PythonGuides 博客中文翻译(三十二)

原文:PythonGuides Blog

协议:CC BY-NC-SA 4.0

Matplotlib Plot NumPy Array

原文:https://pythonguides.com/matplotlib-plot-numpy-array/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在本 Python Matplotlib 教程中,我们将讨论 Matplotlib 中的 Matplotlib plot numpy 数组。在这里,我们将涵盖与使用 matplotlib 绘制 numpy 数组相关的不同示例。我们还将讨论以下主题:

  • Matplotlib plot numpy array
  • 将 numpy 数组绘制成直线
  • Matplotlib 散点图数字数组
  • Matplotlib 从 numpy 数组中绘制多行
  • Python 将 numpy 数组绘制为热图
  • Matplotlib 将 numpy 数组绘制为图像
  • Matplotlib 保存绘图到 numpy 数组
  • Matplotlib plot numpy 数组 2d
  • Matplotlib plot numpy 数组 3d
  • Matplotlib 绘图数字矩阵
  • Matplotlib 绘图 numpy 数组列

目录

Matplotlib plot numpy 数组

在 Python 中, matplotlib 是一个绘图库。我们可以将它与 Python 的库一起使用。NumPy 代表数字 Python ,用于处理数组

**以下是绘制 numpy 数组的步骤:**

  • **定义库:**导入所需的库,如用于数据可视化的 matplotlib.pyplot 和用于创建 numpy 数组的 numpy
  • **定义数据:**定义用于绘图的 x 轴和 y 轴数据坐标。
  • **绘制图表:**通过使用 matplotlib 库的 plot()scatter() 方法我们可以绘制图表。
  • **可视化绘图:**通过使用 show() 方法,用户可以在他们的屏幕上生成一个绘图。

我们来看一个例子:

**# Import Library**

import numpy as np 
import matplotlib.pyplot as plt

**# Data Cooedinates**

x = np.arange(5, 10) 
y = np.arange(12, 17)

**# PLot**

plt.plot(x,y) 

**# Add Title**

plt.title("Matplotlib PLot NumPy Array") 

**# Add Axes Labels** 
plt.xlabel("x axis") 
plt.ylabel("y axis") 

**# Display**

plt.show()

说明:

  • 导入所需的库,如 matplotlib.pyplotnumpy
  • 之后,我们使用 numpy 的 np.arange() 函数定义数据坐标。
  • 要绘制图形,请使用 matplotlib 的 plot() 函数。
  • 然后我们使用 title()xlabel()ylabel() 方法,在绘图的轴上添加 title标签

输出:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

np.arange()

另外,检查: Matplotlib set_xticks

Matplotlib 将 numpy 数组绘制为线

我们将学习使用 numpy 函数创建一个线图。为此,我们使用 np.arange() 函数,该函数从区间中返回等距值。

我们来看一个例子:

**# Import Library**

import numpy as np 
import matplotlib.pyplot as plt

**# Data Coordinates**

x = np.arange(2, 8) 
y = np.array([5, 8, 6, 20, 18, 30])

**# PLot**

plt.plot(x, y, linestyle='--') 

**# Add Title**

plt.title("Matplotlib Plot NumPy Array As Line") 

**# Add Axes Labels** 
plt.xlabel("x axis") 
plt.ylabel("y axis") 

**# Display**

plt.show()
  • 在这个例子中,为了定义数据坐标,我们使用 numpy 的 arange()array() 方法。
  • 为了绘制线图,使用 plot() 方法,我们还将 linestyle 参数传递给该方法,以更改线条的样式。
  • 要给绘图添加标题,使用 title() 函数。
  • 要在绘图的 x 轴和 y 轴上添加标签,请使用 xlabel()ylabel() 方法。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.plot(linestyle=’–‘)

Read: Matplotlib set_xticklabels

Matplotlib 散点图 numpy 数组

我们将学习使用 numpy 函数创建散点图。

我们来看一个例子:

**# Import Library** 
import numpy as np 
import matplotlib.pyplot as plt

**# Data Coordinates** 
x = np.arange(2, 8) 
y = x * 2 + 6

**# Plot**

plt.scatter(x, y) 

**# Add Title**

plt.title("Matplotlib Scatter Plot NumPy Array") 

**# Add Axes Labels** 
plt.xlabel("x axis") 
plt.ylabel("y axis") 

**# Display**

plt.show()
  • 在上面的例子中,我们使用 np.arange() 函数在 x 轴上创建一个 n array,在 y 轴上,我们使用等式创建一个 n array。
  • 要绘制散点图,请使用 scatter() 方法。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.scatter()

读取: Matplotlib fill_between

Matplotlib 从 numpy 数组中绘制多行

我们将学习从 numpy 数组中绘制多条线。

举例:

**# Import Library** 
import numpy as np 
import matplotlib.pyplot as plt

**# Data Coordinates**

x = np.arange(2, 8) 
y1 = x * 3
y2 = np.array([5, 2.6, 4, 15, 20, 6])

**# PLot**

plt.plot(x, y1) 
plt.plot(x, y2)

**# Add Title**

plt.title("Matplotlib Multiple Line Plot From NumPy Array") 

**# Add Axes Labels**

plt.xlabel("x axis") 
plt.ylabel("y axis") 

**# Display** 
plt.show()

输出:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Multiple Line

  • 在上面的例子中,我们定义了 xy1y2 数据坐标。
  • 在此之后,我们使用 matplotlib 的 plot() 方法绘制了 (x,y1)(x,y2) 之间的图形。

阅读:Matplotlib set _ yticklabels

Python 将 numpy 数组绘制为热图

热图是一种数据可视化图形技术,在这种技术中,我们使用颜色来表示数据,以可视化矩阵的值。热图也称为阴影矩阵。

将热图绘制成 numpy 数组有多种方式:

  • 使用 matplotlib imshow()函数
  • 使用 matplotlib pcolormesh()函数
  • 使用 seaborn heatmap()函数

使用 matplotlib imshow()函数

matplotlib 的 imshow() 函数用于将数据显示为图像。

以下是语法:

matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None,
                         interpolation=None, alpha=None,  
                         vmin=None, vmax=None, origin=None, 
                         extent=None, shape=, filternorm=1, 
                         filterrad=4.0, imlim=, resample=None,
                         url=None, \* , data=None, \*\*kwargs) 

举例:

**# Import Library**

import numpy as np
import matplotlib.pyplot as plt

**# Define Data**

x = np.arange(100).reshape((10,10)) 

**# Heat map**

plt.imshow( x, cmap = 'rainbow' , interpolation = 'bilinear')

**# Add Title**

plt.title( "Heat Map" )

**# Display**

plt.show()
  • 这里我们使用 numpy 的 arange() 方法来定义数据坐标。
  • 之后,我们使用 imshow() 函数来绘制热图。我们通过 x 参数来表示图像的数据, cmap 参数是 colormap 实例,插值参数用于显示图像。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.imshow()

使用 matplotlib pcolormesh()函数

pcolormesh() 函数用于创建带有不规则矩形网格的伪彩色图。

以下是语法:

matplotlib.pyplot.pcolormesh(*args, alpha=None, norm=None,
                             cmap=None, vmin=None, vmax=None,
                             shading='flat', antialiased=False,
                             data=None, **kwargs)

举例:

**# Import Library**

import numpy as np
import matplotlib.pyplot as plt

**# Define Data** 
x = np.arange(10000).reshape((100,100)) 

**# Heat map**

plt.pcolormesh( x, cmap = 'coolwarm')

**# Add Title**

plt.title( "Heat Map" )

**# Display** 
plt.show()

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.pcolormesh()

使用 seaborn heatmap()函数

heatmap() 函数用于将矩形数据绘制成颜色矩阵。

以下是语法:

seaborn.heatmap(data, *, vmin=None, vmax=None, cmap=None, 
                center=None, annot_kws=None, linewidths=0, 
                linecolor='white', cbar=True, **kwargs)

举例:

**# Import Library** 
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

**# Define Data Coordinates** 
x = np.arange(15**2).reshape((15, 15))

**# HeatMap** 
sns.heatmap( x , linewidth = 0.5 , cmap = 'Dark2' )

**# Add Title** 
plt.title( "Heat Map" )

**# Display**

plt.show()
  • 在上面的例子中,我们导入了 numpymatplotlib.pyplotseaborn 库。
  • 之后,我们使用 numpy 的 arange() 方法定义数据坐标,并使用shape()方法对其进行整形。
  • 然后我们使用 seaborn 的 heatmap() 函数。
  • 要给绘图添加标题,使用 title() 函数。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

sns.heatmap()

阅读: Matplotlib tight_layout

Matplotlib 将 numpy 数组绘制为图像

我们将学习把 numpy 数组绘制成图像。我们使用matplotlib . py plot . im show()函数将 numpy 数组转换为图像。

我们来看一个例子:

**# Import Library**

import numpy as np
import matplotlib.pyplot as plt

**# Define Data**

x = np.array([[[0, 0, 128], [255, 255, 0], [128, 0, 0]],
             [[0, 255, 0], [0, 0, 255], [255, 0, 255]]])

**# Image**

plt.imshow(x)

**# Display**

plt.show()
  • 在上面的例子中,我们导入了 matplotlib.pyplotnumpy 库。
  • 接下来,我们定义一个 RGB 颜色代码数组。
  • 然后我们使用 imshow() 函数将数组保存为图像。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.imshow()

阅读:Python Matplotlib tick _ params

Matplotlib 将绘图保存到 numpy 数组

我们将学习绘制 numpy 数组。使用 matplotlib pyplot 模块的 savefig() 函数保存图形。

我们来看一个例子:

**# Import Library**

import numpy as np
import matplotlib.pyplot as plt

**# Define Data**

x = np.array([1, 2.5, 8, 4.3, 6])

**# Plot**

plt.plot(x)

**# Save** 

plt.savefig('NumPy Array.png')

**# Display**

plt.show()
  • 这里我们使用 numpy 的 array() 方法定义数据坐标,并使用 plot() 方法绘制数据 we。
  • 为了将绘图保存为 png 图像,我们使用了 savefig() 方法。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

savefig()

读取: Matplotlib x 轴标签

Matplotlib plot numpy 数组 2d

我们将学习使用 matplotlib 的 pyplot 模块的 plot() 方法绘制 2d numpy 数组。

举例:

**# Import Library**

import numpy as np
import matplotlib.pyplot as plt

**# Define Data**

x = np.array([[2, 4, 6], [6, 8, 10]])
y = np.array([[8, 10, 12], [14, 16, 18]])

**# Plot**

plt.plot(x, y)

**# Display**

plt.show()
  • 这里我们创建 2d 数组来定义数据坐标 x 和 y。
  • 要绘制 2D 数字数组,请使用 plot() 方法。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2D NumPy Array

阅读: Matplotlib 多条形图

Matplotlib plot numpy 数组 3d

我们将学习使用 matplotlib 的轴模块的散点图方法绘制 3d numpy 数组。我们还使用 3d 投影来创建 3d 绘图。

举例:

**# Import Library** 
import numpy as np
import matplotlib.pyplot as plt

**# Create figure and subplot**

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

**# Define Data**

x = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
y = np.array([[[1, 2, 3], [4, 5, 6]], [[8, 10, 12], [4, 5, 6]]])
z = np.array([[[5, 6, 9], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])

**# Plot**

ax.scatter(x, y, z, color='red')

**# Display**

plt.show()

以下是从 3D numpy 数组建立 3D 出图的步骤:

  • 先导入库,比如 numpymatplotlib.pyplot
  • 使用**图()**方法创建一个新的。
  • 使用 add_subplot() 方法给图形添加一个轴。
  • 使用 numpy 的 array() 方法创建一个 3D numpy 数组。
  • 使用**散点()**方法绘制 3D 图。
  • 要显示绘图,使用 show() 方法。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3D NumPy Array

阅读: Matplotlib 散点图图例

Matplotlib 打印数字矩阵

我们将学习绘制一个 numpy 矩阵。Numpy 矩阵是严格的二维矩阵。为了将数组显示为矩阵,我们使用 matplotlib 的 pyplot 模块的 matshow() 方法。

例#1

**# Import Library**

import matplotlib.pyplot as plt
import numpy as np

**# Function**

def mat (dim):
    x = np.zeros(dim)
    for i in range(max(dim)):
        x[i, i] = -i 
    return x

**# Display matrix**

plt.matshow(mat((20,20)))

**# Display**

plt.show()
  • 首先,我们导入 matplotlib.pyplotnumpy 库。
  • 接下来,我们创建一个函数来生成一个带有零点的矩阵,并减少它的对角元素。
  • 然后我们使用 matshow() 方法,将一个数组显示为一个矩阵。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.matshow()

例 2

**# Import Library**

import numpy as np
import matplotlib.pyplot as plt

**# Define Data**

a = np.mat('4 3; 2 1')
b = np.mat('1 2; 3 4')
c= a + b

**# Plot**

plt.plot(a, b, color='red')
plt.plot(a, c, color='m')

**# Display**

plt.show()
  • 这里我们使用 mat() 函数将给定的输入解释为一个矩阵。
  • 我们还执行两个矩阵的加法运算。
  • 然后我们使用 plot() 方法创建一个图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

np.mat()

阅读: Matplotlib 3D 散点图

Matplotlibb plot numpy 数组列

我们将学习从 numpy 数组中获取列,并使用 matplotlib 的 pyplot 模块的 plot() 方法进行绘制。

例#1

**# Import Library**

import numpy as np
import matplotlib.pyplot as plt

**# Create numpy array**

data = np.array([1, 2, 3, 4, 5, 6, 7, 8])

**# First two columns'** 
print("First two columns")
print(data[0:2])

**# Define data**

x= data[0:2]

**# Plot**

plt.plot(x)

**# Display**

plt.show()
  • 这里我们使用 numpy 的 array 方法创建一个 numpy 数组。
  • 然后我们从数组中取出前两列。
  • 为了绘制图表,我们使用了 plot() 方法。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.plot()

例 2

**# Import Library**

import numpy as np
import matplotlib.pyplot as plt

**# Create numpy array**

data = np.array([1, 2, 3, 4, 5, 6, 7, 8])

**# Length of an array**

length = len(data)

**# Last three columns**

print("Last 3 Columns")
print(data[length-3:length])

x= data[length-3:length]

**# PLot**

plt.plot(x)

**# Display**

plt.show()
  • 这里我们使用 numpy 的 array() 方法创建一个数组。
  • 然后我们使用 len() 方法找到数组的长度。
  • 然后我们使用 plot() 方法打印并绘制数组的最后三列。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

matplotlib plot numpy array with columns

你可能也喜欢阅读下面的 Matplotlib 教程。

因此,在这个 Python 教程中,我们已经讨论了**“Matplotlib plot numpy 数组”**,并且我们也涵盖了一些与之相关的例子。这些是我们在本教程中讨论过的以下主题。

  • Matplotlib plot numpy array
  • 将 numpy 数组绘制成直线
  • Matplotlib 散点图数字数组
  • Matplotlib 从 numpy 数组中绘制多行
  • Python 将 numpy 数组绘制为热图
  • Matplotlib 将 numpy 数组绘制为图像
  • Matplotlib 保存绘图到 numpy 数组
  • Matplotlib plot numpy 数组 2d
  • Matplotlib plot numpy 数组 3d
  • Matplotlib 绘图数字矩阵
  • Matplotlib 绘图 numpy 数组列

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传Bijay Kumar

Python 是美国最流行的语言之一。我从事 Python 工作已经有很长时间了,我在与 Tkinter、Pandas、NumPy、Turtle、Django、Matplotlib、Tensorflow、Scipy、Scikit-Learn 等各种库合作方面拥有专业知识。我有与美国、加拿大、英国、澳大利亚、新西兰等国家的各种客户合作的经验。查看我的个人资料。

enjoysharepoint.com/****

Matplotlib 移除刻度标签

原文:https://pythonguides.com/matplotlib-remove-tick-labels/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在这个 python 教程中,我们将学习如何使用 Python 中的 matplotlib移除刻度标签。我们还将讨论以下主题:

  • 如何移除刻度标签
  • Matplotlib 移除刻度标签
  • Matplotlib 删除刻度
  • Matplotlib 删除刻度标签和刻度线
  • Matplotlib 删除轴标签
  • Matplotlib 移除标签保留记号
  • Matplotlib 删除记号保留标签
  • Matplotlib 从子绘图中删除刻度标签
  • Matplotlib 删除次要刻度标签
  • Matplotlib 删除彩条刻度标签
  • Matplotlib 删除特定的刻度标签

目录

Matplotlib 如何移除刻度标签

在开始这个话题之前,先了解一下 tick 和 labels 是什么意思。

  • 记号是用来表示轴上的点的标记,或者我们可以说是小的几何刻度线。
  • 刻度标签是刻度的名称。或者我们可以说记号标签是包含称为文本记号的文本的记号。
  • 轴标签是 X 轴、Y 轴等轴的名称。

有时程序员想要隐藏或删除刻度线和刻度标签。我们在 matpolotlib 中使用了不可见的特性,利用它我们可以使标记和标签不可见。

以下步骤用于移除 matplotlib 记号和标签,概述如下:

  • **定义库:**导入删除记号和标签所需的重要库(对于可视化:来自 matplotlib 的 pyplot,对于数据创建和操作:Numpy 或 Pandas)。
  • 定义 X 和 Y: 定义 X 轴和 Y 轴上的数据值。我们可以创建数组或数据框来定义值。
  • **去除或隐藏刻度/标签:**通过使用 yticks()xticks() 的方法我们可以很容易地去除刻度和标签。
  • **显示:**最后使用 show() 的方法显示剧情。

阅读:如何安装 matplotlib python

Matplotlib 移除刻度标签

在本节中,我们将研究如何移除刻度标签。刻度标签是图中刻度的名称。

隐藏刻度标签有不同的方法:

  • 通过将刻度标签的颜色设置为白色
  • 通过将刻度标签设置为空
  • 通过将标签参数设置为空

Matplotlib 通过设置颜色移除刻度标签

如果图的背景色是白色。通过将刻度标签的颜色设置为白色,我们可以轻松隐藏刻度标签。

基本上,它使刻度标签不可见,但将标签颜色设置为白色。如果背景色不是白色,那么这个方法就不行。

使用 xticks()yticks() 方法,并将颜色参数作为**‘w’**传递。

通过设置颜色移除刻度标签的语法如下:

**# X-axis tick label**
matplotlib.pyplot.xticks(color='w')
**# Y-axis tick label**
matplotlib.pyplot.yticks(color='w')

上述使用的参数定义如下:

  • **颜色:**指定一种颜色为白色。

让我们借助一个例子来更清楚地理解这个概念:

**# Import Library**

import matplotlib.pyplot as plt

**# Define Data**

x = [1,2,3,4]
y = [6,12,18,24]

**# Plot Graph**

plt.plot(x,y) 
plt.xlabel("X Label")
plt.ylabel("Y Label")

**# xticks color white**

plt.xticks(color='w')

                      **# OR**

**# yticks color white**

plt.yticks(color='w')

**# Display Graph**

plt.show()
  • 在上面的例子中,我们导入了 matplotlib.pyplot 库。之后,我们定义 x 轴和 y 轴的数据点。
  • plt.plot() 方法用于图形的创建。
  • plt.xticks() 方法用于移除 x 轴上的刻度标签。这里我们传递颜色参数,并将颜色设置为白色
  • plt.yticks() 方法用于移除 y 轴上的刻度标签。这里我们传递颜色参数,并将颜色设置为白色
  • 最后,我们使用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks(color=’w’)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.yticks(color=’w’)

读取 Matplotlib set_xticks

Matplotlib 通过将刻度标签设置为空来移除刻度标签

通过使用 xaxis.set_ticklabels([])yaxis.set_ticklabels([]) 将刻度标签设置为空。

此方法通过将刻度标签设置为空来使刻度标签不可见,但保持刻度可见。

其语法如下:

**# For X-axis**
matplotlib.axes.xaxis.set_ticklabels([])
**# For Y-axis**
matplotlib.axes.yaxis.set_ticklabels([])

让我们看看例子,更清楚地理解这个概念:

**# Import Library**

import matplotlib.pyplot as plt

**# Define Data**

x = [1,2,3,4]
y = [6,12,18,24]

**# Plot Graph**

plt.plot(x,y) 
plt.xlabel("X Label")
plt.ylabel("Y Label")
ax = plt.gca()

**# xticks setting to be empty**

ax.axes.xaxis.set_ticklabels([])

            **# OR**

**# yticks setting to be empty** 
ax.axes.yaxis.set_ticklabels([])

**# Display Graph**

plt.show()
  • 在上面的例子中,我们导入了 matplotlib.pyplot 库。
  • 之后,我们定义 x 轴和 y 轴的数据点。
  • plt.plot() 方法用于图形的创建。
  • **ax . axes . xaxis . set _ tick labels([])**方法用于去除 x 轴的刻度标签。
  • **ax . axes . ya xis . set _ tick labels([])**方法用于去除 y 轴的刻度标签。
  • 最后,我们使用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ax.axes.xaxis.set_ticklabels([])

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ax.axes.yaxis.set_ticklabels([])

Read Matplotlib set_xticklabels

Matplotlib 通过将刻度标签参数设置为空来移除刻度标签

通过使用 plt.xticks()plt.yticks() 方法并传递带有空标签的参数。

将分笔成交点标签设置为下注空的语法如下:

`For x-asis`
matplotlib.pyplot.xticks(x, label='')
`For y-axis`
matplotlib.pyplot.yticks(y, label='')

上述使用的参数为**,如下:**

  • x: 指定 x 轴
  • y: 指定 y 轴
  • **标签:**指定标签。设置为空。

让我们看看将标签设置为空的例子:

**# Import Library**

import matplotlib.pyplot as plt

**# Define data**

x = [1,2,3,4]
y = [8,9,10,11]

**# plot graph**

plt.plot(x, y, color='r', linewidth=5)

**# set x label to be empty**

plt.xticks(x, labels=" ")

           **# OR**

**# set y label to be empty**

plt.yticks(y, labels=" ")

**# display the graph**  

plt.show()
  • 在上面的例子中,我们导入了 matplotlib.pyplot 库。
  • 之后,我们定义 x 轴和 y 轴的数据点。
  • plt.plot() 方法用于图形的创建。
  • plt.xticks() 方法用于移除 x 轴上的刻度标签。这里我们传递参数标签,并将它们设置为空。
  • plt.yticks() 方法用于移除 y 轴上的刻度标签。这里我们传递参数标签,并将它们设置为空。
  • 最后,我们使用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks(x, labels=”)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.yticks(y,labels=”)

阅读: Matplotlib 绘制一条线

Matplotlib 移除刻度线

默认情况下,当我们在 matplotlib 中绘制图形时,我们会在 x 轴和 y 轴的两侧绘制记号。

但有时我们不想在图中显示刻度线。因此,在这种情况下,我们必须让这些蜱看不见,或者我们可以说,我们必须删除它们。

通过使用 tick_params() 方法,我们可以轻松地删除这些记号。

在下面的例子中,我们去除了刻度:

  • 当我们想要删除 x 轴上的刻度时
  • 当我们想要删除 y 轴上的刻度时
  • 当我们想从两个轴上删除刻度时

Matplotlib 移除 x 轴上的记号

使用 tick_params() 方法移除 x 轴上的。在这个方法中传递参数底部并设置其值为假

它仅删除记号,保留记号标签不变。

去除 x 轴上刻度的语法如下:

`For x-axis`
matplotlib.pyplot.tick_params(bottom=False)

让我们借助一个例子来更清楚地理解这个概念:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [5, 6, 7, 8]
y = [8, 16, 20, 12]

**# Remove ticks on x-axis**

plt.tick_params(bottom = False)

**# Plot Graph**

plt.plot(x,y)

**# Display Graph**

plt.show()
  • 在上面的例子中,我们导入了 matplotlib.pyplot 库。
  • 之后,我们定义 x 轴和 y 轴的数据点。
  • plt.tick_params() 方法用于移除 x 轴上的刻度线。这里我们传递参数底部并设置它的值
  • plt.plot() 方法用于图形的创建。
  • 最后,我们使用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.tick_params(bottom=False)

读取 Matplotlib fill_between

Matplotlib 移除 y 轴上的刻度

使用 tick_params() 方法移除 y 轴上的。在这个方法传递中,参数离开,并设置其值为假

它仅删除记号,保留记号标签不变。

删除 y 轴刻度的语法如下:

`For y-axis`
matplotlib.pyplot.tick_params(left=False)

让我们借助一个例子来更清楚地理解这个概念:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [5, 6, 7, 8]
y = [8, 16, 20, 12]

**# Remove ticks on y-axis**

plt.tick_params(left = False)

**# Plot Graph**

plt.plot(x,y)

**# Display Graph**

plt.show()
  • 在上面的例子中,我们导入了 matplotlib.pyplot 库。
  • 之后,我们定义 x 轴和 y 轴的数据点。
  • plt.tick_params() 方法用于移除 y 轴上的刻度线。这里我们传递参数 left 并设置它的值 False
  • plt.plot() 方法用于图形的创建。
  • 最后,我们使用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.tick_params(left=False)

读取Matplotlib set _ yticklabels

Matplotlib 从两个轴上移除记号

使用 tick_params() 方法删除两个轴上的记号。在这个方法传递中,自变量底部左侧将其值设为假

它去除了两个轴上的刻度标记,分别称为 x 轴y 轴

删除两个轴上的记号的语法如下:

`For both the axes`
matplotlib.pyplot.tick_params(left=False,bottom=False)

让我们借助一个例子来更清楚地理解这个概念:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data** 
x = [5, 6, 7, 8]
y = [8, 16, 20, 12]

**# Remove ticks on x-axis and y-axis both**

plt.tick_params(left = False, bottom = False)

**# Plot Graph** 
plt.plot(x,y)

**# Display Graph** 
plt.show()
  • 在上面的例子中,我们导入了 matplotlib.pyplot 库。
  • 之后,我们定义 x 轴和 y 轴的数据点。
  • plt.tick_params() 方法用于去除两个轴上的刻度线。这里我们通过自变量的左的底并设置其值
  • plt.plot() 方法用于图形的创建。
  • 最后,我们使用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.tick_params(left=False, bottom=False)

阅读: Python 使用 Matplotlib 绘制多条线

Matplotlib 移除刻度标签和刻度线

当我们在 matplotlib 中绘制图形时,图形同时具有刻度标签和刻度线。有时候,我们需要去掉标签和标记。

有以下几种方法可以同时去除记号和标签:

  • 通过使用 set_visible()方法
  • 通过使用 set_ticks([])方法
  • 通过使用 xticks([])或 yticks([])方法
  • 通过使用 NullLocator()方法
  • 通过使用 tick_params()方法

Matplotlib 通过使用 xaxis.set_visible() 移除标签和刻度

set_visible() 方法删除坐标轴刻度、坐标轴刻度标签以及坐标轴标签。它使轴心完全不可见。

在这个方法中传递参数 False 来设置不可见性。

删除记号和标签的语法如下:

`For x-axis`
ax.axes.xaxis.set_visible(False)
`For y-axis`
ax.axes.yaxis.set_visible(False)

让我们看例子来理解这个概念:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [5, 6, 7, 8]
y = [1, 2, 3, 6]

**# Remove ticks and labels on x-axis and y-axis both**

ax = plt.gca()
ax.axes.xaxis.set_visible(False)
ax.axes.yaxis.set_visible(False)

**# Plot Graph**

plt.plot(x,y)

**# Display Graph**

plt.show()
  • 在上面的例子中,我们使用ax . axes . xaxis . set _ visible()方法来隐藏 x 轴上的刻度和标签,并设置值 False
  • ax . axes . ya xis . set _ visible()方法隐藏 y 轴上的刻度和标签,并设置值 False
  • 最后,我们使用 show() 方法来显示图形

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ax.axes.xaxis / yaxis.set_visible(False)

读取 Matplotlib tight_layout

Matplotlib 通过使用 set_ticks([]) 移除标签和记号

set_ticks([]) 方法删除坐标轴刻度,坐标轴刻度标签。但是它不会删除轴标签。将记号设置为空并使其不可见。

set _ ticks([])的语法如下:

`For x-axis`
ax.axes.xaxis.set_ticks([])
`For y-axis`
ax.axes.yaxis.set_ticks([]) 

让我们借助下面给出的例子来理解这个概念:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data** 
x = [5, 6, 7, 8]
y = [1, 2, 3, 6]

**# Remove ticks and labels on x-axis and y-axis both**

ax = plt.gca()
ax.axes.xaxis.set_ticks([])
ax.axes.yaxis.set_ticks([])

**# Plot Graph**

plt.plot(x,y, color= 'red', linewidth=3)

**# Display Graph**

plt.show()
  • 在上面的例子中,我们使用了一个ax . axes . xaxis . set _ ticks()方法来隐藏 x 轴上的刻度和标签,并将刻度设置为空。
  • ax . axes . ya xis . set _ ticks()方法隐藏 y 轴上的刻度和标签,并将刻度设置为空。
  • 最后,我们使用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ax.axes.xaxis / yaxis .set_ticks([])

阅读Python Matplotlib tick _ params+29 示例

Matplotlib 通过使用 xticks([])和 yticks([]) 删除标签和刻度

通过使用 xticks()和 yticks()方法,可以禁用 x 轴和 y 轴上的刻度和刻度标签。

禁用记号和标签的语法如下:

`For x-axis`
plt.xticks([])
`For y-axis`
plt.yticks([])

让我们借助一个例子来理解如何禁用记号和标签:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [5, 6, 7, 8]
y = [1, 2, 3, 6]

**# Plot Graph**

plt.plot(x,y, color= 'orange', linewidth=3)

**# Remove ticks and labels on x-axis and y-axis both**

plt.xticks([])
plt.yticks([])

**# Display Graph**

plt.show()
  • 在上面的例子中,我们使用 plt.xticks([]) 方法来隐藏 x 轴上的刻度和标签,并将刻度设置为空。
  • plt.yticks() 方法来隐藏 y 轴上的刻度和标签,并将刻度设置为空。
  • 最后,我们使用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks / yticks ([])

读取 Matplotlib x 轴标签

Matplotlib 通过使用 NullLocator()移除刻度和刻度标签

为了定位蜱,我们使用零定位器。因此,通过使用 NullLocator()方法,我们隐藏了轴刻度和轴标签。

删除记号和记号标签的语法如下:

**# For x-axis**
ax.xaxis.set_major_locator(ticker.NullLocator())
**# For y-axis**
ax.yaxis.set_major_locator(ticker.NullLocator())

让我们看一个与 NullLocator()相关的例子如下:

**# Import Libraries**

import matplotlib.ticker as ticker

**# Define data** 
x = [6, 8.3, 9, 2]
y = [1, 2, 3, 6]

**# Define axes**

ax = plt.axes()

**# Plot Graph** 
ax.plot(x,y, color= 'cyan', linewidth=10)

**# Remove ticks and labels on x-axis and y-axis**

ax.xaxis.set_major_locator(ticker.NullLocator())
ax.yaxis.set_major_locator(ticker.NullLocator())

**# Display Graph**

plt.show()
  • 在上面的例子中,首先我们必须导入库 matplotlib.ticker 。在此之后,我们必须以 X 轴和 y 轴的形式定义数据,以便绘图。
  • plt.axes() 方法用于定义轴, ax.plt() 方法用于绘制图形。
  • 接下来,我们必须使用 NullLocator() 函数作为 set_major_locator() 方法中的参数,用于 x 轴和 y 轴。
  • 最后,我们调用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

NullLocator()

读取 Matplotlib 多条形图

Matplotlib 通过使用 tick_params() 移除记号和标签

要隐藏或删除两个轴(x 轴和 y 轴)上的刻度线和刻度标签,我们必须使用 tick_parmas() 函数。

将以下内容作为参数传递( left、bottom、labelleftlabelbottom ,并将它们的值设置为 False ,以隐藏刻度和标签。

tick _ params()方法的语法如下:

matplotlib.pyplot.tick_params(left = False,labelleft = False ,
                           labelbottom = False, bottom = False)

让我们来看一个例子:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data** 

x = [5, 6, 7, 8]
y = [8, 16, 20, 12]

**# Remove ticks and labels on x-axis and y-axis both**

plt.tick_params(left = False, labelleft = False , labelbottom = False, bottom = False)

**# Plot Graph** 

plt.plot(x,y)

**# Display Graph**

plt.show()
  • 在上面的例子中,我们导入了 matplotlib.pyplot 库。
  • 之后,我们定义 x 轴和 y 轴的数据点。
  • plt.tick_params() 方法用于清除两个轴上的刻度线和刻度标签。这里我们传递参数 leftbottom、labelleft、labelbottom ,并设置它们的值为 False
  • plt.plot() 方法用于图形的创建。
  • 最后,我们使用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

tick_params()

阅读:什么是 matplotlib 内联

Matplotlib 移除轴标签

在 matplotlib 中,默认情况下,绘图显示刻度和刻度标签。我们还可以在轴(x 轴和 y 轴)的两侧显示轴标签。

首先让我们理解轴标签是什么意思:

  • 基本上,轴标签告诉我们 x 轴和 y 轴代表什么。
  • 例如:x 轴代表学生人数,y 轴代表学生的分数。

现在在这一节中,我们学习如何删除或隐藏轴标签。

通过使用 set_visible() 方法,我们可以隐藏轴标签。它使整个轴不可见,包括刻度线、刻度标签以及轴标签。

删除轴标签的语法:

`For x-axis`
ax.axes.xaxis.set_visible(False)
`For y-axis`
ax.axes.yaxis.set_visible(False)

让我们看一个有轴标签的图形或图表的例子:

**# Import Library**

import matplotlib.pyplot as plt

**# Define Data** 
student = [5, 10, 12, 16, 18]
marks= [99, 90, 80, 85, 75]

**# Define axes label**

plt.xlabel("No.Of students")
plt.ylabel("Marks of students")

**# Plot Graph**

plt.scatter(student,marks, color='r')

**# Display Graph**

plt.show()
  • 在上面的例子中,首先我们导入了 matplotlib.pyplot 库。
  • 之后,我们定义数据,即 x 轴上的学生的号和 y 轴上的学生分数。
  • 接下来,我们定义轴标签,它告诉我们 x 轴代表学生的编号,y 轴代表学生的分数。我们使用 plt.xlabel()plt.ylabel() 的方法
  • plt.scatter() 方法用于绘制图形。
  • 最后,我们使用 show() 方法来显示我们绘制的内容。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Plot having axis labels

现在让我们借助一个例子来看看如何移除轴标签:

**# Import Library**

import matplotlib.pyplot as plt

**# Define Data**

student = [5, 10, 12, 16, 18]
marks= [99, 90, 80, 85, 75]

**# Define axes label**

plt.xlabel("No.Of students")
plt.ylabel("Marks of students")

**# Remove axis labels**

ax = plt.gca()
ax.axes.xaxis.set_visible(False)
ax.axes.yaxis.set_visible(False)

**# Plot Graph**

plt.scatter(student,marks, color='r')

**# Display Graph**

plt.show()
  • 在上面的例子中,我们使用了一个ax . axes . xaxis . set _ visible()方法和ax . axes . ya xis . set _ visible()方法,并将它们的值 False 设置为不可见的轴标签。
  • 此方法还隐藏轴刻度和刻度标签。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Plot without axis labels

阅读: Matplotlib 绘图条形图

Matplotlib 移除标签保留记号

通过将记号标签设置为空来隐藏记号标签,但保持记号可见的方法。

我们使用 xaxis.set_ticklabels([])yaxis.set_ticklabels([]) 将 tick 标签设置为空。

其语法如下:

**# For X-axis**
matplotlib.axes.xaxis.set_ticklabels([])
**# For Y-axis**
matplotlib.axes.yaxis.set_ticklabels([])

让我们看看例子,更清楚地理解这个概念:

**# Import Library**

import matplotlib.pyplot as plt

**# Define Data**

student = [5, 10, 12, 16, 18]
marks= [99, 90, 80, 85, 75]

**# Plot Graph**

plt.plot(student,marks) 
plt.xlabel("No.Of students")
plt.ylabel("Marks of students")
ax = plt.gca()

**# xticks setting to be empty**

ax.axes.xaxis.set_ticklabels([])

            **# OR**

**# yticks setting to be empty** 
ax.axes.yaxis.set_ticklabels([])

**# Display Graph**

plt.show()
  • 在上面的例子中,我们导入了 matplotlib.pyplot 库。
  • 之后,我们定义 x 轴和 y 轴的数据点,即学生人数和学生分数。
  • plt.plot() 方法用于图形的创建。
  • **ax . axes . xaxis . set _ tick labels([])**方法用于去除 x 轴的刻度标签。
  • **ax . axes . ya xis . set _ tick labels([])**方法用于去除 y 轴的刻度标签。
  • 最后,我们使用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

set_ticklabels([])

阅读: Matplotlib 支线剧情教程

Matplotlib 移除刻度保留标签

tick_params() 方法用于删除两个轴上的刻度。

在我们传递的这个方法中,自变量设置其值

它去除了两个轴上的刻度标记,这两个轴分别称为 x 轴y 轴

删除记号并保留标签的语法如下:

`For both the axes`
matplotlib.pyplot.tick_params(left=False,bottom=False)

让我们借助一个例子来更清楚地理解这个概念:

**# Import Library** 
import matplotlib.pyplot as plt

**# Define Data**

student = [5, 10, 12, 16, 18]
marks= [99, 90, 80, 85, 75]

**# Define axes label**

plt.xlabel("No.Of students")
plt.ylabel("Marks of students")

**# Remove ticks keep labels**

plt.tick_params(left = False, bottom = False)

**# Plot Graph**

plt.scatter(student,marks, color='r')

**# Display Graph**

plt.show()
  • 在上面的例子中,我们导入了 matplotlib.pyplot 库。
  • 之后,我们定义 x 轴和 y 轴的数据点,即。学生和学生的口袋。
  • plt.tick_params() 方法用于去除两个轴上的刻度线。这里我们通过自变量的左的底并设置其值
  • plt.plot() 方法用于图形的创建。
  • 最后,我们使用 show() 方法来显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

tick_params()

阅读: Matplotlib 最佳拟合线

Matplotlib 从子图中移除刻度标签

这里我们将讨论如何从特定的子情节中移除记号和标签。

我们使用 set_xticks()set_yticks() 函数来分别隐藏 x 轴和 y 轴上的刻度和标签。

这里我们必须将 ticks 值设置为空。

让我们借助一个例子来理解这个概念:

**# Importing Libraries**

import numpy as np
import matplotlib.pyplot as plt

**# Define Data**

x1= [2, 6, 9, 5]
y1= [1, 3, 9, 15]

x2= [2, 6, 7, 9, 10]
y2= [3, 4, 6, 9, 12]

x3= [5, 8, 12]
y3= [3, 6, 9]

x4= [7, 8, 15]
y4= [6, 12, 18]

fig, ax = plt.subplots(2, 2)

**# Remove tick labels**

ax[0, 0].set_xticks([])
ax[0, 0].set_yticks([])

**# Plot graph**

ax[0, 0].plot(x1, y1)
ax[0, 1].plot(x2, y2)
ax[1, 0].plot(x3, y3)
ax[1, 1].plot(x4,y4)

**# Display Graph**

fig.tight_layout()
plt.show()
  • 在上面的例子中,我们在一个图形区域中绘制了多个图。我们希望删除特定地块的记号和标签。
  • 这里我们使用 set_xticks()和 set_yticks() 方法来改变绘图的背景。
  • 我们对第一个子情节使用 set_xticks()和 set_yticks() 方法,并将 tick 值设置为

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

set_xticks([]) and set_yticks([])

阅读: Matplotlib 支线剧情 _adjust

Matplotlib 移除次要刻度标签

次要刻度是主要刻度之间的刻度。或者我们可以说小分笔成交点将大分笔成交点分成几个部分。

默认情况下,次要刻度标签处于关闭状态。

在本节中,我们将研究如果次要刻度打开,如何移除或关闭次要刻度。

删除次要刻度的语法:

matplotlib.pyplot.minorticks_off()

让我们看看如何关闭次要刻度的示例:

代码#1 (带小勾号)

默认情况下,对数刻度有较小的刻度,因此为了便于理解,我们采用这个刻度。

**# Import Library**

import numpy as np
import matplotlib.pyplot as plt

**# Define Data**

x = np.random.randint(-5, 5, 10)
y = np.exp(x)

**# Plot Graph**

plt.plot(y, x)
plt.xscale('log')

**# Display Graph**

plt.show() 

在上面的例子中,我们用对数标度绘制了一个图表,以便我们了解次要分笔成交点的样子。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

The graph with minor tick labels

代码#2 (无小勾号)

**# Import Library**

import numpy as np
import matplotlib.pyplot as plt

**# Define Data** 

x = np.random.randint(-5, 5, 10)
y = np.exp(x)

**# Plot Graph**

plt.plot(y, x)
plt.xscale('log')

**# Remove minor ticks**

plt.minorticks_off()

**# Display Graph**

plt.show()

在上面的例子中,现在我们使用 minorticks_off() 方法关闭次要刻度。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

The graph without minor tick labels

读取: Matplotlib 日志日志图

Matplotlib 移除彩条刻度标签

彩条是颜色数据值的映射。 colorbar() 方法用于向图表添加一个颜色条。

我们可以从颜色栏中删除以下内容:

  • 仅勾选
  • 刻度和刻度标签

让我们逐一讨论每个案例:

Matplotlib 仅移除列条记号

如果我们想从列栏中删除刻度,我们必须将刻度的大小设置为 0。

其语法如下:

cbar.ax.tick_params(size=0)

上面使用的参数是:

  • **大小:**色带条中刻度线的大小

我们举个例子来了解一下如何去除蜱虫:

**# Import libraries**

import matplotlib.pyplot as plt
import numpy as np

**# Plot image** 
a = np.random.random((5, 5))
plt.imshow(a, cmap='summer')

**# Plot colorbar**

cbar = plt.colorbar()

**# Set ticklabels**

labels = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
          0.7, 0.8, 0.9, 1]
cbar.set_ticks(labels)

**# Remove ticks**

cbar.ax.tick_params(size=0)

**# Plot graph** 

plt.show()

在上面的例子中,我们使用 tick_params()方法,传递参数 size,并将值设置为 0。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Colorbar without ticks

阅读 Matplotlib 散点图图例

Matplotlib 删除滚动条和标签标签

如果我们想删除彩条的 tick 和 ticklabels,我们必须使用函数 set_ticks([])并传递空列表。

其语法如下:

cbar.set_ticks([])

让我们举一个例子来理解 如何删除勾选和勾选标签

 **# Import libraries**

import matplotlib.pyplot as plt
import numpy as np

**# Plot image** 
a = np.random.random((5, 5))
plt.imshow(a, cmap='summer')

**# Plot colorbar**

cbar = plt.colorbar()

**# Set ticklabels**

labels = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
          0.7, 0.8, 0.9, 1]

**# Remove both ticks and ticklabels**

cbar.set_ticks(labels)

**# Plot graph** 

plt.show() 

在上面的例子中,我们在 set_ticks() 方法中传递空列表。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Colorbar with tick and ticklabels

阅读: Matplotlib plot_date

Matplotlib 移除特定的刻度标签

在这里,我们将学习如何从图中隐藏一些特定的刻度标签。

使用方法 set_visible(False) 处理一些特定的记号。

其语法为:

xticks = ax.xaxis.get_major_ticks()
xticks[0].label1.set_visible(False)

**# Here 0 is axis position which we want to hide** 
yticks = ax.yaxis.get_major_ticks()
yticks[4].label1.set_visible(False)

**# Here 4 is axis position which we want to hide from y-axis** 

为了更好地理解,我们来看一个例子:

**# Import Library**

import matplotlib.pyplot as plt

**# Define Data** 

student = [5, 10, 12, 16, 18]
marks= [99, 90, 80, 85, 75]

**# Plot Graph**

plt.plot(student,marks) 
plt.xlabel("No.Of students")
plt.ylabel("Marks of students")
ax = plt.gca()

**# remove specfic ticks**

xticks = ax.xaxis.get_major_ticks()
xticks[0].label1.set_visible(False)
yticks = ax.yaxis.get_major_ticks()
yticks[4].label1.set_visible(False)

**# Display Graph** 

plt.show()
  • 在上面的例子中,我们隐藏了 x 轴和 y 轴上的特定刻度。
  • 使用 set_visible() 方法,将您想要删除的特定记号和值设为 False。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Remove some specific tick labels

你可能也喜欢阅读下面的 Matplotlib 教程。

在本 Python 教程中,我们已经讨论了“ Matplotlib 移除记号标签”,并且我们还介绍了一些与之相关的例子。我们在本教程中讨论了以下主题。

  • 如何移除刻度标签
  • Matplotlib 移除刻度标签
  • Matplotlib 删除刻度
  • Matplotlib 删除刻度标签和刻度线
  • Matplotlib 删除轴标签
  • Matplotlib 移除标签保留记号
  • Matplotlib 删除记号保留标签
  • Matplotlib 从子绘图中删除刻度标签
  • Matplotlib 删除次要刻度标签
  • Matplotlib 删除彩条刻度标签
  • Matplotlib 删除特定的刻度标签

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传Bijay Kumar

Python 是美国最流行的语言之一。我从事 Python 工作已经有很长时间了,我在与 Tkinter、Pandas、NumPy、Turtle、Django、Matplotlib、Tensorflow、Scipy、Scikit-Learn 等各种库合作方面拥有专业知识。我有与美国、加拿大、英国、澳大利亚、新西兰等国家的各种客户合作的经验。查看我的个人资料。

enjoysharepoint.com/

Matplotlib 旋转刻度标签

原文:https://pythonguides.com/matplotlib-rotate-tick-labels/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在本 Python 教程中,我们将讨论 Python 中的 matplotlib 旋转刻度标签。我们还将讨论以下主题:

  • Matplotlib 旋转刻度标签
  • Matplotlib 旋转刻度标签示例
  • Matplotlib 旋转刻度标签 x 轴
  • Matplotlib 旋转刻度标签 y 轴
  • Matplotlib 旋转刻度标签日期
  • Matplotlib 旋转刻度标签色带
  • Matplotlib 将刻度标签旋转 45 度
  • Matplotlib 将刻度标签旋转 90 度
  • 旋转刻度标签对齐

目录

Matplotlib 旋转刻度标签

  • 在 python 中, matplotlib 是用于数据可视化的最好的库之一。
  • Matplotlib 库提供了根据我们的选择定制刻度标签的功能。
  • 它提供了旋转刻度标签的功能。

首先,让我们了解 ticks 标签是什么意思:

  • 代表轴上数据点的标记称为“记号”。
  • 而给标记赋予的名称叫做“记号标签”。

默认情况下,Matplotlib 在轴上标记数据点,但它也为我们提供了根据我们的选择设置刻度和刻度标签的功能。

在本节中,我们将学习刻度标签的旋转。

以下步骤用于旋转 matplotlib 中的刻度标签,概述如下:

  • **定义库:**导入旋转刻度标签所需的重要库(用于可视化:来自 matplotlib 的 pyplot,用于数据创建和操作:NumPy 和 Pandas)。
  • 定义 X 和 Y: 定义 X 轴和 Y 轴上的数据值。
  • **绘制图表:**通过使用 plot() 方法或任何其他可用于绘制的方法,您可以绘制图表。
  • **旋转刻度标签:**通过使用 x.ticks()y.ticks() 的方法我们可以旋转刻度标签。
  • **显示:**最后使用 show() 的方法显示剧情。

旋转刻度标签的语法如下:

`For X-axis labels` 
matplotlib.pyplot.xticks(ticks=None, labels=None, rotation=None, ......)

`For Y-axis labels`

matplotlib.pyplot.yticks(ticks=None, labels=None, rotation=None, ......) 

上述使用的参数概述如下:

  • **蜱:**是一种阵列状结构。它指定 xtick 或 ytick 位置的列表。
  • **标签:**指定放置在给定刻度位置的标签。它是一个类似数组的结构。
  • **旋转:**指定旋转的角度。

另外,学习:如何安装 matplotlib python

Matplotlib 旋转刻度标签示例

在上面的部分中,我们讨论了刻度标签的含义以及刻度标签旋转的语法。

下面我们通过一个例子来理解刻度标签旋转的概念:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [2, 4, 6, 8]
y = [7, 14, 21, 28]

**# Create Plot**

plt.plot(x, y, color='red')

**# Rotate tick labels**

plt.xticks(rotation=30)

**# Display graph**

plt.show()
  • 在上面的例子中,我们导入 matplotlib。pyplot 库。之后,我们定义 x 轴和 y 轴的数据点。
  • plt.plot() 方法用于图形的创建。
  • plt.xticks() 方法用于 x 轴刻度标签的旋转。这里我们通过旋转参数,设置旋转角度 30 度

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks()

结论! x 标签旋转 30 度角。

阅读: Python 使用 Matplotlib 绘制多条线

Matplotlib 旋转 x 轴刻度标签

在本节中,我们将学习如何旋转 X 轴刻度标签。

旋转 x 轴有两种方式:

  • plt.xticks(): 在图形级别上旋转。
  • tick.set_rotation(): 轴级旋转。
  • ax.set_xticklabels(): 在轴级别上旋转。
  • ax.tick_params()

Matplotlib 在图形级别旋转 x 轴刻度标签

对于图形级别的刻度标签的旋转,首先我们必须使用 plt.plot() 方法绘制图形。

在这之后,我们必须调用 plt.xticks() 方法并传递旋转参数,并根据您的选择设置它们的值。

改变图形级 x 轴刻度旋转的语法如下:

matplotlib.pyplot.xticks(rotation=)

上述使用的参数描述如下:

  • **旋转:**设置旋转角度。

让我们用一个例子来看看图形级的旋转是如何工作的:

**# Import Libraries**
import matplotlib.pyplot as plt

**# Define data**
x = [2, 4, 6, 8]
y = [7, 14, 21, 28]

**# Create Plot**
plt.plot(x, y, color='red')

**# Rotate tick labels**
plt.xticks(rotation=175)

**# Display graph**
plt.show()

在上面的例子中,我们使用 plt 来绘制图表。plot() 方法之后,我们调用 plt.xticks() 方法,将旋转角度设置为 175 度

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks()

Matplotlib 在轴级别旋转 x 轴刻度标签

对于图形级别的刻度标签的旋转,首先我们必须使用 plt.draw() 方法绘制图形。

在此之后,您必须调用 tick.set_rotation() 方法,并将旋转角度值作为参数传递。

在轴级别改变 x 轴刻度旋转的语法如下:

matplotlib.pyplot.set_ticks(rotation angle)

上述使用的参数描述如下:

  • **旋转角度:**设置旋转移动 x 轴标签的角度。

让我们用一个例子来看看轴级旋转是如何工作的:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [2, 4, 6, 8]
y = [7, 14, 21, 28]

**# Create Plot**

plt.plot(x, y, color = 'm')

ax = plt.gca()

**# Call draw function**

plt.draw()

**# Tick rotation on axes**

for tick in ax.get_xticklabels():
    tick.set_rotation(63)

**# Display graph**

plt.show()

在上面的例子中,首先我们调用 draw() 方法,然后使用 for loop 和 tick.set_rotation() 方法并设置旋转角度 63 度

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

tick.set_rotation()

读取 Matplotlib 反转 y 轴

Matplotlib 使用 ax.set_xticklabels()方法旋转 x 轴刻度标签

旋转 X 轴刻度标签的另一种方法是使用 ax.set_xticklabels() 方法。在此之前,你必须获得对象的当前轴。

记住在调用这个方法之前,你必须调用 plt.draw() 方法。

上述方法的语法如下:

ax.set_xticklabels(ax.get_xticks(), rotation =)

让我们借助一个例子来理解这个概念:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [2, 4, 6, 8]
y = [7, 14, 21, 28]

**# Create Plot**

plt.plot(x, y, color = 'orange')

ax = plt.gca()

**# Call draw function**

plt.draw()

**# Tick rotation on axes**

ax.set_xticklabels(ax.get_xticks(), rotation = 10)

**# Display graph**

plt.show()

在上面的例子中,我们首先调用 plt.draw() 方法,然后我们 ax.set_xticklabels() 方法,并将旋转角度设置为 10 度

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ax.set_xticklabels()

Matplotlib 使用 ax.tick_parmas() 旋转 x 轴刻度标签

旋转 x 轴刻度标签的另一种方法是使用 ax.tick_parmas() 方法。在此之前,你必须获得对象的当前轴。

该方法的语法如下:

ax.tick_params(axis=None, labelrotation= None)

上面使用的参数概述如下:

  • **轴:**指定要旋转的轴。
  • **标签旋转:**具体的旋转角度。

让我们借助一个例子来理解这个概念:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [2, 4, 6, 8]
y = [7, 14, 21, 28]

**# Crate Plot**

plt.plot(x, y, color = 'orange')

ax = plt.gca()

**# Rotate x-axis labels** 

ax.tick_params(axis='x', labelrotation = 45)

**# Display graph**

plt.show() 

在上面的例子中,我们使用了 ax.tick_params() 方法,并将“轴”作为参数传递,并将它们的值设置为“x”,还将**“标签旋转**”作为参数传递,并将它们的值设置为 45

阅读: Matplotlib 绘制一条线

Matplotlib 旋转 Y 轴刻度标签

在本节中,我们将学习如何旋转 Y 轴刻度标签。

旋转 y 轴有两种方式:

  • plt.yticks(): 在图形级别上旋转。
  • tick.set_rotation(): 轴级旋转。
  • ax.set_yticklabels(): 在轴级别上旋转。
  • ax.tick_params()

Matplotlib 在图形级别旋转 y 轴刻度标签

对于图形级别的刻度标签的旋转,首先我们必须使用 plt.plot() 方法绘制图形。

在这之后,我们必须调用 plt.yticks() 方法并传递旋转参数,并根据您的选择设置它们的值。

改变图形级 y 轴刻度旋转的语法如下:

matplotlib.pyplot.yticks(rotation=)

上述使用的参数描述如下:

  • **旋转:**设置旋转角度。

让我们用一个例子来看看图形级的旋转是如何工作的:

**# Import Libraries**
import matplotlib.pyplot as plt

**# Define data**
x = [2, 4, 6, 8]
y = [7, 14, 21, 28]

**# Create Plot**
plt.plot(x, y)

**# Rotate tick labels**
plt.yticks(rotation=63)

**# Display graph**
plt.show()

在上面的例子中,我们使用 plt 来绘制图表。plot() 方法,之后我们调用 plt.yticks() 方法,设置旋转角度为 63 度

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.yticks()

结论! Y 轴刻度标签旋转 63 度。

阅读:什么是 matplotlib 内联

Matplotlib 在轴级别旋转 y 轴刻度标签

要在图形级别旋转刻度标签,首先必须使用 plt.draw() 方法绘制图形。

在此之后,您必须调用 tick.set_rotation() 方法,并将旋转角度值作为参数传递。

在轴级别改变 y 轴刻度旋转的语法如下:

matplotlib.pyplot.set_ticks(rotation angle)

上述使用的参数描述如下:

  • **旋转角度:**设置旋转移动 y 轴标签的角度。

让我们用一个例子来看看轴级旋转是如何工作的:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [2, 4, 6, 8]
y = [7, 14, 21, 28]

**# Create Plot**

plt.plot(x, y, color = 'm')

ax = plt.gca()

**# Call draw function**

plt.draw()

**# Tick rotation on axes**

for tick in ax.get_yticklabels():
    tick.set_rotation(63)

**# Display graph**

plt.show()

在上面的例子中,首先我们调用 draw() 方法,然后使用 for loop 和 tick.set_rotation() 方法,并设置旋转角度 23 度

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

tick.set_rotation()

结论! Y 轴标签旋转 23 度。

Matplotlib 使用 ax.set_yticklabels()方法旋转 Y 轴刻度标签

旋转 Y 轴刻度标签的另一种方法是使用 ax.set_yticklabels() 方法。在此之前,你必须获得对象的当前轴。

记住在调用这个方法之前,你必须调用 plt.draw() 方法。

上述方法的语法如下:

ax.set_yticklabels(ax.get_yticks(), rotation =)

让我们借助一个例子来理解这个概念:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [2, 4, 6, 8]
y = [7, 14, 21, 28]

**# Create Plot**

plt.plot(x, y, color = 'orange')

ax = plt.gca()

**# Call draw function**

plt.draw()

**# Tick rotation on axes**

ax.set_yticklabels(ax.get_yticks(), rotation = 10)

**# Display graph**

plt.show()

在上面的例子中,我们首先调用 plt.draw() 方法,然后我们 ax.set_yticklabels() 方法,并将旋转角度设置为 10 度

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

set_yticklabels()

Matplotlib 使用 ax.tick_parmas() 旋转 Y 轴刻度标签

旋转 Y 轴刻度标签的另一种方法是使用 ax.tick_parmas() 方法。在此之前,你必须获得对象的当前轴。

该方法的语法如下:

ax.tick_params(axis=None, labelrotation= None)

上面使用的参数概述如下:

  • **轴:**指定要旋转的轴。
  • **标签旋转:**具体的旋转角度。

让我们借助一个例子来理解这个概念:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [2, 4, 6, 8]
y = [7, 14, 21, 28]

**# Crate Plot**

plt.plot(x, y, color = 'orange')

ax = plt.gca()

**# Rotate y-axis labels** 
ax.tick_params(axis='y', labelrotation = 45)

**# Display graph**

plt.show() 

在上面的例子中,我们使用了 ax.tick_params() 方法,并将“轴”作为参数传递,并将它们的值设置为“y”,还将**“标签旋转**作为参数传递,并将它们的值设置为 45

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

ax.tick_params()

阅读: Matplotlib 绘图条形图

Matplotlib 旋转刻度标签日期

刻度标签旋转背后的原因是重叠。大多数情况下,日期刻度很长,并开始重叠。为了避免这种情况,我们旋转日期刻度标签。

  • 为了避免 x 轴上的日期重叠,我们使用了 fig.autofmt_xdate() 方法。
  • 这种方法自动设置日期的旋转和调整 x 轴,或者你也可以设置你选择的旋转角度。

x 轴日期旋转的语法:

matplotlib.figure.Figure.autofmt_xdate(bottom=0.2,roation=10,ha='left',which=None)

以下参数用于上述 功能,概述如下**😗*

  • **底部:**指定绘图的底部。
  • **旋转:**指定旋转角度。
  • ha: 具体横向对齐。
  • **哪个:**指定旋转哪个 ticket。

让我们借助一个例子来理解这个概念:

代码#1

下面是没有使用 autofmt_xdate() 方法的代码。

**# Import Libraries**

import matplotlib.pyplot as plt
from datetime import datetime, timedelta

**# Define Dates**

dates = [
    datetime(2021, 10, 21),
    datetime(2021, 7, 24),
    datetime(2021, 8, 25),
    datetime(2021, 10, 26),
]

y = [2, 4, 4.5, 6]

**# Plot Dates**

fig = plt.figure()
plt.plot_date(dates, y, linestyle= 'dashed')

**# Display Graph**

plt.show()

在上面的代码中,我们简单地创建由 x 轴上的日期组成的数据,并绘制它们。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

The output of Code#1

**结论!**重叠造成的问题。要删除这个代码#2

代码#2

 **# Import Libraries**

import matplotlib.pyplot as plt
from datetime import datetime, timedelta

**# Define Dates**

dates = [
    datetime(2021, 10, 21),
    datetime(2021, 7, 24),
    datetime(2021, 8, 25),
    datetime(2021, 10, 26),
]

y = [2, 4, 4.5, 6]

**# Plot Dates**

fig = plt.figure()
plt.plot_date(dates, y, linestyle= 'dashed')

**# Rotate dates on x-xis**

fig.autofmt_xdate()

**# Display Graph**

plt.show() 

在上面的代码中,我们创建由 x 轴上的日期组成的数据,然后我们使用 autofmt_xdate() 方法来避免重叠或旋转 x 轴上的日期。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

*The output of Code#*2

**结论!**通过旋转 x 轴解决重叠问题。

阅读: Matplotlib 支线剧情教程

Matplotlib 旋转刻度标签子图

有时我们在一个图形区域有多个支线剧情。我们只想自定义一个子图轴或旋转特定子图的轴。

在这种情况下,我们使用方法 set_xticklabels() 来旋转轴。

其语法如下:

matplotlib.axis.Axis.set_xticlabels(labels=, rotation=)

上述使用的参数描述如下:

  • **标签:**为旋转设置标签。
  • **旋转:**指定旋转的角度。

我们举个例子明确一下概念:

**# Importing Libraries**

import numpy as np
import matplotlib.pyplot as plt

**# Define Data** 
x1= [0.2, 0.4, 0.6, 0.8, 1]
y1= [0.3, 0.6, 0.8, 0.9, 1.5]

x2= [2, 6, 7, 9, 10]
y2= [3, 4, 6, 9, 12]

x3= [5, 8, 12]
y3= [3, 6, 9]

x4= [7, 8, 15]
y4= [6, 12, 18]

**# Plot graph**

fig, ax = plt.subplots(2, 2)

ax[0, 0].set_facecolor('cyan')

**# Set axis for rotation**

ax[0,0].set_xticklabels([0.2, 0.4, 0.6, 0.8, 1], rotation = 30)
ax[0, 0].plot(x1, y1)
ax[0, 1].plot(x2, y2)
ax[1, 0].plot(x3, y3)
ax[1, 1].plot(x4,y4)

**# Display graph**

fig.tight_layout()
plt.show()

在上面的例子中,我们使用 set_xticklabels() 方法将第一个子图的 x 轴旋转 30 度角度。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

set_xticklabels()

阅读: Matplotlib 最佳拟合线

Matplotlib 旋转刻度标签颜色条

彩条是颜色数据值的映射。 colorbar() 方法用于向图表添加一个颜色条。

如果我们想要旋转颜色条的轴以获得更好的可视化效果,我们有以下两种方法:

  • cbar.ax.set_xticklabels: 如果彩条的方向是水平的。
  • cbar.ax.set_yticklabels: 如果彩条的方向是垂直的。

Matplotlib 水平旋转刻度标签柱状图

在这里,我们将学习如何旋转水平放置的彩条轴。

其语法如下:

cbar.ax.set_xticklabels(labels, rotation)

上面使用的参数是:

  • **标签:**指定彩条的标签
  • **旋转:**指定旋转的角度

我们举个例子来了解一下怎么做旋转:

**# Import libraries**

import matplotlib.pyplot as plt
import numpy as np

**# Plot image**

a = np.random.random((5, 5))
plt.imshow(a, cmap='summer')

**# Plot horizontal colorbar**

cbar = plt.colorbar(
    orientation="horizontal")

**# Set ticklabels**

labels = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
          0.7, 0.8, 0.9, 1]
cbar.set_ticks(labels)

**# Rotate x tick labels**

cbar.ax.set_xticklabels(labels, rotation=40)

**#Plot graph**  

plt.show()
  • 在上面的例子中,我们导入库 matplotlib 和 numpy。然后我们使用 numpy 绘制数据。
  • 之后,我们将方位设置为**“水平”**,并使用 set_xticklabels() 方法将旋转角度设置为 40 度

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

cbar.ax.set_xticklabels ()

Matplotlib 垂直旋转刻度标签柱状图

在这里,我们将学习如何旋转垂直放置的彩条轴。

其语法如下:

cbar.ax.set_yticklabels(labels, rotation)

上面使用的参数是:

  • **标签:**指定彩条的标签
  • **旋转:**指定旋转的角度

我们举个例子来了解一下怎么做旋转:

**# Import libraries**

import matplotlib.pyplot as plt
import numpy as np

**# Plot image**

a = np.random.random((5, 5))
plt.imshow(a, cmap='summer')

**# Plot vertical colorbar**

cbar = plt.colorbar(
    orientation="vertical")

**# Set ticklabels**

labels = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
          0.7, 0.8, 0.9, 1]
cbar.set_ticks(labels)

**# Rotate y tick labels**

cbar.ax.set_yticklabels(labels, rotation=40)

**# Plot graph** 

plt.show()
  • 在上面的例子中,我们导入库 matplotlib 和 numpy。然后我们使用 numpy 绘制数据。
  • 之后,我们将方位设置为**“垂直”**,并使用 set_yticklabels() 方法将旋转角度设置为 40 度

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

cbar.ax.set_yticklabels()

阅读: Matplotlib 支线剧情 _adjust

Matplotlib 将刻度标签旋转 45 度

在本节中,我们将学习如何旋转以 45 度的特定角度绘制的中的 X 轴和 Y 轴。

旋转刻度的主要原因是为了避免重叠,并获得图表轴的清晰视图。

这里我们将研究刻度标签旋转 45 度的三种情况。

  • 1st: 我们研究如何将 X 轴刻度标签旋转 45 度。
  • 2nd: 我们研究如何将 Y 轴刻度标签旋转 45 度。
  • **3 日:**我们研究如何一次旋转 X 轴和 Y 轴刻度标签 45 度。

旋转刻度标签 45 度的语法如下:

Matplotlib.pyplot.xticks(rotation = 45)

让我们借助一个例子来更清楚地理解这个概念:

情况#1 (旋转 X 刻度标签)

**# Import Libraries** 

import matplotlib.pyplot as plt

**# Define data** 

x = [1, 2, 3, 4]
y = [8, 16, 20, 12]

**# Create plot**

plt.plot(x, y, color='orange')

**# Rotate X-axis tick labels**

plt.xticks(rotation=45)

**# Display the Graph**

plt.show()
  • 导入库 matplotlib.pyplot 进行数据可视化。
  • 定义 X 轴和 Y 轴的数据,并使用 plt.plot() 方法创建一个图。
  • 使用 plt.xticks() 方法将 xticks 标签旋转设置为 45 度,并将旋转= 45 设置为该方法中的参数。
  • 最后,使用 plt.show() 方法显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks()

情况#2 (旋转 Y 刻度标签)

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [1, 2, 3, 4]
y = [8, 16, 20, 12]

**# Create plot**

plt.plot(x, y, color='orange')

**# Rotate Y-axis tick labels**

plt.yticks(rotation=45)

**# Display the Graph**

plt.show()
  • 导入库 matplotlib.pyplot 进行数据可视化。
  • 定义 X 轴和 Y 轴的数据,并使用 plt.plot() 方法创建一个图。
  • 使用 plt.yticks() 方法将 xticks 标签旋转设置为 45 度,并将旋转= 45 设置为该方法中的参数。
  • 最后,使用 plt.show() 方法显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.yticks()

情况#3 (旋转两个刻度标签)

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data** 

x = [1, 2, 3, 4]
y = [8, 16, 20, 12]

**# Create plot**

plt.plot(x, y, color='orange')

**# Rotate X-axis and Y-axis tick labels**

plt.xticks(rotation=45)
plt.yticks(rotation=45)

**# Display the Graph**

plt.show()
  • 导入库 matplotlib.pyplot 进行数据可视化。
  • 定义 X 轴和 Y 轴的数据,并使用 plt.plot() 方法创建一个图。
  • 分别对 x 轴和 y 轴使用 plt.xticks()plt.yticks() 方法,将 xticks 和 yticks 标签旋转设置为 45 度,并将旋转= 45 度设置为方法中的参数。
  • 最后,使用 plt.show() 方法显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks() and plt.yticks()

读取: Matplotlib 日志日志图

Matplotlib 将刻度标签旋转 90 度

在本节中,我们将学习如何旋转以特定角度 90 度绘制的中的 X 轴和 Y 轴。

旋转刻度的主要原因是为了避免重叠,并获得图表轴的清晰视图。

这里我们研究了刻度标签旋转 90 度的三种情况。

  • 1st: 我们研究如何将 X 轴刻度标签旋转 90 度。
  • 2nd: 我们研究如何将 Y 轴刻度标签旋转 90 度。
  • **3 日:**我们研究如何将 X 轴和 Y 轴刻度标签一次旋转 90 度。

将刻度标签旋转 90 度的语法如下:

Matplotlib.pyplot.xticks(rotation = 90)

让我们借助一个例子来更清楚地理解这个概念:

情况#1 (旋转 X 刻度标签)

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data** 

x = [5, 6, 7, 8]
y = [8, 16, 20, 12]

**# Create plot**

plt.plot(x, y)

**# Rotate X-axis tick labels**

plt.xticks(rotation=90)

**# Display the Graph**

plt.show()
  • 导入库 matplotlib.pyplot 进行数据可视化。
  • 定义 X 轴和 Y 轴的数据,并使用 plt.plot() 方法创建一个图。
  • 使用 plt.xticks() 方法将 xticks 标签旋转设置为 90 度,并将旋转= 90 度设置为该方法中的参数。
  • 最后,使用 plt.show() 方法显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks()

情况#2 (旋转 Y 刻度标签)

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [5, 6, 7, 8]
y = [8, 16, 20, 12]

**# Create plot**

plt.plot(x, y)

**# Rotate Y-axis tick labels**

plt.yticks(rotation=90)

**# Display the Graph** 
plt.show()
  • 导入库 matplotlib.pyplot 进行数据可视化。
  • 定义 X 轴和 Y 轴的数据,并使用 plt.plot() 方法创建一个图。
  • 使用 plt.yticks() 方法将 xticks 标签旋转设置为 90 度,并将旋转= 90 度设置为该方法中的参数。
  • 最后,使用 plt.show() 方法显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.yticks()

情况#3 (旋转两个刻度标签)

**# Import Libraries** 
import matplotlib.pyplot as plt

**# Define data** 
x = [5, 6, 7, 8]
y = [8, 16, 20, 12]

**# Create plot** 
plt.plot(x, y)

**# Rotate X-axis and Y-axis tick labels** 
plt.xticks(rotation=90)
plt.yticks(rotation=90)

**# Display the Graph** 
plt.show()
  • 导入库 matplotlib.pyplot 进行数据可视化。
  • 定义 X 轴和 Y 轴的数据,并使用 plt.plot() 方法创建一个图。
  • 分别对 x 轴和 y 轴使用 plt.xticks()plt.yticks() 方法将 xticks 和 yticks 标签旋转设置为 90 度,并将旋转= 90 度设置为该方法中的参数。
  • 最后,使用 plt.show() 方法显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks() and plt.yticks()

阅读:Matplotlibplot _ date

Matplotlib 旋转刻度标签对齐

在本节中,我们将学习如何对齐刻度标签。我们可以说我们将如何在不同的位置排列刻度标签。

对于刻度标签的对齐,我们使用**‘ha’**参数,它意味着“水平对齐,我们将这个参数传递给 xticks()yticks() 方法。

我们可以在以下位置对齐刻度标签,如下所示:

  • ha=‘right’: 指定刻度标签在右端对齐。
  • ha=‘center’: 指定刻度标签居中对齐。
  • ha=‘left’: 指定刻度标签在左端对齐。

让我们正确理解每一种对齐情况:

Matplotlib 向右旋转刻度标签对齐

我们将研究如何在右端对齐刻度标签。

右对齐的语法如下:

**# For x-axis**
matplotlib.pyplot.xticks(ha='right')
**# For y-axis**
matplotlib.pyplot.yticks(ha='right')

让我们看一个与右对齐相关的例子:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [2, 4, 6, 8]
y = [8, 16, 20, 12]

**# Create plot**

plt.plot(x, y)

**# Right align X-axis tick labels** 
plt.xticks(ha='right')

                  **# OR**

**# Right align Y-axis tick labels**

plt.yticks(ha='right')

**# Display the Graph**

plt.show()
  • 导入库 matplotlib.pyplot 进行数据可视化。
  • 定义 X 轴和 Y 轴的数据,并使用 plt.plot() 方法创建一个图。
  • 使用带有参数 ha=‘right’plt.xticks() 设置右端 xticks 标签旋转对齐。
  • 如果你想对齐 y 轴刻度标签,使用方法 plt.yticks() 并传递参数 ha=‘right’
  • 最后,使用 plt.show() 方法显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks(ha=’right’)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.yticks(ha=’right’)

Matplotlib 旋转刻度标签对齐中心

我们将研究如何在中心对齐刻度标签。

中心对齐的语法如下:

**# For x-axis label**
matplotlib.pyplot.xticks(ha='center')
**# For y-axis label**
matplotlib.pyplot.yticks(ha='center') 

让我们看一个与中心对齐相关的例子:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [2, 4, 6, 8]
y = [8, 16, 20, 12]

**# Create plot**

plt.plot(x, y)

**# Center align X-axis tick labels** plt.xticks(ha='center')

                  **# OR**

**# Center align Y-axis tick labels**

plt.yticks(ha='center')

**# Display the Graph**

plt.show()
  • 导入库 matplotlib.pyplot 进行数据可视化。
  • 定义 X 轴和 Y 轴的数据,并使用 plt.plot() 方法创建一个图。
  • 使用带有参数**ha =‘中心’**的 plt.xticks() 设置 xticks 标签旋转对齐中心。
  • 如果您想要对齐 y 轴刻度标签,请使用方法 plt.yticks() 并传递参数 ha=‘center’
  • 最后,使用 plt.show() 方法显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks(ha=’center’)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.yticks(ha=’center’)

Matplotlib 向左旋转刻度标签对齐

我们将研究如何在左端对齐刻度标签。

左对齐的语法如下:

**# For x-axis label**
matplotlib.pyplot.xticks(ha='left')
**# For y-axis label**
matplotlib.pyplot.yticks(ha='left') 

让我们看一个与左对齐相关的例子:

**# Import Libraries**

import matplotlib.pyplot as plt

**# Define data**

x = [2, 4, 6, 8]
y = [8, 16, 20, 12]

**# Create plot**

plt.plot(x, y)

**# Left align X-axis tick labels** plt.xticks(ha='left')

                  **# OR**

**# Left align Y-axis tick labels**

plt.yticks(ha='left')

**# Display the Graph**

plt.show()
  • 导入库 matplotlib.pyplot 进行数据可视化。
  • 定义 X 轴和 Y 轴的数据,并使用 plt.plot() 方法创建一个图。
  • 使用带有参数 ha=‘left’plt.xticks() 设置左端 xticks 标签旋转对齐。
  • 如果你想对齐 y 轴刻度标签,使用方法 plt.yticks() 并传递参数 ha=‘left’
  • 最后,使用 plt.show() 方法显示图形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.xticks(ha=’left’)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plt.yticks(ha=’left’)

您可能喜欢阅读更多关于 Matplotlib 的内容。

在本 Python 教程中,我们已经讨论了" Matplotlib 旋转刻度标签"并且我们还介绍了一些与之相关的例子。这些是我们在本教程中讨论过的以下主题。

  • Matplotlib 旋转刻度标签
  • Matplotlib 旋转刻度标签示例
  • Matplotlib 旋转刻度标签 x 轴
  • Matplotlib 旋转刻度标签 y 轴
  • Matplotlib 旋转刻度标签日期
  • Matplotlib 旋转刻度标签色带
  • Matplotlib 将刻度标签旋转 45 度
  • Matplotlib 将刻度标签旋转 90 度
  • 旋转刻度标签对齐

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传Bijay Kumar

Python 是美国最流行的语言之一。我从事 Python 工作已经有很长时间了,我在与 Tkinter、Pandas、NumPy、Turtle、Django、Matplotlib、Tensorflow、Scipy、Scikit-Learn 等各种库合作方面拥有专业知识。我有与美国、加拿大、英国、澳大利亚、新西兰等国家的各种客户合作的经验。查看我的个人资料。

enjoysharepoint.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值