思考“人工智能革命”更像是印刷术还是加密货币。(剧透:两者都不是。)
https://medium.com/@s.kirmer?source=post_page---byline--16ed5b6877aa--------------------------------https://towardsdatascience.com/?source=post_page---byline--16ed5b6877aa-------------------------------- Stephanie Kirmer
·发布于Towards Data Science ·10 分钟阅读·2024 年 4 月 17 日
–
图片由Daniele Levis Pelusi提供,发布在Unsplash
我不是第一个坐下来真正思考人工智能的到来对我们世界意味着什么的人,但这是一个我仍然看到人们在提问和讨论的问题。然而,我认为大多数这些对话似乎都忽视了关键因素。
在开始之前,允许我给你讲三个小故事,这些故事展示了最近塑造我思考的关于这个问题的不同方面。
-
最近,我和我的财务顾问进行了一次对话。他提到,他所在机构的高层正在传播一个观点,认为人工智能是经济领域的重大变化,投资策略应该把它看作是革命性的,而不仅仅是一个炒作周期或昙花一现。他想知道我作为机器学习行业的从业者有什么看法。我告诉他,正如我之前对朋友和读者所说的,人工智能的炒作过于夸大,我们仍然在等待看到其中哪些是真实的。炒作周期仍在继续。
-
本周,我还听了《技术不会拯救我们》关于技术新闻和卡拉·斯威舍的这一集。 嘉宾 Edward Ongweso Jr.提到,他认为斯威舍有一个模式,就是在新技术刚出现时会显得非常轻信,但当这些新技术证明并不像承诺的那样令人印象深刻或革命性时,她就会改变立场(比如自动驾驶汽车和加密货币)。他认为这个现象再次发生了,这次是关于人工智能的。
-
我和我的伙伴都从事技术工作,经常讨论科技新闻。他曾经提到过一个现象:当某个特定的专家或技术思想家讨论的主题是你不太了解的领域时,你会觉得他们有非常深刻的见解,但当他们开始谈论你熟悉的领域时,你突然意识到他们的观点是完全错误的。你会回过头来想,“我知道他们在这个问题上是错的,那他们之前说的那些话也许也错了?”最近,我在机器学习这一主题上偶尔也会有这样的体验。
很难知道新技术如何最终发展,以及它们对我们社会的长期影响是什么。历史学家会告诉你,回顾过去时很容易认为“这是唯一可能的发展方式”,但实际上,在当时没有人知道接下来会发生什么,历史可能有无数种转折,任何一种转折都可能改变最终结果,其可能性与最终发生的事情一样大,甚至更大。
简而言之
人工智能不是彻底的骗局。机器学习确实为我们提供了自动化复杂任务和有效扩展的机会。AI也不会改变我们世界和经济的一切。它是一个工具,但在绝大多数情况下,它不会取代我们经济中的人类劳动。而且,AGI(通用人工智能)也不是一个现实的前景。
人工智能不是彻底的骗局。……人工智能也不会改变我们世界和经济的一切。
我为什么这么说呢?让我解释一下。
首先,我想说,机器学习相当棒。我认为,教会计算机解析那些人类自己无法真正理解的复杂模式是非常有趣的,而且它为计算机解决问题创造了大量机会。机器学习已经在各个方面影响着我们的生活,并且已经持续了很多年。当我构建一个模型,能够完成一个对人来说非常枯燥或几乎不可能完成的任务,并且这个模型被部署后能够解决同事们的问题时,那种满足感是非常强烈的。这只是生成性 AI 领域一些前沿技术的小规模版本,但它在同一个广泛的范畴下。
期望
与外行人交谈和与机器学习从业者交谈,会让你对人工智能的期待产生完全不同的理解。我以前写过关于这个话题的文章,但值得再次强调。我们期望人工智能为我们做些什么?当我们使用“人工智能”这个术语时,我们到底是什么意思?
对我来说,人工智能基本上是“使用机器学习模型来自动化任务”。就这样。 如果机器学习模型非常复杂,它可能帮助我们自动化一些复杂的任务,但即使是做相对狭窄任务的小模型,仍然是其中的一部分。我曾经详细讨论过机器学习模型真正做的事情,但简单来说:数学地解析并复制数据中的模式。所以,这意味着我们在使用模式的数学表示来自动化任务。人工智能是我们根据历史记录中的事件模式来选择接下来该做什么,无论是人们写的文本的历史,房价的历史,还是其他任何事情。
人工智能是我们根据历史记录中的事件模式来选择接下来该做什么,无论是人们写的文本的历史,房价的历史,还是其他任何事情。
然而,对许多人来说,人工智能意味着一些远比此更复杂的东西,甚至有些接近科幻的模样。在某些情况下,他们模糊了人工智能与通用人工智能(AGI)之间的界限,而在我们的讨论中,通用人工智能的定义也非常模糊。很多时候,我认为人们自己也不清楚这些术语具体意味着什么,但我感觉他们期望的是比现实所能提供的更复杂、更通用的东西。
例如,大型语言模型(LLM)理解人类语言的语法和句法,但对具体意义没有内在的概念。大型语言模型知道的所有内容都是内在的指代——“国王”对大型语言模型来说,仅仅通过它与其他词汇(如“女王”或“男人”)的关系来定义。所以,如果我们需要一个模型来帮助我们处理语言学或语义问题,那是完全可以接受的。让它为我们提供同义词,甚至为某个特定主题积累一段充满相关词汇的段落,这些词汇听起来非常符合人类的语言风格,它会做得很好。
但这与“知识”之间有着明显的区别。随便丢块石头,你就能找到一串社交媒体的讨论,讽刺 ChatGPT 总是搞错事实,时常产生幻觉。ChatGPT 不是,也永远不会是一个“产生事实的机器人”;它是一个大型语言模型。它做的是语言。知识甚至比事实更进一步,在这里,相关实体具有对事实意义的理解,以及更多的内容。按照我们当前使用的方法和技术,机器学习模型远未达到这一点,有些人称之为“通用人工智能(AGI)”。
知识甚至比事实更进一步,在这里,相关实体具有对事实意义的理解,以及更多的内容。按照我们当前使用的方法和技术,机器学习模型还远未达到这一点。
如果人们看到 ChatGPT 并期待 AGI,即某种具有与人类相当或更优理解信息或现实的机器学习模型,那是完全不现实的期望。(注:一些行业中的人会在公关中大肆宣传 AGI 即将到来,但当被问及时,他们会将 AGI 的定义退回到更简单的形式,以避免被追究他们自己的炒作。)
顺便说一下,我并不认为机器学习所做的事情和我们的模型所能做的事情属于与人类大脑运作相同的谱系。认为今天的机器学习可以导致 AGI 的观点假设人类智能是通过不断增加检测和利用模式的能力来定义的,虽然这确实是人类智能的一部分,但我并不认为这就是定义我们自己的唯一标准。
面对我对 AI 是否具有革命性的怀疑时,我的财务顾问提到了一个例子:快餐店在自驾车取餐时切换到语音识别 AI,以减少人类操作员无法理解顾客从车内说话的问题。这个例子可能很有趣,但并非启示。它是一个机器学习模型作为工具来帮助人们稍微更好地完成工作。正如我提到的,它让我们能够自动化小任务并减少一些人类劳动。然而,这并非生成性 AI 领域的独特之处!我们已经通过机器学习自动化任务并减少了十多年的人类劳动,将大语言模型(LLMs)加入其中只是程度上的不同,而非一种根本性的变化。
我们已经通过机器学习自动化任务并减少了十多年的人类劳动,将大语言模型(LLMs)加入其中只是程度上的不同,而非一种根本性的变化。
我的意思是,使用机器学习确实可以并且的确为我们在做很多事情的速度和效率上带来渐进的改善,但我们的期望应该基于对这些模型是什么以及它们不是什么的真实理解。
实际限制
你可能会认为我第一个论点是基于当前的技术能力和今天使用的训练方法,这是一个合理的观点。如果我们不断推动训练和技术,生产出越来越复杂的生成性 AI 产品呢?我们是否会达到某个时刻,创造出一些全新的东西,或许是备受推崇的“AGI”?难道天空不是无限的吗?
机器学习支持解决问题的潜力与我们实现这一潜力的能力是截然不同的。在拥有无限资源(资金、电力、芯片所需的稀土金属、人类生成的训练内容等)的情况下,我们可以通过机器学习获得一种层次的模式表示。然而,在我们所生活的真实世界中,所有这些资源都是有限的,我们已经遇到了一些资源的限制。
机器学习支持解决问题的潜力与我们实现这一潜力的能力有很大的不同。
我们已经知道多年,用于训练 LLM 的优质数据正在逐渐枯竭,而将生成的数据作为训练数据的尝试证明非常有问题。(感谢 Jathan Sadowski 发明了“哈布斯堡 AI”这一术语,指的是“一个系统过度依赖其他生成性 AI 输出进行训练,导致它成为一个近亲繁殖的变种,可能具有夸张、丑陋的特征。”)我认为还值得一提的是,我们在很多情况下辨别生成数据和有机数据的能力很差,因此我们可能甚至不知道在生成哈布斯堡 AI 的过程中,它的退化可能悄悄发生。
今天我将跳过讨论资金/能源/金属的限制,因为我计划写一篇关于 AI 对自然资源和能源影响的文章,但你可以跳转到 Verge 网站查看关于电力的精彩讨论。我想我们都知道,能源不是无限的资源,即便是可再生能源,而我们已经在为训练模型投入相当于小国的电力消耗——这些模型远未达到 AI 推销者所宣称的承诺。
我也认为,正如我之前写过的,针对 AI 公司的监管和法律挑战具有潜力,这必定会对它们能做的事情产生限制。没有任何机构应该凌驾于法律之上或没有限制,为了尝试创造 AGI 而浪费我们地球的所有自然资源将是令人憎恶的。
我的观点是,我们在理论上可以做的事情,假设有无限的银行账户、矿山和数据来源,并不等同于我们实际上能做的事情。我不认为即使没有这些限制,机器学习有可能实现 AGI,部分原因是我们训练的方式,但我知道在现实世界的条件下,我们无法实现类似的目标。
[我们在理论上可以做的事情,假设有无限的银行账户、矿山和数据来源,并不等同于我们实际上能做的事情。]
即使我们不担心 AGI,而仅仅集中精力关注我们目前实际拥有的那类模型,资源分配仍然是一个真正的关注点。正如我提到的,流行文化中所谓的 AI 其实只是“利用机器学习模型自动化任务”,这听起来并没有那么引人注目。更重要的是,这也揭示了这一工作的非统一性。AI 并不是单一的,它是遍布各地的无数小模型,插入到我们用来完成任务的工作流和管道中,这些模型都需要资源来构建、集成和维护。我们正在将大型语言模型(LLMs)作为潜在的选择,插入到这些工作流中,但这并不会让过程变得不同。
作为一个有经验的人,曾在争取商业支持、资源和时间来构建这些模型的过程中付出了努力,这并不像“我们能做到吗?”那么简单。真正的问题是“在面对竞争的优先事项和有限的资源时,这是否是正确的做法?”通常,构建一个模型并实施它来自动化任务,并不是花费公司时间和金钱的最有价值方式,许多项目最终会被搁置。
结论
机器学习及其结果非常令人振奋,它们在被妥善利用时,提供了解决问题和改善人类生活的巨大潜力。然而,这并不是新鲜事,且没有免费的午餐。机器学习在我们社会各个领域的应用将可能继续发展,就像过去十多年一样。将生成型人工智能加入工具箱,不过是一个程度上的差异。
到目前为止,AGI(通用人工智能)仍然是一个完全不同且完全虚构的存在。我甚至还没有触及是否我们希望 AGI 存在的问题,即使它有可能存在,但我认为这只是一个有趣的哲学话题,并非一个突发的威胁。(这是另一个话题,留待以后讨论。)但当有人告诉我,他们认为人工智能将在不久的将来完全改变我们的世界时,这就是我持怀疑态度的原因。机器学习可以大大帮助我们,并且已经帮助了我们很多年。像用于开发生成型人工智能的那些新技术,在某些情况下是有趣且有用的,但远不如我们被引导相信的那样,带来深远的改变。
查看我的更多作品:www.stephaniekirmer.com
参考文献
这些发明曾被认为将改变世界,但你可能从未听说过它们中的任何一个。
www.vox.com [## 7 个曾被认为是愚蠢时尚的世界改变发明
人们曾认为这些惊人的发明只是昙花一现。他们错了,错得离谱。
www.vox.com [## 我们可能会耗尽训练 AI 语言程序的数据]
1144

被折叠的 条评论
为什么被折叠?



