计师联系起来。与我连线上 Linkedin&推特 *******

你必须知道的 12 项 Python 开发者技能

原文:https://towardsdatascience.com/top-12-python-developer-skills-you-must-need-to-know-9e2b6c7fc6c?source=collection_archive---------5-----------------------

Python 开发人员必备的顶级技能

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

照片由 Pexelsolia danilevich 拍摄

Python 是程序员需要多大自由的一个实验。太多的自由,没人能读懂别人的代码;太少,表现力受到威胁。

吉多·范·罗苏姆

在过去的几年里, Python 已经稳步成为行业中无数任务最受欢迎的编程语言之一。Python 为所有开发人员提供了一个坚实的切入点,让他们能够充分利用其多才多艺的特性和它提供的一些好处。

但是仅仅拥有最好的应用程序开发编程语言和工具并不能让你成为一名优秀的 python 开发人员。如果你想成为最好的 Python 开发者,你需要的不仅仅是 Python。

在本文中,我们将了解一些基本技能,这些技能可以提高 Python 开发人员的生产力,并为精英中的精英开辟新的职业选择。

你知道吗?

根据 Stackoverflow 的说法,python 是最受欢迎的语言,这意味着大多数开发人员都使用 Python。

[## 2020 年大一新生热门 Python 面试问答

这里列出了大一新生最常被问到的 python 面试问题和答案,涵盖了核心…

blog.digitalogy.co](https://blog.digitalogy.co/python-interview-questions-and-answers-for-freshers/)

Python 开发人员技能

Python 是你能读懂的最强大的语言。

  • 保罗·杜布瓦

Python 正被积极地用于各种领域,如数据科学、机器学习、网络应用等等。在这一节中,我们将介绍十多项 python 开发人员必备的技能,帮助您掌握使用 Python 的艺术

1.核心 Python 的专业知识

在进入框架或开发环境之前,首先掌握任何编程语言的核心概念是至关重要的。Python 或任何编程语言也是如此。你应该把注意力集中在牢固掌握各种基本概念上,例如:

  • 变量和数据类型
  • 数据结构
  • 异常处理
  • 文件处理
  • 面向对象编程
  • 更多

如果不知道从哪里入手,可以在网上找一些好的有用的资源。你甚至可以使用 Python 参考书,因为它们很好地涵盖了这些主题的深度。

[## 2020 年必读的 Python 书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/python-books-you-must-read-in-2020-a0fc33798bb)

2. Python 框架

Python 框架对开发者来说是天赐之物。他们最擅长的是加速开发过程,因为他们不再需要担心底层的东西,比如套接字、协议或线程。有几个 Python 框架可以选择,比如 Django Flaskweb 2py Bottle 等等。

一旦 Python 开发人员掌握了窍门,像这样的框架就可以简化他们的生活。Python 框架可以让你快速开发应用原型,因为框架可以从本质上把你从重复输入代码的麻烦中拯救出来。Python 框架的可用性不仅仅局限于 web 应用程序开发,因为它们还延伸到像人工智能、机器学习和数据科学这样的领域。

Python 中的 5 大框架—

3.Python 库

Python 最好的一点是它拥有最大的库集合之一。

根据 Python 包索引 , Python 有超过 26.7 万个项目。无论您计划创建什么,都很有可能已经创建好了,并且随时可以使用,并且有足够的文档。

一个聪明的 Python 开发人员必须足够熟练,能够找到、研究并正确实现 Python 生态系统提供的包,因为您几乎每天都会用到它们。这些库涵盖了广泛的领域,比如人工智能、机器学习、数据科学等等。Python 还有一个 活跃而热情的社区 ,在这里你可以从世界各地的其他开发者那里获得帮助。

一些与 Python 库相关的有用文章—

[## 机器学习和深度学习的最佳 Python 库

现代机器学习模型和项目的 Python 库

towardsdatascience.com](/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c) [## 用于自然语言处理的 Python 库

用于自然语言处理的流行 python 库概述

towardsdatascience.com](/python-libraries-for-natural-language-processing-be0e5a35dd64) [## 面向数据科学的顶级 Python 库

面向数据科学的流行 Python 库概述

towardsdatascience.com](/top-python-libraries-for-data-science-c226dc74999b)

Python 框架和 Python 库的区别—

4.前端技术知识

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Florian OlivoUnsplash 上拍摄的照片

如果你认为作为一名 Python 开发者,你只会与后端技术打交道,那你就错了。Python 开发人员经常需要使用前端技术来确保客户端与服务器端相匹配。在企业环境中,为了更好地协调工作流,这通常会涉及 UI/UX 团队、项目经理和 SCRUM Masters。在前端工作让您对应用程序的外观和工作有一个清晰的了解。

但是没有这些职责并不意味着你不应该在你的前端开发技能上努力。掌握一些前端技术,如**JavaScript CSS HTML 将证明是有益的。尽管这些技能和经验可能不是所有地方都必须具备的,但它们肯定是非常受欢迎的,因为一些项目,如果不是所有的项目,可能会用到它们。**

5.机器学习和人工智能

像机器学习和人工智能这样的行业最近一直在蓬勃发展。这背后的部分原因是惊人的创新率和行业中这些创新的类似实施率。由于 ML 和 AI 都是非常受欢迎的技术,Python 开发者应该深入研究它们的基础概念和算法以获得清晰的理解。

在处理大量数据的项目时,精通数据科学也将被证明是至关重要的。一旦你提高自己的技能,从数据中获取、分析、可视化和预测信息,你会发现很容易从你的观察中向你的利益相关者描绘出一幅清晰的画面,并伴有任何异常值。

一些有用的机器学习文章—

** [## 机器学习算法之旅

阅读机器学习算法的介绍性列表

towardsdatascience.com](/a-tour-of-machine-learning-algorithms-466b8bf75c0a) [## 2020 年必读的机器学习书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/machine-learning-books-you-must-read-in-2020-d6e0620b34d7) [## 12 个最好的免费在线机器学习课程

在经历了无数免费的在线课程后,我们已经为…策划了一些最好的机器学习免费课程

blog.digitalogy.co](https://blog.digitalogy.co/best-and-free-online-machine-learning-courses/)

6.深度学习

一旦你已经覆盖了人工智能和机器学习的基础,你旅程的下一步应该是深度学习。深度学习是机器学习的一部分,学习过程和技术与我们人类的大脑非常相似。我们有监督、半监督和非监督学习。

一旦你弄清楚什么是深度学习,你应该能够使用你新发现的技能来开发基于深度学习的系统,例如:

  • 推荐系统
  • 自然语言处理
  • 图像识别
  • 自动语音识别
  • 图像恢复
  • 还有更多

7.熟悉 ORM 库

ORMs 或对象关系映射器本质上是一类库,它方便了从关系数据库到 Python 对象的数据传输。开发者可以使用这些库,通过使用 Python 代码而不是 SQL 来直接对存储在他们数据库中的数据进行更改。【SQLAlchemy】、Peewee ORMDjango ORMPonyORM 乌龟 ORM 只是 Python 可用的众多 ORM 库中的一部分。

ORM 库提供的好处通常可以节省大量的开发时间,同时为您提供在需要时切换到另一个关系数据库的灵活性。

8.版本控制

任何软件项目,无论是 Python 还是任何编程语言,在其开发阶段都会经历大量的变更和版本。版本控制可以帮助你追踪最微小的变化,并具有完全的可追溯性。在项目中与其他开发人员合作时,这变得越来越重要。

有一些顶级的版本控制工具,如【Git】MercurialApache Subversion等等,但 Git 是其中最受欢迎的。在学习版本控制的过程中,您会遇到一些术语,如“提交”、“推送”、“拉取”和“分支”T17,它们本质上是版本控制成为可能的原因。请记住,这将是您在使用 IDE 或代码编辑器之后最常用的工具之一,所以我们建议您在学习这一技能时密切关注。****

**** [## 2020 年你必须使用的最好的 Python IDEs 和代码编辑器

具有显著特性的顶级 Python IDEs 和代码编辑器

towardsdatascience.com](/best-python-ides-and-code-editors-you-must-use-in-2020-2303a53db24)

9.了解多流程架构

在开发 web 应用程序时,Python 开发人员必须选择一个开发架构或框架,将应用程序的内部工作与用户分开。现代开发人员可以选择使用模型视图控制器架构或者模型视图模板架构。

虽然这是一个设计工程师的角色,但作为一个 Python 开发人员,您应该对您的代码在发布或部署环境中如何工作有一个基本的了解。在理解了架构之后,一旦您开始在这些环境上工作,您应该能够识别和解决核心框架中的问题,以获得更好和优化的结果。

[## GitHub 上十大热门 Python 项目

像这样的 GitHub 项目是人们创造力和才华的完美展示

towardsdatascience.co](/top-10-trending-python-projects-on-github-fb852cd58262) [## 给 Python 开发者的 10 个很酷的 Python 项目想法

您可以使用 Python 构建的有趣想法和项目列表

towardsdatascience.com](/10-cool-python-project-ideas-for-python-developers-7953047e203)

10.通讯技能

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

奥斯汀·迪斯特尔Unsplash 上拍摄的照片

良好的沟通技巧不仅是 Python 开发人员的必备技能,也是专业或个人环境中每个人的必备技能。一个具有良好沟通技巧的人在与他人沟通时不会留下任何空白或困惑,并清晰地传达他/她的信息。

由于开发人员经常必须与其他程序员进行结对编程,因此在项目协作或审查代码以保持一致时,清晰的沟通变得更加重要。此外,与您的团队成员进行清晰的沟通可以解决许多问题,并为任何组织带来成功。

11.分析能力

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

照片由卢卡斯派克斯拍摄

编程有时往往是一项具有挑战性的任务,但如果你缺乏工作所需的分析技能,它将成为你的噩梦。不仅仅是 Python,任何使用任何编程语言的开发人员都应该有很强的分析能力,有丰富的经验,并且对驱动事物的算法有很好的理解。

一个优秀的开发人员拥有的众多技能之一是他们用正确的逻辑编写清晰、无冗余和极度优化的代码的能力。一旦你开始这样做,你应该能够看到你的分析技能得到提高,因为它在数据科学等行业变得越来越相关和重要,在这些行业中,你需要不断地处理、分析和可视化数据。

12。设计技巧

让我们明确一点,我们这里指的不是前端设计的设计技巧。通过设计技巧,我们指的是设计高度可伸缩的系统。如今,企业依靠高效设计的系统和解决方案蓬勃发展,这些系统和解决方案可以在尽可能短的停机时间内为每个人所用。

为了满足这个标准,你必须了解最好的开发技术和工具,例如, Django 或 Flask 。这两个框架都有助于构建在客户端和服务器端都能高效工作的系统。

结论

任何人都可以学习编写代码,但是让你在竞争中占上风的是你采取的方法、你的代码的效率、你对各种包和工具的专业知识。在本文中,我们介绍了 Python 开发人员必备的 10 多项顶级技能。拥有这些技能的有经验的开发人员会脱颖而出。如果你也受到这篇文章的启发,并想通过采用这里提到的技巧来提高自己,我们强烈建议你这样做。这些技能不仅能帮助你提高 Python 开发人员的水平,还能帮助你找到一份更好的工作。

注: 为了消除各种各样的问题,我想提醒你一个事实,这篇文章仅代表我想分享的个人观点,你有权不同意它。

如果你有更多的建议或想法,我很乐意倾听。

更多有趣的读物

我希望这篇文章对你有用!以下是一些有趣的读物,希望你也喜欢

[## 面向所有人的顶级谷歌人工智能工具

使用谷歌人工智能中心将想法变为现实

towardsdatascience.com](/top-google-ai-tools-for-everyone-60346ab7e08) [## Python vs. Node。JS:哪个最适合你的项目?

使用一组预定义的因素对 Python 和 Node.js 进行详细比较

towardsdatascience.com](/python-vs-node-js-which-one-is-best-for-your-project-e98f2c63f020) [## Python vs(和)R 用于数据科学

用一组预定义的因素详细比较 Python 和 R

towardsdatascience.com](/python-vs-and-r-for-data-science-4a32580846a4) [## 10 家使用 Python 的世界级公司

Python 正被 IT 界的一些巨头积极使用

towardsdatascience.com](/10-world-class-companies-using-python-26cde24919a8)

关于作者

克莱尔 D 。在Digitalogy是一个内容制作者和营销人员,这是一个技术采购和定制匹配市场,根据全球各地的特定需求,将人们与预先筛选的&顶尖开发人员和设计师联系起来。与我连线上 Linkedin,&Twitter********

学习 AWS 的 12 大方法(免费)

原文:https://towardsdatascience.com/top-12-ways-to-learn-aws-for-free-1113af329d06?source=collection_archive---------3-----------------------

提高云计算技能的最佳资源

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

邦妮·凯特在 Unsplash 上的照片

当你看到这些天的技术招聘广告时,很多都需要一些关于亚马逊网络服务的知识。无论你是一名程序员、数据科学家、数据工程师、开发人员、数据库管理员、数据分析师,还是一名经理,了解 AWS 都是一项重要的技能。即使一些公司使用不同的云提供商,**云存储、计算或网络、**的主要概念在所有供应商中非常相似。在下面的文章中,我列出了对学习 AWS 非常有帮助的免费资源。

1.AWS 提供的 edX 课程

AWS 在 edX 上创建了一系列高质量的课程(见下面的链接)。这些课程将带您体验一系列服务,包括大量演示、练习和重要概念回顾。你可以选择为每门课程支付 100 美元左右并获得证书,但你不需要这样做——你可以免费旁听课程,并从中获得很多价值。

[## 亚马逊网络服务

亚马逊网络服务(AWS)是世界上最全面和最广泛采用的云平台,提供超过 165 个完整的…

www.edx.org](https://www.edx.org/school/aws)

2.Qwicklabs 实验室

我强烈支持边做边学。Qwicklabs 是一个提供预配置的云环境的平台,这对于刚刚开始使用 AWS 的人来说尤其有价值。该平台允许你尝试不同的服务,而不用担心做错什么或者万一你忘记关闭一些资源时会收到一大笔账单。

尽管你可能不会像在你自己的 AWS 账户中做每件事那样学到很多东西,但该平台为你提供了一个环境,在那里你需要所有的资源来学习一项特定的服务。IAM 角色,安全组)设置完毕。最重要的是,教程为您提供了特定服务的简短介绍以及完成特定任务的逐步说明。

[## Qwiklabs -实践云培训

我们给你亚马逊网络服务的临时凭证,所以你可以使用真实的东西来学习云——不…

aws.qwiklabs.com](https://aws.qwiklabs.com/)

3.AWS 自由层

没有比在现实生活中实际尝试更好的学习方法了。AWS 为您的前 12 个月提供免费等级,这使您可以(有限地)访问最受欢迎的服务。您可以创建自己的帐户,设置账单提醒以避免不必要的费用,并开始提供资源和与您选择的服务进行交互。在这里,您可以找到免费层涵盖的服务的详细概述:

[## AWS 自由层

免费体验 AWS 平台、产品和服务,探索超过 85 种产品并开始…

aws.amazon.com](https://aws.amazon.com/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc)

比如用 t2.medium 笔记本可以免费获得两个月 250 小时的 SageMaker 资源。

4.官方培训网站

如果您想深入了解 AWS,最好的资源可能是官方培训和认证页面,其中包括大量免费资源,涵盖了使用特定服务的理论基础和实际意义。我可以推荐它,尤其是如果你打算获得认证,因为有许多课程是专门为准备认证考试而设计的。

[## AWS 培训和认证

编辑描述

www.aws.training](https://www.aws.training/)

5.AWS YouTube 频道

AWS 有一个官方的 YouTube 频道,包括教程、会议视频和演示如何使用他们的服务。理想情况下,你可以将它与免费等级帐户结合使用,这样你就可以直接尝试你所学的东西。

[## 亚马逊网络服务

Amazon Web Services (AWS)提供了一整套基础设施和应用服务,使您能够运行…

www.youtube.com](https://www.youtube.com/channel/UCd6MoB9NC6uYN2grvUNT-Zg)

6.AWS 播客

AWS 也有一个官方播客,他们在其中分享他们产品的更新,特定主题的建议和用户故事。该播客也可以在谷歌播客上获得,这样你就可以在上下班途中和休息时间轻松收听。

[## AWS 播客|收听并了解 AWS

AWS 官方播客是一个面向开发者和 IT 专业人士的播客,旨在寻找以下领域的最新新闻和趋势…

aws.amazon.com](https://aws.amazon.com/podcasts/aws-podcast/?podcast-list.sort-by=item.additionalFields.EpisodeNum&podcast-list.sort-order=desc)

7.免费 Udemy 课程

Udemy 上有许多付费但也有一些免费的 AWS 课程。例如,这里有两个免费(高评分)的课程,不需要事先了解 AWS:

[## 免费亚马逊 AWS 教程-亚马逊 AWS 教程:学习亚马逊 Web 服务(AWS)

LevelUpCloud 为所有云计算平台提供领先的在线培训。亚马逊网络服务,谷歌云…

www.udemy.com](https://www.udemy.com/course/learn-amazon-web-services-the-complete-introduction/) [## 免费亚马逊 AWS 教程-亚马逊网络服务(AWS) -零到英雄

自 2014 年以来,提供由 AWS 专业级认证讲师讲授的加速学习计划。独一无二的…

www.udemy.com](https://www.udemy.com/course/amazon-web-services-aws-v/)

8.AWS 文档

可能是最“无聊”的,但同时也是你不可避免会大量使用的最有用的资源()在与 AWS 合作时是特定服务的文档化。每项服务都有一个“入门”部分,该部分将指导您逐步调配和配置特定资源。以下是 SageMaker“入门”部分的一个示例:

[## Amazon SageMaker 笔记本实例和 SDK 入门

学习如何使用 Amazon SageMaker 的最好方法是创建、训练和部署一个简单的机器学习模型。至…

docs.aws.amazon.com](https://docs.aws.amazon.com/sagemaker/latest/dg/gs-console.html)

9.常见问题

这听起来可能也很无聊,但是我发现很多 FAQ 对于深入理解具体的服务真的很有用。通过简单的问答形式,你可以快速扩展你对某一特定主题的知识。如果你打算获得认证,常见问题会证明非常有用。AWS 承认,他们的考试问题大量基于常见问题。这也是 SageMaker 服务的一个例子:

[## 亚马逊 SageMaker 常见问题解答-亚马逊网络服务(AWS)

问:亚马逊 SageMaker 在哪些地区有售?有关受支持的亚马逊 SageMaker AWS 地区的列表,请…

aws.amazon.com](https://aws.amazon.com/sagemaker/faqs/)

10.AWS Github 官方页面

在撰写本文时,AWS 有超过 200 个存储库!如果您想了解如何使用特定的 SDK 或找到示例代码来开始您的项目,那么很可能已经有一些包含有用代码示例的存储库。例如,您可以在以下存储库中找到几个涵盖各种数据科学模型的 SageMaker Jupyter 笔记本:

[## AWS/亚马逊-sage maker-示例

这个知识库包含示例笔记本,展示了如何在亚马逊应用机器学习和深度学习…

github.com](https://github.com/aws/amazon-sagemaker-examples/blob/master/README.md)

11.事件

AWS 正在举办许多活动和网络研讨会,这不仅让您可以学习,还可以与其他人联系并提出问题。

[## AWS 活动和网络研讨会

AWS 举办在线和面对面的活动,将云计算社区聚集在一起,进行联系、协作…

aws.amazon.com](https://aws.amazon.com/events/)

12.Reddit 和堆栈溢出

通常,如果你陷入困境,你可能会想请更有经验的人来帮助你前进。软件工程中一个明显的问题是堆栈溢出。除此之外,我发现r/aws subreddit 是一个提问和了解最新消息的好地方。

[## r/aws

r/aws:涵盖亚马逊网络服务(aws)的新闻、文章和工具,包括 S3、EC2、SQS、RDS、DynamoDB、IAM…

www.reddit.com](https://www.reddit.com/r/aws/)

结论

云计算知识变得越来越重要。我强烈建议至少尝试一下 edX 课程,因为我个人从中学到了很多。如果这篇文章有帮助, 跟着我 不要错过我的下一篇文章。例如,在下面的文章中,我讨论了我最喜欢的 AWS 服务之一,Fargate 上的 EKS:

[## AWS 上的无服务器 Kubernetes 集群和 Fargate 上的 EKS

为什么它会改变游戏规则,以及如何使用它

medium.com](https://medium.com/better-programming/serverless-kubernetes-cluster-on-aws-with-eks-on-fargate-a7545cf179be)

学习数据科学的 13 大 YouTube 渠道

原文:https://towardsdatascience.com/top-13-youtube-channels-to-learn-data-science-a9883e280441?source=collection_archive---------21-----------------------

YouTube 上的信息频道,可获取吨关于数据科学的信息视频

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来自 Pexels 的【freestocks.org】T2 的照片

数据科学是让数据变得有用的学科。

YouTube 不需要太多的介绍,我们相信你们都知道它在所有年龄段的人群中有多受欢迎。YouTube 不仅是一个巨大的娱乐宝库,也是一个同样重要的教育来源。不可否认,从 YouTube 学习最棒的一点是,获取大量教育视频不需要任何费用。

数据科学和许多其他类似的领域起初可能会令人望而生畏,但有了 YouTube,你可以轻松访问大量关于大量主题的教育和教学视频,包括数据科学。这篇文章背后的目标是向您介绍 YouTube 上的一系列信息频道,这些频道揭开了数据科学的复杂概念,以便您可以按照自己的节奏学习。但是在深入研究这个之前,先看看

一些有趣的数据科学文章—

[## 2020 年必读的数据科学书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/data-science-books-you-must-read-in-2020-1f30daace1cb) [## 2020 年最佳数据科学博客

最值得信赖和享有盛誉的来源,让您了解数据科学领域的最新动态。

towardsdatascience.com](/best-data-science-blogs-to-follow-in-2020-d03044169eb4) [## Github 上的 10 个流行数据科学资源

一些顶级的 GitHub 库将教你所有关于数据科学的知识。

towardsdatascience.com](/10-popular-data-science-resources-on-github-7ae288ff4a75)

顶级数据科学 YouTube 频道

数据科学领域带来了各种科学工具、流程、算法和从结构化和非结构化数据中提取知识的系统,用于识别其中有意义的模式。

人人都爱 YouTube,对吧?但是,访问几乎成千上万的关于数据科学的信息视频,不仅涵盖基础知识,还涵盖该领域的最新进展,这难道不是很有趣吗?

在**大规模在线开放课程(mooc)**的时代,YouTube 是一个强大的平台,可以找到你的问题的答案,否则这些问题就不会出现在课程视频中。同时帮你省钱。

我们猜测到现在为止,你对这些频道的了解已经相当兴奋了,很公平,让我们不要再浪费时间,继续关注 YouTube 上专注于数据科学的频道列表。

1.3 蓝色 1 棕色

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:3 蓝色 1 棕色

3Blue1Brown 是格兰特·桑德森 于 2015 年 3 月创建的一个相当有趣的频道**,该频道主要致力于以娱乐的方式教授数学。**

你可能想知道为什么我们把这个频道包括在我们的列表中。嗯,这有两个原因。首先是,他在自己的频道上讲述了大量与数据科学领域相关的话题。这些主题包括神经网络、线性代数、傅立叶变换、微积分等。

其次,你在他的视频中看到的那些令人惊叹的可视化效果都是由一个用 Python 编写的名为 manim 的动画引擎创造的,这是格兰特自己创造的。3Blue1Brown 频道有超过 100 次上传,总计1.65 亿次观看

通过他的频道,你会意识到可视化在格兰特的视频中扮演了多么重要的角色,以及 manim 库可以多么漂亮地用来创建一些光滑的视觉效果。

2.freeCodeCamp.org

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:freeCodeCamp.org

由昆西·拉森于 2014 年 12 月创建的自由代码营是一个的非营利组织,其使命是让人们能够编码并帮助他人。freeCodeCamp 更像是一个面向课程的频道,由一群知识渊博的人运营,他们有很强的编程背景。他们的 YouTube 频道提供各种主题的信息视频,如数据结构、JavaScript、Python、数据科学、机器学习、 Node.js ,迄今为止已有超过1.27 亿次总浏览量

freeCodeCamp 的频道有超过 1100 个视频,其中相当大一部分是至少超过一个小时的内容和代码课程。你也可以访问他们的网站获取超过 6000 份关于编程和道德黑客的教程。

3。send ex

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:send ex

  • 自:2012 年 12 月 17 日
  • 创作者:哈里森·金斯利
  • **浏览人数:**87960317
  • 用户数:974 千
  • **Youtube 链接:**https://www.youtube.com/c/sentdex/features
  • 网址:https://pythonprogramming.net/

由 Harrison Kinsley 于 2012 年 12 月创建send ex涵盖了 机器学习自然语言处理数据分析与可视化,以及一些带有树莓 Pi 项目的机器人项目

哈里森简化各种主题的清晰和解释性风格使 Sentdex 成为 YouTube 上最好的数据科学频道之一。该频道拥有超过 1200 个视频和超过 8700 万次观看。Harrison 对 Python 的热爱可以在他的频道上看到,因为他用 Python 讲述了大量编程主题。

他还经营着一个名为 Python 编程教程的网站,在那里你可以找到一个非常详细的 Python 项目的健康集合,并看到事情是如何工作的。如果你对一个更高级的话题感兴趣,比如说神经网络,Harrison 已经写了一本关于它的书**,名为《Python 中从头开始的神经网络。**

一些与 Python 相关的有趣文章—

[## 2020 年你必须使用的最好的 Python IDEs 和代码编辑器

具有显著特性的顶级 Python IDEs 和代码编辑器

towardsdatascience.com](/best-python-ides-and-code-editors-you-must-use-in-2020-2303a53db24) [## 给 Python 开发者的 10 个很酷的 Python 项目想法

您可以使用 Python 构建的有趣想法和项目列表

towardsdatascience.com](/10-cool-python-project-ideas-for-python-developers-7953047e203) [## 2020 年必读的 Python 书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/python-books-you-must-read-in-2020-a0fc33798bb)

4.科里·斯查费

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:科里·斯查费

科里·斯查费的 YouTube 频道主要围绕对现代程序员和研究人员至关重要的编程工具展开,包括编程的基本概念。科里频道上的视频已经获得了超过 4700 万的点击量,并且还在增加。该频道的涵盖了一系列主题,如编程基础知识、Linux 教程、 SQL 教程 Django等等。

对于对数据科学感兴趣的个人,Corey 为您提供了视频播放列表,主题包括 【熊猫】Matplotlib,以及一系列入门视频 Python 。无论您是专业环境中的编程老手,还是学习该技术的初学者,Corey 都提供了考虑到每个人技能水平的教育内容。

5.蒂姆的技术

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:蒂姆科技

由 Tim Ruscica 于 2014 年 4 月开始,Tim 频道上的视频更多的是侧重于 Python 编程总体上有一些游戏开发使用 PyGame一些机器学习的教程、JavaScript搭配一些框架。随着超过 3200 万的总浏览量,蒂姆的频道有一些关于几个主题的很酷的项目,比如 Flappy Bird 游戏,人脸识别工具,Slack bot 等等。

Tim 也做过一些长的编码直播流,范围从可管理的 2 小时到更累人的 12 小时。你还会在的频道上为新开发者找到一些重要的提示和建议以及一些编程项目想法,还有一些关于 GolangFlutter 的初学者友好教程。如果你喜欢 Tim 频道上的项目,你可以在他的 GitHub repo 上找到代码来跟进他的一些视频。

6. Python 程序员

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:贾尔斯·麦克马伦

Giles McMullen2008 年 8 月创建了这个频道,以激发世界对 Python 的兴趣,并展示他对编程语言的热爱,因此被命名为 Python 程序员。这些年来,Giles 在他的频道上覆盖了各种主题的大量教程,从更基础的初学者教程,如Python 编程基础到 更高级的主题,如数据科学和机器学习。

你可以在 Giles 的数据科学和机器学习频道上找到一些免费课程,这些课程基本上可以让你对这些学科的核心概念有一个很强的了解。除了涵盖教育主题,Giles 还有关于流行 Python 库的视频,如 Pandas、 NumPy Scikit-learn**、**以及一些方便的技巧,向程序员介绍 Python 的所有技能,或者只是一般编程

7.Josh Starmer 的 stat quest

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源: StatQuest

起初只是向同事解释复杂的统计技术,很快就变成了 Josh 的热情,后来变成了 StatQuest。 StatQuest 消除了人们在理解现代统计学和机器学习充满的复杂术语和方法时通常面临的挑战。

由 Josh Starmer 于 2011 年 5 月创建的 StatQuest 拥有超过 180 个视频,总计有1700 万次观看。在频道中,您会发现一些播放列表解释了**各种基本概念,如逻辑回归、线性回归、线性模型。**您也可以访问 StatQuest 的网站来查找学习指南,其中包含详细信息,有助于更好地理解子主题,如 AdaBoost、分类树和其他一些主题。

8.克里斯·纳伊克

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:克里斯·纳伊克

  • 自:2012 年 2 月 11 日
  • 创作者:克里斯·纳伊克
  • **观点:**14703650
  • 订户:262,000 人
  • Youtube 链接:【https://www.youtube.com/user/krishnaik06/】T4

创建于 2012 年 2 月,克里斯·纳伊克的频道让你探索各种主题,不仅是数据科学,还有机器学习和深度学习。如果你是数据科学领域的初学者,我们强烈建议你从播放列表部分开始,特别是**“完整机器学习”播放列表**。该播放列表不仅会带你完成机器学习,还会教你 Python,因为整个播放列表都是围绕编程语言 Python 展开的。

一旦你访问该频道,你会发现许多播放列表专注于几个方面和主题,如解决面试问题,增强现实,深度学习,统计学,自然语言处理等等。就数字而言,在写这篇文章的时候,Krish 的频道有超过 750 个视频,总浏览量达 1400 万。

[## 2020 年必读的机器学习书籍

看看吧,你为什么要读它们?

towardsdatascience.com](/machine-learning-books-you-must-read-in-2020-d6e0620b34d7)

9.布兰登·福尔茨

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:布兰登·福尔茨

在访问 Brandon Foltz 的 YouTube 频道时,你会发现一排又一排的视频,涵盖了不同主题的完整课程,如统计学、运营管理、基础会计和管理科学。布兰登的频道创建于 2011 年 8 月,仅差一点就达到了 1950 万的总浏览量,超过 200 次上传**。**

Brandon 的频道特别注重让您全面了解数据科学数学和统计学的各种概念,如线性回归、非线性回归、逻辑回归、概率、模型构建等等。

10.数据学校

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:凯文·马卡姆

凯文·马卡姆于 2014 年 4 月创办了这个频道,心中只有一个目标,那就是在数据科学世界及其看似神秘的众多概念的旅程中为绝对的初学者提供指导。在开始编写代码之前,Kevin 非常重视用足够的介绍性信息涵盖每个主题的整体。

**除了数据科学之外,Kevin 还在他的频道上涵盖了几个主题,如机器学习、数据分析和流行的 Python 库,如 Scikit-learn、DP lyr**和 Pandas。凯文的频道有超过 90 个视频,总观看次数超过 750 万。

11.365 数据科学

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源: 365 数据科学

****365 数据科学始于 2017 年 8 月,是一个电子学习频道,拥有大量与数据科学相关主题的教育视频。他们的频道有接近 500 万的观看量跨越超过 160 个视频教程,涉及各种主题,包括机器学习、深度学习、统计学、Python、SQL 和许多其他主题。

他们的 YouTube 频道上的培训材料已经以易懂的方式进行了解释,同时考虑到了初学者和老手。365 数据科学的 YouTube 频道补充了他们的网站,在那里你可以报名参加他们提供的数据科学课程,以更深入地了解这个主题。

12.数据营

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:数据营

数据营(Data camp)是一个平台,你可以在这里报名参加一系列精心策划的课程,从现代数据科学、机器学习、、统计学、数据可视化、、编程以及许多其他主题。他们的 YouTube 频道创建于 2014 年 3 月**,接近 1200 个视频的大关,总浏览量**超过 5500 万。****

在他们的频道上,你会发现关于数据科学的播客,这可以让你彻底了解什么是数据科学,以及它如何造福现代世界。他们还有一堆视频,教你如何开始使用R 和 Python 编程语言 来实现以数据科学为中心的目标。您还将学习数据操作和可视化技术。如果你对这些课程感兴趣,一定要去看看他们的网站。

13.数据科学道场

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来源:数据科学道场

Dojo 这个词源于日语,翻译过来就是沉浸式学习的地方。

数据科学 Dojo 旨在为所有对数据科学感兴趣的人提供类似的学习体验。创建于 2014 年 8 月,他们的 YouTube 频道至今已有超过 300 万的浏览量,他们的上传数接近 250。****

在他们的频道上,你会找到关于 Python 和 R 的教程视频,以及关于数据挖掘和 Azure Studio 机器学习的基础视频。虽然 Data Science Dojo 已经为远程学习或现场学习提供了预先计划的课程,这可能需要更严格的时间表,但您可以使用他们的 YouTube 频道,在最适合您的时间按照您自己的进度学习数据科学。

** [## Github 上的 10 个流行数据科学资源

一些顶级的 GitHub 库将教你所有关于数据科学的知识。

towardsdatascience.com](/10-popular-data-science-resources-on-github-7ae288ff4a75)**

结论

深入 YouTube 的无意义视频的兔子洞是相当容易的,但最终,它大多被证明是浪费时间。YouTube 不仅仅是一个随意播放视频的平台,它也是一个强大的媒体,可以播放大量的教育和知识视频。

数据科学正在彻底改变我们使用数据的方式。如果你渴望成为其中的一员并学习数据科学,我们强烈建议你将 YouTube 添加到你的有用资源列表中。我们写下这篇文章的唯一目标是让我们的观众了解 YouTube 上一些最受欢迎的专注于数据科学的频道。

注: 为了消除各种各样的问题,我想提醒你一个事实,这篇文章仅代表我想分享的个人观点,你有权不同意它。

如果你有更多的建议,我很想听听。

更多有趣的读物

我希望这篇文章对你有用!以下是一些有趣的读物,希望你也喜欢

** [## 12 个适合初学者和专家的酷数据科学项目创意

“到目前为止,您已经完成了多少个数据科学项目?”

towardsdatascience.com](/12-cool-data-science-projects-ideas-for-beginners-and-experts-fc75b5498e03) [## 2020 年要学习的 12 大数据科学技能

必须用这些数据科学技能提升自己的技能

towardsdatascience.com](/top-12-data-science-skills-to-learn-in-2020-5f635d7d98bf) [## 面向所有人的顶级谷歌人工智能工具

使用谷歌人工智能中心将想法变为现实

towardsdatascience.com](/top-google-ai-tools-for-everyone-60346ab7e08) [## 2020 年人工智能工程师的顶级编程语言

从几种编程语言中,人工智能工程师和科学家可以挑选出适合他们需要的语言

towardsdatascience.com](/top-programming-languages-for-ai-engineers-in-2020-33a9f16a80b0) [## 面向数据科学的顶级 Python 库

面向数据科学的流行 Python 库概述

towardsdatascience.com](/top-python-libraries-for-data-science-c226dc74999b)

关于作者

克莱尔 D 。在digital ogy—***是一个内容制作者和营销人员,这是一个技术采购和定制匹配市场,根据全球各地的特定需求,将人们与预先筛选的&顶尖开发人员和设计师联系起来。与我连线上 Linkedin&推特 ***

帮助你赢得面试的 15 个数据科学和统计问题!

原文:https://towardsdatascience.com/top-15-data-science-statistics-questions-to-help-ace-your-interview-c86da6a954fe?source=collection_archive---------32-----------------------

有答案的问题

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

丹尼尔·麦卡洛在 Unsplash 上的照片

今天,数据科学已经成为世界上最热门和最受欢迎的职业之一。数百万人,包括新生和有经验的专业人士,都在努力获得数据科学行业所需的技能。我从数据科学和统计学中收集了一系列问题,这些问题可能会对面试有所帮助。
注意——这不是一份详尽的问题清单,也不适用于所有人,但它将与 83%的申请人相关。

一般问题

在数据科学项目中,您会遵循哪些不同的步骤?

一般来说,所有数据科学项目都有相同的工作流程
加载 使用适当的命令在 R、Python、SAS(或任何其他语言)上加载给定的数据集。
检查原始数据 —使用散列表计算/平均值/模式检查加载的数据集的准确性/一致性,以确保数据已正确加载。
清理 —对数据集进行缺失值插补、离群点检测等。 预处理方法——如检查独立变量之间的相关性、处理分类变量、创建新的合成变量、合并外部数据(如果存在)。
预建模步骤——包括在训练/测试/验证分割中划分数据,创建一个精度指标,变量缩减技术(主成分、逐步回归等)。
模型创建 —创建不同的统计和数据科学模型,如线性、逻辑、随机森林、gbm、神经网络等,并测试它们的准确性。 部署 服务器上的模型。

始终确保与客户/业务团队进行健康的讨论,以便他们的所有期望都符合上述模型。

有监督和无监督模型有什么区别?

监督模型是那些根据标记数据训练的模型,即我们有一个或多个自变量(x) 和一个因变量(y)。如此创建的训练模型将有助于根据未知或独立变量(x)的未来值预测因变量(y)。* 无监督模型是那些没有经过标记数据训练的模型,即我们只有一个或多个自变量(x),但没有因变量(y)。*在这样的方法中,你允许算法本身发现数据中隐藏的模式。

什么是回归?

它是一种确定两个或多个变量之间统计关系的技术,其中因变量的变化与一个或多个自变量的变化相关联,并取决于一个或多个自变量的变化。
例如:线性回归、逻辑回归

什么是集群?

聚类是一项任务,通过该任务,计算机算法将观察结果分成不同数量的组,使得一个组中的观察结果比其他组中的观察结果更加相似
例如:K 均值、DBSCAN、LOCi

数据清理问题

有哪些不同的数据插补方法,我们为什么要这样做?

如果数据中有缺失值,计算机算法无法计算并抛出错误。一些插补方法有:
连续数据——用平均值代替缺失值
分类数据——用模式
代替缺失值。其他几种插补方法有——正向插补、线性回归、随机森林的 missforest 技术、MICE 等。

为什么我们需要测试异常值?

异常值的出现有几个原因——坏数据、一次性案例、实验误差等。一般来说,它们并不重要,可能会降低模型的准确性或给出不准确的结果,或者两者兼而有之。但是有时候它们非常重要,可以用来发现异常。尤其有助于信用卡、保险索赔等欺诈检测。

预处理问题

什么是相关性,它与回归有什么不同?

相关性是确定两个变量的相互关系或关联的统计度量。相关系数表示两个变量一起移动的程度。
回归描述了自变量与因变量在数字上的关系。回归表示已知自变量(x)的单位变化对因变量(y)的影响

什么是分类变量,我们如何处理它们?

分类变量是那些只能取有限数量的值的变量。像国家这样的变量会有一组确定的值,如印度、美国、韩国、泰国等。分类变量可以有两种类型
序数 —变量的值以某种形式排序。例如:考试成绩可以有一组有限的值,如 A、B、C、D 等,并且可以排序,即 A>B>C>D
名义值——变量具有未排序的值。例:上面提到的国家例子。

有序的分类变量通常可以直接用于建模过程中,但这不适用于名义变量。有多种方法处理它,但最简单和最常用的方法是创建虚拟变量或零热编码变量,并将它们用作建模变量

建模前问题

为什么我们要在训练测试中分割数据?

训练测试有助于模型不对给定的数据进行概括或过度拟合,并有助于在现实世界中表现良好。因此,该模型在训练数据集上被训练,并被用于在看不见的测试数据集上评分和检查准确性。

什么是 R-Square,它与调整的 R-Square 有何不同?

R-Square 确定因变量(y) 的总变化中有多少是由自变量(x) 的变化解释的。(您对直线或曲线的拟合程度如何)。
调整后的 R-square 是 R-square 的修改版本,已针对模型中的预测器数量进行了调整。如果我们在模型中加入无关紧要的变量,调整后的 r 平方将会减少。如果我们增加重要的变量,调整后的 r 平方将会增加

偏倚和方差的区别?

偏差是模型的平均预测值与我们试图预测的正确值之间的差异。具有高偏差的模型很少关注训练数据,并且过度简化了模型。它导致训练和测试数据的高误差(欠拟合 )
方差是给定数据点或告诉我们数据分布的值的模型预测的可变性。高方差模型非常重视训练数据,不会对以前没有见过的数据进行归纳。这种模型在训练数据上表现很好,但是在测试数据上有很高的错误率(过拟合)

通俗地说什么是决策树?

决策树是使用分支方法来说明决策的每一个可能结果的图形。决策规则通常采用 if-then-else 语句的形式。树越深,规则越复杂,模型越合适

建模问题

套索和岭回归有什么区别?

套索和岭回归是不同类型的正则化技术,有助于减少过度拟合。这是通过在损失函数中添加另一个最小化元素来实现的,该元素被称为罚函数。
岭回归(L2) 中,惩罚是系数的平方和。因此,它有助于降低一个不重要变量的系数值。
而在拉索(L1)回归中,惩罚是系数的绝对值之和。因此,它不仅有助于降低系数值,还有助于减少变量。

装袋(随机森林)和助推 (GBM)有什么区别?

bagging 和 boosting 都是建立在决策树上的集成技术,但是:
Bagging: 模型是在从训练数据中随机选择的多个数据子集上训练的。最后,对不同的树进行平均预测(回归)/最高频率(分类)。可能会导致高偏差和低方差。 Boosting: 逐步或顺序训练模型。早期模型相对简单,而以下模型分析前一个模型的误差,并尝试拟合残差。可能导致低偏差和高方差

有哪些不同的准确性指标?

对于回归模型:
MAPE =(y-yhat)/y
RMSE = sqrt((y-yhat)/n)
调整后的 R 平方

对于分类模型:
准确率= TP+TN/TP+FP+FN+TN
精度= TP/TP+FP
召回/灵敏度= TP/TP+FN
特异性= TN/TN+FP
F1 得分= 2*(召回精度)/(召回+精度)
Gini = 2
AUC -1
ROC 曲线

20 大数据科学不和谐服务器

原文:https://towardsdatascience.com/top-20-data-science-discord-servers-to-join-in-2020-567b45738e9d?source=collection_archive---------5-----------------------

数据科学|不和谐

去见其他伟大的数据科学家,一起学习

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Discordapp.com

如果你以前从未听说过不和,那么你很可能不是一个游戏玩家。但这种情况即将改变。最初,Discord 被构建为一个实时社交平台,游戏玩家可以在这个平台上团结起来,互相交流。但现在,“不和谐”已经成为影响者、YouTubers、memers 以及基本上任何人与他们的社区联系的重要工具。

什么是不和谐

对我来说,我会说 Discord 是 Skype 和 Reddit、Telegram、Twitter 等社交平台的混合,但没有所有的噪音,加上它自己的独特功能和更干净、更快的用户界面。

不和谐音。说它现在有超过 2 . 5 亿的注册用户,比一年前的 1 . 3 亿有所增加,并且每天有 8 . 5 亿条信息被交换。聊了这么多。

虽然虚拟聚会现在有许多角落,人们可以谈论任何事情(从书籍到网飞的电视节目),但似乎人工智能、机器学习和数据科学也进入了 Discord 服务器,数据科学爱好者和专家聚集在一起分享各种事情,从解决多变量微积分和从头制作神经网络到漫谈如何获得数据科学家的工作以及数据科学家在未来几十年将如何被机器学习取代。

如何使用它

如果你以前从未使用过不和谐,你不知道如何开始,不要担心。超级好用。

在这里注册 Discord 之后,你可以加入不同的服务器,类似于使用自定义邀请链接的 slack channels,你将在本文后面的每个服务器下面看到。每台服务器代表一个社区,您可以直观地在它们之间切换。

在服务器内部,你会在服务器图标旁边看到一个标签列表(频道),聊天在中间,服务器成员在最右边。你也可以选择不使用服务器与你的朋友进行私人对话。

想要更深入地了解如何使用 Discord,请看这个视频

为什么使用不和谐

你可能会问,如果你对 Twitter 和 Reddit 感到舒适,为什么要开始使用这个神秘的紫色聊天平台呢?嗯,原因如下。

Discord 是一个开放式的平台,你可以提出各种各样的问题和询问,以满足你的好奇心。许多有影响力的人和 YouTubers,如 Ninja、Try Guys 和 Philip DeFranco 都喜欢使用 Discord,因为他们喜欢这个以社区为中心的平台和它提供的以隐私为中心的体验。

Discords 的一些好处包括:
1。高度可定制—私人和公共频道、角色、颜色等
2。私人
3。面向聊天

Discord 是一个与人谈论你关心的事情的地方,你可以以任何方式与任何人交往,无论是进行辩论还是分享对模因和笑话的兴趣。

现在你已经了解了什么是 Discord,这里有一个 Discord 上的服务器列表,你可以在这里提出任何关于 AI、ML、数据科学等方面的问题。数据科学不是在公园里散步,你必须在学习如何编码的同时解决困难的统计和概率概念,更不用说你必须掌握的沟通技巧了。

不和谐是一个很好的地方,让你找到一个朝着同一目标努力的社区,它可以激励你超越自己的极限。

所以,今天就开始使用 discord,加入这些令人惊叹的数据科学服务器吧!

我写关于数据科学和人工智能的文章。如果你想在我发帖时得到通知,现在就订阅我的媒体简讯!

如果你不是普通会员,可以考虑今天就订阅,只需 5 美元。你将直接支持我,你将获得大量的优秀作品!

服务器列表

· [General](#b21c)
  ∘ [1\. Science and Technology](#3679)
  ∘ [2\. Everything Hub](#d0e0)
· [Hacking Skills](#3ff8)
  ∘ [3\. Programming](#43c5)
  ∘ [4\. The Programming Hangout](#510e)
  ∘ [5\. The Programming Server](#d244)
  ∘ [6\. CS50](#5d21)
  ∘ [7\. The Coding Den](#de08)
  ∘ [8\. Python](#9f34)
  ∘ [9\. Planet: Code](#b680)
  ∘ [10\. CP Community](#cefe)
  ∘ [11\. #100DaysOfCode](#a947)
· [Data Science](#d063)
  ∘ [12\. Towards Data Science](#6d7b)
  ∘ [13\. Data Science](#2e0e)
  ∘ [14\. CS Dojo](#9051)
· [Projects/Tutorials](#41d1)
  ∘ [15\. Tech with Tim](#392c)
  ∘ [16\. Sentdex](#241e)
· [ML and AI](#4bae)
  ∘ [17\. /r/LearnMachineLearning](#e6ea)
  ∘ [18\. Fundamentals of ML](#0b35)
  ∘ [19\. Artificial Intelligence Community](#6ddd)
  ∘ [20\. TensorFlow](#99a9)
  ∘ [21\. Learn AI Together](#2573)

一般

数据科学是一个多学科领域,需要从流行病学到金融等各个领域的知识。因此,加入这些服务器将为你未来的努力提供不同种类的信息。

1.科学与技术

致力于科学探索和技术创新的社区!一个分享科学讨论、研究和会见对科学学术界感兴趣的新的和类似的个人的地方。

[## 加入科技不和谐服务器!

查看 Discord 上的科技社区—与 12,743 名其他成员一起闲逛,享受自由的声音和…

不和谐. gg](https://discord.gg/science)

2.一切枢纽

名字说明了一切。这台服务器几乎拥有一切,从动物、运动、电影到技术和编程。

[## 加入一切枢纽不和服务器!

查看 Discord 上的 Everything Hub 社区-与 712 名其他成员一起玩,享受免费的语音和文本聊天。

不和谐. gg](https://discord.gg/ecJcuGA)

黑客技能

数据科学涉及到大量的编码工作,提高编码技能的一种方法是提问(并从 StackOverflow 获得答案)。所有这些服务器都包含狂热的程序员和黑客,他们可以回答你向他们提出的任何问题。问吧!

3.编程;编排

围绕各种编程语言、操作系统以及硬件、安全性和低级编程的活跃社区。

[## 加入编程不和谐服务器!

查看 Discord 上的编程社区—与 11,404 名其他成员一起闲逛,享受免费的语音和文本聊天。

discordapp.com](https://discordapp.com/invite/010z0Kw1A9ql5c1Qe)

4.节目常去的地方

面向编程的社区。TPH 为各类程序员留有一席之地,从完全的初学者到拥有 20 年经验的专家。

[## 加入程序员的 Hangout Discord 服务器!

查看 Discord 上的程序员社区——与 41,211 名其他成员一起玩,享受自由之声…

不和谐. gg](https://discord.gg/programming)

5.编程服务器

拥有数学、ML 和 AI、数据科学和网络安全渠道的编程服务器。初学者询问数据科学相关问题的地方。

[## 加入编程服务器 Discord Server!

查看 Discord 上的编程服务器社区——与 874 名其他成员一起闲逛,享受免费语音和…

不和谐. gg](https://discord.gg/zrrya7H)

6.CS50

计算机科学课程最受欢迎的介绍之一,现在在 Discord 上。跟上他们的最新课程,并与这里的聪明人保持联系!

[## 加入 cs50 Discord 服务器!

在 Discord 上查看 cs50 社区—与 24,828 名其他成员一起闲逛,享受免费语音和文本聊天。

不和谐. gg](https://discord.gg/E7AAncA)

7.编码室

一个可以自由向其他编码员/程序员寻求帮助的地方,或者任何与编码相关的问题。堆栈溢出和 r/coding /r/ programming 等子编辑之间的混搭。

[## 加入编码巢穴不和服务器!

你的代码需要帮助吗?想成为友好的编程社区的一员吗?如果是这样的话,TCD 是适合你的地方…

不和谐. gg](https://discord.gg/code)

8.计算机编程语言

一个围绕 Python 编程语言的巨大社区,对那些希望学习该语言或提高技能的人以及那些希望帮助他人的人开放。

[## 加入 Python Discord 服务器!

专注于 Python 编程语言,我们相信任何人都可以学习编码,并致力于新手开发者…

不和谐. gg](https://discord.gg/python)

9.星球:代码

针对特定编程语言问题的服务器,如 c、CPP、java、python、SQL 等。

[## 加入星球:代码不和谐服务器!

查看星球:不和谐代码社区——与 1,576 名其他成员一起玩,享受免费语音和文本聊天。

不和谐. gg](https://discord.gg/MyRxEUG)

10. CP 社区

一个有竞争力的程序员社区,程序员在这里向代码团队提问。有一个初级题和数学的频道。

[## 加入 CP 社区 Discord 服务器!

在 Discord 上查看 CP 社区社区-与 12,992 名其他成员一起闲逛,享受免费语音和文本…

不和谐. gg](https://discord.gg/5tAk8V8)

11.#100DaysOfCode

臭名昭著的#100 天代码,专注的程序员承诺每天编码 100 天,并发布在 twitter 上。在这个服务器上与其他热心的程序员联系!

[## 加入#100DaysOfCode Discord 服务器!

查看 Discord 上的#100DaysOfCode 社区——与 720 名其他成员一起闲逛,享受免费的语音和文本聊天。

不和谐. gg](https://discord.gg/p6WadTP)

数据科学

12.走向数据科学

一个由社区驱动、维护和管理的项目,不是 TDS 组的正式扩展。询问数据科学问题以及在整个学习过程中获取资源的绝佳服务器。

[## 加入数据共享 Discord 服务器!

查看 Discord 上的数据共享社区—与 1,666 名其他成员一起玩,享受免费语音和文本…

discordapp.com](https://discordapp.com/invite/eaPVRW3)

13.数据科学

一个由数据科学专业人士和爱好者组成的社区。探索该领域的所有不同方面,从可视化和通信到数据工程和模型部署。无论你是学者、学生还是业余爱好者,我们都欢迎!

[## 加入数据科学 Discord 服务器!

查看 Discord 上的数据科学社区—与 1,404 名其他成员一起闲逛,享受免费的语音和文本聊天。

discordapp.com](https://discordapp.com/invite/UYNaemm)

14.CS 道场

CS Dojo 是一个知名的谈论编程相关东西的 YouTuber。加入他的大型社区,在那里讨论编程、游戏开发、网页开发、人工智能和人工智能、数据科学等。是制造出来的。

[## 加入 CS 道场 Discord 服务器!

查看 Discord 上的 CS Dojo 社区-与 4,667 名其他成员一起玩,享受免费的语音和文本聊天。

不和谐. gg](https://discord.gg/NTK2TrM)

项目/教程

这些是 YouTubers 用户的服务器,他们为 Python,机器学习,神经网络等等的教程制作惊人的视频。有蒂姆和森德克斯的 YouTubers】科技是特色。

15.蒂姆的技术

与 Tim 爱好者联系,在那里你可以提出问题、项目建议、python、pygame、机器学习和人工智能。

[## 加入蒂姆不和谐服务器的技术!

在 Discord 上查看 Tim 社区的技术-与 3,887 名其他成员一起闲逛,享受免费语音和文本…

不和谐. gg](https://discord.gg/DphySVr)

16.Sentdex

Sentdex 的社区主要由 Python 程序员组成,但也欢迎其他人加入。#help 频道非常有用。

[## 加入 Sentdex Discord 服务器!

查看 Discord 上的 Sentdex 社区-与 23,279 名其他成员一起闲逛,享受免费的语音和文本聊天。

不和谐. gg](https://discord.gg/YA764TH)

ML 和 AI

这些服务器是为那些需要问机器学习和人工智能问题的人准备的。对这群想和你达成同样目标的人保持激励,并互相分享知识。

17./r/learn 机器学习

一个伟大的社区,所有人都是友好的 ML 爱好者,他们愿意帮助每个人,甚至是完全的初学者。还有臭名昭著的吴恩达机器学习课程和 fast.ai 深度学习课程的自习室。

[## 加入/r/LearnMachineLearning Discord 服务器!

查看 Discord 上的/r/LearnMachineLearning 社区——与 6,910 名其他成员一起玩,享受自由的声音和…

不和谐. gg](https://discord.gg/R8Bcbf4)

18.ML 基础

一个询问关于 ML 的一切的地方,从基本的线性回归到神经网络。

[## 加入基本面 ML 不和谐服务器!

在 Discord 上查看基础 ML 社区-与 154 个其他成员一起玩,享受免费语音和文本…

不和谐. gg](https://discord.gg/pQFXHK4)

19.人工智能社区

一个人工智能爱好者的社区,主要渠道包括机器学习、语言处理、视觉和语音等。

[## 加入人工智能社区 Discord 服务器!

查看 Discord 上的人工智能社区——与其他 432 名成员一起玩,享受免费的…

不和谐. gg](https://discord.gg/HFVStFk)

20.张量流

Tensorflow 是一个端到端的开源机器学习平台。如果您想开始使用 Tensorflow,请先加入此服务器。

[## 加入 TensorFlow Discord 服务器!

在 Discord 上查看 TensorFlow 社区—与 1,314 名其他成员一起闲逛,享受免费语音和文本聊天。

discordapp.com](https://discordapp.com/invite/7a8PCRh)

21.一起学 AI

“一起学习人工智能”是一个非常不和谐的服务器,有近 4000 名人工智能爱好者共享论文,项目,kaggle 竞赛,课程等等。这对任何对人工智能感兴趣的人来说都是一个很好的补充,并且是学习人工智能社区的一部分。

[## 加入一起学习 AI 不和谐服务器!

一起学习,提问,寻找 Kaggle 队友,分享你的项目,等等。都和 AI 有关!| 3,731…

不和谐. gg](https://discord.gg/learnaitogether)

行动计划

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

马丁·杰恩伯格Unsplash 上拍摄

iscord 服务器令人惊叹,你不仅可以拥有一个分享相同激情和目标的社区,还可以提出各种问题,并在瞬间得到答案。成为这样的社区的一部分很重要,因为数据科学真的很难独自学习。与教科书上的东西相比,其他人的见解和经验是至关重要的。

这是人们最纠结的数据科学的理论部分,尤其是在数学和编程方面。有一个友好和乐于助人的社区,你成为数据科学家的旅程会更顺利。

所以,如果你还没有不和谐,尝试一下。并且开始提问,也回答别人的问题,因为提问证明你确实在学习,而不是假装知道什么。

“永远不要让恐惧阻止你问一些你不了解或不知道的问题。假装或表现得好像你知道是不明智的。”

凯瑟琳·脉动者

感谢阅读这篇文章,我希望它启发你开始使用不和谐。

请在下面留下您想要分享的任何其他服务器的评论!

查看这些关于数据科学资源的文章。

[## 2020 年你应该订阅的 25 大数据科学 YouTube 频道

以下是你应该关注的学习编程、机器学习和人工智能、数学和数据的最佳 YouTubers

towardsdatascience.com](/top-20-youtube-channels-for-data-science-in-2020-2ef4fb0d3d5) [## 互联网上 20 大免费数据科学、ML 和 AI MOOCs

以下是关于数据科学、机器学习、深度学习和人工智能的最佳在线课程列表

towardsdatascience.com](/top-20-free-data-science-ml-and-ai-moocs-on-the-internet-4036bd0aac12) [## 机器学习和数据科学的 20 大网站

这里是我列出的最好的 ML 和数据科学网站,可以提供有价值的资源和新闻。

medium.com](https://medium.com/swlh/top-20-websites-for-machine-learning-and-data-science-d0b113130068) [## 开始数据科学之旅的最佳书籍

这是你从头开始学习数据科学应该读的书。

towardsdatascience.com](/the-best-book-to-start-your-data-science-journey-f457b0994160) [## 数据科学 20 大播客

面向数据爱好者的最佳数据科学播客列表。

towardsdatascience.com](/top-20-podcasts-for-data-science-83dc9e07448e)

联系人

如果你想了解我的最新文章,请通过媒体关注我。

请关注我:

快乐的不和谐!

互联网上 20 大免费数据科学、ML 和 AI MOOCs。

原文:https://towardsdatascience.com/top-20-free-data-science-ml-and-ai-moocs-on-the-internet-4036bd0aac12?source=collection_archive---------1-----------------------

数据科学|机器学习|人工智能

以下是关于数据科学、机器学习、深度学习和人工智能的最佳免费在线课程列表。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

天一马Unsplash 上拍照

F21 世纪的正规教育已经转变为一种选择,而不是生活中的一个强制步骤。随着互联网的繁荣和大规模开放在线课程(MOOCs)的兴起,人们可以选择在线学习数据科学,避免学生债务的负担。统计数据显示,电子学习使学生在每小时的培训中多学习 5 倍的材料。在线学习的好处是无限的——从削减成本到灵活的时间表和环境。

数据科学的民主化

现在是 2020 年,数据科学比以往任何时候都更加民主化。这意味着,只要提供适当的工具和大量的数据,任何人都可以在没有专业知识的情况下进行数据科学研究。随着数据渗透到行业的每一个部分,拥有数据科学家的技能将是必不可少的,因为这将产生一支讲数据语言的劳动力队伍。

考虑到这一点,通过利用在线课程,一个完全的初学者开始追求数据科学是可行的。所需要的只是一个结构合理的学习课程、正确的学习方法(超学习)、坚持不懈的动力和热情以及副业/项目。

如何在网上学习数据科学?

最好的 MOOCs 正确的学习方法+激情+项目

因此,在这篇文章中,我将介绍最好的 MOOCs,它们是免费的,在你成为数据科学家的过程中非常有价值。

数据科学文氏图

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

安德鲁·西尔弗,阿德雷特有限责任公司(2017 年),德鲁·康威(2013 年)

Drew Conway 绘制的这张臭名昭著的维恩图可以形象地展示数据科学的多学科领域。根据这个图表,可以推断出数据科学包括黑客技术、机器学习和多元统计。

我排除了领域专业知识,因为这取决于你工作的公司,而沟通技巧等硬技能无法通过在线课程获得,你需要在现实生活中与人交谈才能做到这一点(尽管这可能令人生畏)。

下面列出的 20 门课程将分为 3 个部分:

1\. Data Science2\. Hacking skills
- Python
- R
- SQL3\. Machine Learning & AI
- Basics of ML & AI 
- Deep Learning
- NLP
- Computer Vision

我没有在课堂上翻来翻去,也没有花几个小时过滤网上的噪音,而是编制了这个列表,其中包含了我认为对学习机器学习、人工智能、数据科学和编程有用的课程。

所以,现在就向下滚动查看列表吧!

网络公开课

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

约翰·施诺布里奇在 Unsplash 上的照片

0.学习如何学习

这是一门教你人生中最重要的技能之一的课程,那就是学会如何学习。它教你技术和方法,确保你能记住你所学的,并帮助你在现实生活中应用它们。既然学会如何学习是学习任何东西的重要前提,这就是为什么它被列为第 0,这意味着它为下面的其他课程奠定了基础。

[## 学会如何学习:帮助你掌握困难学科的强大心智工具

这门课程让你很容易接触到艺术、音乐、文学专家所使用的无价的学习技巧…

www.coursera.org](https://www.coursera.org/learn/learning-how-to-learn)

数据科学

1.CS109 数据科学—哈佛

CS109 是一门介绍调查的五个关键方面的方法的课程:

  • 数据争论、清理和采样以获得合适的数据集
  • 数据管理,能够快速可靠地访问大数据
  • 探索性数据分析产生假设和直觉
  • 基于回归和分类等统计方法的预测
  • 通过可视化、故事和可解释的总结交流结果。

另外,它是用 Python 教的!

[## CS109 数据科学

预测 Hubway 站的地位由劳伦亚历山大,加布里埃尔 Goulet-朗罗伊,约书亚沃尔夫从数据学习…

cs109.github.io](http://cs109.github.io/2015/index.html)

2.从数据中学习—加州理工学院

对于所有数据爱好者来说,深刻理解机器如何从数据中学习以及如何改进这一过程是最基本的。这是一门介绍性的 ML 课程,涵盖了基础理论、算法和应用。

您将学到的内容:

  • 什么是学习?
  • 机器能学习吗?
  • 怎么做?
  • 怎么做好?

[## 从数据中学习—在线课程(MOOC)

加州理工学院教授亚塞尔·阿布·穆斯塔法教授免费介绍机器学习在线课程(MOOC)

work.caltech.edu](http://work.caltech.edu/telecourse)

3.大数据简介—加州大学圣地亚哥分校

这是大数据时代,所有数据科学爱好者都有义务了解它是什么以及它为什么重要。

您将学到的内容:

  • 术语以及大数据问题、应用和系统背后的核心概念。
  • 大数据对他们的业务或职业有多大用处。
  • 介绍最常见的框架之一 Hadoop

[## 大数据简介| Coursera

了解加州大学圣地亚哥分校的大数据简介。有兴趣增加你的知识…

www.coursera.org](https://www.coursera.org/learn/big-data-introduction)

4.数据科学—约翰·霍普斯金大学

简而言之,本课程教你问正确的问题,操作数据集,并创建可视化的交流结果。

您将学到的内容:

  • 使用 R 来清理、分析和可视化数据。
  • 浏览从数据采集到发布的整个数据科学管道。
  • 使用 GitHub 管理数据科学项目。
  • 使用回归模型进行回归分析、最小二乘法和推理。

最后,您将有一个顶点项目,在这个项目中,您将通过使用真实世界的数据构建一个真实的产品来应用您所学到的技能。然后,该投资组合将描述您在数据科学领域新获得的能力。

[## 数据科学|课程

提出正确的问题,操作数据集,并创建可视化的交流结果。这种专业化…

www.coursera.org](https://www.coursera.org/specializations/jhu-data-science)

数学

5.面向机器学习专业化的数学——伦敦帝国理工学院

这门课程是 ML 专业化的数学课程,涵盖了你需要的所有数学知识,帮助你重温你在学校可能已经忘记的所有概念和理论。最棒的是,这门课教你它在计算机科学中的应用,让你对矩阵和回归与 ML 和数据科学的关系有更直观的感觉。

该专业分为三个主要课程:

  1. 线性代数
  2. 多元微积分
  3. 主成分分析降维

在本专业结束时,您将获得继续您的旅程和学习机器学习方面更高级课程的必备数学知识。

[## 机器学习数学| Coursera

从伦敦帝国理工学院学习机器学习的数学。对于很多机器方面的高级课程…

www.coursera.org](https://www.coursera.org/specializations/mathematics-machine-learning)

6.线性代数—麻省理工学院

由独一无二的吉尔伯特·斯特朗教授授课。斯特朗先生是最好的线性代数讲师(我认为)。因此,如果你正在寻找一个伟大的线性代数课程,这是它。

本课程涵盖矩阵理论和线性代数,强调对其他学科有用的主题。

[## 线性代数

这门课程涵盖矩阵理论和线性代数,强调在其他学科有用的主题,如物理…

ocw.mit.edu](https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/)

7.多变量微积分—麻省理工学院

多变量微积分是数据科学中的另一个重要概念。从简单的线性回归到支持向量机和神经网络,都需要微积分。

本课程涵盖一元以上函数的微分、积分和向量微积分。

[## 多元微积分

丹尼斯·奥鲁。18.02SC 多元微积分。2010 年秋天。麻省理工学院:麻省理工学院开放式课程…

ocw.mit.edu](https://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/)

8.概率与统计——斯坦福

概率和统计是数据科学中所有奇迹发生的基础。如果没有 p 值和二项式分布以及所有这些术语,用数据进行预测将是不可能的。

您将学到的内容:

  1. 探索性数据分析
  2. 生产数据
  3. 可能性
  4. 推理

很遗憾,课程已经结束,所以下面是复习资料! 或者想要卡耐基梅隆类似的课程,点击 这里

[## CS 229 -概率和统计复习

你想看看你母语的备忘单吗?可以在 GitHub 上帮我们翻译一下!由 Afshine…

stanford.edu](https://stanford.edu/~shervine/teaching/cs-229/refresher-probabilities-statistics)

黑客技能

9.谷歌的 Python 课程

谷歌为初学者提供的免费课程。本课程主要由笔记、视频和大量编码练习组成,帮助您开始使用 Python 编码。我发现它很有用,我把它推荐给所有想开始学习 Python 的人。

[## 谷歌的 Python 课| Python 教育|谷歌开发者

欢迎来到谷歌的 Python 课程——这是一门免费课程,面向有一点编程经验的人,他们…

developers.google.com](https://developers.google.com/edu/python/)

10.Python 应用数据科学— UMich

密歇根大学专业的 5 门课程通过 python 编程语言向学习者介绍数据科学。本课程使用便捷直观的 Jupyter 笔记本。

5 门课程:

  1. 数据科学导论
  2. 应用绘图、图表和数据表示
  3. 应用机器学习
  4. 应用文本挖掘
  5. 应用社会网络分析

又一门 Python 课程!

[## 使用 Python 的应用数据科学

密歇根大学专业的 5 门课程通过 python 向学习者介绍了数据科学

online.umich.edu](https://online.umich.edu/series/applied-data-science-with-python/)

11.R 专业统计学—杜克大学

这个专业帮助你掌握 R 语言的分析和可视化,R 语言是数据科学领域的顶级编程语言之一。

您将学到的内容:

  • 创建可重复的数据分析报告
  • 统计推断的统一性
  • 执行 frequentist 和贝叶斯统计推断和建模,以了解自然现象并做出基于数据的决策
  • 正确、有效地传达统计结果,不依赖统计术语,评论基于数据的主张,评估基于数据的决策
  • 使用 R 包进行数据分析,并使数据可视化。

[## 使用 R | Coursera 进行统计

在这个专业中,你将学习在 R 中分析和可视化数据,并创建可再现的数据分析…

www.coursera.org](https://www.coursera.org/specializations/statistics)

12.面向数据科学的 SQL 加州大学戴维斯分校

SQL——用于与数据库系统交互的既定语言——是数据科学家检索和处理数据的重要工具。这门课程是为希望将 SQL 添加到 LinkedIn 技能部分并开始使用它来挖掘数据和处理数据的初学者量身定制的。最重要的是,他们将学会提出正确的问题,并给出好的答案,为您的组织提供有价值的见解。

您将学到的内容:

  • 创建表格并能够将数据移入其中
  • 常见运算符以及如何组合数据
  • 案例陈述和概念,如数据治理和分析
  • 讨论有关数据的主题,并使用真实世界的编程作业进行练习
  • 解释源数据中的结构、含义和关系,并作为专业人员使用 SQL 来塑造您的数据,以便进行有针对性的分析。

[## 数据科学| Coursera

从加州大学戴维斯分校学习 SQL for Data Science。随着数据收集呈指数级增长,数据收集也呈指数级增长…

www.coursera.org](https://www.coursera.org/learn/sql-for-data-science?)

机器学习和人工智能

13.机器学习速成班——谷歌

这个速成课程是一个面向有抱负的机器学习从业者的自学指南,它包含一系列课程,包括视频讲座、真实案例研究和动手实践练习。这是谷歌人工智能倡议下的课程之一,鼓励所有人学习人工智能。

[## 机器学习入门|机器学习速成班

本模块介绍机器学习(ML)。预计时间:3 分钟学习目标识别实用…

developers.google.com](https://developers.google.com/machine-learning/crash-course/ml-intro)

14.人工智能的要素—赫尔辛基大学

人工智能的要素是由 Reaktor 和赫尔辛基大学创建的一系列免费在线课程。它旨在鼓励每个人学习什么是人工智能,人工智能可以(和不可以)做什么,以及如何开始创建人工智能方法。这些课程将理论与实践结合起来,可以按照你自己的进度完成。

[## 面向非专家的免费人工智能在线介绍

2018 年春天,Reaktor 和赫尔辛基大学携手合作,帮助人们获得力量…

www.elementsofai.com](https://www.elementsofai.com/)

15.机器学习——吴恩达

吴恩达的机器学习是互联网上最受欢迎的在线课程之一,它拥有一切。从基础到神经网络和 SVM,最后加上一个应用项目。这门课的好处是吴恩达是一位令人难以置信的老师。不好的是,它是在 MATLAB 中教授的(我更喜欢 Python)。

[## 机器学习|课程

机器学习是让计算机在没有明确编程的情况下行动的科学。在过去的十年里…

www.coursera.org](https://www.coursera.org/learn/machine-learning#instructors)

16.面向编码人员的实用深度学习— Fast.ai

如果你想免费学习深度学习,Fast.ai 是一门在线课程。互联网上的每个人都推荐它,对于那些想学习深度学习的人来说,它肯定是一个有价值的资源。本课程利用 Jupyter 笔记本进行学习,PyTorch 作为编码深度学习的主要工具。

[## 程序员实用深度学习,v3

欢迎光临!如果你是所有这些深度学习的新手,那么不要担心-我们将带你一步一步地完成它…

course.fast.ai](https://course.fast.ai/)

17.CS230 深度学习—斯坦福

深度学习是人工智能中最受欢迎的技能之一。在这门课程中,你将学习深度学习的基础,了解如何构建神经网络,并学习如何领导成功的机器学习项目。您将了解卷积网络、RNNs、LSTM、Adam、Dropout、BatchNorm、Xavier/He 初始化等等。

[## CS230 深度学习

深度学习是人工智能中最受欢迎的技能之一。在本课程中,您将学习…的基础

cs230.stanford.edu](https://cs230.stanford.edu/)

18.CS224N 深度学习自然语言处理—斯坦福

自然语言处理是信息时代最重要的技术之一,也是数据科学的重要组成部分。自然语言处理的应用无处不在——网络搜索、电子邮件、语言翻译、聊天机器人等等。在这门课程中,学生将全面了解 NLP 深度学习的前沿研究。

您将学到的内容:

  • 设计、实现和理解你的神经网络模型。
  • PyTorch!

在 Youtube 这里观看。

[## 斯坦福 CS 224N |深度学习的自然语言处理

讲座:太平洋时间周二/周四下午 4:30-5:50 在 NVIDIA 礼堂举行。注册学生的讲座视频…

web.stanford.edu](http://web.stanford.edu/class/cs224n/)

19.CS231n:用于视觉识别的卷积神经网络——斯坦福

计算机视觉在我们的社会中已经无处不在,应用于搜索、面部识别、无人机,最引人注目的是特斯拉汽车。本课程深入探讨深度学习架构的细节,重点是学习这些任务的端到端模型,尤其是图像分类。

您将学到的内容:

  • 实现、训练和调试他们的神经网络
  • 详细了解计算机视觉的前沿研究。

最后一项任务是训练一个数百万参数的卷积神经网络,并将其应用于最大的图像分类数据集(ImageNet)。

在 Youtube 上观看这里

[## 用于视觉识别的卷积神经网络

计算机视觉在我们的社会中已经变得无处不在,在搜索、图像理解、应用程序、地图绘制…

cs231n.stanford.edu](http://cs231n.stanford.edu/2017/)

补充课程

行动计划

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

奥利弗·尼布赖特在 Unsplash 上拍摄的照片

L 在线学习数据科学有时会很难,因为没有结构化的课程告诉你该做什么。但是不要这样看,要意识到你有自由去构建一条适合你的学习道路,并能激发出你最好的一面。一件好事是你可以在大脑效率最高的时候学习,在效率较低的时候休息。此外,你可以根据自己的兴趣和热情决定学什么。

建议

在网上学习的时候,有几个小窍门,那就是总是做简单的笔记,在一天结束的时候写下心得,或者写下你所学到的东西。同样,通过向朋友和家人解释你所学到的东西来利用费曼技术也很重要,尤其是对于像数据科学这样复杂的学科。

此外,当学习机器学习算法和神经网络时,在编写代码的同时学习它是至关重要的,这样你可以看到你正在学习什么,并对手头的主题有更好的理解。成为 Reddit、 Discord 等在线社区的一员也不错。因此,您可以提出问题,并从专家那里获得很好的答案。

总结一下:

  1. 记笔记/写博客
  2. 使用费曼技术
  3. 编码和概念(从头开始创建神经网络)
  4. 加入数据科学在线社区,提出问题

最后,我引用亚瑟·w·奇克林和斯蒂芬·c·埃尔曼的一段话

“学生们仅仅坐在教室里听老师讲课、背事先准备好的作业,并快速给出答案,是学不到多少东西的。他们必须谈论他们正在学习的东西,反思性地写下来,将它与过去的经历联系起来,并应用到他们的日常生活中。他们必须让他们所学的成为自己的一部分。”

感谢阅读,我希望这篇文章对你有用。

请在评论中留下您建议的任何其他免费的数据科学在线课程!

点击这里查看我的其他文章!

数据科学工具箱—数据科学介绍系列

[## 数据科学简介

关于什么是数据科学、大数据、数据和数据科学过程及其应用。

towardsdatascience.com](/the-data-scientists-toolbox-part-1-c214adcc859f)

阅读我的超学习数据科学系列,其中提供了大量关于有效学习的建议和技巧。

[## 如何“超级学习”数据科学—第 1 部分

这是一个简短的指南,基于《超学习》一书,应用于数据科学

medium.com](https://medium.com/better-programming/how-to-ultralearn-data-science-part-1-92e143b7257b)

这里有一些很棒的数据科学资源!

[## 2020 年你应该订阅的 25 大数据科学 YouTube 频道

以下是你应该关注的学习编程、机器学习和人工智能、数学和数据的最佳 YouTubers

towardsdatascience.com](/top-20-youtube-channels-for-data-science-in-2020-2ef4fb0d3d5) [## 机器学习和数据科学的 20 大网站

这里是我列出的最好的 ML 和数据科学网站,可以提供有价值的资源和新闻。

medium.com](https://medium.com/swlh/top-20-websites-for-machine-learning-and-data-science-d0b113130068) [## 开始数据科学之旅的最佳书籍

这是你从头开始学习数据科学应该读的书。

towardsdatascience.com](/the-best-book-to-start-your-data-science-journey-f457b0994160) [## 数据科学 20 大播客

面向数据爱好者的最佳数据科学播客列表。

towardsdatascience.com](/top-20-podcasts-for-data-science-83dc9e07448e) [## 关于人工智能和大数据的 20 大电影。

这里有一些人工智能和大数据电影,你应该在新冠肺炎封锁期间在家观看。

towardsdatascience.com](/top-20-movies-about-machine-learning-ai-and-data-science-8382d408c8c3)

联系人

如果你想了解我的最新文章,请关注我的媒体

其他联系方式:

快乐学习!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值