一般非线性规划
标准型为:
其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.
matlab中非线性规划求解的函数是fmincon,命令的基本格式如下:
x=fmincon(‘fun’,X0,A,b)
x=fmincon(‘fun’,X0,A,b,Aeq,beq)
x=fmincon(‘fun’,X0,A,b, Aeq,beq,VLB,VUB)
x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’)
x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)
[x,fval]= fmincon(…)
[x,fval,exitflag]= fmincon(…)
[x,fval,exitflag,output]= fmincon(…)
1.fun为目标函数
2.x0为初始值
3.A是不等式约束AX<=b的系数矩阵
4.b是不等式约束AX<=b的常数项
4.Aeq是等式约束AeqX=beq的系数矩阵,
5.beq是等式约束AeqX=beq的常数项,
6.lb是X的下限,
7.ub是X的上限,
8.nonlcon为非线性不等式约束
9.option为设置fmincon的参数
注意:
fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为’on’),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法。当既有等式约束又有梯度约束时,使用中型算法。
fmincon函数的中型算法使用的是序列二次规划法。在每一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。
fmincon函数可能会给出局部最优解,这与初值X0的选取有关。
实例: 供应与选址
某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a,b表示,距离单位:千米 )及水泥日用量d(吨)由下表给出。目前有两个临时料场位于A(5,1),B(2,7),日储量各有20吨。假设从料场到工地之间均有直线道路相连。
(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少吨水泥,使总的吨千米数最小。
(2)为了进一步减少吨千米数,打算舍弃两个临时料场,改建两个新的,日储量各为20吨,问应建在何处,节省的吨千米数有多大?
当用临时料场时决策变量为:xij,当不用临时料场时决策变量为:xij,xj,yj。
情形2:使用临时料场的情形
使用两个临时料场A(5,1),B(2,7).求从料场j向工地i的运送量为Xij,在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题. 线性规划模型为:
Matlab程序
clear
a=[1.25 8.75 0.5 5.75 3 7.25];
b=[1.25 0.75 4.75 5 6.5 7.75]