为什么银行的IT部门都远离市区?

本文解析了银行为何将IT部门置于偏远地区,探讨了成本与沟通效率间的平衡,并给出了一例关于学历验证问题的应对建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

汇总了下老王在其他平台的原创回复,欢迎关注老王原创公众号【软件老王】,关注不迷路!


1、为什么银行要把IT部门独立出来,放到一个相对偏远的工作环境呢?

出于成本的考虑?但这样做无疑又会增加与业务部门沟通的成本.。

老王观点如下

(1)其实这个情况是非常常见的,银行和保险一脉相称,上海的银行和保险的IT部门汇集地在唐镇,这里汇集了几十万的IT人,13,14年那会地铁都没有,公交车只有一班,大部分银行保险都是派班车,去张江高科地铁站,接送员工上下班;

(2)最基本的一个逻辑是,在银行或者保险公司,IT部门是一个成本部门,简单说就是一个服务部门,需要银行或者保险赚取的利润来养活这个部门,然后IT部门提供服务,来帮忙银行提升业务竞争力;

(3)银行或者保险的IT部门不需要直接对接大众客户,服务的对象一般是银行内勤人员,相对固定,一般一个IT项目,业务部门会有一个对接人,他负责收集业务部门需求,IT部门也有一个对接人,他们两个对接就可以了,不用所有人员都直接一对一,这样大家先内部沟通好,一是保证沟通效率,二是大家业务需求达成一致;

(4)所以总的来说,就是出于成本考虑,相对来说,办公地点不一致,沟通成本可能有所升高,但相对整个IT研发部门,在偏远一点的地方,成本还是会低出来很多的。

最后,祝好运,我是软件老王,关注不迷路!

2、在一个公司做了3个月了,人事突然查我的学历,学信网查不到,认为是假的,我该如何和领导解释?

老王观点如下

(1)首先说一点,学信网是一个政府开设的、权威的学历查询平台,假如你的学历查不到,要么你学历确实有问题,要么学信网出故障了,大概率是你的学历确实有问题,建议先自己想想学历到底怎么来的?

(2)假如自认为学历确实没问题,可能是学校那边或者学信网出故障了,建议尽快联系学校或者学信网,同时跟公司说明情况,最好同时提供其他相关证明;

(3)同时说一下,公司做得没错,正常情况来说,假如学信网上查不到,基本就可以断定,学历是假的,不排除你上了个假学校的可能;

(4)假如啊,说假如,你学历就是通过特殊途径获取的,建议跟公司说明情况,看能否留下,态度诚恳一些,也许还是有机会的。

最后,祝一切顺利,我是软件老王,关注不迷路!


你们觉得呢?朋友们!


更多信息请关注公众号:「软件老王」,关注不迷路,软件老王和他的IT朋友们,分享一些他们的技术见解和生活故事。
在这里插入图片描述

<think>我们被要求解释潮汐摩擦如何导致月球逐渐远离地球的机制。需要基于网络搜索的结果来整合答案。重点在于潮汐摩擦的能量转移和角动量守恒原理。关键点:1.地球的自转速度比月球公转速度快(地球自转周期24小时,月球公转周期27.3天),导致地球上的潮汐隆起被地球自转带动着超前于月球的位置。2.这个超前的潮汐隆起对月球施加了一个引力拖拽,这个引力有一个分量沿着月球公转方向,因此给月球加速,使得月球轨道升高(即远离地球)。3.同时,月球对地球潮汐隆起的引力拖拽会减慢地球的自转速度(潮汐摩擦消耗地球自转能量)。4.这个过程符合角动量守恒:地球自转角动量的减少转移给了月球的轨道角动量,使得月球远离。根据搜索,我们可以得到以下详细机制:步骤1:潮汐隆起的形成与偏移月球引力在地球上产生潮汐隆起。由于地球自转速度比月球公转速度快,潮汐隆起的位置会超前于地球与月球的连线(大约3°左右)。这是因为地球自转带动海水转动,而海水的粘性和摩擦导致隆起不能立即响应月球位置变化。步骤2:引力拖拽作用超前的潮汐隆起对月球产生一个额外的引力,这个引力可以分解为两个分量:一个是指向地球中心的径向分量,另一个是沿月球公转方向的切向分量。切向分量对月球产生加速作用,相当于给月球施加了一个力矩,使得月球在轨道上加速。步骤3:轨道升高原理根据天体力学,当卫星在轨道上被加速时,它会向更高的轨道转移(轨道半径增大)。这是因为加速导致动能增加,而轨道升高会使势能增加更多,从而总能量增加(在引力束缚系统中,更高的轨道对应更大的轨道半径和更慢的运行速度,但总能量是增加的)。具体来说,月球获得的能量使其轨道逐渐扩大,每年远离地球约3.8厘米。步骤4:地球自转减速根据牛顿第三定律,月球对潮汐隆起也有引力作用,而潮汐隆起(由于地球自转)超前的位置会受到月球引力的反向拖拽,这个拖拽力会减缓地球的自转速度。因此,地球的自转周期逐渐变长(每天变长约2.3毫秒)。步骤5:角动量守恒整个系统的角动量守恒。地球自转角动量的减少等于月球轨道角动量的增加。地球自转角动量减少表现为自转减慢,月球轨道角动量增加表现为轨道半径增大。角动量转移的定量关系为:$$L_{earth}+L_{moon}=\text{常量}$$其中,地球自转角动量$L_{earth}=I\omega$(I为地球转动惯量,ω为自转角速度),月球轨道角动量$L_{moon}=m\sqrt{GMr}$(m为月球质量,M为地球质量,r为地月距离)。公式补充:潮汐摩擦导致的能量耗散率与地球自转减慢的关系,以及月球远离的速度可以通过以下近似公式描述:$$\frac{dr}{dt}=k\frac{T_{earth}}{T_{moon}}r$$其中k是与潮汐耗散系数有关的常数。实际测量得到月球远离的速率为每年约3.8厘米。代码示例:计算由于潮汐摩擦导致的地球日长变化和月球远离速度的关系(简化模型):注意:这只是一个示意模型,实际参数非常复杂。```python#参数设定G=6.67430e-11#引力常数,m³/kg/s²M_earth=5.972e24#地球质量,kgM_moon=7.342e22#月球质量,kgr=3.844e8#当前地月距离,momega_earth=7.292115e-5#地球自转角速度,rad/s(当前)I_earth=0.33*M_earth*(6.371e6)**2#地球转动惯量近似,kg·m²#月球轨道角动量L_moon=M_moon*np.sqrt(G*M_earth*r)#假设地球自转角动量变化量等于月球轨道角动量变化量(守恒)#当月球远离dr时,月球角动量变化:dL_moon=(1/2)*M_moon*np.sqrt(G*M_earth/r)*dr#地球自转角动量变化:dL_earth=I_earth*d(omega_earth)#由于角动量守恒:dL_earth=-dL_moon#因此,地球自转角速度的变化率与月球远离速度的关系:#I_earth*d(omega_earth)/dt=-(1/2)*M_moon*np.sqrt(G*M_earth/r)*(dr/dt)#已知当前观测的dr/dt约为0.038米/年(即3.8厘米/年),我们可以计算地球自转角速度的变化率:dr_dt=0.038/(365.25*24*3600)#将年转化为秒,单位为m/s#计算月球轨道角动量的变化率(即地球自转角动量变化率的负值)dL_moon_dt=0.5*M_moon*np.sqrt(G*M_earth/r)*dr_dt#地球自转角速度的变化率d_omega_dt=-dL_moon_dt/I_earth#地球日长(一天的长度)的变化:一天的长度LOD=2*pi/omega,所以d(LOD)/dt=-(2*pi/omega^2)*d(omega)/dtLOD=2*np.pi/omega_earth#当前日长(秒)d_LOD_dt=-(2*np.pi/omega_earth**2)*d_omega_dtprint(f"地球日长每年增加{d_LOD_dt*(365.25*24*3600)}秒")#将单位转换为秒/年```注意:上述代码是一个高度简化的模型,实际潮汐耗散还涉及复杂的海洋和固体地球响应。根据网络搜索,实际观测值:月球每年远离约3.8厘米,地球日长每年增加约2.3毫秒。相关问题部分:必须基于当前问题和回答内容,提出三个相关问题。注意:回答中禁止使用第一人称,避免步骤词汇,将机制分成多个部分(每个部分换行),公式和代码按要求格式。整合答案:</think>### 潮汐摩擦导致月球远离地球的机制 **潮汐隆起偏移** 地球自转周期(24小时)短于月球公转周期(27.3天),导致月球引力形成的潮汐隆起位置超前于地月连线约3°。地球固体部分与海水摩擦使隆起位置偏移,形成不对称引力分布。 $$ \theta \approx \arctan\left(\frac{\tau}{\Delta t}\right) $$ 其中$\tau$为能量耗散时间,$\Delta t$为地月位置差响应时间。 **引力扭矩作用** 偏移的潮汐隆起对月球施加切向引力分量,产生加速力矩: $$ \tau_{tidal} = \frac{3GM_m R_e^5 k_2 \sin(2\delta)}{2d^6} $$ $G$为引力常数,$M_m$月球质量,$R_e$地球半径,$k_2$地球潮汐形变系数,$\delta$相位滞后角,$d$地月距离。此力矩使月球轨道能量增加。 **轨道扩张原理** 月球获得动能导致轨道升高,遵循开普勒第三定律: $$ T^2 \propto a^3 $$ 轨道半长轴$a$增大时公转周期$T$延长。能量转移满足: $$ \frac{dE}{dt} = \tau_{tidal} \cdot \omega_m $$ $\omega_m$为月球轨道角速度,能量增量使月球每年远离约3.8厘米。 **角动量守恒** 地球自转角动量损失等于月球轨道角动量增益: $$ I_e \frac{d\omega_e}{dt} = - \frac{d}{dt}\left( M_m \sqrt{GM_e a} \right) $$ $I_e$地球转动惯量,$\omega_e$地球自转角速度,$M_e$地球质量。当前地球日长每世纪增加约2.3毫秒。 **潮汐耗散量化** 潮汐摩擦功率计算模型: ```python def tidal_recession_rate(k2, Q, R_e, M_m, M_e, d): """计算月球远离速率 k2: 地球潮汐洛夫数 Q: 潮汐品质因子(~12) R_e: 地球半径(m) M_m, M_e: 月球和地球质量(kg) d: 地月距离(m) """ G = 6.67430e-11 n = 2*np.pi/(27.3*86400) # 月球平均运动(rad/s) return (3 * k2 * R_e**5 * n * M_m * np.sqrt(G*M_e)) / (2 * Q * M_e * d**(11/2)) ``` 实测值≈3.8 cm/年,与地质记录中古生代日长21小时、地月距更近相符。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件老王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值