“每一次细读都有新的收获”,这句话始终在我耳边回响。这句话是四年前恩师的谆谆教诲之中的星星一点,这句话是关于两本书的,一是《古今数学思想》,一是《数学——确定性的丧失》。四年前,一个人跑到图书馆里一口气把书读完,心潮澎湃,下定决心要把所学到的数学理论运用于实践,造福社会。而今,书里的很多内容都变得模糊,然而书名和“克莱因”的名字我一直铭记于心。今天我下载了两本书的电子版,重新浏览一下,顺便记一些笔记和感慨,以表怀念之情。而《古今数学思想》比较多,所以只重点看了下《数学——确定性的丧失》。
1. 数学发展史略览
数学作为一个独立知识体系起源于古希腊(大约公元前6世纪到公元前3世纪左右)。希腊人的精神领袖(如欧几里得、阿波罗纽斯、波罗纽斯、阿基米得等)摒弃了传统观念、超自然力、迷信、教条和其他思想束缚, 尝试寻求对大自然和宇宙运行规律的合理解释。
最早提出自然界数学模式的是以毕达哥拉斯(Pythagoras)为领袖的座落于意大利南部的毕达哥拉斯学派。由于毕达哥拉斯学派将天文学和音乐“归结”为数,这两门学科就同算术和几何发生了联系。于是,这四门学科都被人看成是数学学科,甚至一直到中世纪,仍被包括在学校课程中,当时号称“四大学科”。柏拉图比毕派前进了一步,他不仅希望用数学来理解自然界,而且要用数学来取代自然界本身。为了推导出数学概念,希腊人从自明的、无人怀疑的公理入手。希腊人对空间和空间图形的研究,作出了一个重要贡献——三角学。由欧几里得、阿波罗纽斯(Apollonius)、阿基米得(Archimedes)和托勒密(Ptolemy)所创立的数学的精华有幸传给了我们。欧几里得的《几何原本》是他对空间几何的全部贡献,即是赫赫有名的欧氏几何。
然而,宏大的希腊文明被几股力量所摧毁,首先就是来自希腊、埃及和近东罗马人的逐渐侵占。基督教的兴起是对异教的希腊文化的另一个打击。对希腊文明的最后打击是公元640年新崛起的回教徒对埃及的征服。
随后印度人和阿拉伯人使得数学活动得以延续,并且引入了一些对后世有较大影响的思想。印度人在某种程度上受过希腊著作的影响,对算术和代数做了一些有独创性的贡献。阿拉伯人对算术、几何、天文学和光学均做出了贡献。我们熟悉的阿拉伯数字、十进制记数即阿拉伯人和印度人的贡献。
接着在中世纪的西欧,一种高水平的文化(传说中的文艺复兴)被建立起来,不过从公元500 年一直延续到1500 年,这种文化被天主教教会所控制,后来,中世纪欧洲被一系列的变革所震撼和改变。希腊思想的复苏引起了一些人对研究自然的兴趣,对科学的探索成为现代欧洲文明的最主要特征。事实上,16、17 世纪及18 世纪的大半,数学家所做的工作都是宗教的需要。探索自然界的数学法则是一种很虔诚的工作,其揭示上帝的杰作的伟大和辉煌。数学知识,即是关于上帝的宇宙设计的真理,就像任何一条《圣经》的经文一样神圣不可侵犯。这一时期的典型数学家是哥白尼、开普勒、笛卡尔(笛卡尔对数学本身并没有提出什么新定理,但他却提供了一种非常有效的研究方法,即我们现在所称的解析几何,从技术的观点来看,解析几何彻底改变了数学研究方法。)、伽利略、帕斯卡等,我们从世界历史教科书上可以看到他们的身影。统治17 世纪的哲学或科学方法论由笛卡尔系统地阐述和发展,笛卡尔甚至认为全部物理学都可以归结为几何学。最有名气的莫过于牛顿,他的牛顿三大定律家喻户晓(《自然哲学的数学原理》),以至于拉普拉斯说牛顿是最幸运的人,因为只有一个宇宙,而他已发现了它的规律。然而事实上在同时期,或者相近一段时间里,莱布尼茨(微积分创立者之一)、拉普拉斯、费马 (Pierre de Fermat)(著名的费马小定理,费马大定理)、欧拉(18 世纪最伟大的数学家,欧拉定理)、拉格朗日(数学分析中的拉格朗日定理)等同样在数学界赫赫有名。
进入19 世纪,数学界正是一派祥瑞景象:拉格朗日仍然活跃在数学界,拉普拉斯正处在他智力的顶峰时期,傅立叶致力于研究他1807 年的手稿,这篇手稿后来并入了他的经典著作《热论》(1822 年);高斯(Gauss)刚刚发表了他的《算术研究》(1801 年),这是关于数论的一个里程碑,随后他又做出了许多的贡献,为他赢得了数学王子的雅称;高斯的法国同行柯西(Augustin-Louis Cauchy)在他1814 年的一篇论文中显露出超凡的才能(那时候数学的中心位于德国的哥廷根和法国,到20世纪30年代左右,数学的中心逐渐转向美国)。然而在这些繁荣的背后,却连续发生了数学界的三场大灾难,这三场灾难影响之深远,难以用语言来形容,以至于目前的数学格局,无数数学分支的建立,应用数学和理论数学的分家,其根源就在这三大灾难。
2. 数学三次灾难
这三次灾难分别起源于数学中的分支欧氏几何、微积分和集合论。
第一次灾难:在所有的数学分支中,欧氏几何最受推崇。这不仅由于它是第一个用演绎方法建立起来的,而且在两千多年的时间里,它的定理一直完美地与客观事实一致。“上帝”所攻击的正是欧氏几何。欧氏几何中有一条公理一直在困惑着数学家们,不是由于他们对其正确性有任何怀疑之处,而是由于它的表达方式。这就是平行公理,或者通常称为欧几里得的第五假设,欧几里得的表述是这样的:如果一条直线与两条直线相交,使得一侧的内角不都是直角,则如果将这两条直线延长,它们在内角不都是直角的直线一侧相交。
1763年克吕格尔(GeorgS.Klugel)在他的博士论文中提出了引人注意的论点:即人们确信欧几里得平行公理为真理是基于经验的。从事欧几里得平行公理工作最著名的数学家当属高斯。高斯在1824 年11 月8 日写给他的朋友托里努斯
(FranzAdolf Taurinus)的信中说:
假定(三角形)内角之和小于180°将导出一种奇怪的几何,它与我们的(欧氏)几何迥然不同,然而却是完全相容的,我已经将它发展得令自己完全满意了。
两个由于创建非欧几何而获得的荣誉多于高斯的人是罗巴切夫斯基和J·鲍耶。事实上,他们的工作是前人的创造性思想的压轴戏,但是由于他们发表了系统的推导文章,他们通常被称为非欧几何的创立者。到了19 世纪30 年代,非欧几何已不仅仅是被少数几个人接受了,而且它在物理空间的适用性被认为至少是可能的。最初由高斯的工作提出的问题——哪种几何适合于物理空间——促使了一门新的几何学的产生,它使数学界更加相信,物理空间的几何可以是非欧几里得的。它的创建者是黎曼(GeorgBernhard Riemann),他是高斯的学生,后来成为哥廷根的数学教授。黎曼关于空间可以是无界的而不是无限的这一观点启发了另一门重要的非欧几何,现在称为双椭圆几何。
这场灾难的影响是数学并不是一个真理体系(这一认识确实振聋发聩,数学第一次受到打击)。所有领域中的真理都将被数学不是真理这个认识动摇了。数学向世界证明了人能获得真理,然后又毁掉了这个证明。正是非欧几何和四元数(1843 年,哈密尔顿提出了一个有用的复数的空间类似物,哈密尔顿为此困惑了15 年。四元数则形为a+bi+cj+dk,其中i,j,k都与1有相同特性。即i^2=j^2=k^2=-1,两个四元数相等的准则是系数a、b、c、d 都对应相等。)这两个推理的重大胜利导致了这场灾难。
第二场灾难:微积分在17世纪创建后(贡献最大的是牛顿和莱布尼茨),其基础却不清楚,数学家们以微积分为核心的分析是建立在算术与代数虚构的逻辑基础及欧几里得几何有争议的基础之上的。18 世纪伟大的数学家不仅极大地扩展了微积分学而且从中导出了一些全新的学科:无穷级数、常微分方程、偏微分方程、微分几何、变分法及复变函数,这些统称为分析的学科,现在是数学的核心部分。然而,在18 世纪结束之际,微积分和建立在微积分基础上的分析的其他分支的逻辑处于一种完全混乱的状态之中,事实上,可以说微积分基础方面的状况,在1800 年比1700 年更差。数学巨匠,尤其是欧拉和拉格朗日给出了不正确的逻辑基础。历史进入19 世纪,数学陷入更加自相矛盾的处境。虽然它在描述和预测物理现象方面所取得的成功远远超出人们的预料,但是,正如许多18世纪的人所指出的那样,大量的数学结构没有逻辑基础,因此不能保证数学是正确无误的。17、18、19 世纪一直困挠数学家们的逻辑问题,在分析中表现得尤为严重,特别是在微积分和以微积分为基础的无穷级数、微分方程等领域。微积分是全部数学中最微妙的一个学科,一想到我们在较为简单的领域中所发现的那些缺陷,不难想象,微积分中的一系列概念和逻辑结构肯定令数学家们智穷力竭了。(如无穷小,无穷大的概念)
柯西决定在数的基础上(极限的概念上)建立微积分逻辑。柯西的工作激励了他人更多促使分析严密化的工作,但是主要的成就还得归功于另一位大师魏尔斯特拉斯(KarlWeierstrass)。正是由于他的工作,分析的基本原理的严密化才得以完成。
数学史上这一系列事件的发生顺序是耐人寻味的,并不是按着先整数、分数,然后无理数、复数、代数学和微积分的顺序,数学家们是按着相反的顺序与它们打交道的。他们看上去是极不情愿地去处理那些本可以留在最后,并能很好地理解的数,他们非到万不得已才去进行逻辑化的工作。不管怎么说,大约1890 年左右,在埃及人和巴比伦人能使用整数、分数和无理数的六千年后,数学家们终于可以证明2+2=4。看来,即使是最伟大的数学家也被迫考虑严密性。
到1900 年为止,算术、代数和(建立在整数公理基础上的)分析及(以点、线和其他几何概念为基础的)几何已经被严密化。关于非欧几何的一个教训是,曾被视为严密之典范的欧氏几何实际上是有缺陷的,这一令人痛苦的记忆仍然萦绕在数学家们的心头。经历了几个世纪在理性迷雾中的摸索,到1900 年,数学家们似乎已经赋予了他们的学科一种理想的结构,也就是欧几里得在他的《原本》中所描述的那种。他们最终承认了未定义概念的必需,一些含混或令人不愉快的定义被取消,一些分支也被建立在严格公理的基础上。正确、严谨、演绎的证明取代了基于直觉或经验的结论,甚至逻辑学的原理也被发展用以完善数学家们过去常用的那种不正规的,不清晰的证明方式。
无理数、微积分导致了这场灾难,数学家们通过公理化的方法去严密化这些数学理论。在1900 年巴黎举行的第二届国际数学大会上,彭加勒,希尔伯特领袖地位的主要竞争者夸耀道:今天我们可以宣称绝对的严密已经实现了!
第三场灾难:康托尔在试图确定所有集合组成的集合的基数和所有序数组成的集合的序数时所发现的矛盾,使数学家们认识到,他们不只是在新的创造中运用了相似概念,而且在被认为是毫无问题的经典数学中就加以运用了。他们宁愿把这种矛盾叫做悖论,因为悖论是可以被解决的,而数学家们希望确信这些问题可以被解决,现在通常用的术语是自相矛盾。一个非数学的例子是这样的:“所有的法则皆有例外”,更有名的是罗素的悖论:设N是由所有不属于自身的集合组成的集合,那么N又属于谁呢?若N属于N,依定义不应如此;若N不属于N,则由其定义应属于N。1918年,罗素的悖论被他本人通俗化,这就是广为人知的“理发师”悖论。一个乡村理发师,宣称他不给村子里任何给自己刮脸的人刮脸,但却给所有不给自己刮脸的人刮脸,当然,理发师自夸无人可与之相比。一天他发生了疑问,他是否应当给自己刮脸?假如他给自己刮脸的话,则按他声言的前一半,他就不应当给自己刮脸;但是假如他不给自己刮脸的话,则照他自夸的,他又必须给自己刮脸。理发师陷入了逻辑上的困境。当罗素首次发现这个矛盾时,他认为困难可能出在逻辑的某个地方而非数学自身。但这一矛盾却动摇了元素的类这一在数学中广泛应用的概念,希尔伯特称这个悖论对数学界有着灾难性的后果。
集合论中悖论的发现,以及意识到其他经典数学中也可能存在悖论,使数学家们开始认真对待相容性问题了。希尔伯特在1900 年国际数学家大会的发言中,强调了证明数学相容性的重要。他还提出一种实数的良序方法,正如我们从策梅罗的工作中所知道的,良序原理等价于选择公理。策梅罗的公理系统在1922 年由弗兰克尔(AbrahamA.Fraenkel)改进。策梅罗没有区分集合的属性和集合本身,它们被当作同义语使用。弗兰克尔在1922 年找出了它们之间的区别。这套被集合论公理化者最通常使用的公理系统叫做策梅罗-弗兰克尔系统。
1930 年时数学基础的状况可说是差强人意。已知的悖论已经被解决,但是几个学派为此使用了特定的方法。两个问题继续困扰着数学界。首先是建立数学的相容性,这恰恰是希尔伯特在1900 年的巴黎讲演中提出的。虽然已知的悖论已经解决,可再次发现新悖论的危险依然存在。另一个问题被称为完备性,一般而言,完备性意味着任何数学分支的公理对于判别涉及该分支的概念的所有有意义的断言的真伪性是充分的。
在1931年,哥德尔发表的另一篇论文却打开了潘多拉的盒子,。这篇题为《论数学原理中的形式不可判定命题及有关系统》(1931 年)的论文包含了两个惊世骇俗的结论。其中对数学界尤具毁灭性的断言是:任何数学系统,只要其能包含整数的算术,其相容性就不可能通过几个基础学派(逻辑主义学派、形式主义学派、集合论公理化学派)采用的逻辑原理而建立。称为哥德尔不完备性定理。哥德尔不完备性定理断言,不仅仅是数学的全部,甚至任何一个系统,都不可能用类似哥德尔使用的能算术化的数学和逻辑公理系统加以概括。因为任何这样的公理系统都是不完备的。(至今我没看到如何解决此问题)
数学是什么?对于前人来说,数学首先是人们为研究自然界而做出的最精致的发明。数学的主要概念、广博的方法,以及几乎所有的重要定理都是在这一过程中推导出来的。科学一直是维持数学生命力的血液。在科学领域中,数学家是物理学家、天文学家、化学家及工程师的热心同伴。事实上,在17、18世纪以及19世纪的绝大多数时间里,数学与理论科学的区别很少被注意到,而且许多杰出的数学家在天文学、力学、动力学、电学、磁学及弹性理论中所做的工作远超过他们在数学中的工作。数学是科学的王后,同时也是它们的女仆。
数学常被比作一棵大树,它的根深深地扎于肥沃的自然土壤中,它的主干是数字和几何图形,从主干上生长出的许许多多的分支代表着发展。数学史中充满了光辉的成就,但它同时也是一部灾难的记录。
3. 数学大师介绍
有空再来写一写数学大师的介绍吧。