Quantinsti 博客中文翻译(十三)

原文:Quantinsti Blog

协议:CC BY-NC-SA 4.0

金融市场教育:结构化方法和新兴趋势[小组讨论]

原文:https://blog.quantinsti.com/education-financial-markets-emerging-trends-20-september-2022/

https://www.youtube.com/embed/x-t0QkIyJXI?rel=0


行业领袖小组讨论不断发展的交易领域及其挑战,以及新时代的学习平台如何为下一代交易者提供支持。


小组成员

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

安德烈亚斯·克莱诺(瑞士苏黎世)

阿塞斯资产管理公司首席投资官。经验丰富的对冲基金,企业家和小说家。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Binni Ong(新加坡)

SGX 学院教练。15 年外汇和股票交易和培训经验。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Karthik Rangappa(印度班加卢鲁)

Zerodha 教育服务副总裁。二十年的印度资本市场经验。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Vivek Bajaj(印度加尔各答)

StockEdge,elearnmarkets & QuantInsti 的联合创始人。连续企业家,投资者和导师。


关于 Algo 交易大会 2022

QuantInsti 举办的 2022 年算法交易大会对有抱负的算法交易者来说是一个很好的学习机会。这是您联系您最喜爱的专家并免费获得所有问题答案的机会。


该活动于美国东部时间 2022 年 9 月 20 日上午 10:30(IST 时间晚上 8:00)举行。

电子工程师到定量研究分析师| Pratik 的算法交易之旅

原文:https://blog.quantinsti.com/electronics-engineer-quant-analyst-epat-success-story-pratik-dokania/

我一直认为,对任何人来说,成功都与动力、奉献和渴望有关,但对我来说,它还与信心和信念有关。——斯蒂芬·库里

引用这句话,我们带来了我们的 EPATian Pratik Dokania 的故事,他有着正确的动力、奉献和信念,已经走上了成功的道路。他喜欢挑战他的东西,挑战前的东西现在变成了他的激情,那就是交易。

他目前在孟买 NeuralTechSoft 担任全职定量研究分析师。

Pratik 希望学习更多的交易知识,并希望有一天能用自己的资本投资市场。我们联系了他,了解他进入算法交易世界的旅程。


嗨,普拉蒂克,给我们介绍一下你自己吧!

嗨!我叫 Pratik Dokania,来自印度西孟加拉邦的加尔各答。我完成了马尼帕尔大学的电气和电子工程。我目前正在印度精算师学院攻读精算科学。

之前,我在 Axxela 咨询服务公司做过贸易市场分析师,在 LLP Dravyaniti 咨询公司做过 Python 开发人员,在印度石油有限公司做过工业实习生等等,通过这些工作,我积累了很多经验。

我喜欢玩战略游戏,比如在线纸牌游戏、扑克,尤其是国际象棋。我看过《女王的策略》系列,我个人认为这是描绘完美象棋游戏的最佳剧集之一。

在疫情期间,除了玩这些游戏,我还投资于市场。尽管市场波动很大,但市场从未关闭。所以这是一个小小的挫折,但是无论疫情如何,我们都应该为这样的事件做好准备。


作为一个工程出身的人,是什么让你对算法交易感兴趣?

交易在很长一段时间里从未进入我的视野,我也从未想过它会长大。在大学校园实习期间,我得到了一个在贸易公司工作的机会。我也做过一段时间的交易员。

为了快速起步,我开始寻找关于金融市场和交易相关的课程。在这样做的时候,我偶然发现了算法交易。

手工交易会在公司里教授,算法交易的知识会让人难以置信。我知道 Python、C++、Java,所以学习对我来说很容易。

最初,我对编程非常感兴趣,但我不知道如何以此为职业。所以这个职位给我提供了一个探索这个领域的机会,让我挑战自我。现在,交易绝对是我想从事的职业。

也许如果我被安排在其他地方,而不是交易公司,我就不会遇到交易。我非常感谢实习的经历和指导我的导师,他们帮助我到达了职业生涯的起点。因为这个,我觉得自己真的很幸运。

我在研究算法交易的过程中遇到了昆汀斯提和 EPAT。EPAT 是我一直在寻找的地方,也符合我的预算,而且非常可行。

我联系了我的一个大学毕业生,他是一名埃帕塔尼人,并收到了关于这门课程的积极反馈,以及它对我的益处。我想重新开始,这是一个完美的机会。


你学习算法交易的体验如何?

EPAT 大学的教职员工太棒了!在这里,专业交易者和行业专家讲授当前市场趋势、市场波动等。他们热衷于交易。

他们的见解、学识、故事和经历是书本上找不到的,是无价的。他们了解并分享最新的市场动态、不断变化的技术和他们的观点,这些东西可能不是每个人都知道的。

出版的和经历的有着巨大的差异。除了课程设置之外,教员的专业知识和经验也让我们对市场如何运作有了深入的了解。

向 EPAT 学习与阅读书籍和文章或观看视频非常不同,因为我们获得了实践学习的经验。

支持经理起着重要的作用,他们非常有帮助。你可以立即消除你的疑虑,它们会很好地引导你,帮助你能够专注于你的学习。终身学习该课程可以让您随时与支持经理和教职员工保持联系。

因为我有编码的知识,我不觉得那部分有挑战性。然而,也有不知道编码的人。即使在讲座结束后,支持团队也将学生与教师直接联系起来,他们解决了学生的疑问和疑问。

其他课程和机构有一个小的支持团队,为一大群被分开的学习者服务,你得不到单独的关注。但是,在 EPAT,每个学生都被分配了一个支持经理,在他们在 EPAT 的 6 个月里,指导他们的每一步。老实说,我发现这真的很有帮助。

当我感到困惑和担忧时,我的支持经理总是在那里指导和激励我。他们非常支持,积极响应,非常乐于助人。

几周前,我对机器学习有一些疑问。因此,尽管我几年前就已经完成了 EPAT 课程,我还是登录了 EPAT 大学的 LMS,获取了最新的更新内容,因为我可以终身访问该课程。我喜欢这个功能。


你在 EPAT 安置团队的经历是怎样的?

安置小组在他们的工作中非常有帮助和专业。来找工作的公司也非常专业,专门寻找那些拥有对他们的工作机会至关重要的知识和素质的人。而这些在 EPAT 都被彻底覆盖了。

我的电子邮件或电话从未无人回复。

我和朱玛娜有联系,她真的很棒。我得到的第一份工作中,有一份给了我基本的薪水,作为一名学生,我很高兴 Jumana 与公司协商给了我更好的待遇。我将永远感激她。

安置小组不仅考虑安置学生,还尽力帮助学生。

就业安置团队为我提供了符合我兴趣和技能的工作机会,他们今天也在这样做。他们会进行多次跟踪调查,了解你在公司的表现。

公司通常倾向于选择大学和研究所来招聘员工,EPAT 的就业安置小组会有所帮助。这与你自己去找一份 Algo trading 的工作相比,在工作描述、匹配技能、薪水、经常性工作机会等方面会有很大的不同。EPAT 的安置过程非常顺利。


你会对那些渴望学习算法交易的人说些什么?

算法交易是交易的一个分支。如果你有正确的驱动力和奉献精神,那么这可能是你的。有了努力和激情,你就能实现你下定决心要做的任何事情。

要自信,设定自己的最后期限,不断学习和成长——在这个快速发展的领域取得领先。

正如一位 EPAT 校友告诉我的那样,“如果你善于学习、把握和适应事物,那么 EPAT 将对你非常有帮助。”


你说得很对,如果一个人有必要的动力和毅力,他就能取得任何成就。谢谢你,Pratik,谢谢你充满抱负的话语,谢谢你与我们分享你的奇妙旅程。我们希望你也能实现你的目标。我们祝你未来一切顺利。

如果你也想用终生的技能来武装自己,这将永远帮助你提升你的交易策略。这门 algo 交易课程的主题包括统计学和计量经济学、金融计算和技术、机器学习,确保你精通在交易领域取得成功所需的每一项技能。现在就来看看 EPAT 吧!


免责声明:为了帮助那些正在考虑从事算法和量化交易的人,这个成功的故事是根据 QuantInsti EPAT 项目的学生或校友的个人经历整理的。成功案例仅用于说明目的,不用于投资目的。EPAT 方案完成后取得的成果对所有人来说可能不尽相同。T3】

能源工程到算法交易——雷纳托的旅程

原文:https://blog.quantinsti.com/energy-engineering-algorithmic-trading-epat-success-story-renato-votto/

一个工程学位可以让你掌握很多适用于算法交易的技能和知识。两者都要求有条不紊,善于分析,是一个好的计划者,但也要有创造力,跳出框框思考。

Renato 是一名能源工程师,是英国能源监管机构的能源批发市场分析师。他把交易作为一种爱好,并完成了 EPAT,把他自动化和标准化交易过程的技能和热情应用到交易中。

雷纳托分享了他完成 EPAT 的旅程,并将其工程背景转化为算法交易的世界。这是他的故事。


嗨,雷纳托,给我们介绍一下你自己

嗨!我叫雷纳托·沃托,我是意大利人,自 2016 年以来一直生活在英国伦敦。我是一名能源批发市场分析师,为英国能源监管机构工作。

我的角色是数据分析师/开发人员,我主要参与开发系统识别市场操纵的工具。我处理从交易所接收和操作交易数据的数据管道。

这些工具帮助我的团队开展调查,并使我们的组织能够实施积极的市场监控方法。我把交易作为一种爱好,我主要在加密空间交易。

在我的业余时间和旅行中,我喜欢用反光相机拍照。我也曾经弹吉他,在乐队唱歌。最近我也自己创作音乐。我也想开始画画。我会说我喜欢创造性的活动。


你是怎么从能源工程转到 Algo 交易的?

我的背景是能源工程。作为一名学生,在伦敦的头几年里,我在获得第一份工作之前在零售行业工作,在 Ofgem 担任可再生能源项目的审计助理经理。

我在工作中一直采用分析的方法,甚至在我之前在零售部门的工作中也是如此。例如,我开发了分析工具和方法,通过查看数据来增加销售额。我在以前作为审计员的工作中也做过同样的事情,当时我开发了工具和框架来改进流程或应用风险管理和数据分析/审查的量化方法。

我对自动化和标准化流程充满热情,并将这种热情应用于我生活中的每一件事。当我开始学习算法交易时,我想“这太酷了!”真的代表了我喜欢做什么,喜欢怎么做事。

我还意识到,我在这个领域有很好的知识和技能基础,可以在此基础上继续发展。这就是为什么我决定深入算法交易。算法交易要求你有条理,有分析能力,对每件事都有计划。

你需要跳出框框思考,这是它与工程的共同点,无论是软件工程还是经典工程。这就是 EPAT 出现的原因。在四处寻找并了解了那里的课程和道路之后,我最终决定参加这个项目。

学习更多关于机器学习和量化金融的知识感觉是我职业道路和个人兴趣的自然发展。对金融市场的好奇和热情支撑着我想把职业转变为交易的愿望。当我开始学习交易时,我自然而然地想到要寻找自动交易的方法。

这几年学的是数据工程和机器学习。机器学习可以应用于众多领域,然而,我对追求经典应用不感兴趣,如营销或机器人推荐。


疫情对你的生活和工作有什么影响?

在疫情之前,我渴望有空闲时间来专心学习。以前每天早上很早就进办公室,很早就离开赶回家学习 Python 等课程到深夜。

随着许多人失去工作,世界实际上正在关闭,经济正在崩溃。封闭和在家工作,不用通勤,让我有很多时间投资于个人发展。那段时间很忙,但我很享受。

所以,当我开始在 EPAT 上学和学习时,封锁帮助了我,因为它需要大量的时间、精力和注意力。我真的觉得我受益于疫情的限制。我感到幸运,但也为没有浪费时间,将这段不确定时期转化为我的优势而自豪。

我在学习 EPAT 课程的同时,也在学习 C++。所以我的一天被工作和学习塞满了。我通常在早上五六点钟醒来,学习几个小时的 C++,做我的全职工作,然后为 EPAT 学习到深夜。

当我回头看的时候,我觉得我在这方面比一年前有了更多的技能和信心。


你在 EPAT 的学习有多重要?

在决定入学前几个月,我了解了 EPAT。我正在完成几门关于机器学习和数据工程的在线课程,并在思考接下来会发生什么。

我想扩展我在交易方面的知识和技能,通过对量化金融和量化交易的在线研究,我遇到了 EPAT。

在仔细考虑了课程、课程结构和活动之后,我毫不怀疑这是值得投资和努力的。所以,我去了。

我喜欢一切需要智力努力和研究来完成的事情,否则很难实现。我真的很喜欢工程和解决问题。这就是我最终从事算法交易的原因。它满足了我对技术、解决问题、研究和自动化的热情。

算法交易是一个广阔的领域。对我来说,为 EPAT 学习最具挑战性的事情之一就是挑选出真正重要的东西。你需要有条不紊,了解自己的优势、劣势和学习方法。

关于以下方面的知识:

  • 统计数据,
  • 数学,
  • 软件工程,
  • 经济学,
  • 市场基本面,
  • 结构,以及
  • 我们的社会和市场如何运作。

对我来说,把所有这些东西放在一起,并从中挑选出最相关的来继续进行,是 EPAT 课程中最具挑战性的部分之一。

另请阅读: Raj 的旅程:将工程技术与金融相结合


你最喜欢 EPAT 的哪个特征?

EPAT 的教师质量很高。有一些专家和交易者活跃在这个行业,把参与算法交易作为他们的日常工作。对我来说,他们直接参与真实的算法交易是 EPAT 的最大卖点之一。

我猜 QuantInsti 选择这些老师是因为他们的技能和教授这些科目的能力。我认为是这样的,因为他们都很聪明,可以回答学生可能有的所有问题。他们真的很关心在讲课时没有人被落下。

陈博士和辛克莱博士才华横溢,非常乐于听取学生的意见和想法。辛克莱博士讲课时非常有趣。所有的老师都是那么充满活力和热情,他们真的能够在讲课时转移到学生身上!这使得每次讲座都是一次很棒的经历。

总的来说,课程的质量和教师的质量是 EPAT 最大的卖点。你把最好的信息带回家,学习在这个行业取得成功的所有基础知识。


你会给那些想从事算法交易的人什么信息?

像算法交易这样复杂的主题需要你全神贯注,你必须对它充满热情才能继续下去。

首先,我认为尝试使用一些关于算法交易的资源是一个好的举措。玩编程和时间序列,探索金融市场,试着理解如果你决定从事这个职业,你每天可能会遇到什么。如果你喜欢,就去做吧。

现在你可以在网上获得所有你想要的信息,但是很容易迷失方向。这就是为什么我认为由专家制定的结构化路径是最好的方法。如果你有经验,只是想更深入地钻研某一特定学科,自学是有意义的。

如果你准备投入时间和精力来学习和完成 EPAT,我相信一旦完成,你会感激这门课程给你的知识量。

借此,祝你好运!


感谢你的时间,雷纳托。你将自己的技能转化到新领域并利用自己优势的能力令人振奋。我们祝你在算法交易的旅途中好运。

如果你也想用终生的技能来武装自己,这将永远帮助你提升你的交易策略。这门 algo 交易课程的主题包括统计学和计量经济学、金融计算和技术、机器学习,确保你精通在交易领域取得成功所需的每一项技能。现在就报名 EPAT 吧!


免责声明:为了帮助那些正在考虑从事算法和量化交易的人,这个成功的故事是根据 QuantInsti EPAT 项目的学生或校友的个人经历整理的。成功案例仅用于说明目的,不用于投资目的。EPAT 方案完成后取得的成果对所有人来说可能不尽相同。T3】

学习工程学到在 Algo Trading - Deep 找工作的旅程

原文:https://blog.quantinsti.com/engineering-algo-trading-job-placement-epat-success-story-deep-lakhani/

“永远不要停止学习,因为生活永远不会停止教导。”这是迪普·拉哈尼的座右铭。

他报名参加了 EPAT 项目,在大学最后一年利用它的项目工作。通过 EPAT,他获得了探索和实施算法交易的指导,也是 EPAT 优秀证书的获得者。

我们联系了 Deep,以了解他进入 Algo Trading 的更多信息。


嗨,深度,告诉我们关于你自己!

嘿!我是深拉哈尼。我来自印度孟买。目前,我在一家专门研究密码的初创公司工作,我的工作需要开发一种算法,根据客户的要求在特定的交易所进行交易。

我喜欢打排球。我在大学的时候也玩过,也参加过锦标赛。我最近迷上了阅读。

疫情开始于我工程专业第三年快结束的时候。我努力学习,因为我不得不在资源有限的情况下完成我的项目。除此之外,生活还算不错,我很感激。


作为一名工程(IT)专业的学生,掌握算法交易的概念对你来说有挑战性吗?

当时,我只有股票和市场的基本知识,对我来说完全是另一回事。与此同时,我在研究它的不同领域。我进入了机器学习领域,但它并没有引起我太多的兴趣。

在大学期间,我听说了算法交易来到印度的整个过程。我参加了 Rishabh Sanghvi 的研讨会,他启发了我,让我的最终项目与 Algo 交易相关。

起初很难理解这些概念,但作为一名技术背景的人,我有优势去涵盖技术方面,我能够专注于并了解它的营销方面。由于我父亲是一名会计师,我对金融和印度市场有基本的了解和认识。

我已经精通了编程语言。但是,将策略降下来,这是一个挑战!


在 EPAT 有安置小组指导你,你学习算法交易的体验如何?

因为我不知道这个领域有什么样的工作,所以我与就业小组的第一次互动只是了解一下有哪些工作和职业。

对我来说,有几个配置文件看起来一样,它们帮助我区分了数据科学和分析部分。从那里,我被安排到一家我想要的公司,在那里有人可以指导我了解为客户制作端到端产品的流程图。

找到 QuantInsti 对我来说是一个福音,有这样一个庞大的团队让你在一个综合的水平上理解事情。这是一次很好的经历。

对我来说,一切都井井有条,拥有这些知识让我比其他人更有优势,尤其是在竞争激烈的世界里。


EPAT 的哪一个特征真正吸引了你?

EPAT 项目已被纳入课程。我们有充足的时间投入其中,被指派的导师都是各自领域的专家。他们帮助你理解并实际运用你的知识。他们还帮助安排项目工作。

讲座非常有趣,非常棒。他们在周末进行的工作对我有利。我发现理解理论部分有点困难,但讲师们都很精通,他们知道自己在做什么,也知道我们从何而来。


有什么给有抱负的定量分析师的消息吗?

总是问问题。他们有一个乐于助人的教师小组,随时准备解决你的疑问和疑虑。你可以依靠他们的专业知识来解决这些问题。

学习是一个不断进化的过程。

我没有太多的经验,但我想说的是——看待事物要有自己的视角,看自己喜欢什么,不要满足于别人给你的东西。强烈要求更多,通过努力你会成功的。


你说的完全正确,学习是一个不断发展的过程,努力工作会让你获得丰硕的成果。非常感谢你与我们分享你的故事。我们相信你一定努力工作,为你的项目取得最好的结果,祝贺你的工作!我们祝你未来一切顺利。

如果你也想用终生的技能来武装自己,这将永远帮助你提升你的交易策略。这门 algo 交易课程的主题包括统计学和计量经济学、金融计算和技术、机器学习,确保你精通在交易领域取得成功所需的每一项技能。现在就报名 EPAT 吧!


免责声明:为了帮助那些正在考虑从事算法和量化交易的人,这个成功的故事是根据 QuantInsti EPAT 项目的学生或校友的个人经历整理的。成功案例仅用于说明目的,不用于投资目的。EPAT 方案完成后取得的成果对所有人来说可能不尽相同。T3】

将工程技术与金融相结合:Raj 的旅程

原文:https://blog.quantinsti.com/engineering-algorithmic-trading-epat-success-story-raj-mahajan/

对很多事情都知道一点。——罗伯特·t·清崎,《富爸爸,穷爸爸》的作者

这句话解释了 Raj 对学习和发展他的知识和技能的热情。他是一名对金融世界着迷的工程师。他在银行、技术和金融领域的职业生涯充满活力。

在攻读工程学位期间,他曾做过兼职交易员,后来他将自己的学习与激情结合起来,为自己创造了独一无二的机会。这是他进入算法交易世界的旅程。


嗨,Raj,跟我们谈谈你自己吧!

嗨,我是 Raj Mahajan,住在美国特拉华州的威尔明顿市。我在贝莱德担任客户发票服务流程经理。我是一名主管,负责北美客户的计费、主要计费、生产和监督。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我是一名倾向于金融的工程师。我也在攻读 CFA,因为我想提高自己的技能,学习更多的金融知识。在我的业余时间,我阅读书籍和报纸。我喜欢让自己跟上各种潮流和成长中的文化。


你是如何从银行、教育技术、科技发展到现在的金融的?

我想在技术领域建立自己的事业,并继续攻读电子和电信工程学士学位。

在我的学士学位期间,我意识到我对金融感兴趣。我开始阅读像《富爸爸,穷爸爸》这样的书,并被沃伦·巴菲特迷住,并开始跟随他了解他的旅程,同时雕刻我的。

我身边都是会投资股市的朋友和导师。这有助于为我创造一个环境,让我更多地了解金融市场和经纪公司。我也通过投资股票市场开始交易。

在获得工程学位后,我完成了金融 MBA 课程,并发现了自己对理解金融技术层面的迷恋。

我在天普大学攻读金融工程硕士学位,在那里我了解了金融市场中衍生市场等新的分支。金融科技公司正在快速发展,我渴望从事金融工程方面的职业,所以我开始深入研究这些公司、各种交易策略和多种交易技术。

在探索的时候,我偶然发现了 EPAT 的课程,它是算法交易的专属课程,我发现它的模块和课程非常全面。因此,我联系了该团队,并在 EPAT 注册。


您对技术在金融中的作用的看法!

我已经交易了将近十年,我知道像投资、做比率分析、研究和阅读金融书籍和报纸这样的过程。今天,我可以说技术在金融中的作用是巨大的。现在投资衍生品市场更容易了。

编程语言被用来建立交易策略。以前我们用 C++,现在 Python 接手了,大部分行业都在用 Python 工作。很多创业公司已经开始在交易中采用机器学习和深度学习。

我目前正在研究机器学习和几个项目,探索机器学习在信用卡行业的实施以及使用 Python 进行欺诈检测。


你为什么选择 EPAT 学习算法交易?

在寻找专注于算法交易的课程时,我遇到了 EPAT。

虽然这是一个为期六个月的课程,但以下是使 EPAT 课程独一无二且值得学习的一些特点:

  • Python 编程进行交易
  • 在交易中学习和实现机器学习和 NLP 的机会
  • 经验丰富的交易者和行业专家作为导师-提供指导,课程评估和一流的教学
  • 精心设计的课程
  • 就业机会——提供实习或工作机会,不管你在哪个国家
  • 全球存在
  • 他们与 GARP 的联系——一个进行金融风险管理的机构
  • 实时在线课程
  • 支持团队-快速解决任何类型的查询
  • 一节课结束后,会进行一个解疑会来解答学生的疑问。这是教职员工自己的事。

总的来说,这是在 EPAT 的一次很好的学习经历,我肯定会推荐它。


你的下一步是什么?

目前,我在贝莱德工作,在学习 CFA 课程的同时,还在学习机器人过程自动化课程。此外,贝莱德赞助了该课程,因为我们正在与我在美国地区的团队合作,实现不同流程的自动化。

我的计划包括未来三四年在美国工作,可能会回到印度。我期待着建立我的交易平台,在算法交易领域建立我的创业公司。


你对所有有抱负的算法交易者有什么话要说?

多年来,我意识到人们想进入算法交易领域,他们正在积极寻找机会,比如工作或创业。但更多的时候,他们认为课程很难或者某些领域太专业。

我相信一旦你获得了一些关于课程的知识,并建立了完成课程的愿望,这个旅程会变得更容易。你也可以在 Quantra 上学习免费课程,并与导师交流。

这正是我所做的,这些年来我一直在学习新的课程。我发展了我的技能,这帮助我在算法交易中追求职业生涯。


感谢您分享这些关于您的旅程和您在广泛职业生涯中的学习的内在细节。你对学习和成长的热情会帮助你实现目标。我们祝愿你在未来的努力中一切顺利。

在我们看来,技术对交易世界有很大的影响。对任何有抱负的交易者来说,学习和发展技术是至关重要的。算法交易课程是为那些希望发展技能以追求交易世界中不断增长的机会的个人而建立的。

如果你也希望开始你的职业生涯,发展技能成为一名算法交易员,这个算法交易课程是你成功的关键。这门课程涵盖了统计学&计量经济学、金融计算&技术和机器学习等主题。通过 EPAT 项目,它可以帮助你在难以置信的指导下为职业生涯做准备。


免责声明:为了帮助那些正在考虑从事算法和量化交易的人,这个成功的故事是根据 QuantInsti EPAT 项目的学生或校友的个人经历整理的。成功案例仅用于说明目的,不用于投资目的。EPAT 方案完成后取得的成果对所有人来说可能不尽相同。T3】

从工程到算法交易——Sanjot 雄心勃勃的追求

原文:https://blog.quantinsti.com/engineering-algorithmic-trading-sanjot-ambition/

“知道是不够的;我们必须申请。愿意是不够的;我们必须这样做。”
——约翰·沃尔夫冈·冯·歌德

知识是一种强大的工具,只有当你运用它时,你才会真正理解它的真正力量。同样,无论是个人还是职业,都需要不断成长和前进。提升自己的学习技能就是这样一种媒介。

当开始从事算法交易时,一个工程师可能会疑惑,可能经常充满疑惑和无数的问题。但是那些被他们的野心驱使的人已经为自己赢得了名声。这些例外的少数之一是 Sanjot。

我们和 EPAT 大学的校友 Sanjot 进行了一次非正式的交谈,了解了他的故事,并揭示了一系列有趣的事实和故事,帮助我们理解成为一名 Algo 交易者需要什么。

以下是我们与 Sanjot 的对话:

你好,Sanjot,能介绍一下你自己吗?

大家好,我是桑乔特·雷巴格。交易是我的激情,我真的很喜欢它,我已经做了 10 年了。目前,我是一家知名国际金融服务公司的执行董事,在软件、投资和交易领域有 20 年的工作经验。我也是 Moksh Tech and Investment 的联合创始人。

关于我的教育,我已经完成了我的机械工程从阿姆拉瓦蒂大学,我还持有硕士文凭从 CDAC,孟买。我是一个主要在技术方面的狂热学习者。我也喜欢打板球,曾代表我的大学和公司打过。

你的工作简介令人印象深刻。你会如何叙述你的职业旅程?

我的职业生涯始于加入孟买的科技行业。我开始在 Netdecisions 从技术角度工作,主要是从开发角度。我先后在 Syntel 和 Cognizant 工作了 11 年。那段时间,我为多家客户工作——银行、投资银行、理财客户。我会为他们开发多个项目,从客户经纪业务到算法交易,再到后台和中台运营,等等。

正是在这段时间里,我接触到了算法交易。

你的交易经历是怎样的?

我的“交易生涯”始于 2007 年。除了我的职业生涯,我还使用图表技术进行平行交易。我对股票交易也很感兴趣。慢慢地,我开始用图表交易,并且稳步地从技术中获得成功。我只是从低频交易的角度来看算法交易。

从现在开始,我不打算从事高频交易。目前,我只做期权交易,这是我的强项。我只在俏皮银行工作,没有其他工作。一般来说,我不在股票上交易,我只在指数上工作,在这种情况下我得到了我的主要理解。

对于分析,我使用我的数据科学和软件背景来分析期权和股票。我用图表再次确认分析,然后手动检查交易。

到目前为止,我还没有把交易完全交给系统。现在我的算法交易风格只用于分析,不用于下单。

这些年来,你已经获得了很多技能,而且还会继续下去。你如何在算法交易中运用这些技巧?

2017 年 9 月,我创办了自己的算法交易公司——Moksh Tech and Investment。Moksh 还不是注册公司。只是朋友之间的公司。我们在管理一些密友的钱。我们开始使用机器学习、深度学习和人工智能来构建我们自己的股票软件,主要是期权软件。

我还开发了一个软件,传授我在算法交易、数据科学和软件开发方面的知识,受到了全球一些最大投资银行的关注。目前,我在一家最好的投资公司工作,帮助投资者做出正确的投资决定。

在 Moksh 期间,我向包括媒体公司在内的企业教授数据科学,也向金融领域的多批企业教授数据科学。

根据你的说法,技术在算法交易中的作用有多重要?

没有技术,世界上的大部分地区可能都离不开它。作为一名技术人员,我觉得仅仅了解领域是不行的,技术知识也很重要。但是独立地,两者都不会帮助你生存。你需要两者的结合。

Algo 交易现在正在接管全球,它被誉为交易的下一个阶段。是什么激起了你对算法交易的兴趣?

认识之后,我加入了德意志银行。那时我开始寻找一个学习算法交易的好机构,因为我已经有了编程背景和金融背景,我也对金融感兴趣。

因为我是用图表交易的,我花了很多时间在分析上,并且有技术背景,我意识到,因为我们已经有了很多数据,可能有无数的模式可以从这些数据中解读出来。我想,如果我能利用计算机以某种方式建立一个模式来理解幕后,使用数据。

手动交易也容易出现一些可能导致灾难的错误,与其花费大量时间或容易犯人为错误,不如完全避免这些错误。

当我开始学习更多关于数据科学的知识时,我意识到与其花太多时间手动分析,还不如研究算法交易,尤其是从自动化的角度。那是我第一次开始想到算法交易。

经过研究,我意识到我需要学习算法交易,从背景开始,因此我开始寻找一个可以帮助我的机构。进入 EPAT。这就是我遇到 QuantInsti 并加入 EPAT 的时候。由于我的工作和积极的工作,这个项目占用了我更多的时间。

你认为你的算法交易过程中的里程碑是什么?

我会把它们列为:

  • 语言和技术:我总是使用 Python,因为很多金融库很容易获得;互联网上也有大量的文章和指南。
  • 学习数据科学——我了解了数据的重要性。金融市场上有海量的数据,你只需要解读和分析它们。
  • 学习——我很自豪也很高兴能从像 QuantInsti 这样著名的量化研究所学到东西。

你会对想从事算法交易的人说些什么?

这是一个全新的世界。你以前的经历在这个世界上并不重要。一个人需要提高技能才能成长。

一般来说,算法交易的关键,甚至是交易的关键,是耐心。

它总是需要大量的时间。它不是一个能立即产生影响的银弹——你写一个代码,它就会出现。

您的代码不必总是工作。需要进行大量的实验,而且这种实验不一定总是有效的。这就是人工智能和人工智能可以发挥作用的地方,因为它也可以从市场中学习。

理解数据、清理数据、从数据中学习、获取知识需要大量的时间,而且大多数时候可能会失败。耐心是成功的唯一关键。

谁激励或激励你继续前进?

以下是一直让我坚持下去的动力:

  • 从技术的角度来看,我的一位来自 Cognizant 的老板(Aan S Chauhan 先生)一直是我不断学习的巨大灵感来源,他给我的生活带来了很大的变化。
  • 第二,所有利用自己的知识进行交易的大交易者,他们的故事和旅程,比如尼古拉斯·塔勒布。
  • 杰西·利弗莫尔关于交易的观点——更多的是从情感交易的角度。

Sanjot,我们理解您是一个大忙人,我们非常感谢您抽出时间与我们互动并分享您的故事-这有助于我们了解真实的您!我们希望你的故事也能成为其他人的灵感源泉。我们祝你一切顺利。

成功的旅程从来都不容易。这需要时间,就像桑乔特说的,耐心。你可以了解他作为个人、交易者和整个人是如何成长的。不断学习算法交易,不断成长。如果您需要任何指导,请联系我们,我们很乐意为您提供在该领域取得成功所需的必要技能和知识。让我们做你的向导。点击与我们联系

免责声明:为了帮助那些考虑从事算法和量化交易的人,这个案例研究是根据一个学生或 QuantInsti 的 EPAT 项目的校友的个人经历整理的。案例研究仅用于说明目的,并不意味着用于投资目的。EPAT 项目完成后所取得的成果对所有人来说可能并不一致。

从工程到自动化交易——金梅的故事

原文:https://blog.quantinsti.com/engineering-automating-trades-job-placement-epat-success-story-chinmay-patil/

Chinmay 相信,他将能够开发一个有利可图的系统,并能够自动执行基于价格的策略。作为一名 CFA 候选人和工程系学生,他在 EPAT 的就业小组的帮助下,在一家算法交易公司实习,从而实现了这一壮举。

通过 EPAT,Chinmay 能够学习算法交易的其他先进技术,并对 Python 有很好的掌握。他能够利用历史数据实施策略,并找到交易水平。

他期待在算法交易中设立自己的办公桌。我们联系了他,了解他进入 Algo 交易的历程。


嗨,Chinmay,告诉我们关于你自己的情况!

大家好,我是 Chinmay Patil 。我在孟买工作,今年 21 岁,是工程学的最后一年。目前在准备考 CFA。

我的兴趣是股票市场,我喜欢音乐,我喜欢弹吉他。我喜欢运动,尤其是足球,我也是一个健身爱好者。


你为什么选择学习算法交易?

我对这个领域感兴趣是因为我叔叔了解这个领域。疫情让我发现了算法交易。当封锁发生时,我回到了我的家乡,我有相当多的空闲时间。

在封锁期间,我叔叔使用了一种特殊的日间交易策略。他有了一个想法,让一切自动化。

他说服我研究它,我经常被他的问题困扰,帮助我更好地理解。

我们如何做到这一点?
你能做到吗?
你能做到吗?
能不能让这个过程自动化?

发布我的研究后,我开始了解回测、自动化、回测所需的数据等等。

这让我开始探索算法交易领域,最终,我找到了 QuantInsti。我了解到他们提供了一个很好的课程,EPAT,在这个课程中,他们教授技术和金融知识。

另请阅读: Raj 的旅程:将工程技术与金融相结合


你在 EPAT 的经历是怎样的?

EPAT 满足了我的期望。最初,由于是技术背景,有些主题对我来说似乎很难,然而,后来我逐渐熟练了。回溯测试教得很好,也很容易理解。

这是一次很棒的经历。因为 EPAT,我不仅了解了夏普比率等概念,还熟悉了回测等重要过程。我意识到,人工智能(AI)和机器学习(ML)在交易中有广阔的应用前景。我很好奇。

在 EPAT 之前,我曾上过另一门课,但它非常基础、入门,更多的是关于编码。

但当我浏览 EPAT 的课程时,它非常深入,非常广泛。各个模块的流程描绘了一个结构化的方法,对像我这样的学习者很有帮助。它涵盖了一切,从机器学习、期权、统计,甚至市场如何运作。这激起了我的兴趣,我选择了 EPAT。

我已经具备了技术知识,在 EPAT 的帮助下,我能够深入发展金融知识和技术技能。

EPAT 最好的部分是它在周末!


你最喜欢 EPAT 的什么特色?

我最喜欢 EPAT 的这些特色:

终身访问球场- 一旦成为 EPAT 的一部分,我们可以在未来的任何时间访问其内容。我经常用它来重温讲座、修改主题和学习更新的概念。几天前,我访问了这个网站,了解了统计学知识,并进行了简单的修改。如果教学大纲有变化,它也会在我的帐户中更新。

全球量化分析师社区- 有了 EPAT,我们成为全球量化分析师、交易员和算法交易专家社区的一员。

终身就业服务- 我很期待实习结束后的就业团队,以及 CFA。就业小组总是给我发电子邮件,询问各种工作机会。我会检查工作的标准和要求,然后努力提升自己的技能,发展自己不具备的技能。就业小组给了我指导,并给我提供了合适的寻找实习生的公司。到目前为止,这是一次非常好的经历。


你对想学习算法交易的学生有什么话要说?

我给算法交易爱好者的建议是——如果你想学习算法和量化交易,就去学吧。因为当我开始的时候,我这样做是因为我想帮助我叔叔完成他的项目。

但当我进入这个领域时,我发现它足够吸引人,足以让我把它作为自己的职业。

你永远不知道,除非你去探索。你可能会发现算法交易更有趣。


非常感谢你与我们分享你的经验,Chinmay。我们很高兴知道你在 EPAT 身上找到了你想要的东西。我们希望你实现完成 CFA 的梦想,我们期待着帮助你实现你的职业目标。

如果你也想用终生的技能来武装自己,这将永远帮助你提升你的交易策略。这门 algo 交易课程的主题包括统计学和计量经济学、金融计算和技术、机器学习,确保你精通在交易领域取得成功所需的每一项技能。现在就来看看 EPAT 吧!


免责声明:为了帮助那些正在考虑从事算法和量化交易的人,这个成功的故事是根据 QuantInsti EPAT 项目的学生或校友的个人经历整理的。成功案例仅用于说明目的,不用于投资目的。EPAT 方案完成后取得的成果对所有人来说可能不尽相同。T3】

挑战算法交易的现状| Gaurav 的成功故事

原文:https://blog.quantinsti.com/engineering-dairy-algorithmic-trading-epat-success-story-gaurav-thakur/

学习,追求,失败,重复,爬起来,再尝试,永不放弃,成功,超越,然后继续前进。这些也许是交易者应该具备的最好的品质。

然而,EPAT 大学的校友 Gaurav Thakur 在很小的时候就展示了这些照片。在他的工程教育和帮助他的家庭经营乳品生意之间摇摆不定,他经历了这一切。无论是成为企业家,不得不放弃,还是重新开始,实现他进入算法交易的愿望。

高拉夫的是一个值得一读的故事!我们与他联系,了解他的旅程,这是它是如何进行的。


嗨,Gaurav,你能给我们介绍一下你自己吗?

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

嗨!我是 Gaurav Thakur,来自马哈拉施特拉邦的 Vardha 区。我是一名量化交易者,最近注册了自己的 Algo 交易平台。大多数时候,我在做量化交易的同时也做零售交易,做研究,阅读和分析数据。

我喜欢健身,我是一名冥想和灵气治疗师。我也喜欢在空闲时间阅读和观看纪录片。疫情是一段艰难的时期。我利用大部分时间,追求 EPAT 和学习。


你会如何描述你进入算法交易世界的旅程?

我一直对汽车感兴趣,所以出于兴趣我选修了机械工程。但是,在两年的时间里,我意识到我想去的地方和方向在课程和教学大纲的覆盖下是不可能的。因为我没有学到任何东西,我对这个失去了兴趣。我在机械工程的最后一年退学了。

我的家人拥有一家乳制品企业,我经营了一段时间,然后我设计了自己的企业,构建了它,开始运营,并推出了 10 种新产品。

为了提高农民使用技术的意识,我设计了一个试点项目——一个高效的、全自动化的、同类中的第一个,跨功能的,我们地区的奶牛场。马哈拉施特拉邦的前农业部长是我的合作伙伴,他资助了 4 Cr。INR,并运行了一年,但由于管理问题不得不停止。

由于金融和交易总是让我着迷,我从乳品转向金融,我选择了交易作为我的全职工作。但由于我没有完成我的毕业和日记,我很少有信心和更多的金融背景,我的家人在不同类型的企业,但没有人在金融。

2019 年 3 月我进入了交易,我从零开始,开始学习写作,练习一切,花数周和数小时学习最基础的课程。

我完成了 NCFMNISM 的课程,之后我接触了 algo 交易。我追求 EPAT。然后,成功地完成了那个。现在,我进入了量化交易的领域。


网上有很多免费资源。你为什么选择 EPAT?

我一直在网上阅读各种资源——免费的或付费的——我意识到了算法交易的力量。

EPAT 是印度唯一的课程,我完成了课程。我和一些已经是 CFA 并进入这个领域的朋友重新核对了一下。他们说,这是一个非常强大的课程,算法交易是未来,课程非常相关,非常面向应用。

我比较了 EPAT 的一些课程,但没有一个是如此全面的。QuantInsti 团队有交易员、行业从业者,他们有自己的交易公司,或者他们有自己的专有形式,所以知识是非常更新的,从当前的情况来看。

这是学习的最好方法。EPAT 最有说服力。我甚至检查了 CQF,但即使对初学者来说,这似乎也很复杂。所以,EPAT 是我的选择。

概念也更新了。为了在这个竞争激烈的世界生存,我需要更好的工具,更好的技能。因为我进入了我的学习曲线,我没有停止它。我坚持学习了 2.5 年,只为了进入交易行业。完成基础课程后,我直接搬到了 EPAT。

EPAT 是一个游戏改变者,它相当全面,它打开了许多大门,给了我最终坚持下去的信心。EPAT 是唯一全面而多样的课程。基础工作完成后,我必须专注于新技术,如编码、统计、ML、AI 等。


你对算法交易的概念完全陌生。EPAT 是如何帮助你的?

我想以这种方式来解决这个问题:

方法

  • 在 EPAT 之前,我有一个常规的方法。
  • EPAT 之后:我发展了一种科学的方法,变得注重逻辑和精确。

信心

  • 在 EPAT 之前:我的自信程度很低,在学校面前感觉自己很渺小。
  • 在 EPAT 之后:我更有信心,我能生存下来。我还不能像专业人士那样竞争,但是我有这些技能,我可以成为一个更好的交易者,并且比现在处于一个更好的位置。

精确

  • 在 EPAT 之前:我的方法很随意,犯了很多错误。
  • EPAT 事件后:我的方法训练有素,非常严格,所以我的损失得到了控制,生存也更有保障。

见解和信息

  • **在 EPAT 之前:**散户的大部分信息都是隐藏的,你无法接触到。
    ——订阅和获取数据需要巨大的成本,所以你负担不起。
    -由于缺乏经验,你无法从极少的信息中发展出你伟大的哲学。所以,这就是竞争,可以超越你的地方。
  • EPAT 之后:我可以在更短的时间内获得更多的见解!老实说,因为数据说明了很多问题,但我从来不知道如何解码它。
    ——技术分析,我曾经用过很多——我做过高级技术分析——它曾经帮过我很多。
    -但当我学习这种数据分析时,它变得像是双重验证,是的,当我接近它时,逻辑在支持它。这个可以量化。这给了我更多的信心。
    ——因此,我的研究质量和搜索速度都提高了很多。在那之前。就像图表一样。
    -所以,我有两种方法来优化和设计我的交易,这对我帮助很大。

弱点

  • 在 EPAT 之前:作为一名普通交易者,我非常容易受到日常交易市场的影响。
    ——当市场上涨 1%或 1.5%时,我不知道为什么会这样。交易世界发生了什么新的变化?所以即使我习惯了理论上的概念,我也不习惯这样。
    -我的感觉,我的情绪还没有准备好接受大蜡烛。这会让我紧张。我会停下来。交易后有很多反省自己概念不清晰。我能做些什么来更好地交易?
  • EPAT 之后: EPAT 向我介绍了回溯测试。
    ——这帮助我把我的概念和逻辑扔在我见过许多大大小小蜡烛的多个场景中。
    -我现在可以看到数据了,所以我做了充分的准备。这让我更擅长风险管理。随着我的风险管理的改善,我的损失在 1 至 1.5 年内恢复,我的提款不超过 20%。
    ——那时我终于想到“是的!现在,我可以生存,现在我可以维持。”第一件事是不要赔钱,我成功地做到了。

这是 EPAT 学习时开始数数的地方。

对于交易来说,选股的过程,就像我以前做的图表一样,分析,摆动和止损,但是每个止损都有特定的性质。这更有助于我解码,我可以和股票对话。

因为它是时间序列数据,我会确定主要的股票组合,并相应地设置我的交易组合。


你最喜欢的 EPAT 特色之一!

EPAT 大学的教员非常好,我的支持经理 Siddhesh Kulkarni 也很棒!如果不是他,我可能会中途放弃,因为课程越来越难了。

EPAT 支持团队非常好。师资力量很优秀!

Rajib Borah,Vivek Krishnamoorthy(他写的关于 Python 的书),Ishan Shah,Nitesh Khandelwal——每个教员都非常非常好。他们让复杂的概念变得非常简单,便于我们从机器学习的人工智能中理解。我不敢相信这是我的第一年,我可以如此清晰地理解这个概念。

以前我在网上上过课程。从设计、解释和完成后的支持来看,这要好得多,甚至直到今天,校友支持的形式就像在帮助我们一样,安置团队已经连续给我邮寄了 4 到 45 个安置机会。

你所说的,承诺的,交付的,一切都太棒了!而且你的内容也不错,不断更新。

EPAT 的荣誉属于全体教员、核心结构、基础支持团队、作业、持续评估过程等等。

我会给 EPAT 打五分之五的分数,因为它什么都不缺!


你对那些想成为量化分析师的人有什么话要说?

如果你希望持续下去,那就去适应。
如果你希望适应,那么你应该和 EPAT 一起去。

这个领域完全是关于适应和改变。我在两年半的学习中明白了这一点,市场中唯一永恒的东西就是变化和波动。而如果你想不断更新自己,你需要一个高技能集,更好的技能集,更好的工具,适应生存是强制性的,尤其是在这个部门。

通过像 EPAT 这样的课程来适应和学习——强烈推荐!也可以参考 Quantra 的课程。现在,任何人,任何初学者,只要愿意花上几个小时,用这样的课程和工具进入这个领域并坚持下去,都是可能的。

万事如意!


非常感谢你分享你的话,高拉夫。知道你的成功故事真的很鼓舞人心。理解你对目标的坚持和追求给了我们快乐。我希望你继续做这项了不起的工作。不断学习,不断成长越来越多。

如果你也想用终生的技能来武装自己,这将永远帮助你提升你的交易策略。这门 algo 交易课程的主题包括统计学和计量经济学、金融计算和技术、机器学习,确保你精通在交易领域取得成功所需的每一项技能。现在就报名 EPAT 吧!


免责声明:本文提供的所有数据和信息仅供参考。QuantInsti 对本文中任何信息的准确性、完整性、现时性、适用性或有效性不做任何陈述,也不对这些信息中的任何错误、遗漏或延迟或因其显示或使用而导致的任何损失、伤害或损害负责。所有信息均按原样提供。

工程、金融,现在是算法交易——这位首席财务官无所不为

原文:https://blog.quantinsti.com/engineering-finance-algo-trading-cfo-story-ruben/

像 EPAT 校友鲁文·马丁内斯·范纳斯这样的算法交易爱好者并不多。他是一名工程师,硕士持有人和中美洲可再生能源投资组合的首席财务官,拥有十多年的经验。Rubén 从销售和客户管理开始,然后在可再生能源领域站稳了脚跟。

学习是让他坚持下去的东西,你可以从他的许多执照和证书中找到这一点。在新冠肺炎封锁期间,我们联系了鲁本,分享了他的旅程。我们的讨论是这样进行的。

嗨,鲁本,给我们介绍一下你自己

嗨!我是鲁文·马丁内斯的粉丝。我是一名西班牙人,在一家私募股权基金担任首席财务官,住在巴拿马的巴拿马城。我现在和我的家人在一起,但最重要的是,我现在很健康。在目前冠状病毒的情况下是可持续的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我是一个充满好奇和热情的人,每天都在挤出时间学习新技能,努力变得更好。我喜欢阅读,喜欢和儿子在一起。

我拥有工程学硕士学位,还额外学习了金融学,以及算法交易管理课程(EPAT)等等。我的可再生能源硕士学位让我在能源领域的职业生涯得以发展。

销售、产品营销、财务——你一直在专业上不断成长,直到现在担任首席财务官&投资经理。

你的职业生涯是怎样的?

在可再生能源领域拥有超过 12 年的丰富经验,这是一段令人惊叹的旅程。我曾在 4 个不同的国家担任过 3 个主要职位:财务和投资管理、产品管理和营销,以及销售和客户管理。

2006 年,我从西班牙来到德国,开始为一家机械工程公司工作。我开始阅读关于外汇、技术分析和交易方面的书籍,但没有什么帮助。当时,我不知道有任何与量化金融或算法交易相关的机构。我也做了一些投资,但显然出了问题,所以我暂时搁置了那块地。

2008 年,我回到西班牙,开始在一家风力涡轮机制造商做销售工程师。市场崩盘刚刚发生;那是一段相当坎坷的时期。

2010 -我从销售岗位转到了风力涡轮机部门的产品营销岗位。这是我接触 it 财务方面的时候,即商业案例、财务模型、投资、股权、股权回报等。我有点喜欢这样。

2012 年 -我看到一些网页,上面建议人们如何成为量化交易者。我意识到,没有支持、毅力和自律,这是不可持续的。

2013——我发现了 MOOCs 我开始在业余时间学习金融方面的课程。

2015 年——我和家人从西班牙搬到纽约,开始为一家私募股权基金工作,该基金在拉丁美洲投资可再生能源。我从高级助理做起,责任稳步增长。我开始更加关注太阳能。

几年过去了,现在我负责对中美洲的投资组合进行富有挑战性但又令人兴奋的财务管理。

我的交易经验并不丰富。我开始像其他数百万人一样进行技术分析,盯着图表看,但这对我不起作用,所以我开始了算法交易。

我仍在进步,我很高兴由于冠状病毒的情况,我没有认真地开始。现在,市场在拖我的后腿。我会一步一步慢慢来,先建立我的基础,然后再在基础上发展。

你为什么选择和 EPAT 一起学习算法交易?

不久前,在彭博,我读到一个使用编程语言应用算法交易技术的算法基金,这引起了我的注意。

在我看来,Python 是开始这段旅程的第一件事。我明白 Python 是算法交易的基石,所以我开始学习 Python。我在密歇根大学上了一些关于 Python 的在线课程。

经过几门课程和几个小时的学习,我对自己的学习不满意了。一天,在调查时,我看到了 QuantInsti 的广告,引起了我的注意。我开始了解它,并下载了小册子。我联系了一位 EPAT 大学的校友,了解他对 EPAT 的看法。贴出那个,我决定报名。我会说那是我算法交易之旅的开始。

对我来说,EPAT 就像是打开了这个广阔领域的一扇门。在注册之前,我认为经过 6 个月的培训和学习,我将准备好开始我的 Algo 交易台。我会开始应用我的算法,但在我的情况下,这不是真的。

我觉得这 6 个月是开始浏览这个世界的浩瀚。这是很好的准备,让你知道在你希望追求的方向下一步是什么。

我意识到,我必须将学到的东西分段,才能迈出第一步。由于下班后我没有太多的时间,我决定一次只采取很少的步骤。所以,现在我不认为自己已经准备好每天或短期交易了。更不用说高频交易了,这已经超出了我的范围。

我决定慢慢来,以避免沮丧并获得好的结果。我为自己设定的目标是从投资组合中的基本被动投资开始。

我正在建立一个 ETF 投资组合,试图尽可能降低波动性。然后我会把它们结合起来,创造出完美的前沿投资组合。最大可能的回报和最小可能的波动。由于它不需要太多的监督,我在业余时间建造它,我希望很快开始投资。一旦我对此感到满意,我将继续下一步的工作——比如增加频率,开发算法等等。

在未来,我将不得不进化,变得更加老练。但就目前而言,我在练习被动投资组合,因为这最适合我。建立一个稳定的投资组合不需要太多的关注,但它们会随着时间的推移缓慢而稳定地增长。

你最喜欢 EPAT 的哪个特色?

我很高兴我决定去 EPAT 注册。在 EPAT 的学习是非常全面的,它建立得非常好,非常全面。

我很欣赏实际的课程,在这些课程中,我们应用了我们所学的一些策略,例如,擅长策略以获得一个好的画面;还有 Python 的课程。课程学习材料、获得的知识和技能肯定会在不久的将来得到应用。如果你对 EPAT 感兴趣,就去吧。

这是打开这个世界大门的旅程的开始。你必须花更多的时间做研究,练习,磨练你的技能。强烈推荐给有动力有时间的人。

你对有抱负的算法交易者有什么话要说吗?

这个旅程需要动力和激情。如果你这么做只是为了钱,或者如果你在看这个世界上的财富,不要去追求它,因为那样你会失望的。

这很耗时,而且你必须充满激情。你一定喜欢创造算法、做研究、监管市场等等。你必须在这个旅程中找到快乐。


感谢您与我们分享您的完整旅程,Rubén。我们很高兴得知您的进步,并祝您在职业生涯和交易能力方面一切顺利。

你对 EPAT 的溢美之词让我们受宠若惊,这鼓励我们更加努力地为有志于交易 Algo 的人服务。

EPAT 确保你精通在交易领域取得成功所需的每一项技能。它涵盖了统计学和计量经济学,金融计算和技术,机器学习等主题。用终身技能武装自己,这将永远帮助你提升你的交易策略。在此查询

免责声明:为了帮助那些考虑从事算法和量化交易的人,这个案例研究是根据一个学生或 QuantInsti 的 EPAT 项目的校友的个人经历整理的。案例研究仅用于说明目的,并不意味着用于投资目的。EPAT 项目完成后所取得的成果对所有人来说可能并不一致。

工程学、MBA、CFA 以及现在的 EPAT -巴拉穆鲁甘之旅

原文:https://blog.quantinsti.com/engineering-mba-cfa-epat-balamurugan/

在算法交易中,我们说不要让情绪战胜你。EPATian Balamurugan G .实际上在专业上实现了这一点,并试图在他的个人生活中也实现这一点。当涉及到工作而不仅仅是交易的时候,这确实很重要,因为所有这些纪律最终会对你的生活产生连锁反应。

巴拉已经完成了 CFA 考试,获得了 MBA 学位,并完成了 EPAT 课程。他迅速成长为一名交易员,并在多家公司担任过不同的角色——这是人们梦寐以求的工作之旅。

他曾与美国银行、法国巴黎银行、CRISIL 和威瑞森等知名公司合作,如今他已在量化金融领域站稳了脚跟。我们向你展示他的成功故事。

我们的对话是这样进行的:

向我们介绍一下你自己吧!

你好,我是巴拉穆鲁甘·加内桑。我是一名产品专业人士,拥有 9 年左右的业务分析师/产品经理经验,在金融科技和 CRM 领域的产品建设方面有着良好的记录。我也有 2 年的开发经验。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我非常热爱这个领域。我认为这更多的是关于主题。我真的很有兴趣学习算法交易,这也是我进入这个行业的原因。我对 Python、交易和机器学习概念有浓厚的兴趣。

当我开始交易时,我读了很多书。我读过很多书,比如《股票操作者回忆录》、《市场奇才》、亚历山大·埃尔德的《以交易为生》,还有马克·道格拉斯的《区域交易》等心理学书籍。

我在 NIT Calicut 完成了我的工程设计。之后我加入了威瑞森,做了几年的软件开发员。有了几年工作经验后,我参加了 CAT 考试,考上了 SP Jain,攻读 MBA。

由于我非常擅长数学,熟悉 Excel,并且有编程背景,我对数字运算和学习一些有挑战性的东西很有信心。因此,我选择了投资银行专业,这被认为是最难的分支。这就是我对股票市场感兴趣的地方,我发现它真的很迷人。

为了提高自己的知识,我决定攻读这个领域最渴望的认证——CFA(特许金融分析师),并在 2014 年成功完成了所有 3 个级别。

读完 MBA 后,我在不同的公司担任过不同的角色,比如产品经理/业务分析师,我们为金融科技行业开发产品。在法国巴黎银行,我负责 APAC 地区上市衍生产品的开发。

在 CRISIL,我是组织内部培养的产品管理团队的一员,努力将 CRISIL 在金融研究领域的深厚专业知识具体化。我们作为客户与全球研究公司和研究分析师合作,并推出产品来解决他们的潜在需求和棘手问题。该产品致力于提高研究分析师在构建金融模型、发布研究报告、新闻分析和数据分析方面的效率和生产力。

你学习成为职业交易者的过程是怎样的?

在我的第一份工作中,我是一名软件开发人员,没有接触过股票市场。今天,我已经在股票、期货和期权市场交易了大约 7 年。

大约在 2012 年,我做了很多自主交易,根据新闻和人们谈论的话题来买卖股票。同时我也开始投资期权,并因此损失了很多钱。我还记得在收益日的前一天卖出了一份印孚瑟斯的裸看涨期权。

第二天,当市场开盘公布结果时,我看到了 3 万多英镑的损失。一开始我运气不错,后来损失惨重,过了一段时间就停止了自由交易。

2017 年,我再次开始交易,但这一次我更系统地进行交易,采用适当的头寸规模,定义明确的风险参数,并且只使用经过回溯测试的系统。

最初,有几个例子,每当回测系统出现亏损,不遵守规则并犯一些错误时,我会想在回测系统上即兴发挥。然后,一旦我理解了大数定律,我变得更加系统化,这帮助我消除了情感因素。

当我看到 EPAT 的课程时,我认为算法交易需要多方面的技能,完全符合我的要求。在 EPAT 期间,我遇到了一些令人惊奇的老师。它帮助我对定量金融和高频交易中的各种现实实施技术有了深入的了解。

我还为我在 EPAT 的项目工作开发了一个深度学习神经网络模型,用来预测银行漂亮的日内价格,并自动完成了我的一些日内交易策略。这确实节省了时间,避免了大量的屏幕时间。

那么你主要交易什么?

早些时候,我经常在不同的交易策略之间切换,从来没有坚持某个特定风格的信念。经过多次尝试和失败,我终于找到了自己的优势,并坚持了一些策略。

我只在 NSE 看成交量不错的 F&O 股票。

  • 在一个系统中,我寻找当天最活跃的股票,根据其他标准,我建立了一些头寸。
  • 在另一个系统中,我根据过去几天的交易范围来检查波动性是否扩大。
  • 我有一个反转预测系统,在这个系统中,我持有期权头寸,这有助于根据我的观点定义风险。
  • 我还有一个系统,我只在周四交易到期的银行漂亮期权。

我之前也尝试过大宗商品和外汇,但实际上很难持续赚钱,最终我失去了兴趣。现在我只交易股票和期权。我已经找到了我的最佳点,并开始坚持下去。

我还发现很难进行头皮交易,你可以在几分钟左右的时间内进出。我有点担心,因为在头皮交易中,你实际上必须增加仓位,才能在更短的时间内获得丰厚的利润。但这对我没用。这种交易需要很多谨慎,不适合我的情况

为了克服我们在生活和交易中面临的心理障碍,我定期冥想以保持冷静。这在交易中对我帮助很大,让我更加坚持遵守规则。

你已经完成了很多个人资料。在目前的职位上,你做哪些事情,这些事情与交易有关吗?

实际上一点也不。我做过这么多角色的原因是我一直在寻找和寻找真正适合我的角色。

我觉得不知何故有一个差距,我没有满足感。因此,一旦你进入业务分析师的角色,你就不用做任何编程,更多的是关于业务理解,与客户利益相关者交谈,确保正确收集需求,按时交付产品,以及更多的面向客户的角色。我没有运用我的数学或编程技能。

我目前在美国银行的财务控制团队工作,开发全球监管产品。作为世界上最大的金融机构之一,我们在不同的地区与许多监管机构打交道,应该遵守这些机构的规定。

为此,我们的团队负责构建和维护全球应用程序。

你说过你喜欢数学和编程等。当你为了交易而做的时候有多刺激?

数学和编程在系统交易中帮助很大。

我们可以使用统计模型来识别均值回归和趋势股票,这有助于制定您的交易策略假设。

编程有助于我们自动化大部分手工任务。我们可以运行一段代码,在几秒钟内自动给出相同的结果集,而不是手动查看 150 只股票的图表,这可能需要几个小时。

随着机器学习的出现,我们甚至可以识别数据集中的非线性关系,这对于人眼来说不是很明显。这是我目前正在探索的。所有这些技术对交易来说都很方便,节省了我们很多时间。

每个程序员都有自己喜欢的语言。哪个是你的?

我的是 Python 。我使用 Python 已经有两年了,这是一次非常好的经历。

  • 它在自动化我的许多日常任务方面帮助了我很多
  • 它非常容易学习,并且有很好的在线支持
  • 它有一套很好的与机器/深度学习相关的库,可以减少您的编程工作量
  • 大多数经纪人提供 Python API 来自动化你的交易

所以在你现有的支持下,我发现 Python 非常有用。

你对 CFA 和 EPAT 有什么看法?

如果你在交易方面有实际的专业知识,想让你的策略自动化,并有一些 Python 的基础知识,那么最好选择 EPAT。EPAT 的另一个优势是,你可以在 6 个月内完成课程,并理解算法交易中的大多数实际细微差别。

如果你想成为一名金融分析师,并喜欢对股票进行更多的研究,创建金融模型和发布股票研究报告,CFA 将是一个更好的选择。它有三个层次,你必须花几乎三年的时间来完成它们。最快你可以在 18 个月内完成,但那会非常忙乱。

如果有人已经考过 CFA,他们想进入算法交易,他们应该走什么样的道路?

如果他们已经考过 CFA,并且有 1 到 2 年的交易经验,那么参加 EPAT 是最理想的,它涵盖了交易的实际方面,并有助于自动化他们的策略。特别是 EPAT 的可选项目工作将会给算法交易的世界带来很多实际的见解。

你在 EPAT 的学习经历是怎样的?

课程内容很好,也很实用。尤其是像欧内斯特·P·陈博士、伊夫·希尔皮施博士、尤安·辛克莱博士和刘辉博士这样的教师的课程非常出色。

此外,我得到的支持真的很棒,非常专业和友好,我不需要犹豫,认为这太天真了…在我所学的其他课程中,我从未见过这样的支持。每当我有一个与主题或项目工作相关的问题,我总是在一天内得到答复。

你对未来有什么计划?

我想花更多的时间学习人工智能和机器学习及其在金融中的应用。我只是想做一年的兼职项目,这样我就可以在这个领域建立自己。

目前,我正在探索其他深度学习技术,如 fastai 和强化学习,并试图将它们应用于金融数据。

你对想从事算法交易的人有什么要说的吗?

花几年时间交易,这样你就能真正理解实际的细微差别和与交易相关的心理学方面。这里的目标应该是首先关注风险,将损失最小化,而不要过于担心利润。

如果一个人真的对编程感兴趣,对交易充满热情,那么做 EPAT 是有意义的。最重要的是把情感部分完全从交易中剔除。

因此,EPAT 实际上有助于自动化执行部分,你不会看着你的屏幕,不时检查你的 P&L。这可能会导致一些随意的判断和情绪化的行动。


非常感谢你的时间,巴拉。和你谈话是一次愉快的经历。你对算法交易有热情,你学会了,这就是你如何遵循它。很高兴知道你在兼职交易中运用了在 EPAT 学到的所有知识。

EPAT 是一门综合课程,涵盖的主题从统计学和计量经济学到金融计算和技术,包括机器学习等等。开始你的探索,与 EPAT 一起提升你的算法交易知识。

点击这里查看

免责声明:为了帮助正在考虑从事算法和量化交易的个人,本案例研究是根据 QuantInsti 的 EPAT 项目的学生或校友的个人经历整理的。案例研究仅用于说明目的,并不意味着用于投资目的。EPAT**方案完成后取得的成果对所有个人而言可能不一致。T15】

整体方法——装袋和增压

原文:https://blog.quantinsti.com/ensemble-methods-bagging-boosting/

由马里奥·皮萨·培尼亚和 T2 主持

在这篇 帖子 中,我们已经简单地看到了什么是决策树,以及如何为分类和回归问题构建决策树。我们还看到,它们对于进行定性或定量预测非常有用,而且构建它们并没有太大的困难。

但是,有必要了解决策树通常存在的问题,因为算法构建决策树的贪婪方法并不总是提供最佳输出,预测的精度和稳健性也不像我们希望的那样稳定。

通常,决策树有以下已知问题:

  • 噪音
  • 欠拟合(偏差)
  • 过度拟合(方差)

在本帖中,我们将重点关注 Bagging 和 Boosting,以分别并行和顺序地构建决策树,并集成输出以提高预测精度和减少方差。

什么是装袋?

Bagging ,也称为 **bootstrapping,**是一种减少预测方差的集成方法。

Bagging 算法与 N 个随机生成的数据集并行构建 N 棵树,并替换以训练模型,最终结果是在树上获得的所有结果的平均值(对于回归树)或最高评级(对于分类树)。

因此,打包自举算法执行的步骤很简单:

  1. 用训练数据集的替换生成 N 个随机数据集。
  2. 并行拟合每个随机训练数据集的 N 个预测值,每棵树一组。
  3. 对回归树的结果进行平均,或者对分类树进行最多投票。

我们必须考虑到,这种方法并不总是改进我们的决策树的最佳算法,因为它只适用于当我们有一个复杂的树,它的预测显示出很大的差异。

我们使用 sklearn.ensemble 库中的函数 BaggingRegressor 和 BaggingClassifier 来实现 bagging 算法。

用 Python 构建决策树

让我们记住用 Python 构建决策树的主要步骤:

  1. 检索和整理金融工具的市场数据。
  2. 引入预测变量(即技术指标、情绪指标、广度指标等)。)
  3. 设置目标变量或所需输出。
  4. 在训练数据和测试数据之间拆分数据。
  5. 生成训练模型的决策树。
  6. 测试和分析模型。

你可以参考这篇博客来了解更多关于如何构建决策树、决策树分类器等等。

用 Bagging 增强决策树

我们几乎可以重用上面提到的关于决策树的所有步骤。虽然当我们到达第五步时,我们必须用 Bagging 算法替换它。

增压

与并行集成技术 bagging 不同,boosting 按顺序工作。它的目的是通过顺序改进先前的分类,将弱学习者转换为强学习者,从而随着我们的前进将偏差误差最小化。

增压是如何工作的?

最初,通过从训练数据集中随机选择数据集,Boosting 开始类似于 bagging。它使用这些特征创建分类模型,并在现有的“训练数据集”上测试该模型。

训练数据集中的一些数据点被正确分类。现在,为了构建下一个随机数据集,在前一个数据集中被错误分类的实例或数据点将被给予更高的优先级,这仅仅意味着这些实例或数据点将具有在下一个数据集中被选择的更高可能性。

通过这种方式,boosting 使用从先前选择的实例中获得的数据来顺序构建 N 个随机数据集。

升压算法的类型

  • AdaBoost

自适应增强技术迭代地工作,以改进在某一阶段发生的分类。它使用决策树桩。

什么是决策树桩?

决策树桩基本上是基于单个特征做出决策的一级决策树。

决策树桩用于对数据点进行分类,并通过增加误分类数据点的优先级来迭代改进。不同的决策树桩也可以组合起来,以创建一个更好的决策树桩,这将确保数据没有任何错误。

我们可以使用 sklearn.ensemble 库中的 AdaBoostRegressor 和 AdaBoostClassifier 来实现 AdaBoost 算法。

  • Gradient propulsion

就像 AdaBoost 专注于最小化错误分类的点一样,梯度提升专注于最小化模型内的损失函数。

一旦为特定模型定义了损失函数,就使用梯度提升来最小化该函数的值,从而通过修改与数据点相关联的权重来最小化构建另一棵树时的误差。

通过使用库 sklearn.ensemble,GradientBoostingRegressor 和 GradientBoostingClassifier 可用于在 Python 中实现此方法。

  • XGBoostT3】

XGBoost 或极端梯度增强模型是梯度增强的一种实现。这是一个可用于实现梯度推进算法的库。

你可以在 R 这里详细阅读并学习如何实现。

结论

In the fabulous world of ML, this enhancement method for our decision trees helps us to reduce the variance and increase the accuracy but it is necessary to know when to apply it because if our decision trees have other problems it will be more convenient to know and apply other serial or parallel enhancement methods.

在本课程中,您可以了解更多关于决策树和集成方法在 Python 中的实现。

免责声明:本文提供的所有数据和信息仅供参考。QuantInsti 对本文中任何信息的准确性、完整性、现时性、适用性或有效性不做任何陈述,也不对这些信息中的任何错误、遗漏或延迟或因其显示或使用而导致的任何损失、伤害或损害承担任何责任。所有信息均按原样提供。T3】

一个企业家的算法交易之旅

原文:https://blog.quantinsti.com/entrepreneur-algo-trader-narciso/

如果我们告诉你,我们将要分享一个企业家的故事,他只是想学习如何更好地交易,但最终在 EPAT 考试中名列前茅?难以置信?嗯,是真的。

他是一个走在消耗知识的道路上的人,以满足他越来越强烈的求知欲。我们联系了这位成功的创新者、企业家和自豪的算法交易者——EPAT 大学的校友,纳西索·佩雷兹。

下面是我们与他的讨论:

你好纳西索。你能给我们介绍一下你自己吗?

嗨!我是纳西索·佩雷斯,住在阿根廷。我对人类整体发展、创新和技术充满热情。我有一家小公司“TrioIngenieria ”,专门为汽车行业制作软件,所以我编写 PLC、PC 和 S.c.a.d.a .系统的程序。

  • 我已经自动化了几台重要的机器和装配线,有些甚至已经自动化了。全在汽车行业。
  • 我在另一个市场的另一个项目是逆向设计一个电子医疗机器,通过电刺激进行淋巴引流。
  • 我还发明并出售了一台自动洗啤酒桶的机器。

尽管如此,我在经济和职业上并没有像我希望的那样发展。这促使我进入并学习交易。

我是一名系统工程师。中学毕业后,我成了一名电子技师,后来从事工程设计。当我完成工程学时,我专攻人工智能。

2007 年-我在航空大学学院学习了系统嵌入式硕士课程

2011 年,我在萨拉曼卡大学攻读创新与发展企业家硕士学位。它对我评估新的创业机会、个人特征、专业技能、环境以及一个创业者的所有谬误都有很大帮助。它只是缺少提出我的论文。

2011 年末——我签约成为一名自由职业者,开始为需要大量努力的汽车行业工作,主要处理坏账、高税收和巨大的经济贬值。

我是一名中等技术学校和技术学院的教师,在那里我教计算机网络,统计学,编程语言和数据库。

我婚姻幸福,有两个孩子,弗朗西斯科 16 岁,瓦伦蒂娜 13 岁。

我的狗是一个重要的家庭成员。我喜欢定期锻炼,也喜欢学习。我想帮助其他人实现他们的目标和幸福。

我有一份很好的工作,是在电力公司,我自愿退休,但这不是理想的工作,我想学习工程。今天,考虑到我国的经济形势不好,我出于需要成为了一名企业家。为此,我认为算法交易是一个很好的选择。

你能和我们分享一下你的算法交易之旅吗?

算法交易——这是一个我不知道的职业。我用 MetaTrader 模拟账户开始交易,从那以后我一直在交易。我觉得我的风格是黄牛。

我从来不知道我可以利用我喜欢的主题的知识,比如编程、机器学习、金融、经济等等。培养分析和解决问题的能力和技巧。我在谷歌上搜索关于企业家精神的交易信息时,偶然发现了 EPAT 的课程。

现在很多题目我都懂了,也在学。在 EPAT 之后,我现在有了一个真正的账户,里面有 30 美元的礼物。怎么会?我从 1 月 20 日开始,做了 39 次阳性手术,夏普指数为 2.07,零阴性。我知道有些人可能会觉得这很好笑,但我过去和现在都非常投入。

我希望学习更多,理解更多。我很想教算法和量化交易!

我非常自豪能成为 QuantInsti 会员,并下定决心成为推荐人,追随自己的激情生活。我在 EPAT 的时光是一段美好的经历,现在依然如此。其实我还在学习更多,学习机器学习。我想通过 QuantInsti 的职业介绍所找到一份工作。

你的下一步是什么?

我现在正朝着用真实账户交易的方向前进,用更多的资本和投资,我希望能赚到一些利润。我希望成为一名优秀的算法交易者,并把它作为我的生活方式。

你最喜欢 EPAT 的哪个特色?

卓越,对卓越的热爱。

但我也相信,QuantInsti 对你所做的事情非常诚实,因此 QuantInsti 做得非常好。

课程刚开始的时候,我觉得自己学不完,QuantInsti 的 Afrin 和 Dionne 激励了我,对我帮助很大。然后我放松下来,穿上我最好的衣服。我在 EPAT 考试中获得了第二名!

我想向获得第一名的 Balamurugan Ganesan 和获得第三名的 Krunal Vyas 致以问候和祝贺。整个过程中我们都和他们在一起守护着冰山。

你有什么想对有抱负的量化分析师说的吗?

“如果你认为你能做一件事,或者你认为你不能做一件事,你是对的。”
——亨利·福特

努力实现你的愿望。投入你的努力,全心全意。如果你认为你不能实现你想要的,你将永远不会实现它。这都是你的想法。


谢谢你抽出时间接受采访,纳西索。我们真的很感激。感谢你对 QuantInsti 和 EPAT 的赞誉。我们祝愿你在算法交易中取得最好的成长。

在追求提升算法交易知识的过程中,你需要具备必要的知识和技能。我们的算法交易(EPAT) 高管课程是一门综合性课程,帮助您实现学习目标。它涵盖的主题从统计学&计量经济学到金融计算&技术,包括机器学习等等。

免责声明:为了帮助正在考虑从事算法和量化交易的个人,本案例研究是根据 QuantInsti 的 EPAT 项目的学生或校友的个人经历整理的。案例研究仅用于说明目的,并不意味着用于投资目的。EPAT**方案完成后取得的成果对所有个人而言可能不一致。T15】

平衡企业家精神、学习和算法交易——奥古斯丁的旅程

原文:https://blog.quantinsti.com/entrepreneur-algo-trading-journey-agustin/

学习是一个持续的过程,让你保持警觉,帮助你实现和成长。如果你建立了自己的金融科技组织,这种情况会停止吗?

当你有了 12 年的交易经验后,它会停止吗?

奥古斯汀的故事反映了这些情况,并优雅地回答了它们。奥古斯汀是 EPAT 大学的校友,是一名企业家,也是一名连续学习者。我们通过一次聊天采访了他,了解了他的故事和他进入算法交易的历程。

讨论是这样进行的。


嗨,奥古斯汀,给我们介绍一下你自己

我是奥古斯汀·拉梅洛·德拉维加,目前住在阿根廷的科尔多瓦。我是 Invera 的首席执行官和联合创始人,Invera 是一家金融科技公司,为金融机构提供机器人咨询,以实现投资自动化。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

作为一名企业家,我热爱我的工作,但除了工作,我也喜欢学习新技能(现在我正在学习数据科学)。我于 2013 年获得了国立科尔多瓦大学的经济学学士学位,并于 2015 年获得了 Torcuato Di Tella 大学的金融学硕士学位。

我在 2019 年创立 Invera 后加入 QuantInsti,因为我意识到有必要获得一种围绕算法交易获取编码技能的系统方法。2020 年,我参加了为期一年的数据科学课程。


你在不同领域担任过无数角色,拥有 12 年的丰富经验,并且拥有自己的公司。算法交易是如何走进你的生活的?

作为一名经济学家和金融硕士,我对投资有着丰富的理论知识,但要把这些知识应用到算法中,还有很长的路要走。与开发人员一起工作时,我喜欢对系统核心所发生的一切有第一手的了解。这就是为什么要设置适当的标准,我决定得到所需的技能。

我个人从 19 岁开始投资。我来自一个没有金融包容性的前沿市场。因此,我一直认为这是一项个人使命,以简单的方式帮助人们投资于资本市场。这就是因维拉诞生的原因。

Invera 将大部分投资过程自动化,允许机构在向客户提供投资服务时创造规模经济。这反过来又大大降低了初始投资的资本要求。

我想改进来自现代投资组合理论的订单的执行,特别是在像阿根廷这样交易量很低的市场。那时我遇到了算法交易。EPAT 是我的朋友马可·迪博推荐给我的。


你把你的成功归因于学习。为什么?

为了应对每天可能出现的新挑战,学习能力至关重要。当谈到编码时,有很多信息,但如果你需要一个系统,以一种逻辑和可伸缩的方式把它们放在一起,这就是 EPAT 为我做的。

EPAT 是一个开发编码、交易和策略技能的很好的实践项目。从欧内斯特·陈博士、伊夫·希尔皮希和其他杰出人士那里了解到这一点,我感到非常激动。

我也钦佩分享他们观点和知识的以巴提人团体。它为课程增添了巨大的价值。


你最喜欢 EPAT 的什么特征?

我认为 EPAT 最好的部分是当你开始测试你的第一个策略的时候。就在那时,你意识到你在理论上所做的一切,也许还有 Excel,都可以通过几行巧妙的代码实现,并且可以根据需要进行扩展。


你会给那些有抱负的算法交易者什么信息?

在金融机构的金融科技部门工作让我意识到,科技正以前所未有的方式增强人力资本。因此,在技术方面跟不上行业发展会降低你的收益,直到你投资一个指数会更好。


感谢你抽出时间和我们分享你的故事,奥古斯汀。看到你对学习和建立技能的接受程度是非常令人鼓舞的。这是一种罕见的品质。

恭喜因维拉!我们祝你在未来的旅途中一切顺利。

在寻求学习算法交易的过程中,你需要正确的知识和必要的技能,算法交易(EPAT ) 中的执行程序,帮助你实现你的学习目标。EPAT 是一门综合性课程,涵盖了广泛的主题。


免责声明:为了帮助那些考虑从事算法和量化交易的人,这个案例研究是根据一个学生或 QuantInsti 的 EPAT 项目的校友的个人经历整理的。案例研究仅用于说明目的,并不意味着用于投资目的。EPAT 项目完成后所取得的成果对所有人来说可能并不一致。

成为算法交易员的企业家——Rohit 的旅程

原文:https://blog.quantinsti.com/entrepreneur-algorithmic-trader-rohit/

***“他们总是说时间会改变事物,但实际上你必须自己去改变它们。”*T3】

安迪·沃霍尔的这些话反映了这样一个事实:你独自拥有成为命运创造者的力量。对 Rohit Chugh 来说,这绝对不容易,因为他的生活另有安排。Rohit 的故事是关于坚持,永不放弃,提高技能和成长。他努力工作,成为一名企业家,实现了建立自己的制造公司的愿景,但情况发生了变化,他很快适应了未来。

以下是我们与 Rohit 的对话:

嗨,Rohit,你能给我们介绍一下你自己吗?

嗨,我是 Rohit Chugh 。我在孟买获得了会计和金融学士学位。我在孟买的一家安全印刷公司实习,因为我一直想进入印刷领域。我也在考虑攻读硕士学位。2010 年,在我获得学位 6 个月后,我去了英国攻读我的研究生 MBA。2011 年,我回到孟买,开始着手开发一项新业务。

你能和我们分享一下你的职业生涯吗?

我最初是通过获得客户、建立成熟的制造部门、认证等方式开始创业的。但是,像去货币化这样的事件影响了扑克牌行业,Reliance Jio 的推出影响了我们的印刷预付费充值卡业务 pan India。我们失去了客户,不得不裁员,失去了生意。到 2017 年底,我们一直在亏损,并最终在 2018 年 2 月停止运营。

你是何时开始交易的,又是如何开始交易的?

正是在这 6 个月的艰难时期,我开始寻找新的赚钱机会。我对任何领域都持开放态度,也在找工作,但没有找到满意的工作角色。那时我意识到交易是一种收入来源,而不是财富。

资本市场真的很吸引我。我用 10 万卢比的有限资金开始日内交易,试图产生百分比利润,看看我是否真的能赚钱,看看我的表现如何。

这段时间我只是想按百分比产生利润。几个月后,我的股票曲线为负,我意识到我没有正确的交易技能,因为我选择了错误的交易或者停留太久。

谈谈你在交易中的学习经历。

我在网上搜索,开始学习和发展技能。我开始参加每一个免费研讨会,并在 YouTube 上观看大量视频,这些视频可以帮助我发展技能,赚取可观的利润。但是它仍然没有帮助我。就在那时,我决定只专注于寻找一份有保障的工作,即拥有 MBA 学位的业务开发人员。在我寻找工作的时候,我碰巧搜索了最高和最新的职位,在那里我遇到了数据分析师,那时我在资本市场上看到了一些数据分析师的职位空缺。那时我已经决定了我想在哪个领域工作。

你是什么时候决定学习算法交易的,是什么促使你这样做的?

我没有这方面的技能,我知道我必须学习一些专业课程,这些课程也会帮助我在毕业后找到一份工作。这是我偶然发现 QuantInsti,并了解到它是印度唯一一所开设算法交易课程并提供终身工作支持的学院。我开始研究学院,并决定报名参加 EPAT。我在 QuantInsti 发现了自己,我成为了难忘的经历和独一无二的机会的一部分,我认为我在其他任何地方都找不到这些机会。我感谢 QuantInsti 将我塑造成今天的我,感谢他给了我真正关心我的成功、不把我当成数字的教授,感谢他给了我一生的导师,我知道在我职业生涯的任何时候,我都可以去找他们。

认证对您的交易产出和利润有何影响?你能分享一些百分比方面的数据吗?

通过 QuantInsti,我得以在一家金融科技公司获得一份战略开发人员的实习工作,现在继续全职工作。在这里,我编码和回测不同的策略,我还没有通过算法交易部署任何资金,因为我还在开发阶段。感谢你为我打开这么多机会的大门,感谢你为我的成功奠定基础。


我们为你的成功感到骄傲,Rohit。我们钦佩你的勇气,并祝你继续成功。

释放你学习算法交易的渴望,不断前进,学习,成长,永不放弃。用必要的技能和知识武装自己,在这个领域取得成功。让我们的算法交易管理课程(EPAT)成为你的向导。点击 了解更多 [**。

免责声明:为了帮助正在考虑从事算法和量化交易的个人,本案例研究是根据 QuantInsti EPAT项目的学生或校友的个人经历整理的。案例研究仅用于说明目的,并不意味着用于投资目的。EPAT 项目完成后所取得的成果对所有人来说可能并不一致。**](https://www.quantinsti.com/)

EPAT 如何迎合算法交易所需的基本技能?

原文:https://blog.quantinsti.com/epat-cater-need-essential-skill-sets-required-algorithmic-trading/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

“交易一直处于采用尖端技术的最前沿,尤其是在短期交易领域。昔日的交易大厅不断被由少数掌握关键技能的人管理的复杂交易模型所取代。在过去的几年里,交易技术的前景发生了巨大的变化,随着机器学习的出现,机器做出关键决策的可靠性有了显著的飞跃。从大型对冲基金所需的关键技能来看,这一点非常明显。我们需要提升我们的技能,迎接机器交易的新时代。”iRage 技术副总裁 Sameer Kumar 说。

考虑到上面的陈述,很容易推断出算法交易领域对拥有高级技术技能的人有很高的需求。为了迎合量化组织不断变化的要求,候选人需要了解和意识到当代的工具和实践。针对这一需求, QuantInsti 提供了一个全面的算法交易执行程序(EPAT)。该项目为期六个月,为有志成为量化交易者的人提供深入的实地培训。在这个案例研究中,我们详细讲述了一个叫 Jayalaxmi Ganihar 的 EPATian 人的故事。Jayalaxmi 在加入 EPAT 之前是一名金融分析师。成功完成课程后,Jayalaxmi 加入了总部位于康涅狄格州老格林威治的 WorldQuant LLC。详细介绍了她在 QuantInsti 的课程、安置程序和机会。

我们与 Jayalaxmi 的对话

What is your background?

我是果阿管理学院金融 MBA 毕业生,在此之前,我在果阿工程学院学习过电子和电信工程。

How do you know about QuantInsti & Why did you choose QuantInsti? What’s your experience so far?

我在找量化金融的好课程,偶然发现了 Quantinsti 。我发现这里的教员很优秀,课程在深度和广度上都很广泛,并且在不断更新,此外,我们还定期举办客座讲座、世界级交易员的精彩演讲以及我们可以直接提问的互动会议。我们在作业和项目工作中也得到了很好的反馈和帮助。

一旦你成为 Quantinsti 的一员,你就永远是它的一部分。全体教职员工很容易交谈和互动,即使作为校友,如果我们在量子金融方面有任何问题或需要任何帮助,人们可以随时问 Quantinsti 。同样作为校友,我经常被邀请参加他们的网络研讨会和讲座。

What do you have to say about the employment opportunities offered by QuantInsti?

我们经常收到关于印度、新加坡和阿联酋的贸易公司的各种工作和角色的电子邮件。我们还会定期了解领先的量化公司提供的实习机会。

Would you recommend QuantInsti to others who wish to pursue a career in in Algo trading?

我强烈推荐 QuantInsti 给任何想进入 Algo 交易世界的人。除了学习丰富的信息,关系和网络机会也很好。一个人也可以从 Quantinsti 蝙蝠身上学到很多东西。与 MFE 或 CQF 相比,行政课程也非常经济,可以帮助你在这个领域快速起步。

Jayalaxmi 出身于技术和金融背景,具备完美掌握课程的基本条件。她与 QuantInsti 的成功故事激励了许多具有相似教育背景的人。虽然这只是一种情况,但 EPAT 为来自不同背景的参与者提供了良好的就业机会。

注册 EPAT 的参与者来自各行各业,包括交易员、程序员、数据分析师和全日制学生。大多数恰好是交易者;第二大类是程序员和数据分析师,其次是学者。在过去的十年中,金融领域的技术进步使其运作方式发生了彻底的转变。以下是全球知名的期权、衍生品和基于新闻的交易研究演讲者 Rajib Ranjan Borah 对这个问题的看法:“当我回到印度并与市场参与者交谈时,我意识到虽然大多数公司都非常热衷于大规模采用算法交易,但他们中的大多数人对如何进行算法交易一无所知。最大的挑战源于这样一个事实,即现有的劳动力要么是金融专业人员,要么是技术专业人员。为了在算法交易中表现出色,他们需要专业人士能够同时理解技术和金融,以及如何在两者之间发挥杠杆作用。

问题是,我们如何迎合这种需求,并带来变革,让人们知道如何在新的场景中发挥作用。EPAT 为您提供了一个优化现有知识的选项,让您享受知识带给您的最大益处。这对 Jayalaxmi 的职业生涯有什么影响?她告诉了我们更多。

What do you think of EPAT and how does it add value to your career?

我目前是 WorldQuant 印度公司的兼职研究顾问。我在 EPAT 项目中学到的东西极大地帮助了我理解交易的细微差别。它帮助我在 Alphathon 竞赛中获得了一个好位置,并在 WorldQuant 获得了一个研究职位。在 QuantInsti 的推荐下,我也进入了世界量子大学 MSFE 项目。

下一步

希望了解更多关于算法交易的各个方面,请查看算法交易(EPAT)中的执行程序。课程涵盖统计学&计量经济学、金融计算&技术和算法&定量交易等培训模块。EPAT 让你具备成为成功交易者所需的技能。点击这里了解更多关于最全面的算法交易程序

利用机器学习开发基于云的自动交易系统[EPAT 项目]

原文:https://blog.quantinsti.com/epat-project-automated-trading-maxime-fages-derek-wong/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

本文是作者提交的最后一个项目,作为他们在 QuantInsti 的算法交易(EPAT)执行程序课程的一部分。

作者

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传 Maxime Fages Maxime 的职业生涯跨越了价值和风险的战略层面,过去几年特别关注交易行为和市场微观结构。他在并购、基金管理或当前的公司战略中采用了量化的角度,并且一直是一个狂热的开源软件用户。Maxime 拥有欧洲工商管理学院的 MBA 学位和法国国立高等艺术学院的工程硕士学位;他目前是芝加哥商品交易所集团的战略总监 APAC。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传Derek Wong

Derek 在 CBOT 开始了他的职业生涯,然后上楼专注于自营交易和策略开发。他管理全球多策略投资组合,专注于期货和期权领域。他目前是福瑞贸易投资有限公司系统交易副总监。

构思

在算法交易(EPAT)高管课程(T1)讲座结束时,德里克和我花了大量时间通过各种媒体交换意见。我们讨论了一个项目的想法,同样的主题让我们兴奋不已。首先,我们对处理期货而不是现金工具感兴趣。第二,我们都有使用 R 进行定量研究的丰富经验,并且都有兴趣在执行方面动手,尤其是在 Python 中实现事件驱动的策略(在 EPAT 项目之前我们都不知道这一点)。第三,我们花了几个小时讨论和评估用于交易的应用程序的机器学习的性能,并且非常渴望尝试我们的想法。最后,我们对实际的架构设计非常感兴趣,特别是管理任何机器学习框架的可变资源需求的最佳方式(训练与评估)。

因此,我们项目的范围自然而然地产生了:开发一个完全基于云的自动化交易系统,该系统将利用简单、快速的均值回复或趋势跟踪执行算法,并调用机器学习技术在这些算法之间切换

项目描述

EPAT 项目的机器学习课程使用了支持向量机,并证明了它在预测波动性方面的表现略好于 GARCH 模型。文献表明,递归神经网络模型在正确的情况下甚至可以表现得更好[1],并且组合模型(“厚建模”)可能会减轻过度拟合问题[2]。这确实是一个吸引人的前景,但是我们对使用 ML 框架(主要是 e1071、caret 和用于 R 的 nnet,以及优秀的 scikit-learn 或 Python 中更简单的 pybrain)的涉猎揭示了一个关键问题:资源管理。在中档台式计算机上,大多数模型的学习阶段可能会非常漫长,而且大多数数据集的庞大规模会占用大量 RAM。例如,一台相对高端的 PC 使用 GPU 优化可能会做得相当好。然而,这将带来成本之外的进一步挑战:管理这样一个系统本身就是一门艺术,而且我们没有这方面的经验。此外,上面提到的大多数库可能很难正确设置;这对于机器学习研究来说尤其成问题,因为例如神经元系数没有可以容易地进行健全检查的显著值。表现不佳的模型有足够多的潜在根本原因,不需要增加一层业余管理,尤其是在我们的规模上。

结构

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 1:技术堆栈

我们的架构相对简单,并且被设计成驻留在远程服务器中。在提取历史市场数据的启动序列之后,计时器流程触发均值和标准差的更新[3]以及增量分钟数据条的更新。每 5 分钟,它将触发一次机器学习堆栈的调用,以获得接下来 5 分钟的评估。从代理流出的数据由处理程序排队并处理,以更新所有关键的交易参数。一个非常简单的策略是持续评估信号:如果机器学习堆栈显示趋势状态,它会将 Z 分数阈值作为开始趋势,否则它会进行均值回归交易。信号被排队,订单执行将获取它们并“天真地”处理订单。实际上,执行在出价(长)或要价(短)时执行限价单,并等待 ack(当从代理的 API 捕捉到 ack 消息时,ack 消息被推入第三个队列中)。如果在超时参数内未检测到确认,订单将被视为过期,如果是初始头寸订单,订单将被取消;如果是获利回吐订单或止损订单,订单将被更改为市价订单。从 ack 推断的填充被添加到 plot.ly 监视器(第三方流图表)。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 2:实时监控,交易执行和指标

我们不会公布机器学习模型的全部细节,但总的原则是,我们有两个分别训练的“半球”来预测测距或趋势条件。每个半球都有三个不同的模型,每个模型都有特定的参数,每一方都会对模型进行投票,以决定即将到来的情况。如果双方意见不一致(例如检测到“范围”和“趋势”条件),堆栈将评估模型的置信参数以做出决定。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 3:机器学习栈概述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 4:样本外结果分布

Azure Machine Learning Studio 的一个非常好的特性是它支持定制功能的开发。在我们的案例中,我们开发了一个简单的投票方法来投票给两个“半球”,如果出现不一致的情况,就选择总体信心最高的一方。

# Map 1-based optional input ports to variables
dataset1 <- maml.mapInputPort(1) # class: data.frame
#simple polling 
dataset1$trend_poll <- ifelse((dataset1$trend_NN == "trend") +(dataset1$trend_TCdeep == "trend") + (dataset1$trend_boostDT == "trend") >
                                (dataset1$trend_NN == "notrend") +(dataset1$trend_TCdeep == "notrend") + (dataset1$trend_boostDT == "notrend"), "trend", "notrend")
#poll trend confindence (as in "sum of confidence if youwere right")
dataset1$trend_poll_conf <- (dataset1$trend_NN == dataset1$trend_poll)*dataset1$trend_NNprob+
  (dataset1$trend_TCdeep == dataset1$trend_poll)*dataset1$trend_TCdeepprob+
  (dataset1$trend_boostDT == dataset1$trend_poll)*dataset1$trend_boostDTprob
#simple polling as the threshold is not really helping
dataset1$range_poll <- ifelse((dataset1$range_NN == "range") +(dataset1$range_TCdeep == "range") + (dataset1$range_boostDT == "range") >
                                (dataset1$range_NN == "norange") +(dataset1$range_TCdeep == "norange") + (dataset1$range_boostDT == "norange"), "range", "norange")
#poll trend confindence (as in "sum of confidence if youwere right")
dataset1$range_poll_conf <- (dataset1$range_NN == dataset1$range_poll)*dataset1$range_NNprob+
  (dataset1$range_TCdeep == dataset1$range_poll)*dataset1$range_TCdeepprob+
  (dataset1$range_boostDT == dataset1$range_poll)*dataset1$range_boostDTprob

dataset1$final <- ifelse(dataset1$trend_poll == "trend" & dataset1$range_poll == "norange", "trend",
                         ifelse(dataset1$trend_poll == "notrend" & dataset1$range_poll == "range", "range",
                                ifelse(dataset1$trend_poll == "trend" & dataset1$range_poll == "range",
                                       ifelse(dataset1$trend_poll_conf>dataset1$range_poll_conf,"trend","range"),"nothing")))

data.set <- as.data.frame(dataset1$final)
# Select data.frame to be sent to the output Dataset port
maml.mapOutputPort("data.set")

R 片段 1:简单的轮询设备,连接到 Azure Stack 网络

在一些罕见的情况下,双方都没有信号,在这种情况下,我们在 5 mn 内不做任何事情。这个 5 mn 的选择并不完全是任意的,而是我们对“稳定的”(即使是暂时的)交易环境的看法和 WTI 的实际确定周期之间的一种有根据的妥协4。](https://cran.r-project.org/web/packages/wavelets/wavelets.pdf)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图 5:WTI 价格的小波(频谱)视图

样本外性能达到了令人印象深刻的 74%,非常重要的是,我们的样本仅限于 6 个月的 1 分钟棒线。处理数据的 R 代码是 github 库的一部分,本质上转换了一系列“标准”指标(SMA、LMA、RSI、ATR 等)。)为前 5 mn 进单个 50 个数据点(输入)+ 1 输出。Azure 框架上的培训速度很快,出色的界面使得用 python 或 r 添加自定义代码变得很容易。从培训到一个实时的 RESTful API 非常简单,响应时间明显低于 100 毫秒。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

| 图 6:用于训练的“范围”条件输入 | 图 7:用于训练的“趋势”条件输入 |

#eyeball using quantmod
eyeb<-function(x){
i=x
start <- index(df)[1]+i*60*5
mid <-start+5*60
end <- start+10*60
tmp <- df[index(df) >=start & index(df) < mid]
tmp2 <- df[index(df) >=mid & index(df) < end]
tmp3 <- df[index(df) >=start & index(df) < end]

mychartTheme <- chart_theme()
mychartTheme$rylab = T 
chart_Series(tmp3[,c("open","high","low","close")], theme=mychartTheme)

slp_av <- mean(tail(tmp2$trend,3))
ln_slp <- function(x){xts(coredata(first(x)+slp_av*as.numeric((index(x)-first(index(x))))),order.by=index(x))}
dummy <- (tmp2$high+tmp2$low)/2
add_TA(ln_slp(dummy),on=1, col=3)
ta_up <- xts(rep(mean(tmp$close)+z_thresh*last(tmp$atr),length(index(tmp2))),order.by = index(tmp2))
add_TA(ta_up, on=1, col=4)
ta_dn <- xts(rep(mean(tmp$close)-z_thresh*last(tmp$atr),length(index(tmp2))),order.by = index(tmp2))
add_TA(ta_dn, on=1, col=4)

}

R 片段 2:眼球函数生成图 6 & 7

交易策略开发

我们确定了三个指导原则,并在战略制定过程中坚持这些原则。首先,我们需要一种策略,这种策略将极大地依赖和利用机器学习架构。其次,我们需要策略以这样一种方式执行,即来自不同制度状态的绩效的实证分析将允许我们判断交易策略本身,但也可以查看机器学习是否实时执行良好。最后,当然,对于所有的交易策略,我们都希望它有利可图。

我们的机器学习架构的内在复杂性导致我们在交易策略上保持相对简单。这是必要的,有几个原因,简化的交易逻辑让我们避免了经典的策略发展陷阱。例如:过度拟合、限制自由度、混淆逻辑错误和数据污染。当运行几种不同类型的训练和回溯测试时,首先是机器学习架构,然后是开发交易逻辑本身,这使陷入经典策略开发陷阱的机会增加了一倍。

交易系统是基于我们计算的频率统计推断。我们决定使用一个简单的统计方法,Z 分数作为我们策略的基础。这是一个极其简单的标准统计公式。这样做的原因是因为我们不希望 ML 结构和我们的交易逻辑模型的结合带来额外的复杂性。

zscore = (self.last_trade - self.cur_mean)/self.cur_sd

Python 片段 1: z-score 公式片段

录入触发流程

我们的参赛条件简单地基于两个因素,主要是机器学习市场机制状态和 Z 分数生成的触发条件。

| 进入条件 | 高于 Z 分数阈值 | 低于 Z 分数阈值 |
| 测距机制状态 | 卖空 | 买空 |
| 趋势政权状态 | 买空 | 卖空 |

表 1:进入条件逻辑矩阵

if abs(zscore) >= self.zscore_thresh and \
                abs(zscore) <= settings.Z_THRESH + settings.Z_THRESH_UP and \
                self.trading.is_set() and \
        (self.fill_dict == [] or self.fill_dict[-1]["type"] != "main") and \
                self.flag != "nothing":
    self.exec_logger.info("signal for main detected - strategy")
    try:

        if zscore >= self.zscore_thresh:
            if self.flag == "trend":
                action = "BUY"

            if self.flag == "range":
                action = "SELL"

        if zscore <= -self.zscore_thresh:
            if self.flag == "trend":
                action = "SELL"

            if self.flag == "range":
                action = "BUY"

Python 片段 2:交易逻辑触发条件

我们使用简单对称触发逻辑的理由如下。通过保持绝对最简单的触发方法,我们可以最大限度地依赖机器学习。如果市场机制由于触发器的简单性质而不正确,如果包括市场摩擦,产生的独立 alpha 值应该接近于 0 或负值。这是假设短期高频数据的市场是一个几何布朗运动(GBM)过程,如随机游走。

如果机器学习可以检测到什么时候不是这种情况,并且有一些分布的尾部偏离了对数正态分布,那么我们可以生成 alpha。例如,我们有三种状态:趋势、范围和无。如果 GBM 为真,那么时间序列要么不存在,要么在范围内。图 4 清楚地表明了这一点,但是,我们确实显示了统计意义上的大部分时间花在趋势区域。这表明时间序列在峰度上存在方差,并且具有随机波动性。由于过度的峰度,这导致我们可以从趋势策略中产生 alpha。然而,一个标准的 Z 值不能辨别这些不同的时间序列状态,它假设了一个正态分布。因此,当且仅当机器学习架构能够准确地辨别市场制度状态时,交易触发器才能够变得有利可图。

这种策略还包括我们的机器学习两个半球中存在的相同类型的假设,即在不同的制度下,我们应该有两种类型的市场价格分布。一种是更薄的,导致更厚的尾巴,标志着一种趋势。另一种可能是更正常的,甚至是尾部相对较薄的扁 kurtic,导致一个范围制度。

Z 分数将假设正态分布,这意味着我们希望利用的所有目标活动都在尾部。因此,通过使用 Z 分数触发器,我们可以简单地做到这一点,并且只在我们判断为极端值的地方有触发点,希望利用不同的尾部条件。我们的参数触发点是 2 到 2.5 之间的任何 Z 值(Z THRESH 和 Z THRESH + Z THRESH UP)

退出

鉴于我们的主要目标,我们的退出也非常简单。我们使用两种退出条件。对于“区间”制度均值回复交易,多头使用高于我们的 Z_TARGET 的 Z 值,空头使用低于我们的 Z _ TARGET 的 Z 值。我们预计平均恢复活动将是 Z 分数为 0,但我们有一个稍大的范围来关闭我们参数中的+/-0.2 的位置。我们还有一个额外的 4 点跟踪止损,这是用于两个系统。然而,趋势交易是唯一的退出条件。

参数

我们的参数集直接取自正态分布假设。在我们的架构中,这些由一个单独的配置文件控制,这使得修改变得容易。我们使用的 Z 得分阈值(Z THRESH)为 2,并限制为 2.5(ZTHRESH+ZTHRESHUP)。这就是为什么我们不试图进入已经背离很远的交易。跟踪止损的止损点偏移量是以点为单位的,Z 目标是 0.2 的 Z 值,我们在均值附近关闭均值回复位置。

# trading parameters
Z_THRESH = 2
Z_THRESH_UP = 0.5
STOP_OFFSET = 0.04
Z_TARGET = 0.2

Python 片段 3:交易逻辑参数

项目进展如何?

我们一直使用的参数导致每小时 14x-16x 的旋转(7-8 次旋转)。这一数字意义重大,尤其是从名义价值的角度来看:每天的名义交易额约为 1650 万美元,利润率约为 5000 万美元(然而,从净资产收益率的角度来看,后者是唯一有趣的参数)

该策略表现相当好:45%在每份合约 1.8 个基点左右获利,29%在每份合约 1.7 个基点左右亏损,26%亏损。然而,平均利润,在 ca。每笔往返交易的 0.32 点必须与 IB 每笔交易向我们收取的 1.42 美元相比较[5];散户交易者的经济状况很艰难。2.84 美元的经纪费和交易费带来的 3.2 美元的净利润,理论上会产生 20%-30%的月利润率。这可能看起来令人印象深刻,但考虑到所涉及的杠杆远不能补偿不可预见的、奇怪的市场条件(与公告相关的峰值、流动性下降)可能产生的潜在损失,更不用说运营风险(漏洞或系统崩溃)了。此外,还不清楚我们是否能在不出现重大下滑的情况下,将策略扩展到足以让一些“真正的”投资获得回报。

另一方面,资源成本低得离谱:AWS 微实例免费一年,鉴于 azure 完成了繁重的工作(ML ),这对我们来说是足够的处理能力,Azure 堆栈的价格不到 10 美元/米(“seat ”,然后是 1000 个 API 调用的 50 美分)

结论

关于交易,我们的三个主要结论是:

  • 只要有可能,软件作为机器学习的服务是绝对有意义的。50 毫秒-100 毫秒的响应时间是一个明确的限制,但低于这个标准的增量投资和运营风险非常大。对于任何更长的 horizon 应用程序来说,这项技术,尤其是微软的 Azure ML Studio,都是值得探索的。
  • 即使是在 outrights 上,用有限的资源进行自动交易仍然有可能赚钱。然而,交易所/经纪费可以迅速侵蚀甚至取消利润。激励/分级计划对于这些策略的盈利至关重要。是的,这是显而易见的,但我们现在有了第一手的经验。
  • 在显而易见的研究和编码部分之间,将抽象概念设计成可操作的对象和代码可能更像是艺术而不是科学。在那个领域拥有实际经验(和失败)显然是有好处的。

对未来学生/程序员的建议:

  • 探索图书馆,并彻底了解它们可以/将要做什么。例如,IBPY 具有简单存在的优点。文档几乎不存在,但是它有大量调用所有 API 功能的包装器。有可能我们最终会重写一些已经存在的功能(当我们这样做时,我们的实现很可能是最差的)
  • 棋如斗剑,先想后动”——吴唐门。这种古老的智慧肯定也适用于开发,尤其是当涉及到类和并发性时。由于我们没有这种开发或设计软件架构的经验,我们从黑进 James Ma“高频”项目开始。可以肯定地说,詹姆斯在我们的项目中的出色工作几乎没有留下任何东西;解决由范围差异引起的限制最终总是以块和重构告终。最终,我们将节省大量时间,花更多时间思考概念模块,然后从头开始朝它们努力(注意,当时我们不知道如何做,Jame 的工作是一个很好的引导)。讽刺的是,我们最终的架构看起来非常像 Quantinsti 的系统架构 101 中的那个。
  • 我们工作中的大部分 R/Python 都涉及顺序工作流,迭代开发。交易系统涉及从交易所流出的数据、基于信号、确认或订单等的订单推送。事后看来,这当然是“线程”和“并发”的叫法,但是 James 已经(非常好地)成功地保持了他的工作顺序,并且只依赖于类。这对我们来说并不奏效,并且与前面提到的问题结合起来导致了第一次重构(不成功,因为我们押错了任务库: threading )。如果同时使用 python 3.5 或 的话,我们非常鼓励任何研究 python 交易的人去钻研**** asyncio 。期货 也是 2.7 的后移植(我们用的是后者)。现在,多重处理有它自己令人沮丧的挑战:线程在沉默中死去,(不是)线程安全的对象,等等。并且通常是非常不同的设计范例。从积极的一面来看,当它起作用时,令人难以置信的满足
  • 质量保证可能是开发中最不性感的方面。这也是我们已经并将投入大量学习/阅读时间的领域。这种技能在笔记本型环境中并不重要,因为大多数情况下,调试可以一步一步地进行。当然,当多个线程与不同来源的数据交互时,这是一种非常不同的情况。到处编写打印语句是不够的,无论是**还是trace back都是非常值得投入时间的库。公平地说,没有一个是特别直观的(顺便说一下,异常类的使用也是如此),但是系统化的 try/except 和日志记录确实是救命稻草
    *** “现在感受痛苦或以后感受痛苦”这个老掉牙的说法在发展问题上尤为贴切。使用类和其他不太直观的对象和进程分类法是一把双刃剑。大多数类和函数不会直接进行测试,试图在集成测试中测试基本功能(例如,输出的正确类型)会导致灾难。我们最终使用非常好的 main python 语义来“搭建”运行所需的基础的单个类,作为一个穷人的 unitest (另一个非常关键的不性感的库)。最后,开发测试特性所需的时间并不是微不足道的(我们假设可能是 20%左右),但是这是一个非常好的资源利用。一个很好的例子是,我们没有建立一个市场模拟器。这是我们做出的决定,基于我们实际上与 IB 交易的有限利益(很大程度上是由于合同限制),以及坦率地说,基于我们在开始时拥有的技能。仅从时间角度来看,这是一个非常糟糕的决定:在 IB 上注册的引导序列大约有 20 秒长。考虑到信号的发生,这可能最少需要 30 秒,而在 4 小时的开发序列中,可能需要 20 到 30 次重启。保守估计,10-20 分钟的时间浪费或 5%-10%的生产力损失。这甚至是在能够测试具体情况而不是等待情况发生之前,并且在我们看来,毫无疑问,即使中途咬紧牙关也会有很大的好处(包括参数调整)。

**概括地说,这是关键的收获:完成一个项目的 80%是容易和有趣的部分。艰难而乏味的是最后的 20%,这也是实际技能重要的地方(尤其是在质量保证方面)。

在这个过程中,我们收获了很多,感谢老师们的帮助和指导。鉴于我们各自的合同限制,我们不打算继续公开发布该程序,但计划在近期再次合作。

Github 库:https://github.com/FaGuoMa/Azure-IB/.

参考文献

[1]实证金融学中的非线性时间序列模型——Philip Hans Franses,Dick van Dijk 使用基于波动率的递归神经网络进行变化方向预测——Stelio be kiros 和 Dimitris Georgoutsos

[2]组合分类器比选择最好的一个更好吗——Saso Dzeroski 和 Bernard Zenko 流行的集成方法:一项实证研究

[3]对于标准差,我们使用了无偏估计量(R . ALM gren–时间序列分析和统计套利,NUY)

[4]金融时间序列的小波多分辨率分析

[5]零售佣金是 0.85 美元的经纪费加上 1.45 美元的纽约商品交易所交易费。然而,根据 NYMEX/CME 和 IB 的分级交易量计划,费率可能分别为每笔交易 0.65 美元和 0.77 美元

后续步骤

对于更多这样的学生项目,如果你是一名程序员或科技专业人士,想创建自己的自动化交易平台,请查看使用 R. 的统计套利策略。从日常从业者的实时互动讲座中学习自动交易。算法交易高管课程涵盖统计学&计量经济学、金融计算&技术和算法&量化交易等培训模块。现在报名!**

雅克·儒贝尔的 R -中的统计套利策略[EPAT 项目]

原文:https://blog.quantinsti.com/epat-project-jacques-statistical-arbitrage/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

由雅克·儒贝尔

本文是作者提交的最后一个项目,作为他在 QuantInsti算法交易(EPAT) 高管课程的一部分。请务必查看我们的项目页面,看看我们的学生正在构建什么。

背景

过去 6 个月一直关注我博客的人会知道,我参加了 QuantInsti 提供的算法交易的管理课程。

这是一个旅程,这篇文章是我关于统计套利的期末项目的报告,用 r 语言编写。这篇文章是我的课堂笔记和源代码的结合。

为了欢迎读者贡献、改进、使用或参与这个项目,我把所有东西都上传到了 GitHub。它也将成为我在博客 QuantsPortal 上的开源对冲基金项目的一部分

我要特别感谢 QuantInsti 的团队。谢谢你为我的期末项目所做的所有修改,谢谢你不厌其烦地帮助我学习,谢谢你高水平的客户服务。

统计套利的历史

由摩根许仁杰的农齐奥·塔尔塔利亚的量化小组在 20 世纪 80 年代中期首次开发和使用。

  • 配对交易是一种“反向策略”,旨在利用配对比率的均值回复行为
  • 大卫·肖,D.E .肖公司的创始人,离开摩根士丹利,在 20 世纪 80 年代后期创立了自己的“量化”交易公司,主要从事配对交易

什么是配对交易?

众所周知,统计套利交易或配对交易被定义为交易一种金融工具或一篮子金融工具,在大多数情况下是为了创造一个价值中立的篮子。

它的想法是,协整合对在本质上是平均回复。这些工具之间存在价差,偏离均值越远,反转的可能性就越大。

然而请注意,统计套利并不是一种无风险的策略。比方说,你已经为一对投资者建立了头寸,然后价差出现了趋势,而不是均值回归。

概念

第一步:找到 2 只相关证券

找到两种属于同一行业的证券,它们应该有相似的市值和平均交易量。

这方面的一个例子是盎格鲁黄金和和谐黄金。

第二步:计算价差

在接下来的代码中,我使用了线对比率来表示分布。就是简单的资产 A 的价格/资产 b 的价格。

步骤 3 :计算配对比率/扩散的平均值、标准偏差和 z 值。

步骤 4 :协整测试

在接下来的代码中,我使用扩展的 Dicky Fuller 检验(ADF 检验)来检验协整性。我设置了三个测试,每个测试都有不同数量的观察值(120,90,60),所有三个测试都必须拒绝两者不协整的无效假设。

第五步:生成交易信号

交易信号是基于 z 值的,假设它们通过了协整测试。在我的项目中,我使用的 z 值为 1,因为我注意到与我竞争的其他算法使用的参数非常低。(我更希望 z 值为 2,因为它更符合文献,但是它的利润更低)

第六步:根据信号处理交易

第 7 步:汇报

我的项目的 R 降价

**#### 导入包并设置目录

第一步总是导入所需的包。

#Imports
 require(tseries)
 require(urca) #Used for the ADF Test
 require(PerformanceAnalytics)

这一战略将适用于在约翰内斯堡证券交易所(JSE)上市的股票;因此,我不会使用 quantmod 包从 yahoo finance 中提取数据,相反,我已经获取并清理了存储在 SQL 数据库中的数据,并将其移动到桌面上的 CSV 文件中。

我将策略中使用的所有对添加到一个文件夹中,现在我将该文件夹设置为工作目录。

##Change this to match where you stored the csv files folder name FullList
 setwd("~/R/QuantInsti-Final-Project-Statistical-Arbitrage/database/FullList")
将从其他函数中调用的函数(无用户交互)

下一步:创建所有需要的函数。下面的函数将从其他函数中调用,所以您不需要担心参数。

添加列

AddColumns 函数用于将存储变量所需的列添加到数据框中。

#Add Columns to csvDataframe
 AddColumns
准备数据

PrepareData 函数计算对比率和对的 log10 价格。它还调用其中的 AddColumns 函数。

PrepareData
GenerateRowValue

GenerateRowValue 函数计算数据框中给定行的平均值、标准差和 z 得分。

#Calculate mean, stdDev, and z-score for the given Row [end]
 GenerateRowValue
生成信号

GenerateSignal 函数基于 z 得分创建一个多头、空头或收盘信号。您可以手动更改 z 值。对于进场信号,我将它设置为 1 和-1,任何介于 0.5 和-0.5 之间的 z 值都会产生一个收盘/出场信号。

GenerateSignal  trigger)
 csvData$signal[counter]  -close)
 csvData$signal[counter]
生成交易

GenerateTransactions 函数负责为创建一对所需的多头和空头头寸分别设置进场和出场价格。

注意:QuantInsti 教了我们一个非常具体的交易策略回溯测试方法。他们使用 excel 来教授策略,当我编写这个策略时,我使用了很大一部分 excel 方法。

然而,展望未来,我将探索存储变量的其他方法。这种方法的一大好处是,你可以提取整个数据框架,分析交易的原因和所有相关细节。

#Transactions based on trade signal
 #Following the framework set out initially by QuantInsti (Note: this can be coded better) 
 GenerateTransactions
get returns day

GetReturnsDaily 计算每个头寸的日收益,然后计算总收益并加上滑点。

#Calculate daily returns generated 
 #Add implementation shortfall / slippage at close of trade
 GetReturnsDaily 0){csvData$LongReturn[end] 0){csvData$ShortReturn[end]
生成报告

接下来的两个参数用于生成报告。报告包括以下内容:制图:1 .权益曲线 2。下降曲线 3。每日回报条形图

统计:1。年度回报 2。年度夏普比率 3。最大水位下降

表:1。前 5 名提款及其持续时间

注意:如果你有一些额外的时间,那么你可以进一步将这个函数分解成更小的函数,以减少代码行,提高可用性。更少的代码=更少的错误

#Returns an equity curve, annualized return, annualized sharpe ratio, and max drawdown
 GenerateReport  0){
 positiveTrades
用户将参数传递给的函数

接下来的两个函数是用户应该摆弄的唯一函数。

回溯测试对

当您想要对交易对(通过 CSV 文件传递的交易对)运行回溯测试时,使用回溯测试对

函数参数:

  • pair data = CSV 文件日期
  • 平均值=用于计算分布平均值的观察次数。
  • 滑点=充当经纪和滑点的基点数量
  • adfTest =布尔值—如果回溯测试应该测试协整
  • Critical Value = ADF 测试中用于测试协整的临界值
  • generateReport =布尔值-如果必须生成报告
#The function that will be called by the user to backtest a pair
 BacktestPair  130){
 begin = mean){
 #Generate Row values
 pairData
回溯测试组合

BacktestPortfolio 接受一个 CSV 文件向量,然后生成一个权重相等的投资组合。

函数参数:

  • names = CSV 文件名的原子向量,例如:c('DsyLib.csv ‘,’ OldSanlam.csv ')
  • 平均值=用于计算分布平均值的观察次数。
  • 杠杆=你想在投资组合中应用多少杠杆
#An equally weighted portfolio of shares
 BacktestPortfolio

运行回溯测试

现在我们可以开始使用我们的代码测试策略了。

JSE 的纯套利

当开始这个项目时,主要关注的是使用统计套利来寻找共同整合的股票对,然后进行交易,但是,我很快意识到,可以使用相同的代码来交易在同一交易所既有其主要上市又有其次要上市的股票。

如果两个上市都是在同一个交易所发现的,这就为纯粹的套利策略打开了大门,因为两个上市都是指同一种资产。因此,你不需要测试协整。

JSE 有两个非常明显的例子。

第一个例子 Investec

主要= Investec 有限公司:次要= Investec 有限公司

Investec 样品内测试(2005-01-01 - 2012-11-23)

测试以下参数

  • Investec 有限公司/ plc 对
  • 平均值= 35
  • 设置 adfTest = F(不测试协整)
  • x3 的杠杆作用
#Investec
 leverage

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

## [1] "Annual Returns: 0.619853087807437"
 ## [1] "Annualized Sharpe: 3.29778431709924"
 ## [1] "Max Drawdown: 0.105016628973292"
 ## From Trough To Depth Length To Trough Recovery
 ## 1 2009-03-19 2009-03-25 2009-05-04 -0.1050 28 5 23
 ## 2 2006-06-08 2006-07-13 2006-08-14 -0.0955 46 25 21
 ## 3 2008-10-03 2008-10-17 2008-10-24 -0.0887 16 11 5
 ## 4 2009-03-02 2009-03-02 2009-03-06 -0.0733 5 1 4
 ## 5 2008-10-27 2008-10-27 2008-11-05 -0.0697 8 1 7
Investec 样本外测试(2012-11-23 - 2015-11-23)

注意:如果你增加滑点,你很快就会和利润吻别。

GenerateReport.xts(investec.returns, startDate = '2012-11-23', endDate = '2015-11-23')

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

## [1] "Annual Returns: 0.1754103210963"
 ## [1] "Annualized Sharpe: 2.20385429706265"
 ## [1] "Max Drawdown: 0.0335642102186873"
 ## From Trough To Depth Length To Trough Recovery
 ## 1 2015-07-10 2015-11-13  -0.0336 96 89 NA
 ## 2 2013-06-18 2013-06-21 2013-07-01 -0.0267 10 4 6
 ## 3 2014-04-16 2014-08-13 2014-09-19 -0.0262 107 80 27
 ## 4 2015-01-20 2015-05-25 2015-06-01 -0.0258 91 86 5
 ## 5 2013-01-18 2013-01-24 2013-01-25 -0.0249 6 5 1
第二个例子蒙迪

主要= Mondi 有限公司:次要= Mondi 有限公司

蒙迪样品内测试(2008-01-01 - 2012-11-23)

测试以下参数

  • Mondi 有限公司/ plc 对
  • 平均值= 35
  • 设置 adfTest = F(不测试协整)
  • x3 的杠杆作用

世界日期

mondi.returns

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

## [1] "Annual Returns: 0.973552250431717"
 ## [1] "Annualized Sharpe: 2.88672185296756"
 ## [1] "Max Drawdown: 0.254688711989788"
 ## From Trough To Depth Length To Trough Recovery
 ## 1 2008-07-01 2008-08-01 2008-09-01 -0.2547 45 24 21
 ## 2 2009-03-11 2009-03-18 2009-04-08 -0.1906 21 6 15
 ## 3 2008-04-16 2008-06-03 2008-06-23 -0.1040 45 32 13
 ## 4 2008-09-02 2008-09-17 2008-09-18 -0.0926 13 12 1
 ## 5 2009-03-09 2009-03-09 2009-03-10 -0.0864 2 1 1
蒙迪样本外检验(2012-11-23 - 2015-11-23)

注意:在我所有的测试中,我发现我的数据越靠后,就越难从当天的数据中获利。我用当天的数据测试了同样的策略,它有更高的回报。

GenerateReport.xts(mondi.returns, startDate = '2012-11-23', endDate = '2015-11-23')

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

## [1] "Annual Returns: 0.0809094579019469"
 ## [1] "Annualized Sharpe: 1.25785312960412"
 ## [1] "Max Drawdown: 0.0385234269750542"
 ## From Trough To Depth Length To Trough Recovery
 ## 1 2013-12-19 2014-10-13 2015-01-26 -0.0385 273 202 71
 ## 2 2015-06-05 2015-08-14  -0.0313 120 49 NA
 ## 3 2015-01-27 2015-04-22 2015-04-28 -0.0245 63 60 3
 ## 4 2013-05-29 2013-05-30 2013-06-14 -0.0179 13 2 11
 ## 5 2013-11-08 2013-11-18 2013-12-18 -0.0175 28 7 21

JSE 的统计套利

接下来,我们将看一看配对交易策略。

通常,一对包含 2 个部分,它们是:

  • 分享一个市场领域
  • 有相似的市值
  • 相似的商业模式和客户
  • 是相互整合的

在下面的所有投资组合中,我使用 3 倍杠杆

建筑组合
入样测试(2005-01-01 - 2012-11-01)
names

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

[1] "Annual Returns: 0.0848959306632411"
 ## [1] "Annualized Sharpe: 0.733688101181479"
 ## [1] "Max Drawdown: 0.193914686702112"
 ## From Trough To Depth Length To Trough Recovery
 ## 1 2008-05-19 2008-07-08 2008-11-03 -0.1939 119 36 83
 ## 2 2008-11-04 2008-12-03 2009-06-29 -0.1345 160 22 138
 ## 3 2006-08-25 2007-12-19 2008-02-19 -0.1272 372 331 41
 ## 4 2009-08-04 2009-10-01 2009-11-10 -0.0701 69 41 28
 ## 5 2009-11-25 2010-03-10 2010-09-29 -0.0486 211 73 138
样本外检验(2012-11-23 - 2015-11-23)
GenerateReport.xts(ReturnSeries, startDate = '2012-11-23', endDate = '2015-11-23')

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

## [1] "Annual Returns: 0.0159094762396512"
 ## [1] "Annualized Sharpe: 0.268766025866724"
 ## [1] "Max Drawdown: 0.0741426720423424"
 ## From Trough To Depth Length To Trough Recovery
 ## 1 2013-08-05 2013-09-06 2014-11-17 -0.0741 322 24 298
 ## 2 2014-11-20 2015-01-29  -0.0737 253 47 NA
 ## 3 2012-11-30 2013-04-23 2013-05-02 -0.0129 102 96 6
 ## 4 2013-06-10 2013-06-13 2013-06-24 -0.0100 10 4 6
 ## 5 2013-05-03 2013-05-03 2013-06-04 -0.0050 23 1 22
保险组合
入样测试(2005-01-01 - 2012-11-01)
names

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

## [1] "Annual Returns: 0.110600985165525"
 ## [1] "Annualized Sharpe: 0.791920916349154"
 ## [1] "Max Drawdown: 0.233251846760865"
 ## From Trough To Depth Length To Trough Recovery
 ## 1 2005-05-26 2005-10-14 2006-08-31 -0.2333 318 100 218
 ## 2 2008-10-15 2008-12-05 2009-04-30 -0.1513 134 38 96
 ## 3 2009-06-10 2009-12-10 2010-01-29 -0.1223 162 129 33
 ## 4 2011-10-04 2012-10-09  -0.0991 267 249 NA
 ## 5 2006-11-08 2007-12-11 2007-12-14 -0.0894 277 274 3
样本外检验(2012-11-23 - 2015-11-23)
GenerateReport.xts(ReturnSeries, startDate = '2012-11-23', endDate = '2015-11-23')

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

## [1] "Annual Returns: -0.0265926093350092"
 ## [1] "Annualized Sharpe: -0.319582293135835"
 ## [1] "Max Drawdown: 0.128061204573991"
 ## From Trough To Depth Length To Trough Recovery
 ## 1 2014-08-08 2015-11-20  -0.1281 326 324 NA
 ## 2 2012-11-28 2013-05-13 2013-07-31 -0.0393 167 111 56
 ## 3 2014-06-10 2014-06-26 2014-07-23 -0.0284 31 12 19
 ## 4 2013-08-01 2013-08-30 2013-09-03 -0.0255 23 21 2
 ## 5 2013-09-11 2013-10-22 2013-12-04 -0.0209 60 29 31
一般零售组合
入样测试(2005-01-01 - 2012-11-01)
names

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

## [1] "Annual Returns: 0.120956981644048"
 ## [1] "Annualized Sharpe: 1.4694780839876"
 ## [1] "Max Drawdown: 0.125406256082082"
 ## From Trough To Depth Length To Trough Recovery
 ## 1 2010-01-05 2012-01-17  -0.1254 705 504 NA
 ## 2 2008-09-29 2008-10-29 2009-02-20 -0.0690 101 23 78
 ## 3 2006-03-06 2006-05-15 2006-05-23 -0.0568 52 46 6
 ## 4 2005-07-18 2005-11-01 2005-12-06 -0.0538 101 76 25
 ## 5 2008-04-11 2008-04-29 2008-06-26 -0.0512 51 12 39
样本外检验(2012-11-23 - 2015-11-23)
GenerateReport.xts(ReturnSeries, startDate = '2012-11-23', endDate = '2015-11-23')

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

[1] "Annual Returns: -0.0171898953593881"
 ## [1] "Annualized Sharpe: -0.336265418351652"
 ## [1] "Max Drawdown: 0.0884145115767888"
 ## From Trough To Depth Length To Trough Recovery
 ## 1 2013-10-15 2015-11-11  -0.0884 528 519 NA
 ## 2 2013-03-18 2013-06-24 2013-08-12 -0.0279 100 66 34
 ## 3 2013-09-05 2013-09-06 2013-09-20 -0.0088 12 2 10
 ## 4 2013-09-23 2013-10-02 2013-10-08 -0.0049 11 7 4
 ## 5 2013-02-20 2013-02-20 2013-03-15 -0.0037 18 1 17
结论

在我所有的测试结束时,相信我——我做的测试比这份报告中的多得多,我得出的结论是,纯套利策略很有希望被用作使用真实资金的策略,但对特定行业股票组合的配对交易策略很紧张,不太可能以目前的形式用于生产。

我认为可以添加许多东西来提高性能。接下来,我将使用卡尔曼滤波器进行研究。

更上一层楼纯套利交易策略

我只发现两只股票在同一个交易所同时上市;这意味着我们不能为该战略分配大量资金,因为它会产生很大的市场影响,但是,我们可以使用多个交易所,并增加使用的股票数量。

关于配对交易策略的更多信息
  1. ADF 测试中使用的观测值数量很大。问题是,必须进行协整检验,才能提出统计套利的要求,然而,通过使用 120、90 和 60 作为三个检验的参数,很难找到符合标准的配对,并且在不久的将来会以这种形式继续下去。(卡尔曼滤波在这里可能有用)
  2. 我没有花太多时间去改变不同的参数,比如平均值计算中的观察次数。(这需要进一步探索)
  3. 从上述行业投资组合中,我们可以看到,最初几年是非常有利可图的,但随着时间的推移,回报越来越低。我和业内的一些人以及我在开普敦大学做 stat arb 项目的朋友聊过,当地的传说是,2009 年高盛打开了他们的 stat arb 包,关于 JSE 上市的证券。
  4. 同样的情况也出现在其他投资组合中,我没有把它们包括在这个报告中,但是它们在 R 代码文件中。
  5. 我认为,这是由于大型机构使用相同的面包和黄油策略。你会注意到(如果你花足够的时间测试所有的策略),在 2009 年,数据似乎突然转向低回报。
  6. 我觉得我使用的日末数据限制了我,如果我用日内数据测试策略,利润会更高。(我对 Mondi 的日内数据进行了一次测试,结果要高得多,但我仍要对行业投资组合进行测试)
  7. 这是一种更简单的统计套利策略,我相信,如果我们改进计算价差的方法,并改变一些进场和出场规则,这种策略将变得更有利可图。

如果你看到了这篇文章的结尾,我感谢你,并希望它能增加一些价值。这是我第一次使用 Github,所以我很期待看到这个项目是否有新的贡献者。

Github 资源库:https://github . com/jackal 08/quantin STI-Final-Project-Statistical-Arbitrage

在这篇关于算法交易策略范例的文章中阅读其他策略。如果你想学习算法交易,那么点击这里

更新 - 我们注意到一些用户在从雅虎和谷歌金融平台下载市场数据时面临挑战。如果你正在寻找市场数据的替代来源,你可以使用 Quandl 来获得同样的信息。**

EPAT,匡特拉或两者兼而有之!你应该学什么,为什么?

原文:https://blog.quantinsti.com/epat-quantra/

查尼卡·塔卡

QuantInsti 提供广泛的课程,它明白你需要知道 EPAT 和 Quantra 课程到底提供什么,以及它们之间的区别。

在为自己寻找最佳课程时,可能会有几个问题,如参加特定课程的好处、与位置相关的查询、学习平台的类型等等。

在这篇文章中,我们旨在消除所有的困惑,并提供几乎所有必要的答案,使您的决定更容易。

本文涵盖:

什么是 EPAT?

EPAT 是一个为期 6 个月的综合虚拟课堂项目,涵盖算法交易的基本模块,例如:

  • 市场微观结构
  • 金融工具
  • 统计数字
  • 数据分析
  • 证券管理
  • Python/Matlab/Excel 编码基础
  • 机器学习的使用
  • 交易、技术、基础设施和运营
  • 实时交易策略构建

市场微观结构

它是对金融市场的研究,主要是关于它们是如何运作和发挥作用的。在本模块中,你将学习所有关于金融市场的知识。

金融工具

金融工具,如期权、期货、远期等。都包括在 EPAT 方案中。你可以学习所有关于这些金融工具的交易。

统计数据

通过这个模块,你将能够学习在算法交易中使用统计信息建立量化策略。

Python 中的数据分析和建模

这个模块将有助于在实时交易环境中使用 Python 实现面向对象编程等概念。

投资组合管理和风险优化

本模块研究风险管理和投资组合优化。因此,它有助于识别和管理不同策略中涉及的风险。

Python/Matlab/Excel 编码基础

算法交易的关键之一是回溯测试你的策略,你需要一定的编程技能。本模块将帮助你理解编写和回溯测试交易策略所需的 Python 概念的应用。

使用机器学习

本模块帮助您在实时交易环境中实施交易策略。机器学习模型,如逻辑回归、支持向量机等。包含在本模块中。

交易技术、基础设施和运营

这个模块帮助你了解算法交易的需求、要求、优势和应用。此外,您还需要了解基础设施的要求,如硬件、网络等。以及在启动 algo 交易台时的业务环境。

实时交易策略构建

本模块旨在帮助您了解在实时交易环境中如何实施您的策略,并将向您介绍使用 Python 编程语言的互动经纪人等平台。

在 EPAT 项目工作中,你在指定导师的指导下从零开始建立自己的战略。您总共将获得 300 多个小时的学习材料、100 多个小时的现场讲座、41 场讲座、来自 7 个国家的 19 名教师和来自 70 多个国家的参与者,最后还将获得 Prometric 的认证。你可以和老师互动,并获得所有疑问所需的帮助。此外,EPAT 还提供实习、职位安排和开设交易平台方面的支持。

QuantInsti 算法交易的高管课程是为希望在该领域发展或计划在算法和量化交易领域开始职业生涯的专业人士设计的。本课程以监考考试结束,完成本课程后,您将获得终身访问和支持,在整个过程中随时为您提供帮助。

它通过专注于衍生品、量化交易、电子做市或交易相关技术和风险管理,激励传统交易者走向成功的算法交易生涯。

接下来,我们将了解什么是 Quantra。

什么是 Quantra?

Quantra 是 QuantInsti 的一个电子学习门户网站,专门提供算法&量化交易的短期课程。Quantra 提供小型自定进度和自学课程,包括视频、音频、文档、演示、python 笔记本、多项选择问题和高度互动的练习。Quantra 平台上有 30 多门课程,10 位作者,200 小时的培训材料,包括 30 小时的视频和 pdf 形式的免费培训材料。每一项都可以在一两天内完成。此外,Quantra 有专业知识,即 NLP(自然语言处理)和强化学习。此外,还教授了不同主题的 Python 语言编码,并提供了一些提示和解决方案来帮助您练习这些代码。学习交易策略有一些特别之处,从一行代码开始,一步一步来!

你可以通过实时交易帮助来体验教学技巧,让你掌握重要的概念。

https://www.youtube.com/embed/0dcrrB6Ivmc

此外,它为您提供了无与伦比的实际动手学习体验,使您能够轻松地学习和实施复杂的概念。

Quantra 上最好的学习途径是:

  • 面向所有人的算法交易
  • 金融市场中的机器学习和深度学习
  • 使用 Python 进行自动交易
  • 高级算法交易策略
  • 股票市场:自动化交易
  • 期权交易:定量方法
  • 交易中的情绪分析

人人算法交易

本学习课程有助于学习不同的交易策略,包括日交易、机器学习、ARIMA、GARCH,以及在交易中使用期权定价模型。这些课程对于想要学习和使用 Python 进行交易的交易者和量化分析师来说是完美的。

金融市场中的机器学习和深度学习

对于那些对机器学习及其在交易中的应用感兴趣的人来说,这是一个强烈推荐的途径。从简单的逻辑回归模型到复杂的 LSTM 模型,这些课程非常适合初学者和专家。通过这些课程,您将学习调整超参数、梯度推进、集成方法和高级技术,从而构建稳健的预测模型。

利用 Python 自动交易

该学习课程是一个完整的端到端学习计划,旨在在实时市场中实施流行的算法交易技术,用于日交易和低频交易。如果你想增加你的投资组合,并在你的交易中包括历史数据回溯测试和纪律,这个学习路线是强烈推荐给你的。

高级算法交易策略

对于想通过统计分析改善交易结果的交易者来说,这条路线是最好的。它包括一系列课程,在这些课程中,你将学习 30 多种新策略,如动量、均值回归、指数套利、多空、突破、季节性交易策略和投资组合管理。此外,您还可以通过本专题的课程获得 Python 和实时交易可部署模型的实践培训。

股票市场:自动交易

如果你是一名交易者,希望运用量化技术来改善和自动化你在股票市场的交易,那么这是一条适合你的学习路线。学习使用 25 种以上的交易策略,包括日交易策略、机器学习、量化技术、卖空、投资组合管理以及本课程中的更多内容。

期权交易:量化进场

通过本学习路线中的课程,您将学会创建期权定价模型、期权希腊模型和各种策略,如离差交易、情绪交易、箱式策略和日历价差。使用 ARIMA 和 GARCH 模型,机器学习技术和动量交易策略

交易中的情绪分析

通过本学习课程,学习使用机器学习技术量化新闻和推文中表达的人类情感。完成本学习课程后,您将能够使用情绪指标和情绪得分来制定交易策略。此外,您将学习在现场交易中实现同样的功能。这是强烈推荐给想利用其他数据来源的交易者的。

让我们向前看,找出每个方案的课程。

课程

每个项目的结构都因其向学生提供的学习类型而异。虽然你可以选择两者中的任何一个,即 EPAT 或任何 Quantra 的课程(或学习课程),如果你是算法交易领域的新手,你可以先从 Quantra 选择初学者课程,然后再转移到 EPAT。

好吧!让我们看看这个结构,它将帮助你更好地理解这些概念。

EPAT

算法交易执行程序(EPAT)以循序渐进的方式帮助学生,如下所示:

  • 学问
  • (使)自动化
  • 贸易

此外,这是一个为期六个月的在线部分时间制课程,在课程中,您可以接触到以下概念:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

上述模块提供了对统计、Python、市场微观结构等概念的全面了解。此外,最后,你将利用动手项目,在指定导师的帮助下,你将能够从零开始建立自己的交易策略。之后,举行一次考试,这是为了帮助你确定你对这些概念的理解程度。

Quantra

Quantra 提供学习课程,每个课程下都有各种课程。一旦你进入这个页面,你就可以选择你的学习目标,根据这个目标,你将会被推荐相关的课程。

下面你可以看到如何根据你的学习目标找到最适合你的学习路线:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

现在让我们来看看是什么让我们与其他在线课程区分开来。

什么是独特?

EPAT 和 Quantra 课程都是互补的课程,为您提供显著的好处。作为一名初学者,你可以选择 Quantra 上 learning tracks 下的初学者课程,如面向所有人的算法交易,然后搬到 EPAT。

有了 Quantra,你可能以前从未编写过代码,或者从未创建过任何交易策略,你可以从基础课程开始,然后继续学习高级课程。由于存在学习曲线,我们建议您致力于学习,并定期练习本课程中提供的实践学习练习。Quantra 与 Ernest P. Chan 博士、Laurent Bernut、NSE Academy、FXCM、Thomas Starke 博士和其他作者合作,确保从专家那里获得知识。

由于 EPAT 和 Quantra 都有自己独特的方式,我们在这里提出了这些要点,帮助您了解这两个项目提供的内容。接下来,这里列出了每种方式的独特之处:

EPAT

在 QuantInsti,我们意识到需要为个人提供动力,以利用这种大规模的算法交易。这催生了算法交易的高管课程(EPAT)。

行业专家、中坚分子、学者、交易员和市场从业者都加入了我们的教师队伍。我们与 Ernest Chan 博士、Gautam Mitra 博士、Rajib R. Borah 博士、Yves Hilpisch 博士、Euan Sinclair 博士和其他知名人士的联系为所有与会者提供了一个全球性的机会,并要求他们参加专门的客座讲座和活动。

我们的 EPAT 课程是专门设计的,以确保在短短的 6 个月内,为学生们讲述成为算法交易员的最重要的话题。EPAT 课程的每一个主题都一步一步地为你提供必要的知识,帮助你实现交易策略的自动化。

现在,为了讨论 EPAT 的独特之处,我们为您准备了一份列表,内容如下:

  • 专职支持经理和终身支持/学习
  • 职业细胞
  • 现场讲座
  • 校友社区
  • 独家客座演讲
  • 行业认知概念
  • 向从业者学习经验的平台

专职支持经理和终身支持/学习

有了 EPAT,你将得到一个专门的支持经理,他将指导你完成整个学习过程,并帮助你解决你对编程、策略、平台以及最终对量化和算法交易的理论和实践的所有疑问。

职业单元格

Career cell 为来自世界各地的 EPATians 人带来最好的 Algo 和 Quant 交易工作机会。他们还协助面试准备和简历建设。下面你可以看到 EPAT-伊恩的逐步旅程:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们为您提供校友支持,并帮助您快速安置,因为安置从批次开始就可用,而不仅仅是在完成您的 EPAT 课程之后。

现场讲座和讲座录音

有了我们的现场讲座,你会感到与在教室里由讲师面对面授课时类似的舒适。此外,对于您的所有疑问,我们有一个专门的积极支持团队,以便您的所有疑问都能在社区支持中得到解答。此外,我们还提供讲座录音设备,以便您可以录制讲座,并在有时间时观看。

如果您需要关于某个概念的进一步帮助,我们的主题专家也会与您通话,以确保您对答案感到满意,并尽快获得您的支持。

校友社区

EPAT 的校友社区将帮助您在任何与职业援助和培训相关的课程后获得联系,或获得最新 EPAT 内容的提示。作为校友网络特权的一部分,我们还为校友提供 Quantra 和 Blueshift 门户网站的特别折扣。

嘉宾讲座独家

通过遍布 155 个以上国家的 quants 和 algo 交易者全球网络,我们为您提供独家客座讲座。这些客座演讲由行业中坚分子主讲,为你未来的努力提供最好的知识。

行业认可

一旦你参加了 EPAT 课程,你在未来的日子里,你在这个行业的所有经历和进步都会得到行业的认可。因为你熟悉了算法交易的核心知识,这是一个巨大的进步。

学习从业者经验的平台

EPAT 是一个平台,在这里你将从许多从业者和他们的经验中获得知识。我们来自全球各地的从业者可以帮助你接触到算法交易方面的世界最佳实践。再者,学习算法交易策略和技术后,可以练习现场交易。

此外,我们很自豪能够满足具有不同要求和偏好的学生的不同需求,以下是对其中一个 EPATians 的引用:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Quantra

Quantra 课程是专为满足您的需求而设计的学习课程。每条学习路线都包含从基础到高级的课程。这样,你就可以在每个宽泛的概念下获得一套课程。

例如,大家都知道的算法交易的学习路线由以下课程组成,这些课程需要一步一步地完成,以结合概念方面的知识。建议的课程从基础水平开始,到初级水平,最后到中级水平。

以下是其中一个学习项目的简介:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Quantra 课程的一些独特之处如下:

  • 可用的专业
  • 实时市场中的实施
  • 按照您自己的进度完成

可用专业

提供专业的学习轨道和课程,如高级算法交易策略自然语言处理机器学习和金融市场深度学习

有了这些特殊的平台,你可以利用统计分析和机器学习在交易中的重要性。

在实时市场中实施

完成选定的 Quantra 课程后,您可以开始实时交易实施。当你学习实施实时交易的策略时,你可以应用你喜欢的实时交易方法。

按照自己的节奏完成

有了 Quantra 课程,您将不再受讲座或培训的束缚,并且可以随时重新开始学习。此外,没有时间限制,因此,它允许您按照自己的进度完成课程。

在此视频中了解更多关于 Quantra 课程的信息和学习体验:

https://www.youtube.com/embed/E6waVks18s0?feature=oembed

此外,让我们找出什么是最适合你的,取决于各种因素。

什么对你最好?

由于 EPAT 和 Quantra 都为您提供涵盖所有重要概念的“全面知识传授”课程,我们愿意帮助您决定最适合您的课程。根据各种因素,我们列出了以下几点:

选择 EPAT 如果:

  • 你需要 6 个月的全面培训
  • 你想获得最大的接触和知识
  • 您需要在完成课程后获得支持,以便在自己的实践中实施
  • 您希望与我们的专家保持联系,以获得讲座后任何问题的答案,以及在课程期间您是否需要通过专门的支持经理获得持续支持
  • 你觉得与教员交流有助于你更好地获取知识
  • 您想要探索广泛的安置合作伙伴,因为我们有 150 多个安置合作伙伴为您提供最佳安置
  • 你是一个坚定的学习者,想要从学习中获得最大的收获

选择 Quantra,如果:

  • 您正在寻找一个贸易领域的专业化,如金融市场中的机器学习实现和自然语言处理及其实现
  • 你不想受时间的限制,希望按照自己的进度完成课程
  • 你希望练习 Python 及其在交易中的应用
  • 你希望你的交易策略在交易平台上实现自动化
  • 你至少对金融市场有基本的了解
  • 你更喜欢自学

观看这个来自纽约的 EPATian 人和 Quantra 课程的热心学生 Kevin Gaughan 先生的锁定故事,了解他的经历:

https://www.youtube.com/embed/aTqXuvjP5A0?feature=oembed

此外,你可以浏览 EPAT 和 Quantra 课程的快速对比分析。

对比表- EPAT 和 Quantra

| 课程特色 | EPAT | Quantra |
| 课程设置 | 40 多场现场讲座 | 30 多门课程 |
| 课程持续时间 | 6 个月 | 每个课程都有自己的持续时间 |
| 按照自己的进度学习 | 不 | 是 |
| 学习类型 | 混合或混合学习实践 | 自学习 |
| 综合性 | 为期 6 个月的结构化课程 | 选修课程的学习路线 |
| 选择特定的主题 | 不 | 是 |
| 能力 | 15 名以上的教员 | 10 位作者 |
| 兼职 | 是 | 取决于你自己的步伐 |
| 现场讲座 | 是 | 不 |
| 演讲录音 | 是 | 不 |
| 验证认证 | 是 | 是 |
| 教员互动 | 是 | 不 |
| 职业援助 | 是 | 不 |
| 终身社区支持 | 是 | 是 |
| 指导项目工作 | 是 | 不 |

结论

在 QuantInsti 提供的所有课程中,我们旨在为您提供 EPAT 和 Quantra 课程的简要概述,以及它们如何为您带来益处。根据他们自己的背景和专业,这两个项目都是专门为帮助学生学习自动交易而设计的。

由于我们的学生从初学者到专业交易者都有,我们把课程分开了,也就是说,EPAT 是为寻找定量观点和自动交易策略的经验丰富的交易者准备的。

另一方面,Quantra 的课程设计有最适合所有人的学习路线,这取决于您想要选择的速度。对于初学者来说,有一些课程会给出这个主题的详细知识,如果你是专业人士,你可以跳过初学者的课程,甚至在相同的学习轨道上学习高级课程。Quantra 的课程将通过互动功能让您按照自己的节奏学习。

免责声明:本文中提供的所有数据和信息仅供参考。QuantInsti 对本文中任何信息的准确性、完整性、现时性、适用性或有效性不做任何陈述,也不对这些信息中的任何错误、遗漏或延迟或因其显示或使用而导致的任何损失、伤害或损害承担任何责任。所有信息均按原样提供。

EPAT 先睹为快讲座-如何优化交易策略?

原文:https://blog.quantinsti.com/epat-sneak-peek-lecture-27-february-2020/

2020 年 2 月 27 日星期四

东部时间上午 8:00 | IST 时间下午 6:30 |新加坡时间晚上 9:00


https://www.youtube.com/embed/sme-4-VsD04?rel=0


我们已经收到了许多感兴趣的个人的请求,他们想要一个简短的想法或者一个演示讲座,来感受一下典型的 EPAT 讲座。虽然一堂课可能不会给你整个综合课程和 6 个月的时间的确切指示,但它肯定为探索一个有代表性的会议打开了一扇窗。

本次会议将满足的问题

  • 战略之旅是怎样的?
  • 如何优化策略以获得更好的回报?
  • 如何创建更安全的策略?
  • EPAT 的内容提示

会议大纲

  • 将战略概念化
  • 创建战略模型
  • 把它带到一个平台上进行回溯测试
  • 策略优化
  • 在模拟环境中执行

关于演讲者

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Prodipta Ghosh(QuantInsti 副总裁)

Prodipta 领导 QuantInsti 的 Fin-tech 产品和平台开发。

他在银行业工作了十多年,在孟买和伦敦的德意志银行的交易和结构部门担任过各种职务,并在渣打银行担任企业银行家。在此之前,Prodipta 作为科学家在印度国防 R&D 组织(DRDO)工作。

他毕业于 Jadavpur 大学,获得机械工程学士学位,并拥有 IIM 勒克瑙大学的管理学研究生学位。

简报

您可以点击此处查看本次网络研讨会的 powerpoint 演示文稿:

https://www.slideshare.net/slideshow/embed_code/key/kTbpXYrigwkhZm

EPAT Sneak Peek Lecture - How to Optimize a Trading Strategy with Prodipta Ghosh from QuantInsti


QuantInsti GitHub 上可用的代码文件:

  • opening_range_base.py
  • opening_range_optimized.py
  • 2020 02 27 _ 深 _ 潜。稀有
  • 2020 02 27 _ EPAT _ 交易 _ 策略. pdf

EPAT 如何帮助德布杜塔成为一名量化分析师

原文:https://blog.quantinsti.com/epat-success-story-debdutta/

现在,交易者知识的一个关键部分是他的交易软件,这是千真万确的。尤其是在毫秒到微秒的算法交易中。

它需要市场知识、股票意识、外汇、策略、期货、图表、数据分析、指标等。全面了解整个行业。然而,程序、算法和策略等的创建。是算法交易的核心。

然而,问题依然存在:怎么做?

最好的方法是学习、教育和训练自己算法交易。从 Debdutta,一个认证的 EPATian 和一个经验丰富的专业人士那里学习真的很棒。

让我们看看他对自己的旅程有什么看法,这段旅程让他在算法交易领域与量化分析师齐名。

告诉我们你自己的情况

大家好,我是 Debdutta Bhattacharya,摩根大通信贷风险和金融副总裁。在学术上,我有电气工程学士学位。Kolkata Jadavpur 大学毕业,美国 Clemson 大学电子和计算机工程硕士,专攻神经网络。

在参加算法交易(EPAT)高管课程之前,你有什么工作经验?

以前,我忙于设计与贷款资格预审、信贷风险分析、信贷和决策、分布式信息和财务报告相关的软件系统。我有交易股票、期权和指数期货的经验。

是什么促使你改变你的领域?

从事定向交易多年后,我明白了交易的成功不在于工具方向正确,而在于识别和交易具有统计优势的机会。QuantInsti 教会了我寻找这些机会的工具和利用这些机会的策略

要成为量化分析师,你必须面对哪些障碍?

最大的挑战是学会从概率的角度思考市场及其交易。接下来是通过持续验证对方法的信任。EPAT 的课程提供了理论和实践的良好结合,为学生建立黄金时间市场行动所必需的基础知识和技能。

EPAT 是如何帮助你的?

EPAT 教了我分析工具、交易策略和测试策略表现的回溯测试方法。EPAT 还提倡独立思考,并提供咨询来评估我自己的策略。所有这些学习和鼓励让我今年战胜了市场。教育是有回报的,我希望通过对我的交易理念进行勤奋的回溯测试来保持我的盈利能力。

到目前为止,你成为 Algo Trading 一员的经历如何?

EPAT 的课程与众不同。理论和实践的独特融合培养了必要的敏锐度,让我们能够满怀信心地与市场展开辩论。最重要的是,学生们从这个项目中得到了一些合理的策略,他们可以马上采用。

你的新技能对你的职业生涯有什么贡献?

当一个人开始从概率的角度看世界,并意识到虽然他能控制的很少,但他的成功取决于他找到具有统计优势的高概率机会的能力。他思维过程中的这种范式转变打开了一个机会的彩虹,他可以评估这些机会,并在尽职调查后,最终满怀信心地聘用这些机会。这是 EPAT 方案的无价之宝。

那么,下一步是什么?

我的目标是建立一个成功的全职交易业务。为此,我正在构建内置风险管理的算法,这种算法允许我进行规模化交易,并扩大仓位。另一方面,我想帮助建立一个交易教育课程,直接从市场上最好的交易者的实时经验中吸取经验。

有什么给有抱负的量化分析师的信息吗?

交易的成功取决于一个人用统计优势发现机会的能力。学习定量分析的工具和技术。EPAT 项目提供了优秀的课程,EPAT 校友的支持会给你必要的鼓励,让你一路走下去。最重要的是要记住,没有什么比创造自己的自动化策略更令人高兴的了,看着你的创造成功地在市场中导航。

结论

最近报道称,像花旗银行这样的公司发现雇佣程序员和编码员并对他们进行交易领域的培训变得更加容易。他们的经验和技能让他们对交易有了全面的了解。对于所有希望成为算法和量化交易一员的有抱负的量化分析师来说,Debutta 是一个灵感和理想。你也能做到。

下一步

如果有任何学习可以指导你在这方面走上正确的道路,请随时查看算法交易 (EPAT)的高管课程。你也可以在这里联系我们。帮助我们帮助你。

EPAT 教你成为成功交易者所需的技能。它涵盖了统计与计量经济学、金融计算与技术、算法与量化交易等培训模块。立即注册开始你的算法交易生涯。

免责声明:为了帮助那些考虑从事算法和量化交易的人,这个案例研究是根据一个学生或 QuantInsti 的 EPAT 项目的校友的个人经历整理的。案例研究仅用于说明目的,并不意味着用于投资目的。EPAT 项目完成后所取得的成果对所有人来说可能并不一致。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值