测度论与概率论基础学习笔记3——2.1测度的定义与性质

本文介绍了测度论的基本概念,包括测度的定义、有限可加性、可减性以及点测度的构造。进一步讨论了半环上测度的性质,如单调性、半可列可加性、下连续性和上连续性。同时阐述了概率空间的定义,其中概率测度对应于概率为1的测度空间。内容涵盖了集合函数的性质及其在几何和概率论中的直观解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义1

E \mathscr E E X X X上的集合系且 ∅ ∈ E \emptyset \in \mathscr E E,若 E \mathscr E E上的非负集函数(取值大于等于0的函数) μ \mu μ具有可列可加性,并满足 μ ( ∅ ) = 0 \mu(\emptyset)=0 μ()=0,则称之为 E \mathscr E E上的测度
  \space  
有限性、可减性:

若对集合系中的每个集合,其函数值都有限,则称测度 μ \mu μ有限。若对每个 A ∈ E A\in \mathscr E AE都有满足 μ ( A n ) < ∞ \mu(A_n)<\infty μ(An)<集合列 { A n ∈ E } \{A_n \in \mathscr E\} {AnE}满足可列并包含集合A( ∪ n = 1 ∞ A n ⊃ A \cup_{n=1}^\infty A_n\supset A n=1AnA),则称则称测度 μ    σ \mu \space \space \sigma μ  σ有限

如果对任何 A , B ∈ E , A ⊂ B , B \ A ∈ E A,B\in \mathscr E,A\subset B ,B\backslash A \in \mathscr E A,BE,AB,B\AE,只要 μ ( A ) < ∞ \mu (A)<\infty μ(A)<,有
μ ( B \ A ) = μ ( B ) − μ ( A ) \mu(B \backslash A)=\mu(B)-\mu(A) μ(B\A)=μ(B)μ(A)
则称 μ \mu μ具有可减性。

命题1
测度具有有限可加性与可减性。
(想象面积的运算,或者概率的运算)

  \space  
定义2 点测度
定义 δ x ( A ) = I A ( x ) \delta_x(A)=I_A(x) δx(A)=IA(x).
其中I是指示函数。若 x 1 , … , x n ∈ X x_1,\dots ,x_n\in X x1,,xnX,定义
μ ( A ) = ∑ i = 1 n δ x i ( A ) \mu(A)=\sum_{i=1}^{n}\delta_{x_i}(A) μ(A)=i=1nδxi(A)此即点测度。
  \space  
命题2
X = R X=\mathbf R X=R, E \mathscr E E是由左开右闭区间组成的半环, F F F是非降、右连续、实值函数,定义
μ ( ( a , b ] ) = [ F ( b ) − F ( a ) ] u ( b − a ) \mu((a,b])=[F(b)-F(a)]u(b-a) μ((a,b])=[F(b)F(a)]u(ba)
(不会打分段函数… u ( x ) u(x) u(x)就是 x ≥ 0 x\ge0 x0时为1)
μ \mu μ就是一个 E \mathscr E E上的测度。
  \space  
一堆概念
空间 X X X,加上由它的子集形成的一个 σ \sigma σ F \mathscr F F,再加上上的一个测度 μ μ μ,形成的三元组 ( X , F , μ ) (X,\mathscr F,\mu) (X,F,μ)称为测度空间.如果 N ∈ F N\in\mathscr F NF而且 μ ( N ) = 0 \mu(N)=0 μ(N)=0,则称 N N N μ \mu μ零测集.
如果测度空间 ( X , F , μ ) (X,\mathscr F,\mu) (X,F,μ)满足 P ( X ) = 1 P(X)=1 P(X)=1,则称它为概率空间,对应的 P P P叫做概率测度.在概率空间 ( X , F , μ ) (X,\mathscr F,\mu) (X,F,μ)中, F \mathscr F F中的集合 A A A又称为事件,而 P ( A ) P(A) P(A)称为事件 A A A发生的概率.

(这里想到上学期随机信号开头讲的概率空间的概念,当时讲的F是事件空间,其实就是一个X上的 σ \sigma σ域。在这里取其所有子集的集合,是具有实际意义的。)
  \space  
半环上测度的性质
在一般的 σ \sigma σ域上建立测度则要复杂得多,通常使用的办法是把半环上的测度扩张到由它生成的 σ \sigma σ域上去。为给半环上测度的扩张作必要的准备,需要先讨论半环上非负集函数的性质。

  1. 单调性:
    ∀ A ⊂ B : μ ( A ) < μ ( B ) \forall A\subset B:\mu(A)<\mu(B) AB:μ(A)<μ(B)
  2. 半可列可加性:
    之前说的可列可加性是对于两两不交的集合而言,而对于任意可列个集合,只要 ∪ n A n ∈ E \cup_{n}A_n \in \mathscr E nAnE,就一定有: μ ( ∪ n A n ) ≤ ∑ n μ ( A n ) \mu(\cup_{n}A_n)\le\sum_{n}\mu(A_n) μ(nAn)nμ(An)
    (该性质也可直观地通过几何来理解,例如两个相交的图形,其构成的总面积肯定小于等于各自面积之和)
  3. 下连续与上连续
    若集合列 A n ↑ A_n \uparrow An且收敛到 A A A,均有:
    μ ( A ) = lim ⁡ n → ∞ μ ( A n ) \mu(A)=\lim_{n\to\infty}\mu(A_n) μ(A)=limnμ(An)
    则称具有下连续性。
    同理,若集合列 A n ↓ A_n \downarrow An且收敛到 A A A,均有上式成立,则上连续。

定理3
半环上的测度具有单调性,可减性,半可列可加性,下连续性和上连续性.
定理4
对环上的有限可加非负集函数 μ \mu μ,有
μ 可 列 可 加 ⇔ μ 半 可 列 可 加 ⇔ μ 下 连 续 ⇒ μ 上 连 续 \mu可列可加\\ \Leftrightarrow \mu半可列可加\\ \Leftrightarrow \mu下连续\\ \Rightarrow \mu上连续 μμμμ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值