前言:
本专栏在保证内容完整性的基础上,力求简洁,旨在让初学者能够更快地、高效地入门TensorFlow2 深度学习框架。如果觉得本专栏对您有帮助的话,可以给一个小小的三连,各位的支持将是我创作的最大动力!
文章目录
一、分类问题简介
在前面两篇博客中已经介绍了用于连续值预测的线性回归模型,这一讲我们来学习分类问题。图像分类问题就是一个典型的分类问题,这也是计算机视觉中的基本任务之一。它的目标就是教会机器或者电脑学习如何去自动识别图像中物体的种类。
二、手写数字识别简介
手写数字识别是一个非常经典的图像分类任务,经常被作为深度学习入门的第一个指导案例。相当于我们学编程语言时,编写的第一个程序“Hello World !”。手写数字识别是基于MNIST数据集的一个图像分类任务,目的是通过搭建深度神经网络,实现对手写数字的识别(分类)。
MNIST数据集是由Lecun等人在1998年创建的,它包含了 0~9 共 10 种数字的手写图片,每种数字一共有 7000 张图片,采集自不同书写风格的真实手写图片,一共 70000 张图片。其中60000张图片作为训练集,用来训练模型。10000张图片作为测试集,用来训练或者预测。训练集和测试集共同组成了整个 MNIST 数据集。
MINIST数据集中的每张图片,大小为28 × 28,同时只保留灰度信息(即单通道)。下图是MNIST数据集中的部分图片:

三、面对初学者的实现方法
为了大家更快的入门,下面我将展示一个简单的入门案例——用TensorFlow2实现手写数字识别。
本博客介绍了TensorFlow2入门级和进阶级的手写数字识别教程,涵盖分类问题概念、MNIST数据集、模型搭建、训练与验证。通过简单易懂的步骤,引导初学者和进阶者实现深度学习模型,实现97.68%至99.69%的分类准确率。
订阅专栏 解锁全文
8144

被折叠的 条评论
为什么被折叠?



