第10篇:深入探讨Milvus分布式架构:数据分片与同步、任务调度与负载均衡详解

接上一篇,下面我们将进一步详细讲解数据如何写入数据分片,副本之间如何进行数据同步,并且保证一致性。同时,还会讲解任务调度的实现,以及节点如何实现负载均衡。

数据写入与数据分片

数据写入与分片流程

  1. 数据接收:客户端向Milvus集群发送数据写入请求。
  2. 数据分片:协调器根据预设的分片策略(如哈希分片、范围分片等)将数据分配到不同的分片中。
  3. 写入存储节点:每个分片的数据被写入对应的存储节点。
客户端
协调器
数据分片
存储节点1
存储节点2
存储节点3

数据分片策略

  • 哈希分片:将数据根据哈希值分配到不同的分片。
  • 范围分片:将数据根据范围分配到不同的分片。
哈希分片示例
协调器
哈希函数
分片1
分片2
分片3

数据副本与同步

数据副本

每个数据分片在多个存储节点上保存副本,以提高数据的可用性和读取性能。

数据同步流程
  1. 主节点写入:数据首先写入主节点。
  2. 副本同步:主节点将数据同步到副本节点。
  3. 确认同步:副本节点确认同步完成,主节点返回成功响应。
协调器
主节点
副本节点1
副本节点2
确认同步
确认同步
返回成功响应

一致性保证

Milvus通过以下机制保证数据一致性:

  1. 写前日志(WAL):所有写操作在正式写入前会先记录到日志中,确保即使系统故障也能恢复数据。
  2. 两阶段提交:采用两阶段提交协议,确保所有副本节点都成功写入数据后才确认写入操作完成。
写操作
写前日志
两阶段提交
写入主节点
写入副本节点
确认写入完成

主分片机器故障后的副本选举

选举流程
  1. 检测故障:协调器持续监控所有节点的状态,一旦检测到主节点故障,立即启动选举流程。
  2. 发起选举:协调器向所有副本节点发送选举请求。
  3. 投票选举:所有副本节点参与投票,选出新的主节点。
  4. 数据同步:新主节点接管后,确保数据的一致性,通过与其他副本节点同步最新数据。
协调器
检测故障
发起选举
副本节点1
副本节点2
投票选举
新主节点
数据同步
一致性保证

源码分析

协调器的源码分析

Milvus中的协调器(Coordinator)负责管理集群的状态,包括节点监控、任务调度和故障处理等。以下是协调器的核心功能源码示例:

class Coordinator {
public:
    // 检测节点状态
    void MonitorNodes() {
        for (auto& node : nodes) {
            if (!node->IsAlive()) {
                HandleNodeFailure(node);
            }
        }
    }

    // 处理节点故障
    void HandleNodeFailure(Node* node) {
        if (node->IsPrimary()) {
            StartElection(node);
        } else {
            // 其他处理逻辑
        }
    }

    // 启动选举流程
    void StartElection(Node* failedNode) {
        // 发起选举请求
        for (auto& replica : failedNode->GetReplicas()) {
            replica->Vote();
        }

        // 选举新的主节点
        Node* newPrimary = ElectNewPrimary(failedNode->GetReplicas());
        UpdateClusterState(newPrimary);
    }

    // 选举新的主节点
    Node* ElectNewPrimary(const std::vector<Node*>& replicas) {
        // 简单的选举逻辑示例
        return replicas[0]; // 假设第一个副本节点为新主节点
    }

    // 更新集群状态
    void UpdateClusterState(Node* newPrimary) {
        // 更新主节点信息
        for (auto& node : nodes) {
            node->SetPrimary(newPrimary);
        }
    }

private:
    std::vector<Node*> nodes;
};

任务调度与负载均衡

任务调度流程

  1. 任务接收:协调器接收来自客户端的任务请求。
  2. 任务分解:协调器将任务分解成多个子任务。
  3. 节点分配:协调器根据节点的负载情况,将子任务分配给最合适的节点。
  4. 任务执行:节点执行子任务,并返回结果。
客户端
协调器
任务分解
节点1
节点2
节点3
执行子任务
执行子任务
执行子任务
返回结果
返回客户端

任务调度的源码分析

任务调度器负责将任务分配给最合适的节点,以确保系统的负载均衡和高效运行。以下是任务调度器的核心功能源码示例:

class TaskScheduler {
public:
    // 接收任务请求
    void ScheduleTask(Task* task) {
        // 分解任务
        std::vector<SubTask> subTasks = DecomposeTask(task);

        // 分配子任务
        for (auto& subTask : subTasks) {
            Node* bestNode = SelectBestNode(subTask);
            bestNode->Execute(subTask);
        }
    }

    // 分解任务
    std::vector<SubTask> DecomposeTask(Task* task) {
        // 简单的分解逻辑示例
        return {SubTask("subTask1"), SubTask("subTask2")};
    }

    // 选择最合适的节点
    Node* SelectBestNode(const SubTask& subTask) {
        Node* bestNode = nullptr;
        int minLoad = INT_MAX;

        // 遍历所有节点,选择负载最小的节点
        for (auto& node : nodes) {
            int load = node->GetLoad();
            if (load < minLoad) {
                minLoad = load;
                bestNode = node;
            }
        }

        return bestNode;
    }

private:
    std::vector<Node*> nodes;
};

负载均衡流程

  1. 节点监控:协调器持续监控各个节点的负载情况。
  2. 任务分配:协调器根据节点的负载情况,将任务均衡分配到各个节点。
  3. 动态调整:根据节点的实时负载情况,动态调整任务分配策略。
协调器
监控节点负载
任务分配策略
节点1
节点2
节点3
执行任务
执行任务
执行任务
监控节点负载
动态调整策略

示例与代码实现

数据写入与分片示例

public class MilvusDataShardExample {
    public static void main(String[] args) {
        MilvusClient client = connectMilvus();

        // 数据写入请求
        List<List<Float>> data = Arrays.asList(
                Arrays.asList(0.1f, 0.2f, 0.3f),
                Arrays.asList(0.4f, 0.5f, 0.6f),
                Arrays.asList(0.7f, 0.8f, 0.9f)
        );

        // 分片策略(示例:哈希分片)
        int shardId = hashFunction(data.get(0)) % 3;

        // 写入存储节点
        if (shardId == 0) {
            writeToNode1(data);
        } else if (shardId == 1) {
            writeToNode2(data);
        } else {
            writeToNode3(data);
        }

        System.out.println("Data written to shard " + shardId);
    }

    private static int hashFunction(List<Float> vector) {
        return vector.hashCode();
    }

    private static void writeToNode1(List<List<Float>> data) {
        // 写入节点1的逻辑
    }

    private static void writeToNode2(List<List<Float>> data) {
        // 写入节点2的逻辑
    }

    private static void writeToNode3(List<List<Float>> data) {
        // 写入节点3的逻辑
    }
}

数据副本与同步示例

public class MilvusDataReplicationExample {
    public static void main(String[] args) {
        MilvusClient client = connectMilvus();

        // 数据写入请求
        List<List<Float>> data = Arrays.asList(
                Arrays.asList(0.1f, 0.2f, 0.3f)
        );

        // 主节点写入
        writeToPrimaryNode(data);

        // 副本同步
        syncToReplicaNodes(data);

        System.out.println("Data written to primary and replica nodes");
    }

    private static void writeToPrimaryNode(List<List<Float>> data) {
        // 写入主节点的逻辑
    }

    private static void syncToReplicaNodes(List<List<Float>> data) {
        // 同步到副本节点的逻辑
    }
}

任务调度与负载均衡示例

public class MilvusTaskSchedulingExample {
    public static void main(String[] args) {
        MilvusClient client = connectMilvus();

        // 任务接收
        Task task = new Task("exampleTask");

        // 任务分解
        List<SubTask> subTasks = decomposeTask(task);

        // 节点分配
        for (SubTask subTask : subTasks) {
            assignToBestNode(subTask);
        }

        System.out.println("Task scheduled and assigned to nodes");
    }

    private static List<SubTask> decomposeTask(Task task) {
        // 任务分解逻辑
        return Arrays.asList(new SubTask("subTask1"), new SubTask("subTask2"));
    }

    private static void assignToBestNode(SubTask subTask) {
        // 根据节点负载情况分配子任务的逻辑
    }
}

class Task {
    String name;

    Task(String name) {
        this.name = name;
    }
}

class SubTask {
    String name;

    SubTask(String name) {
        this.name = name;
    }
}

总结

通过这篇博客,我们详细介绍了Milvus分布式架构设计、数据写入与分片、副本之间的数据同步、任务调度与负载均衡等内容。我们探讨了数据如何写入数据分片,副本之间如何进行数据同步并保证一致性,同时讲解了任务调度和负载均衡的实现原理和具体细节。

Milvus的分布式架构设计和集群部署为处理大规模、高维度向量数据提供了高效、可靠的解决方案。通过合理的部署和管理,可以充分发挥Milvus的性能优势,为各类应用场景提供强大的支持。

如果你喜欢这篇文章,别忘了收藏文章、关注作者、订阅专栏,感激不尽。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gemini技术窝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值