关于求解函数n阶导的经历

先是一道之前经常做的类型的题目

f\left ( x \right )=x\cdot \left ( x-1 \right )\cdot \left ( x-2 \right )...\left ( x-2011 \right )

f{}'\left ( x \right )=?

 首先我们可以设\left ( x-1 \right )\cdot \left ( x-2 \right )\cdot \cdot \cdot \left ( x-2011 \right )=g\left ( x \right )

这时候f\left ( x \right )=x\cdot g\left ( x \right )

我们可以进行求导f{}'\left ( x \right )=g\left ( x \right )+x\cdot g{}'\left ( x \right )      所以得出f{}'\left ( x \right )=g\left ( 0 \right )

显而易见g\left ( 0 \right )=-2011!

     得解!

再其次出现的便是他的字母题,一开始做和例一一样会设成一个新的函数,再去傻乎乎的去求导,但想到另一个点便是柳暗花明

想到其百变不离其宗,应该尤其普遍规律

直接n阶:同样也是n的阶层!

f\left ( x \right )=x\cdot \left ( x-1 \right )\cdot \left ( x-2 \right )\cdot \cdot \cdot \left ( x-2011 \right )

f\hat{2012}\left ( x \right )=?

首先f\left ( x \right )=x^{2012}+Ax^{2011}+Bx^{2010}+...+Cx其实可以根据这个题目得出C为-2011!

f{}'\left ( x \right )=2012x^{2011}+2011Ax^{2010}+.....+0

f{}''\left ( x \right )=2012\cdot 2011\cdot f\left ( x \right )+2011\cdot 2010\cdot A\cdot x^{2009}+....+0+0

如此叠加之后f\hat{2012}\left ( x \right )=2012!

我们来搜寻它的普遍规律

f\left ( x \right )=x\cdot \left ( x-1 \right )\cdot \cdot \cdot \left ( x-n \right )

f\hat{n+1}\left ( x \right )=?

f\left ( x \right )=x^{n+1}+Ax^{n}+Bx^{n-1}+...-n!

f{}'\left ( x \right )=\left ( n+1 \right )x^{n}+A\cdot n\cdot x^{n-1}....+0

f{}''\left ( x \right )=\left ( n+1 \right )\cdot \left ( n \right )\cdot x^{n-1}+A\cdot n\cdot \left ( n-1 \right )\cdot x^{n-2}+...+0+0

f\hat{n+1}\left ( x \right )=\left ( n+1 \right )!

​​​​​​​万变不离其宗,做这类题旨在寻找到它的方法并且归纳

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值