开关电源基础10:电源反馈环路(2)

说在开头:关于意识/灵魂(1)

有谁没听说过冯.诺伊曼么?来自匈牙利的冯.诺依曼是现代计算机的奠基人,是我们这一行的祖师爷。但计算机只能算是他众多的成就之一,他更是20世纪最杰出的数学家。关于冯.诺依曼的天才传说在科学界经久不息,越来越玄:6岁就能心算8位数乘法,8岁懂微积分,12岁精通泛函数分析,有人说他过目不忘可以随便将整部《双城记》背出来;还有人说他通晓5国语言,并能用每一种语言来写搞笑的打油诗等等。不管怎样,所有人都承认,这小伙是个百年罕见的天才。他的每一项成就都可以吹上半天的牛,不过在这里仅仅关注他对于量子论的贡献。

狄拉克在1930年出版了著名的《量子力学原理》教材,完成了量子力学的普遍综合,但从纯数学来说,量子论仍然缺乏一个共同的严格基础。1926年,冯.诺依曼来到哥廷根担任希尔伯特大师的助手,再加上诺戴姆,三人共同发表了《量子力学基础》的论文,将希尔伯特的算子理论引入量子论中,把这一物理体系在数学上进行了严格化,到了1932年他又发展了这一工作,出版了《量子力学的数学基础》;冯.诺依曼证明了几个很有意思的结论,特别是关于我们测量行为的,这深深影响了一代物理学家对波函数坍缩的看法。

哥本哈根派说:每当我们观测时,系统波函数就坍缩了,按概率呈现一个实际的结果,如果不观测,那么它就按照波函数方程严格发展。我们理所当然的用“观测”这个词,但是“观测”却没有一个精确的定义,什么样的行为算是一次“观测”呢?如果说用眼睛来看是观测,那么用耳朵听或则用手摸算是观测么?如果说人可以观测,那么猩猩呢?计算机呢?小狗小猫呢?

冯.诺依曼敏锐的指出,我们用于测量目的的那些仪器本身也是由不确定的粒子组成的,它们自己也拥有自己的波函数。当我们用仪器去观测时,这只会把仪器本身也卷入到这个模糊叠加态中去。那这是什么意思呢?假如我们用仪器去“观测”电子从左缝还是右缝通过,并用指针来指示,因为这台仪器本身也有自己的波函数,如果我们不去“观测”这台仪器本身,它的波函数便也陷入到一种模糊的叠加态中。冯.诺依曼的数学模型告诉我们:当仪器测量电子后,电子的波函数坍缩了,但左/右的叠加只是被转移到了仪器那里而已,变成了仪器的指针指向左还是右的叠加状态了。如果再用一台仪器B去观测指针,那么叠加态就会转移到了仪器B中,总之当我们用仪器去测量仪器,整个链路的最后一台仪器总是处在不确定状态中,这叫做“无限复归”。此时如果将仪器加入到这个系统里,那么这整个系统的波函数没有彻底坍缩过。

可当我们看到仪器报告的结果后,这个过程就结束了,我们并不会处于奇怪的叠加态中去。难道人类意识的参与才是波函数坍缩的原因?只有当电子被“意识到了”,它才真正地变为现实,从波函数中来到这个世界上;而只要它没有被“意识到”,波函数便总是停留在不确定的状态,只不过从一个地方不断地往最后一个仪器那里转移而已。因为一台设备或一只猫无法“意识”到自己的指针偏转或则是生是死,所以它们必须陷入叠加的混合态中;但是你和我都可以意识到电子究竟在左还是右,我们是生还是死,所以波函数到了我们这里就突然坍缩了,世界终于明朗起来了。

唐伯虎说:你这么聪明,我唬得了你嘛?但这一切看起来是那么的扯淡,物理世界不仅要跟意识或灵魂关联上,而且灵魂还位居宇宙的中心,因为没有意识/灵魂,宇宙就是一团波,就没有我们现在所看到的一切。这个关于宇宙的故事,是这个世界上最聪明的一群物理学家、数学家告诉我们的。(参考自:曹天元-上帝掷骰子吗)

二,环路稳定性设计

1,开关电源环路分析

现在我们将电源环路从输入(参考电平)到输出(电源输出)连接起来,可以得到闭环传递函数的基本方程:G(s)/(1+G(s)*H(s)),如果G(s)*H(s) = -1,那么闭环传递函数将变成无穷大(极点),环路将变的不稳定。

那么G(s)*H(s) = -1是个啥呢?我们前面已经知道了,G(s)*H(s)是开环传递函数。如果满足G(s)*H(s) = -1,那么我们知道开环增益 = |-1| = 1,开环相角 = Φ = 1/tan(Im/Re) = 1/tan(0/-1) =  180°。

——0°和180°的正切值都是0,但从如下复平面坐标上可以看到,-1值的相角是180°,而非0°

——那么说明:如果某一特定频率的扰动加在被控对象和反馈模块上,虽然幅值不变,但相移了180°,那么系统就是不稳定的

那对于该反馈环路的分析,有两个问题:1,为什么信号经过180°相移就会使系统不稳定了呢?正常来说要相移360°才会达到自身增强的效果;2,为什么正增强时,不仅相移为180°,而且要求返回信号幅值与原信号相同?

1. 如上一章所分析,负相放大器(上上图的求和器)的输出信号相对输入信号有180°的相移,所以反馈模块产生的180°相移实际上对应了总相移的360°;

2. 如果从复平面向量图分析,我们可以看到只要满足相移180°和返回信号等于原信号,就能得到稳定的向量图(持续振荡)。

——在典型的幅频特性曲线上,增益为1的一半只出现特定频率上,该频率称为截止频率,超过该频率后增益小于1(幅度降为0dB轴以下)

于是关于闭环传递函数的稳定性标准可描述为:开环传递函数在截止频率上的相移不能等于180°,而且要保证一定的安全裕度,这个安全裕度也称为相位裕度;也可以根据相移180°,增益低于0dB来设置,称为幅值裕度

如下图所示开环波特图,从理论上来说即使相移-179°(相位裕度为1°)也不会出现完全不稳定的情况,虽然过程中会出现大量振铃(临界稳定),但是组成开关电源电路的各元器件、PCB以及外部环境(温度、气压等)都会不同,任何一点细微的变化都会导致完全不稳定。所以一般给定相角裕度和幅值裕度稳定性判断如下:

1. 推荐开环传递函数相角之后-135°,即相角裕度为45°,此时一般只会引起一个或两个周期的振铃,并且输出过冲小;最恶劣情况下最小相角裕度为30°;

——是否相角裕度越大越好呢?假如相角裕度为90°,那么肯定不会出现振铃,但是暂态响应会非常迟缓,输出过冲相当严重

2. 推荐幅值裕度为-10dB以下,幅值裕度与相角裕度是相互依存的,一般相角裕度越大则幅值裕度也越大。

——幅值裕度对应相位偏移180°时的开环增益,前面已经分析了相移180°对于环路来说是形成了一个系统的正反馈,所以此时增益越小越好,否则容易引起振荡

1.1 环路稳定性策略

我们知道随着零点和极点频率位置的不同,相角是会不断变化的,举个栗子:双极点的谐振频率处会出现突然的180°相移;因此很难去判断某一频率处的相角,即相角裕度很难去估计。但是也可以遵循如下设计准则,来保证环路稳定性:

1. 保证开环增益穿过0dB轴的斜率为-1

——高斜率穿越0dB点,那么其截止频率必然会比较小,导致电源环路响应较慢

1, 积分器已经提供了-1的斜率;

2, 后级LC滤波器带来了最大的问题,LC转折频率后二阶LC极点使得开环幅频特性斜率又降低了2(斜率为-3),所以需要抵消LC极点,最好在LC极点位置引入两个一阶零点。

——引入两个一阶零点来抵消LC极点,需要环路补偿电路来实现

2. 若想实现带宽最大化,是系统在负载或输入电源电压突变时获得快速响应,根据那奎斯特采样定理,设置截止频率小于开关频率的一半;

3. 要保证截止频率低于所有发散零极点(处于S平面中的右半平面,例如:BOOSTBUCK-BOOST电源拓扑的右半平面零点),避免在一半开关频率上产生次谐波不稳定的极点。

——一般情况下将截止频率设在约1/6开关频率处

2,设计一个开关电源反馈环路

2.1 BUCK模型

我们现在知道开关电源的波特图是开环传递函数的幅相曲线图,即:T(s) = G(s)*H(s);如下左图所示,为BUCK电源拓扑反馈路径上只有一个纯积分器(运算放大器):斜率 = 1,而被控对象(调节器)由于LC滤波器的作用,在LC转折频率后斜率 = 2,那么整体开环传递函数穿越截止频率的开环增益斜率 = 3,这样不符合控制要求(截止频率过小);所以我们需要在反馈环路的LC极点位置处引入两个零点,用以抵消双极点的影响,如下右图所示,在积分器上放入两个零点后,开环幅频特性穿越0dB的斜率为-1

截止频率的计算方法如上一章《传递函数和波特图》中“积分运算放大器”章节所述;先求得开环增益曲线在LC谐振频率和增益,然后按照斜率来估算0dB处的截止频率,有兴趣的胖友参看如下推导过程。

2.2 等效串联电阻零点

上面分析中都忽略了输出电容的等效串联电阻(ESR),在之前的传递函数的推导过程也是如此,例如之前BUCK拓扑从控制到输出(被控对象)传递函数:G(s) = (Vin/Vramp)*1/[(s/ω0)²+(1/Q)*(s/ω0)+1],其中谐振频率ω0 = 1/√(LC),输出电容的ESR使分子额外增加了一项,现在变成了:

其中ωesr= 1/(ESR*C),为等效串联电阻零点位置的角频率。从符号判断,s落在复平面的左半平面,是一个正常的零点,它会使得开环传递函数斜率增加1,除了会影响相角外,还会使得传递函数曲线不再穿越0dB轴。

然而这个零点是由输出电容其的ESR所决定,所以很难搞清楚到底落在什么位置,是一个令人讨厌的零点。但是在理想情况下,ESR非常小所以它对应的零点位置在很高的频率上,因此大多数情况下可以忽略(输出电容是陶瓷电容或聚合物电容时,ESR都非常小),否则需要在ωesr位置放置一个极点,将其抵消。

2.3 高频极点

一个成熟的补偿网络要提供如下零极点:

1. 一个零极点(积分器/运算放大器函数);

2. 两个零点位于LC双重极点位置附近;

3. 一个极点位于等效串联电阻零点处;

4. 一个高频极点。

为什么还要设计一个高频极点呢?因为幅频特性虽然按照设计以-1斜率穿越0dB位置,但是高频时曲线会突然下降的很快,斜率接近-2,这时在截止频率约10倍处放置一个极点,用以改善幅值裕度。

为什么选择截止频率的10倍处呢?因为新的高频极点实际上从极点的1/10频率处就开始引入相移,但是我们不希望让相角裕度在截止频率附近受到影响。

——对于实际开关电源设计来说,测试开关波特图是一个必要的工作,最终需要根据实际测试结果对环路进行调整,以实现幅值裕度-10dB和相位裕度45°的要求

2.4 设计3型运放补偿网络

按照复杂度和灵活性分为1型,2型和3型。1型和2型补偿网络是3型补偿网络的一种简化。如下图所示为3型补偿网络,得到其传递函数一般的表达形式:

补偿网络有两个极点p1p2(除0极点p0外)和两个零点z1z2;在C1 >> C3的情况下,根据计算最终零极点的位置为:

我们可以看到此处(如上图)的R1即之前讨论的反馈上位电阻器:Rf2;类似的,图中运放-端下拉分压电阻器即为Rf1。根据假设条件:C1>>C3,可以求得各元件的值:

如此我们可以根据对幅频即相频曲线的设计要求,计算出该类型补偿网络参数,设计好反馈环路。

举个栗子:略~

如下图所示,为简化的1型,2型和3型补偿网络的对比。补偿方案需要提供零极点,以获得较高的直流增益,良好的直流调整和低频输入纹波抑制。所以零极点引入的-1斜率,再加上LC滤波器双重极点引入的-2斜率,最后将得到-3斜率;而我们需要穿越0dB点轴的总斜率为-1,这意味着肯定需要两个零点来迫使斜率回到-1。虽然2型补偿网络只提供了一个零点,但如果利用上输出电容器的ESR对应的零点(使得该零点位置低于预期的截止频率),设计的好的话也可能可以用。但3型补偿方案已经完全将双重极点抵消。

实际上1型和2型补偿网络适合电流模式控制,本章分享内容暂不涉及。

写在最后

好啦,开关电源设计的重头戏:电源环路设计结束了。我也是看的一个头两个大,特别是拉普拉斯变换,s平面就折腾了很长时间才有点头绪。其实设计一般开关电源最简单的方法是:上电源芯片的官网,用它提供的在线设计工具,将输入/输出电压/电流,纹波要求等条件填进去,能给你一个非常安全的推荐设计。当然可能有过设计的嫌疑,好处在于:稳定,稳定,稳定(3遍总够了吧~)。我们学习环路基本知识的目的在于理解它的工作原理,万一测试出来不稳定了,根据环路原理,实现自己动手调一调的目的,那就猴赛雷了~

下一章,也是开关电源非常重要的部分,但往往被硬件工程师所忽略,电磁兼容部分:传导辐射和干扰。本来想集中在电磁兼容专题分析,不过这部分对开关电源设计比较重要。

本章部分相关内容和图片参考自:Sanjaya Maniktala -《精通开关电源设计》。下一章《电源电磁兼容设计》。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值