百度机器学习/数据挖掘面试题K-means

昨天去面试百度的机器学习岗位,基本上从头到尾就在探讨K-means的一些问题。可惜之前我也几乎不用K-means,只了解K-means的大概思路,没有深究过其中的两个重要问题:一是初始点的选择;二是K值的选择。当时被问到这个问题头炸了,然后面试官就说,那你就在你没看过的情况下想想这两个问题应该怎么解决。就这两个问题跟面试官探讨了有三十多分钟。后来回来搜了一下答案,感觉自己当时答的还可以吧。不过感觉还是要挂,毕竟这么基础的K-means算法中最重要的两个问题竟然都不知道,还搞什么机器学习。所以建议后面的面试的同学,十大基础算法不能就看看简单的思路,还要关注其中遇到的各种基本问题,比如刚说的k-means,再比如面试官可能会问SVM为什么用在大数据上不好。
再有一个面试官比较看重的就是数据结构中的查询和排序算法,经常会让你手写所有的代码。

貌似百度一面都是问比较基础的问题,什么项目之类的到时没问,是不是准备到二面的时候再问的。

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页