定义1
设
E
\mathscr E
E是
X
X
X上的集合系且
∅
∈
E
\emptyset \in \mathscr E
∅∈E,若
E
\mathscr E
E上的非负集函数(取值大于等于0的函数)
μ
\mu
μ具有可列可加性,并满足
μ
(
∅
)
=
0
\mu(\emptyset)=0
μ(∅)=0,则称之为
E
\mathscr E
E上的测度。
\space
有限性、可减性:
若对集合系中的每个集合,其函数值都有限,则称测度 μ \mu μ有限。若对每个 A ∈ E A\in \mathscr E A∈E都有满足 μ ( A n ) < ∞ \mu(A_n)<\infty μ(An)<∞集合列 { A n ∈ E } \{A_n \in \mathscr E\} {An∈E}满足可列并包含集合A( ∪ n = 1 ∞ A n ⊃ A \cup_{n=1}^\infty A_n\supset A ∪n=1∞An⊃A),则称则称测度 μ σ \mu \space \space \sigma μ σ有限。
如果对任何
A
,
B
∈
E
,
A
⊂
B
,
B
\
A
∈
E
A,B\in \mathscr E,A\subset B ,B\backslash A \in \mathscr E
A,B∈E,A⊂B,B\A∈E,只要
μ
(
A
)
<
∞
\mu (A)<\infty
μ(A)<∞,有
μ
(
B
\
A
)
=
μ
(
B
)
−
μ
(
A
)
\mu(B \backslash A)=\mu(B)-\mu(A)
μ(B\A)=μ(B)−μ(A)
则称
μ
\mu
μ具有可减性。
命题1
测度具有有限可加性与可减性。
(想象面积的运算,或者概率的运算)
\space
定义2 点测度
定义
δ
x
(
A
)
=
I
A
(
x
)
\delta_x(A)=I_A(x)
δx(A)=IA(x).
其中I是指示函数。若
x
1
,
…
,
x
n
∈
X
x_1,\dots ,x_n\in X
x1,…,xn∈X,定义
μ
(
A
)
=
∑
i
=
1
n
δ
x
i
(
A
)
\mu(A)=\sum_{i=1}^{n}\delta_{x_i}(A)
μ(A)=i=1∑nδxi(A)此即点测度。
\space
命题2
设
X
=
R
X=\mathbf R
X=R,
E
\mathscr E
E是由左开右闭区间组成的半环,
F
F
F是非降、右连续、实值函数,定义
μ
(
(
a
,
b
]
)
=
[
F
(
b
)
−
F
(
a
)
]
u
(
b
−
a
)
\mu((a,b])=[F(b)-F(a)]u(b-a)
μ((a,b])=[F(b)−F(a)]u(b−a)
(不会打分段函数…
u
(
x
)
u(x)
u(x)就是
x
≥
0
x\ge0
x≥0时为1)
则
μ
\mu
μ就是一个
E
\mathscr E
E上的测度。
\space
一堆概念
空间
X
X
X,加上由它的子集形成的一个
σ
\sigma
σ域
F
\mathscr F
F,再加上上的一个测度
μ
μ
μ,形成的三元组
(
X
,
F
,
μ
)
(X,\mathscr F,\mu)
(X,F,μ)称为测度空间.如果
N
∈
F
N\in\mathscr F
N∈F而且
μ
(
N
)
=
0
\mu(N)=0
μ(N)=0,则称
N
N
N为
μ
\mu
μ的零测集.
如果测度空间
(
X
,
F
,
μ
)
(X,\mathscr F,\mu)
(X,F,μ)满足
P
(
X
)
=
1
P(X)=1
P(X)=1,则称它为概率空间,对应的
P
P
P叫做概率测度.在概率空间
(
X
,
F
,
μ
)
(X,\mathscr F,\mu)
(X,F,μ)中,
F
\mathscr F
F中的集合
A
A
A又称为事件,而
P
(
A
)
P(A)
P(A)称为事件
A
A
A发生的概率.
(这里想到上学期随机信号开头讲的概率空间的概念,当时讲的F是事件空间,其实就是一个X上的
σ
\sigma
σ域。在这里取其所有子集的集合,是具有实际意义的。)
\space
半环上测度的性质
在一般的
σ
\sigma
σ域上建立测度则要复杂得多,通常使用的办法是把半环上的测度扩张到由它生成的
σ
\sigma
σ域上去。为给半环上测度的扩张作必要的准备,需要先讨论半环上非负集函数的性质。
- 单调性:
对 ∀ A ⊂ B : μ ( A ) < μ ( B ) \forall A\subset B:\mu(A)<\mu(B) ∀A⊂B:μ(A)<μ(B) - 半可列可加性:
之前说的可列可加性是对于两两不交的集合而言,而对于任意可列个集合,只要 ∪ n A n ∈ E \cup_{n}A_n \in \mathscr E ∪nAn∈E,就一定有: μ ( ∪ n A n ) ≤ ∑ n μ ( A n ) \mu(\cup_{n}A_n)\le\sum_{n}\mu(A_n) μ(∪nAn)≤∑nμ(An)
(该性质也可直观地通过几何来理解,例如两个相交的图形,其构成的总面积肯定小于等于各自面积之和) - 下连续与上连续
若集合列 A n ↑ A_n \uparrow An↑且收敛到 A A A,均有:
μ ( A ) = lim n → ∞ μ ( A n ) \mu(A)=\lim_{n\to\infty}\mu(A_n) μ(A)=limn→∞μ(An)
则称具有下连续性。
同理,若集合列 A n ↓ A_n \downarrow An↓且收敛到 A A A,均有上式成立,则上连续。
定理3
半环上的测度具有单调性,可减性,半可列可加性,下连续性和上连续性.
定理4
对环上的有限可加非负集函数
μ
\mu
μ,有
μ
可
列
可
加
⇔
μ
半
可
列
可
加
⇔
μ
下
连
续
⇒
μ
上
连
续
\mu可列可加\\ \Leftrightarrow \mu半可列可加\\ \Leftrightarrow \mu下连续\\ \Rightarrow \mu上连续
μ可列可加⇔μ半可列可加⇔μ下连续⇒μ上连续