测度定义_关于概率测度公理与 $\sigma$ 代数的关系

本文探讨了概率测度的公理,包括规范性、非负性和可数可加性,并揭示这些公理背后的潜在假设,涉及到$sigma$代数的性质。通过分析,指出概率公理实际上暗示了Dynkin类的概念,讨论了Dynkin类与$sigma$代数的关系,展示数学在概率论中的深刻应用。
摘要由CSDN通过智能技术生成

关于概率测度公理与 sigma 代数的关系

首先我们从数学建模的角度来看待概率公理.

考虑概率测度, 自然应该首先收集若干事件构成一个集合, 也就是说我们首先要取样本空间

的若干子集来构成一个集合, 不妨我们将这个集合记为
, 现在我们暂时不管这个集合具有什么结构, 从概率测度的角度来看, 我们首先看看概率应该满足哪些公理或者说假设.

也就是说,我们考虑定义在集合

上的函数,

经过仔细分析古典概率模型我们就会发现, 我们应该对

作如下的假设.
  • 规范性,即
    ,
  • 非负性: 即对于任意的
    , 应该有
    .
  • 规一性:
    .
  • 可数可加性: 即
    , 且
    , 则有

现在我们来推敲上面的假设所蕴含的潜在假设, 事实上, 由于规范性和规一性假设, 显然有

在可数可加性的假设中, 事实上也如下的潜在的假设:

, 且
, 则
,

也就说要求

对可数的不交并是封闭的.

继续观察可数可加性假设, 我们发现还蕴含着别的潜在假设.

事实上, 由于

具有可数可加性, 那么我们取有限个两两不交集合
, 自然我们可以在后面添加无穷多个
构成序列

那么由可数可加性就有

由于

, 这就导致
具有有限可加性, 即若
且两两不交, 则

我们运用这个事实, 任取

, 当然有
, 因此由有限可加性有

这就是说

应该在
的定义域中, 也就是
, 换句话说,
对补运算封闭.

现在综合起来, 我们已经发现在概率公理中对

的定义域
而言, 其必须要满足如下性质.
  • ,
  • 补运算封闭,即若
    , 则
    ,
  • 对可数不交并封闭: 即若
    , 且
    , 则
    ,

这不是别的, 这些条件就是大名鼎鼎的 Dykin 类条件, 也就是说在概率公理中隐含着要求概率测度

的定义域
构成一个 Dynkin 类.

(我并不清楚 Dynkin 当初是怎么提出 Dynkin 类这个概念的, 事实上我怀疑他就是从概率公理中提炼出这个概念, 当然接触过李代数中 Dynkin 图的人也许就会感叹, 这些数学家居然横跨多个领域而且都能作出杰出贡献, 哎, 除了仰望星空, 还能说什么呢)

07334f40082d41d315dbf4b45ab9f964.png

但是 Dynkin 类还不是

代数, 但是 Dynkin 类与
代数的差距已经不是很大了.

那么 Dynkin 类与

代数还差多远呢, 我们先来看如下的定理.
定理: 如果
对交运算封闭并且是 Dynkin 类, 那么
代数.

从上面的定理我们立刻知道 Dynkin 类与

代数还差一个有限交封闭条件.

当然, 我们有什么理由拒绝概率测度

的定义域
满足有限交运算封闭的条件呢, 设想一下, 如果
都是事件,我们却拒绝承认
是事件, 这显然不自然, 因此我们应该要求
对有限交封闭, 也就是说要求概率测度
的定义域是一个
代数是自然事情. 这也就解释了为何在概率论的教程中会首先定义
代数, 然后定义可测空间
, 进一步在可测空间
上定义概率测度.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值