PythonGuides 博客中文翻译(八十三)

原文:PythonGuides Blog

协议:CC BY-NC-SA 4.0

Python 张量流 reduce_mean

原文:https://pythonguides.com/python-tensorflow-reduce_mean/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在本 Python 教程中,我们将学习如何在 Python 中使用 TensorFlow reduce_mean()。此外,我们将涵盖以下主题。

  • 带遮罩的张量流减少平均值
  • 张量流减少 _ 平均 nan
  • 张量流减少均方误差
  • 张量流减少意味着忽略零
  • 张量流减少 _ 平均数量
  • 张量流减少 _ 平均减少 _ 指数
  • 张量流减少意味着忽略 nan
  • 张量流 reduce_mean keepdims

目录

Python tensor flow reduce _ mean

  • 在本节中,我们将学习如何在 TensorFlow Python 中使用 tf.reduce_mean() 函数。
  • 为了执行这个特定的任务,我们将使用 tf.math.reduce_mean() 函数,这个函数在 TensorFlow 版本 2.x 中可用。
  • 在 Python TensorFlow 中, tf.math.reduce_mean() 函数用于计算输入张量各维值的平均值。

语法:

我们先来看看语法,了解一下 tf.math.reduce_mean() 函数的工作原理。

tf.math.reduce_mean
                   (
                    input_tensor,
                    axis=None,
                    keepdims=False,
                    name=None
                   )
  • 它由几个参数组成
    • input_tensor: 该参数表示我们想要减少的张量,它应该始终是一个数字类型。
    • **轴:**默认情况下,它不取值,一旦您在函数中使用它,默认情况下所有维度都将减少。
    • keepdims: 该参数将检查条件,如果为真,则减少秩张量的长度。默认情况下,它采用假值。
    • **名称:**可选参数,表示操作的名称。

举例:

让我们举一个例子,检查如何得到输入张量的平均值。

import tensorflow as tf

new_tensor = tf.constant([[13,69,55],
                         [245,78,94]])

new_result = tf.math.reduce_mean(new_tensor,1)
print("Sum of nan values:",new_result)

在上面的代码中,我们导入了 TensorFlow 库,然后使用 tf.constant() 函数创建了一个张量。之后,我们使用了 tf.math.reduce_mean() 函数,在这个函数中,我们指定了张量和轴=1 作为参数。

下面是下面给出的代码的截图。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python TensorFlow reduce_mean

正如你在截图中看到的,输出显示了张量的平均值。

另外,检查: TensorFlow Tensor to numpy

带遮罩的张量流减少 _ 平均

  • 在本节中,我们将讨论如何在 reduce_mean() 函数中使用 mast。
  • 为了完成这项任务,我们将使用 tf.boolean_mask() 函数,它用于计算张量的布尔掩码。该方法在 TensorFlow 包中可用。
  • 在这种方法中,遮罩形状必须与张量形状的第一个 K 维相匹配。

语法:

让我们看一下语法,理解一下 tf.boolean_mask() 函数的工作原理。

tf.boolean_mask
               (
                tensor,
                mask,
                axis=None,
                name='boolean_mask',
               )
  • 它由几个参数组成
    • **张量:**该参数表示输入张量,可以是一个 n 维张量。
    • mask: 它是一个 K-D 布尔张量,它会设置条件 K < =N ,其中 K 必须静态表示。
    • **轴:**默认情况下,它采用 none 值,并指定要屏蔽的张量轴。

举例:

import tensorflow as tf
import numpy as np

tens=[14,67,89,25]
new_mask=np.array([True,False,False,True])
result=tf.boolean_mask(tens, new_mask)
print("mask value:",result)
new_output=tf.math.reduce_mean(result)
print("Mean value of mask:",new_output)
  • 在上面的代码中,我们通过使用 np.array() 函数创建了一个掩码,并分配了布尔值。之后,我们使用了 tf.boolean_mask() 函数,在这个函数中,我们传递了张量和掩码作为参数。
  • 一旦执行了这个函数,输出将显示真实值以及相关的张量值。
  • 之后,我们使用了 tf.math.reduce_mean() 函数,并将**‘结果’**作为参数传递,它将返回掩码的平均值。

下面是以下给定代码的执行过程

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python TensorFlow reduce_mean with mask

阅读:张量流得到形状

张量流减少 _ 平均 nan

  • 这里我们将讨论如何在 TensorFlow Python 中使用 reduce_mean()函数来减少 nan 值。
  • 在这个例子中,我们将得到 nan 值的平均值。为了完成这项任务,我们首先将为 np.nan 值导入 numpy 库,然后我们将使用 tf.constant() 函数创建张量,在这个函数中,我们已经设置了 nan 值。在 Python 中,nan 代表**‘不是数字’**。
  • 接下来,我们将声明一个变量**‘new _ result’**并指定 tf.math.reduce_mean() 函数,在此函数中,我们将输入张量和轴设置为参数。

举例:

 import tensorflow as tf
import numpy as np

new_tensor = tf.constant([[np.nan,np.nan,np.nan,15,76],
                         [np.nan,np.nan,np.nan,24,89]])

new_result = tf.math.reduce_mean(new_tensor,[0,1])
print("Sum of nan values:",new_result)

下面是以下给定代码的执行过程

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python TensorFlow reduce_mean nan

正如您在屏幕截图中看到的,输出显示了 nan 值的平均值。

阅读: Python TensorFlow 随机均匀

张量流减少均方误差

  • 在本节中,我们将讨论如何在 TensorFlow Python 中使用均方误差函数。
  • 为了执行这个特定的任务,我们将使用TF . compat . v1 . losses . mean _ squared _ error()函数,该函数在 Tensorflow 包中可用。

语法:

下面是TF . compat . v1 . losses . mean _ squared _ error()函数的语法

tf.compat.v1.losses.mean_squared_error
                                      (
                                       labels,
                                       prediction,
                                       weights=1.0,
                                       scope=None,
                                      )
  • 它由几个参数组成
    • **标签:**此参数表示函数内部的参数。
    • **预测:预测参数用于调用()**方法。

举例:

import tensorflow as tf

y_true = tf.constant([[4.6, 7.3, 3.2],
                      [4.1,5.8,7.2]])
y_pred = tf.constant([[2.4, 4.6, 9.7],
                      [1.2,2.3,1.6]])

result=tf.compat.v1.losses.mean_squared_error(y_true,y_pred)
print("Reduce mean squared error:",result)

在下面给出的代码中,我们通过使用 tf.constant() 函数创建了一个张量,然后我们使用了TF . compat . v1 . losses . mean _ squared _ error()函数,在这个函数中,我们将标签和预测作为一个参数进行分配。

下面是以下给定代码的实现。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

TensorFlow reduce mean squared error in Python

阅读:模块“张量流”没有属性“会话”

张量流减少意味着忽略零

  • 在本节中,我们将学习如何通过使用 Python 中的 reduce_mean() 函数来忽略张量中的零值。
  • 为了完成这项任务,我们将使用 tf.cast() 函数,该函数用于将输入张量转换为新类型。在该函数中,我们将设置条件 new_tensor!=0 以及数据类型。
  • 接下来,我们将使用 tf.reduce_sum() 函数,并将其除以张量,它将忽略张量中的零值。

语法:

下面是 tf.cast() 函数的语法。

tf.cast
       (
        x,
        dtype,
        name=None
       )
  • 它由几个参数组成
    • x: 该参数表示输入张量。
    • name: 这是一个可选参数,默认情况下不取值。

举例:

 import tensorflow as tf

new_tensor= tf.constant([[2,0,3],[12,34,0],[0,23,31]])
m = tf.cast(new_tensor != 0,tf.int32)
z = tf.reduce_sum(new_tensor, -1) / tf.reduce_sum(m, -1)
print(z)

下面是以下代码的截图

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

TensorFlow reduce mean ignore zero in Python

阅读:导入错误没有名为 TensorFlow 的模块

张量流减少 _ 平均数值

  • 在这个程序中,我们将学习如何在 tf.reduce_mean() 函数中实现 numpy 兼容性。
  • 为了执行这个特定的任务,我们将使用 tf.reduce_mean() 函数,在这个函数中,我们将张量指定为一个参数。
  • 它用于指定输出类型,默认情况下,它采用 float32

举例:

import tensorflow as tf

tensor = tf.constant([12, 13.5, 1, 1.5])
tf.reduce_mean(tensor)

下面是以下给定代码的执行。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python TensorFlow reduce_mean numpy

正如您在屏幕截图中看到的,输出以 NumPy 为单位显示平均值。

阅读: Python TensorFlow one_hot

张量流减少 _ 平均减少 _ 指数

  • 在本节中,我们将讨论如何在 tf.reduce_mean() 函数中使用 reduction _ indices 参数。
  • 为了执行这个特定的任务,我们将使用TF . compat . v1 . reduce _ mean()函数,这个方法将帮助用户计算输入张量的各个维度的平均值。

语法:

我们先来看看语法,了解一下TF . compat . v1 . reduce _ mean()函数的工作原理。

tf.compat.v1.reduce_mean
                        (
                         input_tensor,
                         axis=None,
                         keepdims=None,
                         name=None,
                         reduction_indices=None,
                         keep_dims=None
                        )

举例:

import tensorflow as tf

tensor = tf.constant([14, 15.5, 12, 17.5])
z=tf.compat.v1.reduce_mean(tensor, reduction_indices=[0])
print(z)

在上面的代码中,我们导入了 TensorFlow 库,然后使用 tf.constant() 函数创建了张量。

之后,我们使用了TF . compat . v1 . reduce _ mean()函数,并在该函数中使用了**reduction _ indexes[0]**参数。

你可以参考下面的截图

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python TensorFlow reduce_mean reduction_indices

阅读: Python TensorFlow 占位符

张量流减少意味着忽略 nan

  • 在本节中,我们将讨论如何在 Python TensorFlow 中使用 reduce_mean() 函数来忽略 nan 值。
  • 为了完成这个任务,我们将使用 tf.where 函数和 tf.math.is_nan() ,这个函数将帮助用户从张量中删除 nan 值。
  • 移除张量后,我们将使用 tf.reduce_mean() 函数来计算更新后的张量的平均值。

语法:

下面是 tf.math.is_nan() 函数的语法

tf.math.is_nan
              (
               x,
               name=None,
              )

举例:

我们举个例子,了解一下工作的 tf.math.is_nan() 函数。

源代码:

import tensorflow as tf
import numpy as np

tens1 = tf.constant([[16, 67], [24, np.nan]])
tens2 = tf.constant([[np.nan, np.nan], [np.nan, 56]])

c = tf.where(tf.math.is_nan(tens1), tens2, tens1)
result=tf.reduce_mean(c)
print(result)

下面是以下给定代码的执行过程

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python TensorFlow reduce mean ignore nan

阅读:张量流自定义损失函数

tensor flow reduce _ mean keepdims

  • 在本期节目中,我们将讨论如何在 reduce_mean() 函数中使用 keepdims 参数。
  • 在此函数中,keepdims 参数将检查条件,如果值为真,则输入张量的秩将减少 1 ,默认情况下,它将取一个假值。

语法:

下面是 tf.math.reduce_mean() 函数的语法

tf.math.reduce_mean
                   (
                    input_tensor,
                    axis=None,
                    keepdims=False,
                    name=None
                   )

举例:

import tensorflow as tf

new_tensor = tf.constant([[67,145,267],
                         [18,29,31]])

new_result = tf.math.reduce_mean(new_tensor,1,keepdims=False)
print("Sum of nan values with keepdims axis:",new_result)

在下面给出的代码中,我们首先导入了 TensorFlow 库,然后为了创建张量,我们使用了 tf.constant() 函数。之后,我们使用了 tf.math.reduce_mean() 函数,并在函数中设置了张量、轴和 keepdims=False 作为参数。

下面是以下给定代码的实现

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python TensorFlow reduce_mean keepdims

您可能也喜欢阅读以下 Python TensorFlow 教程。

所以,在这个 Python 教程中,我们学习了如何在 Python 中使用 TensorFlow reduce_mean()。此外,我们还讨论了以下主题。

  • TensorFlow reduce_mean pytorch
  • 带遮罩的张量流减少平均值
  • 张量流减少 _ 平均 nan
  • 张量流减少均方误差
  • 张量流减少平均层
  • 张量流减少意味着忽略零
  • 张量流减少 _ 平均数量
  • 张量流减少 _ 平均减少 _ 指数
  • 张量流减少意味着忽略 nan
  • 张量流 reduce_mean keepdims

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传Bijay Kumar

Python 是美国最流行的语言之一。我从事 Python 工作已经有很长时间了,我在与 Tkinter、Pandas、NumPy、Turtle、Django、Matplotlib、Tensorflow、Scipy、Scikit-Learn 等各种库合作方面拥有专业知识。我有与美国、加拿大、英国、澳大利亚、新西兰等国家的各种客户合作的经验。查看我的个人资料。

enjoysharepoint.com/

Python TensorFlow reduce_sum

原文:https://pythonguides.com/python-tensorflow-reduce_sum/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在本 Python 教程中,我们将学习如何在 Python 中使用 TensorFlow reduce_sum()。此外,我们将涵盖以下主题。

  • 张量流 reduce_sum keepdims
  • 张量流 reduce_sum vs sum
  • 张量流 reduce_sum 轴=-1
  • 张量流减少计数布尔值
  • 张量流减少 _ 总和 nan
  • 张量流 reduce_sum 函数
  • 张量流 reduce_sum 列表
  • 张量流加权归约和
  • 张量流 reduce_mean vs reduce_sum

目录

Python tensor flow reduce _ sum

  • 在本节中,我们将学习如何在 TensorFlow Python 中找到一个张量的和。
  • 为了执行这个特定的任务,我们将使用 tf.math.reduce_sum() 函数。
  • 在 Python 中,该函数用于使张量维度上的所有元素之和相等。

语法:

我们先来看看语法,了解一下 tf.math.reduce_sum() 函数的工作原理。

tf.math.reduce_sum
                  (
                   input_tensor,
                   axis=None,
                   Keepdims=False,
                   name=None
                  )
  • 它由几个参数组成
    • input_tensor: 该参数表示我们想要减少的张量,它应该始终是一个数字类型。
    • **轴:**默认情况下,它不取任何值,如果张量中没有值,它会减少所有维度。
    • keepdims: 该参数将检查条件,如果为真,则减少秩张量的长度。默认情况下,它采用假值。
    • **名称:**可选参数,表示操作的名称。

举例:

让我们举个例子,看看如何在 TensorFlow Python 中求一个张量的和

源代码:

import tensorflow as tf

new_tensor = tf.constant([67, 89, 24, 56])
new_output = tf.math.reduce_sum(new_tensor)
print("Sum of tensor:",new_output)

在上面的代码中,我们首先导入了 TensorFlow 库,然后声明了名为**‘new _ tensor’**的输入张量。在我们使用了 tf.math.reduce() 函数之后,在这个函数中,我们将给定的张量指定为自变量。

一旦执行了这段代码,输出将显示张量中所有元素的总和。

下面是下面给出的代码的截图。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python TensorFlow reduce_sum

阅读: TensorFlow Tensor to numpy

tensor flow reduce _ sum keepdims

  • 在本节中,我们将学习如何在 tf.reduce_sum() 函数中使用 keepdims 参数。
  • 通过使用 tf.math.reduce_sum() 函数,我们可以轻松地执行这个特定的任务。首先,我们将导入 TensorFlow 库,然后我们将使用 tf.constant() 函数创建一个张量。
  • 接下来,我们将声明一个变量**‘new _ output’**,并使用 tf.math.reduce_sum() 函数。在这个函数中,我们将使用张量和 keepdims=True 作为参数。

语法:

下面是 tf.math.reduce_sum() 函数的语法。

tf.math.reduce_sum
                  (
                   input_tensor,
                   axis=None,
                   Keepdims=True,
                   name=None
                  )

**注意:**在这个函数中,如果 keepdims 参数为真,那么张量的秩减少 1

示例:

import tensorflow as tf

new_tensor = tf.constant([[67, 89, 24, 56],
                         [86,34,18,89]])
new_tensor.numpy()
new_output = tf.math.reduce_sum(new_tensor,0, keepdims=True).numpy()
print("Sum of tensor:",new_output)

下面是以下给定代码的执行。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python TensorFlow reduce_sum keepdims

阅读:张量流得到形状

张量流 reduce_sum vs sum

  • 在本节中,我们将了解 TensorFlow Python 中 reduce_sum 和 sum 的区别。
  • 在这个例子中,我们将看到 reduce_sum()numpy.sum() 函数之间的主要区别。在 Python 中,numpy.sum()函数用于计算给定数组中所有元素的总和。
  • 而在 reduce_sum() 函数的情况下,它将帮助用户计算张量维度上所有元素的和。
  • 在 Python 中, numpy.sum() 函数在 numpy 包模块中可用,如果提供了轴,那么它将返回所有元素和轴的总和。而在 reduce_sum() 函数的情况下,它将沿着轴减少输入张量。

语法:

下面是 Python numpy.sum() 函数的语法。

numpy.sum
         (
          a,
          axis=None,
          dtype=None,
          out=None,
          keepdims=<no value>,
          initial=<no value>,
          where=<no value>
         )

举例:

我们举个例子,检查一下 Python reduce_sum()和 sum()函数的区别。

源代码:

import tensorflow as tf

new_tensor = tf.constant([[178, 98, 23, 198],
                         [289,945,435,190]])
new_tensor.numpy()
new_output = tf.math.reduce_sum(new_tensor,0, keepdims=True).numpy()
print("Sum of tensor:",new_output)

# sum() function
import numpy as np
new_arr=np.array([[178, 98, 23, 198],
                  [289,945,435,190]])
new_result=np.sum(new_arr,axis=0)
print("Sum of array:",new_result)

在上面的代码中,我们首先使用 tf.math.reduce() 函数导入了 TensorFlow 库,然后使用 tf.constant() 函数声明了一个张量。创建张量后,我们使用了 tf.math.reduce() 函数,并将张量 axis,keedims=True 指定为参数。

接下来,我们通过使用NP . array()函数创建了一个数组,然后使用 np.sum() 函数并传递一个数组作为参数。一旦执行了这段代码,输出将显示所有元素的总和。

下面是以下给定代码的实现。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

TensorFlow reduce_sum vs sum

另外,检查:模块“TensorFlow”没有属性“session”

tensor flow reduce _ sum axis =-1

  • 在这里我们将看到如何在 Python tensor flowreduce _ sum()函数中使用 axis=-1
  • 为了执行这个特定的任务,我们将使用 TensorFlow 函数 tf.math.reduce_sum() 。在这个函数中,我们将设置 th e 轴=-1 以及输入张量,这将减少第二个维度。
  • 在 Python 中,轴指定了张量的维数,一个 d -1 表示最后一个轴。

举例:

import tensorflow as tf

new_tensor = tf.constant([[34, 45, 89, 178],
                         [134,456,976,234]])

new_result = tf.math.reduce_sum(new_tensor,-1)
print("Sum of tensor:",new_result)

在下面给出的代码中,我们首先导入了 TensorFlow 库,然后使用 tf.constant() 函数创建了一个张量**‘new _ tensor’**。之后,我们使用了 tf.math.reduce_sum() 函数,在这个函数中,我们指定了张量和 axis=-1 作为参数。

下面是以下给定代码的输出。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

TensorFlow reduce_sum axis-1

阅读:Python tensor flow reduce _ mean

张量流减少计数布尔型

  • 在本节中,我们将学习如何计算 Python TensorFlow reduce_sum()函数中的布尔值。
  • 为了完成这个任务,我们将使用**TF . math . count _ 非零()**函数。在 Python TensorFlow 中的 **tf。math.count _ 非零()**函数用于计算输入张量各维中的非零元素。假设您有一个包含零和非零元素的输入张量。
  • 在这个例子中,我们只指定了 true 和 false **(布尔)**值,然后这个函数将帮助用户计算给定张量中可用的非零元素。

语法:

我们先来看看语法,了解一下**TF . math . count _ 非零()**函数的工作原理。

tf.math.count_nonzero
                     (
                      input,
                      axis=None,
                      keepdims=None,
                      dtype=tf.dtypes.int64,
                      name=None,
                     )
  • 它由几个参数组成
    • **输入:**该参数表示需要约简的张量,通常为布尔型、数值型和字符串型。
    • **轴:**默认取 none 值,指定减少所有尺寸。
    • keepdims: 这是一个可选参数,如果为真,那么它将减少长度为 1 的维度。
    • dtype: 默认取 tf.dtypes.int64 数据类型,表示 dtype 的输出。

举例:

让我们举一个例子,检查如何在 Python TensorFlow 中计算布尔值

源代码:

import tensorflow as tf
tf.compat.v1.disable_eager_execution()
new_tensor = tf.constant([[True, True], [False, True]])
with tf.compat.v1.Session() as val:
    result = tf.math.count_nonzero(new_tensor)
    new_output=val.run(result)
    print(new_output)

在上面的代码中,我们创建了一个张量,然后使用了 tf.compat.v1.session() 函数来运行会话。之后,我们使用了**TF . math . count _ 非零()**函数,并将输入张量指定为参数。一旦执行了这段代码,输出将显示真值的计数。

下面是下面给出的代码的截图。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python TensorFlow reduce count boolean

读取张量流乘法

检查 Tensorflow 中布尔和的另一个例子

在这个例子中,我们通过使用 tf.constant() 函数创建了一个张量,并分配了布尔值。接下来,我们使用了 tf.reduce_any() 函数,它将只返回真值。

语法:

下面是 tf.reduce_any() 函数的语法。

tf.math.reduce_any
                  (
                   input_tensor,
                   axis=None,
                   keepdims=False,
                   name=None
                  )

举例:

import tensorflow as tf

new_tensor = tf.constant([[True,True],
                         [False,True]])

new_result = tf.reduce_any(new_tensor,1)
print("Boolean value of Tensor:",new_result)

下面是以下给定代码的执行。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

TensorFlow reduce count boolean

阅读: Python TensorFlow 随机均匀

张量流 reduce_sum nan

  • 在本节中,我们将学习如何使用 Python TensorFlow 中的 tf.math.reduce_sum() 函数来减少 nan 值。
  • 首先,我们将使用 tf.constant() 函数创建一个张量,在这个张量中,我们将分配 nan 个值,然后使用 t f.math.reduce_sum() 函数和轴=1 减少这些值。

举例:

import tensorflow as tf
import numpy as np
new_tensor = tf.constant([[np.nan,np.nan],
                         [np.nan,np.nan]])

new_result = tf.math.reduce_sum(new_tensor,1)
print("Sum of nan values:",new_result)

下面是以下给定代码的实现

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python TensorFlow reduce_sum nan

阅读:Python tensor flow expand _ dims

张量流 reduce_sum 函数

  • 在本节中,我们将学习如何在 Python TensorFlow 中使用 reduce_sum 函数。
  • 通过使用 tf.math.reduce_sum() 函数,我们可以轻松地对张量中可用的所有元素求和。为了在 TensorFlow 中创建一个张量,我们将使用 t f.contstant() 函数。

语法:

下面是 tf.math.reduce_sum() 函数的语法

tf.math.reduce_sum
                  (
                   input_tensor,
                   axis=None,
                   Keepdims=False,
                   name=None
                  )

举例:

让我们举个例子,了解一下 tf.math.reduce_sum() 函数的工作原理

源代码:

import tensorflow as tf

tensor1 = tf.constant([[56,78,34,67],
                         [88,45,38,145]])

new_output = tf.math.reduce_sum(tensor1,[0,1],keepdims=True)
print(new_output)

在下面给出的代码中,我们使用了 tf.math.reduce_sum() 函数,并在该函数中设置了轴 [0,1]keepsdims=True 作为参数。

你可以参考下面的截图

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

TensorFlow reduce_sum function in Python

阅读: Python TensorFlow 占位符

张量流加权归约和

  • 在这个程序中,我们将学习如何在 Python TensorFlow 中找到张量的加权和。
  • 在这个例子中,我们将使用 tf.constant() 函数创建两个张量**‘tens 1’‘tens 2’。接下来,我们将定义函数‘apply _ weight’**并传递输入张量。

举例:

import tensorflow as tf
tens1 = tf.constant([13.0, 17.0, 14.0])
tens2 = tf.constant([[[24.0, 15.0],[45.0, 36.0],[15.0, 26.0]],
                 [[44.0, 13.0],[66.0, 69.0],[16.0, 23.0]]]
)

def apply_weight(tens2, tens1): 
    return tf.map_fn(mult, tens2)

def mult(l):
    result = tf.transpose(l)
    return tf.map_fn(mult_pars, result)

def mult_pars(m): 
    return tf.reduce_sum(tens1 * m) / tf.reduce_sum(tens1)

print(apply_weight(tens2,tens1))

下面是以下代码的截图

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

TensorFlow weighted reduce sum in Python

阅读: TensorFlow 获取变量+示例

tensor flow reduce _ mean vs reduce _ sum

  • 这里我们要讨论的是 Python TensorFlow 中 reduce_mean()和 reduce_sum() 函数的区别。
  • 在 TensorFlow 中, reduce_mean() 函数用于计算张量各维度的平均值。而在 th e reduce_sum() 函数的情况下,它将帮助用户计算输入张量的维度上的值的和。

语法:

下面是 TensorFlow reduce_mean() 函数的语法

tf.math.reduce_mean
                   (
                    input_tensor,
                    axis=None,
                    keepdims=False,
                    name=None
                   )

举例:

我们举个例子,检查一下 tf.reduce_mean()tf.reduce_sum() 函数的区别

源代码:

import tensorflow as tf

new_tens=tf.constant([[23,45,11],
                      [67,89,12]])
new_result=tf.reduce_mean(new_tens)
print(new_result)
#sum of all elements
new_result2=tf.reduce_sum(new_tens)
print(new_result2)

下面是以下给定代码的实现

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

TensorFlow reduce_mean vs reduce_sum in Python

你可能也喜欢阅读下面的 Python TensorFlow 教程。

在本 Python 教程中,我们学习了如何在 Python 中使用 TensorFlow reduce_sum()。此外,我们还讨论了以下主题。

  • 张量流 reduce_sum keepdims
  • 张量流 reduce_sum vs sum
  • 张量流 reduce_sum 轴=-1
  • 张量流归约和布尔值
  • 张量流减少 _ 总和 nan
  • 张量流 reduce_sum 函数
  • 张量流 reduce_sum 列表
  • 张量流加权归约和
  • 张量流 reduce_mean vs reduce_sum

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传Bijay Kumar

Python 是美国最流行的语言之一。我从事 Python 工作已经有很长时间了,我在与 Tkinter、Pandas、NumPy、Turtle、Django、Matplotlib、Tensorflow、Scipy、Scikit-Learn 等各种库合作方面拥有专业知识。我有与美国、加拿大、英国、澳大利亚、新西兰等国家的各种客户合作的经验。查看我的个人资料。

enjoysharepoint.com/

Python 线程和多线程

原文:https://pythonguides.com/python-threading-and-multithreading/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在本 python 教程中,我们将讨论 **python 线程和多线程。**我们还将检查:

  • 什么是线程?
  • 什么是线程?
  • 使用类创建 Python 线程
  • Python 线程锁
  • 使用队列的线程
  • Python 多线程使用函数创建
  • 多线程中的同步
  • Python 线程池
  • 多线程与多处理
  • 线程与多线程

目录

什么是线程?

线程是操作系统中调度的最小单元,它可以同时执行多任务。当任务需要一些时间来执行时,在这种情况下使用 python 线程。

Python 线程介绍

  • 线程化是同时运行多个线程的过程。
  • 线程模块包括一种简单的方法来实现用于同步线程的锁定机制。

在这个例子中,我导入了一个名为线程和时间的模块。同样,我们将定义一个函数 Evennum 为defeven num()。我们使用了 for 循环和 range()函数,还使用了 sleep()来等待执行当前线程给定的秒数。

示例:

import threading
import time

def Evennum():
    for i in range(2, 10, 2):
        time.sleep(1)
        print(i)

threading.Thread(target=Evennum).start()

下面的截图显示了从 2 到 10 的偶数。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Threading

阅读如何在 Python Pygame 中把屏幕放在特定位置

使用类创建 Python 线程

在这里,我们可以看到如何使用 python 中的类创建线程。

创建线程类的语法:

Thread(group=None, target=None, name=None, args=(), kwargs={})

要使用 python 中的类创建线程,有一些类方法:

  • run()–这个方法调用传递给对象构造函数的目标函数。

  • start()–线程活动通过调用 start()方法启动,当我们调用 start()时,它在内部调用 run 方法并执行目标对象。

  • **join([time out])—**该方法阻塞调用线程,直到被调用 join()的线程正常终止或通过句柄异常终止。

  • getName()–该方法返回线程的名称。

  • set name(name)–该方法用于设置线程名称,该名称以字符串的形式出现,用于识别。

  • is alive()–该方法返回线程是否活动。在调用 start()时,线程是活动的,并且一直持续到 run()终止。

  • set daemon(Daemonic)–该方法用于将守护进程标志设置为布尔值 Daemonic。这应该在开始()之前调用。

  • isDaemon()–该方法返回线程守护标志的值。

  • 在这个例子中,我从线程中导入了一个名为 thread 的模块,并将一个函数定义为一个线程函数**,并传递了一个参数。**

  • name 属性的值被设置为**“_ _ main _ _”**。当模块作为程序运行时。name 是决定当前模块名称的内置变量。

  • 如果模块直接从命令行运行,那么 "__name__" 被设置为 "__main__"

示例:

from threading import Thread 
def threaded_function(arg): 
    for i in range(arg): 
        print("python guides")
if __name__ == "__main__": 
    thread = Thread(target = threaded_function, args = (3, )) 
    thread.start() 
    thread.join() 
    print("Thread Exiting...") 

你可以在下面的截图中看到,在范围()中提到的 python 指南打印了三次

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python thread creating using class

Python 线程锁

线程模块有一个叫做 lock 的同步工具。锁类有两种方法:

  • acquire() :这个方法锁定锁并阻塞执行,直到它被释放。
  • release() :该方法用于释放锁。此方法仅在锁定状态下调用。
  • 在这个例子中,我从线程中导入了名为 Lock 的**, lock = Lock() 用于声明一个锁,并定义了函数来将值乘为 def multiply_one()。**
  • lock.acquire() 用于在状态解锁时锁定,并立即返回。
  • lock.release() 用于解锁状态,仅在状态锁定时调用。
  • threads . append(Thread(target = func))用于用目标函数实例化它。
  • 线程[-1]。start() 用于调用 start,**【打印(a)】**给出最终值。

示例:

from threading import Lock, Thread
lock = Lock()
a = 1

def multiply_one():

   global a
   lock.acquire()
   a *= 4
   lock.release()

def multiply_two():
   global a
   lock.acquire()
   a *= 6
   lock.release()

threads = []
for func in [multiply_one, multiply_two]:
   threads.append(Thread(target=func))
   threads[-1].start()

for thread in threads:

   thread.join()

print(a)

你可以参考下面的截图来看看倍增的价值。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python threading lock

使用队列的线程

  • 在这个例子中,我导入了名为队列和线程的模块。函数 employee 被用作 def employee()
  • 调用无限循环(如果为真)以使线程准备好接受所有任务。
  • 然后将 queue 定义为 project = q.get()。
  • task_done() 告知队列任务处理完成。当项目被放入队列时任务完成被调用。
  • 穿线线程(target=employee,daemon=True)。start() 用于启动员工线程。
  • 在范围(5)内的时间表示向员工发送 5 个任务。
  • 加入块,直到所有任务完成。

示例:

import threading, queue
q = queue.Queue()
def employee():
    while True:
        project = q.get()
        print(f'working on {project}')
        print(f'done{project}')
        q.task_done()
threading.Thread(target=employee, daemon=True).start()
for project in range(5):
    q.put(project)
print('project requests sent\n', end='')
q.join()
print('projects completed')

你可以参考下面的截图来查看所有 5 个任务的输出。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Threads using queue

Python 中什么是多线程?

并行执行多个线程的过程。多线程通过多任务最大限度地利用 CPU 的**。Web 浏览器和 Web 服务器都是多线程的应用。**

使用函数创建 Python 多线程

  • 在这个例子中,我导入了线程,定义了一个函数,并执行了算术运算。
  • format() 返回格式化的字符串。 t1.start() 启动线程。 t1.join() 执行主线程,直到另一个线程完成。
  • name 属性的值被设置为**“_ _ main _ _”**。当模块作为程序运行时。name 是决定当前模块名称的内置变量。
  • 如果模块直接从命令行运行,那么 "__name__" 被设置为 "__main__"

示例:

import threading 
def multiplication(num): 
    print("Multiplication: {}".format(num * num)) 
def addition(num): 
    print("Addition: {}".format(num + num)) 
def division(num):
    print("Division: {}".format(num / num))
def substraction(num):
    print("substraction: {}".format(num - num))
if __name__ == "__main__":  
    t1 = threading.Thread(target=multiplication, args=(20,)) 
    t2 = threading.Thread(target=addition, args=(5,))  
    t3 = threading.Thread(target=division, args=(100,))
    t4 = threading.Thread(target=substraction, args=(3,))
    t1.start()  
    t2.start() 
    t3.start()
    t4.start()
    t1.join() 
    t2.join()
    t3.join()
    t4.join()

你可以参考下面的截图来检查算术运算。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python thread creating using functions

多线程中的同步

线程同步通过确保一次访问一个线程来保护共享资源。它还保护免受竞争条件的影响。

什么是竞态条件?

多个线程同时访问共享资源。所有线程竞相完成任务,最后,它将以不一致的数据结束。为了结束这种竞争状态,使用了同步方法。

  • 这里,我们必须创建一个共享资源。共享资源为任何给定的数字生成乘法表。
  • 在这个例子中,我导入了一个名为线程的模块,定义了类乘法,并定义了一个函数 Mul 为 def Mul
  • 然后我使用了范围(1,6)中的循环,然后使用了 print(num,’ X ‘,I,’ = ',num*i) 。这里 num 是你给的数字,**‘X’**是乘法符号,I 是给定的范围。
  • 然后定义了另一个类为 MyThread ,定义了一个构造函数为 **def__init__(self,tableobj,num)。**在构造函数中,我定义了一个超类构造函数。
  • 为了在这个线程中包含共享资源,我们需要一个对象,并使用 tableobj 作为参数,使用另一个参数作为 num
  • 再次使用 def run(self) 定义运行功能。
  • 使用 threadlock=Lock() 创建线程锁。
  • 这个锁应该在访问共享资源之前创建,在访问共享资源之后,我们必须使用 threadlock.release() 来释放。
  • 为了得到输出**,使用了 self.tableobj.Mul(self.num)** 。
  • 使用table obj = Multiplication()创建共享资源对象。
  • 使用 t1=MyThread(tableobj,2) 创建两个线程,然后传递参数 tableobj 和一个数字。
  • 之后,我们必须使用 t1.start() 来启动线程。

示例:

from threading import *
class Multiplication:
    def Mul(self,num):
        for i in range(1,6):
            print(num,'X',i,'=',num*i)
class MyThread(Thread):
    def __init__(self,tableobj,num):
        Thread.__init__(self)
        self.tableobj=tableobj
        self.num=num
    def run(self):
        threadlock.acquire()
        self.tableobj.Mul(self.num)
        threadlock.release()
threadlock=Lock()
tableobj=Multiplication()
t1=MyThread(tableobj,2)
t2=MyThread(tableobj,3)
t1.start()
t2.start()

在这里,在下面的截图中,我们可以看到乘法表的数字 2 和 3。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Synchronization in Multithreading

你可以参考下面的截图,查看数据的不正确排列。

  • 在这个输出中,我们可以看到数据排列不当。这是由于竞态条件。为了克服竞争情况,使用同步。
  • 有时我们可能得到正确的数据,但很多时候我们会得到不正确的数据排列。
  • 所以,最好使用同步方法(锁类)。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Synchronization in Multithreading

Python 线程池

  • 线程池是一组等待作业的工作线程。
  • 在线程池中,创建一组固定大小的线程。
  • 服务提供者从线程池中拉出线程,并将任务分配给线程。
  • 完成任务后,一个线程被返回到线程池。
  • 线程池的优点是线程池重用线程来执行任务,任务完成后线程不会被破坏。它被返回到线程池中。
  • Threadpool 具有更好的性能,因为不需要创建线程。
  • 在这个例子中,我导入了一个名为 concurrent.futures 的模块。这个模块提供了一个使用线程池处理任务的接口。
  • 还导入了用于处理阵列的 NumPy 模块。
  • 时间模块处理与时间相关的各种功能。
  • ThreadPoolExecutor 是一个 Executor 子类,它使用线程池来执行调用。通过使用 ThreadPoolExecutor,已经创建了 2 个线程。
  • 然后任务由函数以一个参数的形式作为一个数字给出,等待 2 秒来执行函数并显示结果。
  • 当任务完成时, done() 返回一个真值
  • submit() 方法是 executor 的子接口。submit()接受可运行和可调用的任务。

示例:

import concurrent.futures
import numpy as np
from time import sleep
numbers = [1,2,3,]
def number(numbers):
    sleep(2)
print(numbers)
with concurrent.futures.ThreadPoolExecutor(max_workers = 2) as executor:
    thread1 = executor.submit(number, (numbers))
print("Thread 1 executed ? :",thread1.done())

在下面的截图中,我们可以看到 done() 在完成任务后返回 true 值。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python thread pool

多线程 vs 多重处理

| 多线程 | 多重处理 |
| 多线程允许一个进程包含许多线程。 | 多重处理是包含两个或更多处理器的系统。 |
| 它用于在单个进程中创建线程。 | 它是用来增加计算能力的。 |
| 作业处理在更短的时间内完成。 | 工作流程在中等时间内完成 |
| 过程的创建是缓慢的。 | 线程的创建速度更快。 |

Multithreading vs Multiprocessing

线程 vs 多线程

| 线程 | 多线程 |
| 线程是可以同时执行多任务的最小单位。 | 并行执行多个线程的过程。 |
| 线程在进程中执行。 | 多线程有许多线程在共享地址空间中执行。 |
| 使用单个线程来执行任务。 | 使用多个线程来执行任务。 |

Thread vs Multithread

您可能会喜欢以下 Python 教程:

在本 Python 教程中,我们学习了 Python 线程和多线程。此外,我们还讨论了以下主题:

  • 什么是线程?
  • 什么是多线程?
  • 使用类创建 Python 线程
  • Python 线程锁
  • 使用队列的线程
  • Python 多线程使用函数创建
  • 多线程中的同步
  • Python 线程池
  • 多线程与多处理
  • 线程与多线程

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传Bijay Kumar

Python 是美国最流行的语言之一。我从事 Python 工作已经有很长时间了,我在与 Tkinter、Pandas、NumPy、Turtle、Django、Matplotlib、Tensorflow、Scipy、Scikit-Learn 等各种库合作方面拥有专业知识。我有与美国、加拿大、英国、澳大利亚、新西兰等国家的各种客户合作的经验。查看我的个人资料。

enjoysharepoint.com/

Python Tkinter add 函数示例

原文:https://pythonguides.com/python-tkinter-add-function/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在本 Python 教程中,我们将学习关于 Python Tkinter add 函数的一切,如何在 Python Tkinter 中使用 add 函数,我们还将涵盖与 add 函数相关的不同示例。我们将讨论这些话题。

  • python tkinter add image(python tkinter add 映像)
  • Python Tkinter 添加两个数
  • Python Tkinter 添加标签
  • Python Tkinter 添加文本框
  • Python Tkinter 添加菜单栏
  • Python Tkinter 向条目添加文本
  • Python Tkinter 向框架网格添加滚动条
  • Python Tkinter 添加图标

如果您是 Python Tkinter 的新手,请查看 Python GUI 编程

目录

Python Tkinter 添加函数

让我们来看看,如何在 Python Tkinter 中使用 add 函数。我们将看到,我们如何使用图像,两个数字,文本框等添加功能。

Python Tkinter 添加图片

在本节中,我们将学习如何在 Python Tkinter 中添加图像。

我们想在窗口屏幕上添加一个图像。我们创建一个想要添加图像的窗口。我们从对话框中添加图像。选择图像并打开它。所选图像将添加到窗口中。

代码:

在下面的代码中,我们创建了一个窗口 ws=Tk() 在这个窗口中,我们添加了一个按钮,它的功能就像一个事件,帮助我们选择一个想要添加到框中的图像。

  • 图像。open() 用于在窗口上打开一幅图像。
  • file dialog . askopenfilename()此处用于询问从我们的本地系统位置打开我们想要打开的文件名。
  • I mage.resize() 帮助将图像调整到定义的像素大小。
from tkinter import *
from PIL import ImageTk, Image
from tkinter import filedialog
import os

ws = Tk()
ws.title("Python Guides")
ws.geometry("550x300+300+150")
ws.resizable(width=True, height=True)

def openfun():
    filename = filedialog.askopenfilename(title='open')
    return filename
def open_img():
    a = openfun()
    imag = Image.open(a)
    imag = imag.resize((250, 250), Image.ANTIALIAS)
    imag = ImageTk.PhotoImage(imag)
    label = Label(ws, image=imag)
    label.image = imag
    label.pack()

button = Button(ws, text='Add Image', command=open_img).pack()

ws.mainloop() 

输出:

在下面的输出中,我们可以看到一个标签为 Add Image 的按钮,它的功能是选择图像的路径并在框中输入。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter add image Output

如前所述,当点击添加图像按钮时,它的功能是如何工作的。它从路径上询问我们想要在窗口中添加或打开哪个图像。

以这种方式选择图像后,它会显示在窗口上,我们的图像会添加到窗口中。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Add image in Python Tkinter

阅读如何在 Python Tkinter 中设置背景为图像

Python Tkinter 加两个数

在本节中,我们将学习如何在 Python Tkinter 中将两个数相加。

加法是取两个或两个以上的数,把它们加在一起。把这些数字相加后,我们得到结果。

代码:

在下面的代码中,我们创建了一个窗口,在这个窗口中我们添加了标签、条目和按钮。用户在输入框中输入,结果显示为用户所给数字的相加。

Label() 函数用于实现显示框,我们可以在其中放置文本或图像。

entry() 小部件用于接受单个文本。

from tkinter import *

def addnumber():
    res1=int(entry1.get())+int(entry2.get())
    mytext.set(res1)

ws = Tk()
ws.title("Python Guides")
ws.geometry("500x300")
mytext=StringVar()
Label(ws, text="First").grid(row=0, sticky=W)
Label(ws, text="Second").grid(row=1, sticky=W)
Label(ws, text="Result:").grid(row=3, sticky=W)
result=Label(ws, text="", textvariable=mytext).grid(row=3,column=1, sticky=W)

entry1 = Entry(ws)
entry2 = Entry(ws)

entry1.grid(row=0, column=1)
entry2.grid(row=1, column=1)

button = Button(ws, text="Calculate", command=addnumber)
button.grid(row=0, column=2,columnspan=2, rowspan=2,sticky=W+E+N+S, padx=5, pady=5)

ws.mainloop()

输出:

运行上述代码后,我们得到以下输出,我们看到一个窗口,窗口内有一个输入框,它从用户那里获取值,然后计算并返回结果给用户。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Add two numbers in Python Tkinter

来看看,使用 Python Tkinter 的身体质量指数计算器

Python Tkinter 添加标签

在本节中,我们将学习如何在 Python Tkinter 中添加标签。

标签用于向用户提供关于小部件的消息。用户可以随时更改小部件上显示的文本。标签一次可以使用一种字体。

Label(master,option)

:代表父窗口。

代码:

在下面的代码中,我们创建了一个小部件,在这个小部件中,我们添加了一个向用户提供消息的标签。用户可以随时更改该文本。

Label() 用于用户指定要显示的文本或图像。

from tkinter import *

ws = Tk()
ws.title("Python Guides")
ws.geometry("500x300")

label = Label(ws, text="Welcome To Python Guides Tutorial !!",font="arial" "bold")
label.pack()

ws.mainloop()

输出:

运行上面的代码后,我们得到下面的输出,其中我们看到标签在小部件中突出显示。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter add label Output

阅读,Python Tkinter Entry–如何使用

Python Tkinter 添加文本框

在这一节中,我们将学习如何在 Python Tkinter 中添加一个文本框。

文本框允许用户输入程序要使用的文本信息。用户可以一次在文本框中插入多个文本。

代码:

在下面的代码中,我们创建了一个小部件,在这个小部件中,我们添加了一个文本框,用户可以在其中插入文本,或者默认情况下,文本是文本字段中的一个弹出窗口。

  • inputtext.get() 用于获取用户的输入。
  • Text() 功能用于输入文本。
  • Label() 用于用户指定要显示的文本或图像。
  • **按钮()**用于提交文本。
from tkinter import *

ws = Tk()
ws.geometry("500x300")
ws.title("Python Guides")

def take_input():
	INPUT = inputtext.get("1.0", "end-1c")
	print(INPUT)
	if(INPUT == "120"):
		Output.insert(END, 'Correct')
	else:
		Output.insert(END, "Wrong answer")

label = Label(text = "What is 24 * 5 ? ")
inputtext = Text(ws, height = 10,
				width = 25,
				bg = "light yellow")

Output = Text(ws, height = 5,
			width = 25,
			bg = "light cyan")

display = Button(ws, height = 2,
				width = 20,
				text ="Show",
				command = lambda:take_input())

label.pack()
inputtext.pack()
display.pack()
Output.pack()

ws.mainloop()

输出:

运行上面的代码后,我们得到下面的输出,用户可以在文本字段中插入数字。

输入文本后,单击显示按钮,如果用户在文本字段中输入的答案是正确的,则下一个文本字段显示正确,否则显示不正确。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter add text box Output

用户可以插入正确的值,该值会显示在命令提示符上。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Add a text box in Python Tkinter

阅读, Python Tkinter 单选按钮–如何使用

Python Tkinter 添加菜单栏

在本节中,我们将学习如何在 Python Tkinter 中添加菜单栏。

菜单栏位于屏幕的下方,标题栏下方包含一个下拉菜单。菜单栏提供了打开文件、编辑等功能。

代码:

在下面的代码中,我们导入了 Toplevel、Button、Tk、Menu 库,并在窗口顶部创建了一个包含下拉菜单的菜单栏。

  • file1.add_command() 用于向菜单中添加菜单项。
  • file1.add_separator() 用于对菜单进行相应的分隔。
  • menubar.add_cascade() 用于以适当的方式创建菜单栏。
from tkinter import Toplevel, Button, Tk, Menu  

ws = Tk() 
ws.title("Python Guides")
ws.geometry("500x300") 
menubar = Menu(ws)  
file1 = Menu(menubar, tearoff=0)  
file1.add_command(label="New")  
file1.add_command(label="Open")  
file1.add_command(label="Save")  
file1.add_command(label="Save as...")  
file1.add_command(label="Close")  

file1.add_separator()  

file1.add_command(label="Exit", command=ws.quit)  

menubar.add_cascade(label="File", menu=file1)  
edit1 = Menu(menubar, tearoff=0)  
edit1.add_command(label="Undo")  

edit1.add_separator()  

edit1.add_command(label="Cut")  
edit1.add_command(label="Copy")  
edit1.add_command(label="Paste")  
edit1.add_command(label="Delete")  
edit1.add_command(label="Select All")  

menubar.add_cascade(label="Edit", menu=edit1)  
help1 = Menu(menubar, tearoff=0)  
help1.add_command(label="About")  
menubar.add_cascade(label="Help", menu=help1)  

ws.config(menu=menubar)  
ws.mainloop() 

输出:

运行上面的代码后,我们得到了下面的输出,其中我们添加了 3 个流行的菜单栏文件、编辑和帮助。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter add menu bar Output

在这个图片,文件,Edir 是菜单栏和菜单选项,如新建,打开,保存,另存为等。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

add Menu Bar in Python Tkinter

阅读, Python Tkinter 菜单栏–如何使用

Python Tkinter 向条目添加文本

在本节中,我们将学习如何在 Python Tkinter 中向条目添加文本。

条目是我们可以输入文本的地方,或者我们可以说文本条目是指以字符、数字等形式创建消息,或者有时默认消息也可以生成。

代码:

在下面的代码中,我们创建了一个窗口 ws=Tk() 窗口里面有一个文本框。其中用户可以输入他们的文本。如果用户不提供任何输入,则使用默认值。

textBox.insert() 用于插入单词或句子。

from tkinter import *
import tkinter as tk

ws = Tk()
ws.title("Python Guides")
ws.geometry("500x300")

textBox = Entry(ws)
textBox.insert(0, "Python Guides..!!")  
textBox.pack()
ws.mainloop() 

输出:

以下输出显示 textbox 中已经提到了该文本。如果用户想在文本框中添加一些其他文本,那么他们首先删除这些文本,然后输入另外的**“Python Guides…!!"**默认显示文本。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter add text to entry Output

阅读如何用 Python 制作计算器

Python Tkinter 给框架网格添加滚动条

在这一节中,我们将学习如何在 Python Tkinter 中将滚动条添加到框架网格中。

滚动条是一个小部件,其中文本、图片内容可以在预定方向(水平或垂直)滚动。当内容超过时,添加滚动条。

代码:

在下面的代码中,我们创建一个窗口 ws=Tk() 我们想要添加一个滚动条我们使用 Scrollbar() 函数在主窗口上添加滚动条。 Orient 决定滚动条是垂直还是水平

Scrollbar() 用于在主窗口中添加滚动条。

from tkinter import *
class ScrollBar:

	def __init__(self):

		ws = Tk()
		ws.title("Python Guides")
		ws.geometry("200x200")		
		h1 = Scrollbar(ws, orient = 'horizontal')		
		h1.pack(side = BOTTOM, fill = X)
		v1 = Scrollbar(ws)		
		v1.pack(side = RIGHT, fill = Y)

		t1 = Text(ws, width = 15, height = 15, wrap = NONE,
				xscrollcommand = h1.set,
				yscrollcommand = v1.set)

		for i in range(20):
	        t1.insert(END,"Python Guides Tutorial..!!\n")		
		t1.pack(side=TOP, fill=X)		
		h1.config(command=t1.xview)	
		v1.config(command=t1.yview)

		ws.mainloop()
                s1 = ScrollBar() 

输出:

在下面的输出中,我们看到有垂直或水平滚动条被添加到窗口中。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter add a scrollbar to a frame grid Output

阅读如何使用 Python Tkinter 获取用户输入并存储在变量中

Python Tkinter 添加图标

在这一节中,我们将学习如何在 Python Tkinter 中添加图标。

该图标类似于标志,它给任何网站的品牌。如果用户想搜索任何网站,他们首先会看到该网站的图标。一个带有 Sitename 的图标被添加到标题栏上。

代码:

在下面的代码中,我们创建了一个窗口,窗口里面有一个标题栏,并且在标题栏上添加了图标。窗口的标题栏图标基于名称照片图像

  • PhotoImage() 用于显示图标的图像。
  • ws.iconphoto() 方法用于设置标题栏图标。
from tkinter import *
from tkinter.ttk import *

ws = Tk()
ws.title("Python Guides")
ws.geometry("500x300")

image = PhotoImage(file = 'Pyimage.png.crdownload')

ws.iconphoto(False, image)

button = Button(ws, text = 'Click Me !')
button.pack(side = TOP)
ws.mainloop()

输出:

运行上面的代码后,我们得到了下面的输出,其中我们看到了添加到标题栏的图标。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter add icon Output

您可能会喜欢以下 Python Tkinter 教程:

因此,在本教程中,我们讨论了 Python Tkinter add 函数,并且我们还涵盖了不同的例子。这是我们已经讨论过的例子的列表。

  • python tkinter add image(python tkinter add 映像)
  • Python Tkinter 添加两个数
  • Python Tkinter 添加标签
  • Python Tkinter 添加文本框
  • Python Tkinter 添加菜单栏
  • Python Tkinter 向条目添加文本
  • Python Tkinter 向框架网格添加滚动条
  • Python Tkinter 添加图标

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传Bijay Kumar

Python 是美国最流行的语言之一。我从事 Python 工作已经有很长时间了,我在与 Tkinter、Pandas、NumPy、Turtle、Django、Matplotlib、Tensorflow、Scipy、Scikit-Learn 等各种库合作方面拥有专业知识。我有与美国、加拿大、英国、澳大利亚、新西兰等国家的各种客户合作的经验。查看我的个人资料。

enjoysharepoint.com/

Python Tkinter after 方法

原文:https://pythonguides.com/python-tkinter-after-method/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在本 Python 教程中,我们将学习如何在 Python Tkinter 中创建 after 方法,我们还将介绍与 after 方法相关的不同示例。我们还将讨论这些话题。

  • Python Tkinter after 方法
  • Python Tkinter 后循环
  • Python Tkinter 后带参数
  • Python Tkinter after_cancel

目录

Python Tkinter 方法后

在这一节中,我们将学习如何在 Python Tkinter 中创建一个 after 方法。

方法之后的是 Tkinter 中的内置函数,它在延迟毫秒后调用一次回调函数。当程序运行几秒钟后,调用 after 方法,窗口被销毁。

()方法用以下语法

after(delay,callback=None)

代码:

在下面的代码中,我们导入了一个用于计算时间的时间库。并且在窗口添加按钮内创建一个窗口 ws=Tk() ,文本为**“点击这里”**。

  • Button() 点击一下就可以显示文字。
  • start = time() 计算开始时间。
  • ws.after(20000,ws.destroy) 方法定义为 20 秒后主窗口被销毁。
  • end = time() 计算结束时间。
from tkinter import *

from time import time

ws = Tk()

button1 = Button(ws, text = 'Click Here')
button1.pack(side = TOP, pady = 5)

print('Welcome to Python Guides Tutorial')

start = time()

ws.after(20000, ws.destroy)

ws.mainloop()

end = time()
print('Destroyed after % d seconds' % (end-start))

输出:

在下面的输出中,我们看到一个窗口,窗口里面有一个按钮。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter after method Output

单击该按钮,我们会在命令提示符下看到文本**“欢迎使用 Python 指南教程”**,几秒钟后, after() 方法调用,窗口将被破坏。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter after method1 Output

阅读: Python tkinter 标签

Python Tkinter 后循环

在这一节中,我们将学习如何在 Python Tkinter 的循环之后创建一个**。**

循环是一个结束与开始相连接的过程。在 after 循环中,回调函数在延迟毫秒后被调用,一段时间后再次继续循环。

代码:

在下面的代码中,我们将时间库作为一个用于计算时间的导入时间,并在我们创建的类中创建一个函数。

  • Label() 用于显示文本或图像的字段。
  • self.label1.after(1000,self.update) 方法被定义为 10 秒后主窗口被销毁并调度另一个定时器。
from tkinter import *
from tkinter import ttk
import time

class digitalwatch(Tk):
    def __init__(self):
        super().__init__()

        self.title('Python Guides')
        self.resizable(0, 0)
        self.geometry('300x80')
        self['bg'] = 'white'

        self.style = ttk.Style(self)
        self.style.configure(
            'TLabel',
            background='white',
            foreground='black')

        self.label1 = Label(
            self,
            text=self.time_string(),
            font=('Digital-7', 40))

        self.label1.pack(expand=True)

        self.label1.after(1000, self.update)

    def time_string(self):
        return time.strftime('%H:%M:%S')

    def update(self):
        """ update the label every 1 second """

        self.label1.configure(text=self.time_string())

        self.label1.after(1000, self.update)

if __name__ == "__main__":
    ws = digitalwatch()
    ws.mainloop()

输出:

在下面的输出中,我们看到了数字手表,其中时间在几秒钟后连续运行,从开始开始,在循环后继续。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter after loop Output

阅读: Python Tkinter 条目

Python Tkinter 后带参数

在本节中,我们将学习如何用 Python Tkinter 中的参数创建 after。

在带有参数的函数后使用进行修补,在该函数中定义了一个函数并调用它。否则,它会显示一个错误。

代码:

在下面的代码中,我们创建了一个窗口,在这个窗口中我们添加了一些按钮来定义和调用函数。调用它后会得到结果。

  • starttime = time() 计算开始时间
  • ws.after(50000,ws.destroy) 定义 50 秒后主窗口将被破坏。
  • endtime = time() 计算结束时间。
from tkinter import *
from time import time
from tkinter.ttk import Button
ws= Tk()
ws.title("Python Guides")
ws.geometry("200x500")
b = Button(ws, text = 'Welcome Here')
b.pack(pady = 77,side = TOP)
blue = Button(ws, text = "blue")
blue.pack( side = TOP)
black = Button(ws, text = "black")
black.pack( side = BOTTOM )
red = Button(ws, text = "red")
red.pack( side = LEFT )
green = Button(ws, text = "green")
green.pack( side = RIGHT)
print('The Python Guides window is running on the screen...')
starttime = time()
ws.after(50000, ws.destroy)
ws.mainloop()
endtime = time()
print('The Tk Widget is closed after % d seconds' % (endtime-starttime))

输出:

运行上面的代码后,我们得到下面的输出,其中函数运行平稳,没有错误。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter after with arguments Output

参数显示在命令提示符上,我们还看到 50 秒后小部件自动关闭。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter after with arguments1 Output

阅读: Python Tkinter 按钮

Python Tkinter after _ cancel

在本节中,我们将学习如何在 Python Tkinter 中创建 add_cancel 函数。

当我们使用 after()函数创建一个调度时,它会关闭主窗口,给他们提供停止该调度的时间,或者我们可以说,为了停止一个特定的调度,我们使用了 after_cancel 函数。

代码:

在下面的代码中,我们使用 after(5000,lambda:ws.destroy()) 函数,该函数在 5 秒后关闭主窗口,但在应用 after_cancel() 后,它将停止 after 函数。

after_cancel() 函数用于停止的调度,after() 函数。

函数只有一个表达式,它可以接受任何类型的参数。

from tkinter import *
from tkinter import ttk

ws = Tk()
ws.title("Python Guides")

ws.geometry("700x300")

Label(ws, text= "Welcome to Python Guides Tutorial",
font=('Helvetica 20 bold')).pack(pady=20)

ws.after_cancel(ws)
ws.after(5000,lambda:ws.destroy())
ws.mainloop()

输出:

运行上述代码后,我们将得到以下输出,我们看到一个窗口,在屏幕上显示一些文本。当我们移除 after_cancel() 函数时,窗口将在 5 秒后关闭。要移除 after() 函数的时间表,我们使用 after_cancel() 函数。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Python Tkinter after_cancel Output

你也可以阅读下面的 Tkinter 教程。

因此,在本教程中,我们讨论了 Python Tkinter after 方法,我们还将讨论不同的例子。这是我们已经讨论过的例子列表。

  • Python Tkinter after 方法
  • Python Tkinter 后循环
  • Python Tkinter 后带参数
  • Python Tkinter after_cancel

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传Bijay Kumar

Python 是美国最流行的语言之一。我从事 Python 工作已经有很长时间了,我在与 Tkinter、Pandas、NumPy、Turtle、Django、Matplotlib、Tensorflow、Scipy、Scikit-Learn 等各种库合作方面拥有专业知识。我有与美国、加拿大、英国、澳大利亚、新西兰等国家的各种客户合作的经验。查看我的个人资料。

enjoysharepoint.com/

Python Tkinter 动画

原文:https://pythonguides.com/python-tkinter-animation/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在本教程中,我们将学习 Python Tkinter 动画。在这里,我们将了解如何在 python 中使用 Tkinter 创建动画,我们将涵盖与动画相关的不同示例。我们还将讨论这些主题

  • Python tkinter 动画
  • Python tkinter 加载动画
  • Python tkinter 计时器动画
  • Python tkinter matplotlib 动画
  • Python tkinter 简单动画
  • Python tkinter 按钮动画

目录

Python Tkinter 动画

在本节中,我们将学习 Python Tkinter 动画。通过动画,我们的意思是在任何物体上创造一个瞬间的幻觉。

在下面的代码中,我们取了两个起始位置“x”和“y ”,并给了一个窗口一些宽度高度,在里面,我们用画布做了一个球,并在我们创建的屏幕空间内给球添加了一个力矩。

代码:

import tkinter
import time

Window_Width=800

Window_Height=600

Ball_Start_XPosition = 50

Ball_Start_YPosition = 50

Ball_Radius = 30

Ball_min_movement = 5

Refresh_Sec = 0.01

def create_animation_window():
  Window = tkinter.Tk()
  Window.title("Python Guides")

  Window.geometry(f'{Window_Width}x{Window_Height}')
  return Window

def create_animation_canvas(Window):
  canvas = tkinter.Canvas(Window)
  canvas.configure(bg="Blue")
  canvas.pack(fill="both", expand=True)
  return canvas

def animate_ball(Window, canvas,xinc,yinc):
  ball = canvas.create_oval(Ball_Start_XPosition-Ball_Radius,
            Ball_Start_YPosition-Ball_Radius,
            Ball_Start_XPosition+Ball_Radius,
            Ball_Start_YPosition+Ball_Radius,
            fill="Red", outline="Black", width=4)
  while True:
    canvas.move(ball,xinc,yinc)
    Window.update()
    time.sleep(Refresh_Sec)
    ball_pos = canvas.coords(ball)
    # unpack array to variables
    al,bl,ar,br = ball_pos
    if al < abs(xinc) or ar > Window_Width-abs(xinc):
      xinc = -xinc
    if bl < abs(yinc) or br > Window_Height-abs(yinc):
      yinc = -yinc

Animation_Window = create_animation_window()
Animation_canvas = create_animation_canvas(Animation_Window)
animate_ball(Animation_Window,Animation_canvas, Ball_min_movement, Ball_min_movement) 

下面是给定代码的一些主要亮点。

  • Canvas.create_oval() 用于赋予球椭圆形。
  • Canvas.move() =球的运动
  • time.sleep() 它在给定的秒数内暂停执行。

输出:

运行上面的代码后,我们可以看到下面的输出,其中一个球正在改变它的位置。球上下运动,展示了一个动画的例子。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Output

阅读: Python Tkinter 编辑器

Python Tkinter 加载动画

在本节中,我们将学习 python Tkinter 加载动画。所谓加载,我们指的是通过互联网处理任何页面或加载任何数据。

代码:

在下面的代码中,我们制作了一个处理栏,它在点击 run 按钮后运行,并向我们展示了页面的加载。

  • Progressbar() 用于显示加载栏。
  • **mode = ’ determine '**显示将起点移动到终点的指示器。
from tkinter import *
from tkinter.ttk import *

ws=Tk()
Progress_Bar=Progressbar(ws,orient=HORIZONTAL,length=250,mode='determinate')

def Slide():
    import time
    Progress_Bar['value']=20
    ws.update_idletasks()
    time.sleep(1)
    Progress_Bar['value']=50
    ws.update_idletasks()
    time.sleep(1)
    Progress_Bar['value']=80
    ws.update_idletasks()
    time.sleep(1)
    Progress_Bar['value']=100

Progress_Bar.pack()
Button(ws,text='Run',command=Slide).pack(pady=10)
mainloop() 

输出:

运行下面的代码后,我们得到了下面的输出,它向我们展示了 python Tkinter 是如何加载的。在这里,我们可以看到当用户点击“ Run 按钮时,页面上开始加载数据。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Output

阅读: Python Tkinter 表教程

Python tkinter 定时器动画

在本节中,我们将学习 python Tkinter 计时器动画。通过定时器,我们的意思是为我们的提醒设置任何时间计数来记住我们的任务。理解计时器的最好例子是我们日常使用的闹钟。

代码:

在下面的代码中,我们导入了一个时间库,用来定义小时分钟 &秒。这里一个用户正在设置一些时间计数器,它的工作类似于在时间到了之后给出一个提醒。

import time
from tkinter import *
from tkinter import messagebox

ws = Tk()

ws.geometry("300x300")

ws.title("Python Guides")

Hour=StringVar()
Minute=StringVar()
Second=StringVar()

Hour.set("00")
Minute.set("00")
Second.set("00")

Hour_entry= Entry(ws, width=3, font=("Arial",18,""),
				textvariable=Hour)
Hour_entry.place(x=80,y=20)

Minute_entry= Entry(ws, width=3, font=("Arial",18,""),
				textvariable=Minute)
Minute_entry.place(x=130,y=20)

Second_entry= Entry(ws, width=3, font=("Arial",18,""),
				textvariable=Second)
Second_entry.place(x=180,y=20)

def OK():
	try:

		temp = int(Hour.get())*3600 + int(Minute.get())*60 + int(Second.get())
	except:
		print("Please Input The Correct Value")
	while temp >-1:

		Mins,Secs = divmod(temp,60)

		Hours=0
		if Mins >60:

			Hours, Mins = divmod(Mins, 60)

		Hour.set("{0:2d}".format(Hours))
		Minute.set("{0:2d}".format(Mins))
		Second.set("{0:2d}".format(Secs))

		ws.update()
		time.sleep(1)

		if (temp == 0):
			messagebox.showinfo("Time Countdown", "Time up ")

		temp -= 1

button = Button(ws, text=' countdown', bd='5',
			command= OK)
button.place(x = 100,y = 110)

ws.mainloop()

输出:

运行上面的代码后,我们可以看到一个用户已经设置了几秒钟的定时器,它按照定时器的命令工作。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Output

阅读:如何用 Python Tkinter 创建贪吃蛇游戏

Python tkinter matplotlib 动画

Matplotlib 是一个用于绘制图形的 Python 库。这是一个我们可以免费使用的开源库。它是用 Python 语言写的。这里有一个专门用来处理 matplotlib 函数的工具,名为“ MATLAB ”。在这里,Numpy 是其数字数学扩展,用于表示其轴的图形值。

代码:

  • plt.bar() 用于表示要用 X 轴Y 轴值绘制条形图。
  • ptl.xlabel() 用来表示 x 轴。
  • plt.ylabel() 用于表示 y 轴。
  • plt.title() 用于给条形图赋予标题。
from matplotlib import pyplot as plt
plt.bar([0.25,1.25,2.25,3.25,4.25],[50000,40000,70000,80000,200000],label="MAC",color='r',width=.4)
plt.bar([0.75,1.75,2.75,3.75,4.75],[80000,20000,20000,50000,60000],label="Dominos",color='b',width=.4)
plt.legend(loc='upper right')
plt.xlabel('Months')
plt.ylabel('Sales Amount')
plt.title('Information')
plt.show()

输出:

运行以下代码后,我们看到生成了条形图。这里是代表数据点的 x 轴y 轴值的月份和销售额变量,条形图代表一个月的总销售额。在下面的 gif 中,当我们将鼠标悬停在一个条上时,我们可以看到 x 轴y 轴正在给出一些值。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Output

阅读: Python Tkinter 图片

Python tkinter 简单动画

在下一节中,我们将学习 python Tkinter 的简单动画。在这里,我们制作了一个按钮,点击这个按钮可以改变背景颜色。

代码:

在下面的代码中,我们使用了一个随机库,为我们的选项提供了一个随机选择,在顶部,我们添加了一个带有文本“click me”的按钮,它可以随机改变背景的颜色。

  • 返回一个随机选择颜色的列表。
  • ws.title 用于给窗口一个标题。
  • **按钮()**用于运行该命令生成随机颜色在此。
from tkinter import *
import random

def gen_color():
    ws.configure(background=random.choice(["black", "red" , "green" , "blue"]))

ws =Tk()
ws.title("Python Guides")
ws.geometry('500x500')

button=Button(ws,text='Click Me',command = gen_color).pack()
ws.mainloop()

输出:

运行上述代码后,我们可以借助 python Tkinter 运行一个简单的动画。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Simple animation

阅读: Python Tkinter Colors

Python tkinter 按钮动画

在本节中,我们将学习 Python Tkinter 动画按钮。

我们在这里使用按钮动画作为一种功能,我们可以在任何游戏应用程序或任何类似的应用程序中使用它来打开或关闭该功能。这里的按钮就像一个普通的开关一样工作,我们在日常生活中使用它来打开房子的灯。

代码:

from tkinter import *
ws = Tk()
ws.title("Python Guides")

def convert():
    if(a1['state']==NORMAL):
        a1["state"] = DISABLED
        a2["text"]="enable"
    elif (a1['state']==DISABLED):
        a1["state"]=NORMAL
        a2["text"]="disable"

#--Buttons
a1=Button(ws, text="button")
a1.config(height = 8, width = 9)
a1.grid(row=0, column=0)    
a2 = Button(text="disable", command=convert)
a2.grid(row=0,column=1)
ws.mainloop()

在上面的代码中,首先,我们创建了一个按钮对象“ a1 ”,然后,我们使用 IF 语句来检查按钮的状态。最后,我们使用状态来改变按钮的行为,以获得想要的结果。

输出:

运行下面的代码后,我们得到下面的输出,当我们点击它们时,按钮将被禁用。当我们再次点击它们时,按钮将被启用。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Output

你可能也喜欢读下面的文章。

所以,在本教程中,我们讨论 Python Tkinter 动画。这是我们已经讨论过的例子的列表。

  • Python Tkinter 动画
  • Python Tkinter 动画教程
  • Python Tkinter 加载动画
  • Python Tkinter 计时器动画
  • Python Tkinter matplotlib 动画
  • Python Tkinter 简单动画
  • Python Tkinter 按钮动画

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传Bijay Kumar

Python 是美国最流行的语言之一。我从事 Python 工作已经有很长时间了,我在与 Tkinter、Pandas、NumPy、Turtle、Django、Matplotlib、Tensorflow、Scipy、Scikit-Learn 等各种库合作方面拥有专业知识。我有与美国、加拿大、英国、澳大利亚、新西兰等国家的各种客户合作的经验。查看我的个人资料。

enjoysharepoint.com/

Python Tkinter 自动完成

原文:https://pythonguides.com/python-tkinter-autocomplete/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在这个 Python 教程中,我们将看到如何实现 Python Tkinter 自动完成功能。自动完成是指根据用户键入的关键字显示相关单词。最简单的例子可能是你在浏览时看到的自动建议点。我们将讨论这些话题。

  • tkinter 自动完成
  • 自动完成条目 Tkinter Python
  • Python Tkinter 自动完成 Combobox
  • Python Tkinter 自动完成列表框

目录

自动完成 Python Tkinter

Python Tkinter 提供了一个模块 ttkwidgets ,使用它我们可以在 Python Tkinter 的应用程序中添加自动完成特性。

  • ttkwidgets 拥有方法自动完成功能,允许开发者在他们各自的应用程序中轻松实现自动完成功能。
  • 该过程的第一步是在系统上安装自动完成功能。Windows 和 Mac 用户可以简单地使用 pip 来安装 autocomplete,而 Linux 用户必须安装完整的软件包才能使用它。
  • ttkwidgets 依赖于 pillow ,所以我们需要在系统上安装它来使这个 ttkwidgets 库工作。

Windows 和 Mac 用户:

pip install ttkwidgets
pip install pillow

or

pip3 install ttkwidgets
pip3 install pillow

对于 Linux,我们将使用拥有一个 aptUbuntu 作为包管理器。您可以将 apt 更改为您各自的包管理器。Arch Linux 用户点击这里

sudo add-apt-repository ppa:j-4321-i/ttkwidgets

sudo apt-get update

sudo apt-get install python3-ttkwidgets

sudo apt-get install python-imaging-tk

一旦您成功执行了所有这些命令,您就可以按照下面几节中的步骤在 Python Tkinter 中实现自动完成特性。

使用 Tkinter 阅读 Python 中的注册表

自动完成条目 Tkinter Python

在本节中,我们将学习如何在 Python Tkinter 中自动完成条目小部件。此外,我们将看到它的一个例子。

  • 该过程的第一步是从 ttkwidgets.autocomplete 导入 AutocompleteEntry 方法
  • 现在,我们将使用 AutocompleteEntry 创建一个入口小部件,而不是直接从 Tkinter 创建,在它内部,我们将为 completevalues 传递一个参数。
  • completevalues 参数中传递的值将成为选项,当用户传递类似的关键字时,这些选项将被完成。
  • 比如completevalues=['hello', 'PythonGuides'],现在每次用户都会键入‘h;他/她会将自动完成建议视为“你好”,类似地,在“p”的情况下,他/她会将“pythonguides”视为一个选项。

Tkinter Python 中自动完成条目的源代码

from ttkwidgets.autocomplete import AutocompleteEntry
from tkinter import *

countries = [
        'Antigua and Barbuda', 'Bahamas','Barbados','Belize', 'Canada',
        'Costa Rica ', 'Cuba', 'Dominica', 'Dominican Republic', 'El Salvador ',
        'Grenada', 'Guatemala ', 'Haiti', 'Honduras ', 'Jamaica', 'Mexico',
        'Nicaragua', 'Saint Kitts and Nevis', 'Panama ', 'Saint Lucia', 
        'Saint Vincent and the Grenadines', 'Trinidad and Tobago', 'United States of America'
        ]

ws = Tk()
ws.title('PythonGuides')
ws.geometry('400x300')
ws.config(bg='#f25252')

frame = Frame(ws, bg='#f25252')
frame.pack(expand=True)

Label(
    frame, 
    bg='#f25252',
    font = ('Times',21),
    text='Countries in North America '
    ).pack()

entry = AutocompleteEntry(
    frame, 
    width=30, 
    font=('Times', 18),
    completevalues=countries
    )
entry.pack()

ws.mainloop()

输出 Python Tkinter 中自动完成条目的

**下面是 Python Tkinter 中自动完成条目的上述代码的输出。你可以注意到,当用户键入’ Un 时,它会自动将国家名称改为’美利坚合众国’。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Autocomplete Entry in Python Tkinter

阅读: Python NumPy 矩阵

Python Tkinter 自动完成组合框

在这一节中,我们将学习如何在 Python Tkinter 中自动完成 Combobox 小部件。

  • 该过程的第一步是从 ttkwidgets.autocomplete 导入 AutocompleteEntry 方法
  • 现在,我们将使用 AutocompleteCombobox 创建 Combobox,而不是直接从 Tkinter 创建 Combobutton 或 Combobox 小部件,在其中,我们将为 completevalues 传递一个参数。
  • completevalues 参数中传递的值将成为选项,当用户传递类似的关键字时,这些选项将被完成。

Tkinter Python 中自动完成组合框的源代码

from ttkwidgets.autocomplete import AutocompleteCombobox
from tkinter import *

countries = [
        'Antigua and Barbuda', 'Bahamas','Barbados','Belize', 'Canada',
        'Costa Rica ', 'Cuba', 'Dominica', 'Dominican Republic', 'El Salvador ',
        'Grenada', 'Guatemala ', 'Haiti', 'Honduras ', 'Jamaica', 'Mexico',
        'Nicaragua', 'Saint Kitts and Nevis', 'Panama ', 'Saint Lucia', 
        'Saint Vincent and the Grenadines', 'Trinidad and Tobago', 'United States of America'
        ]

ws = Tk()
ws.title('PythonGuides')
ws.geometry('400x300')
ws.config(bg='#8DBF5A')

frame = Frame(ws, bg='#8DBF5A')
frame.pack(expand=True)

Label(
    frame, 
    bg='#8DBF5A',
    font = ('Times',21),
    text='Countries in North America '
    ).pack()

entry = AutocompleteCombobox(
    frame, 
    width=30, 
    font=('Times', 18),
    completevalues=countries
    )
entry.pack()

ws.mainloop() 

Tkinter Python 中自动完成组合框的源代码

下面是 Python Tkinter 中 Autocomplete Combobox 的上述代码的输出。你可以注意到,当用户输入“ Un 时,它会自动完成输入框中的文本,并在下拉菜单中突出显示相同的国家名称“美利坚合众国”。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Autocomplete combobox in Python Tkinter

阅读:从 PDF Python 中提取文本

python tkinter autocompute listbox

  • 该过程的第一步是从 ttkwidgets.autocomplete 导入autocompleteentryllistbox方法。
  • 现在,我们将使用autocompleteentryblistbox来创建一个列表框小部件,而不是直接从 Tkinter 创建,在列表框内部,我们将为 completevalues 传递一个参数。
  • completevalues 参数中传递的值将成为选项,当用户传递类似的关键字时,这些选项将被完成。

Tkinter Python 中自动完成列表框的源代码

from ttkwidgets.autocomplete import AutocompleteEntryListbox
from tkinter import *

countries = [
        'Antigua and Barbuda', 'Bahamas','Barbados','Belize', 'Canada',
        'Costa Rica ', 'Cuba', 'Dominica', 'Dominican Republic', 'El Salvador ',
        'Grenada', 'Guatemala ', 'Haiti', 'Honduras ', 'Jamaica', 'Mexico',
        'Nicaragua', 'Saint Kitts and Nevis', 'Panama ', 'Saint Lucia', 
        'Saint Vincent and the Grenadines', 'Trinidad and Tobago', 'United States of America'
        ]

ws = Tk()
ws.title('PythonGuides')
ws.geometry('400x300')
ws.config(bg='#DFE7F2')

frame = Frame(ws, bg='#DFE7F2')
frame.pack(expand=True)

Label(
    frame, 
    bg='#DFE7F2',
    font = ('Times',21),
    text='Countries in North America '
    ).pack()

entry = AutocompleteEntryListbox(
    frame, 
    width=30, 
    font=('Times', 18),
    completevalues=countries
    )
entry.pack()

ws.mainloop() 

Tkinter Python 中自动完成列表框的源代码 :

下面是 Python Tkinter 中自动完成列表框的上述代码的输出。您可以注意到,当用户选择加拿大时,它会在输入框中自动更新。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Autocomplete Listbox in Python Tkinter

您可能会喜欢以下 Python Tkinter 教程:

在本教程中,我们学习了如何在 Python Tkinter 中创建自动完成。此外,我们已经讨论了这些主题。

  • tkinter 自动完成
  • 自动完成条目 Tkinter Python
  • Python Tkinter 自动完成 Combobox
  • Python Tkinter 自动完成列表框

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传Bijay Kumar

Python 是美国最流行的语言之一。我从事 Python 工作已经有很长时间了,我在与 Tkinter、Pandas、NumPy、Turtle、Django、Matplotlib、Tensorflow、Scipy、Scikit-Learn 等各种库合作方面拥有专业知识。我有与美国、加拿大、英国、澳大利亚、新西兰等国家的各种客户合作的经验。查看我的个人资料。

enjoysharepoint.com/**

【源码免费下载链接】:https://renmaiwang.cn/s/jxhw8 MQTT(Message Queuing Telemetry Transport)是一种轻量级的发布/订阅消息协议,常用于物联网(IoT)设备之间的通信,因为它的低带宽、低功耗和简单性。在Android平台上实现MQTT推送,可以帮助开发者高效地进行实时数据传输,比如应用通知、设备状态更新等。下面将详细介绍如何在Android上实现MQTTDemo。我们需要理解MQTT协议的基本概念:1. **发布/订阅模型**:MQTT基于发布者与订阅者的模式,发布者发送消息到特定主题,订阅者根据感兴趣的主题接收消息。2. **QoS级别**:MQTT定义了三种服务质量(QoS)等级,QoS 0(至多一次)、QoS 1(至少一次)和QoS 2(恰好一次),确保消息传递的可靠性和效率。3. **连接与断开**:客户端通过CONNECT报文建立连接,DISCONNECT报文断开连接,PINGREQ和PINGRESP用于心跳检测保持连接。4. **主题**:类似于广播频道,客户端可以发布和订阅不同主题的消息。接下来,我们将在Android上实现MQTTDemo,主要步骤如下:1. **选择MQTT库**:Android开发中常用的MQTT库有Paho MQTT Android Service和mosquitto。这里以Paho为例,它提供了AndroidService和Client两个类,方便我们在Android应用中集成MQTT功能。2. **添加依赖**:在项目的build.gradle文件中添加Paho MQTT的依赖: ```groovy implementation org.eclipse.paho:org.eclipse.paho.android.service:1.2.5 ```3. **初始化MQ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值