基于Python实现线性分类器

访问【WRITE-BUG数字空间】_[内附完整源码和文档]

在机器学习领域,分类的目标是指将具有相似特征的对象聚集。而一个线性分类器则透过特征的线性组合来做出分类决定,以达到此种目的。对象的特征通常被描述为特征值,而在向量中则描述为特征向量。

  1. 理论知识
    1.1 从线性回归到线性多分类
    回归是基于给定的特征,对感兴趣的变量进行值的预测的过程。在数学上,回归的目的是建立从输入数值到监督数值的函数: y ^ = f ( x 1 , . . . , x m ) \hat y=f(x_1,...,x_m) y^=f(x1,...,xm) 线性回归限制函数为线性形式,即为: f ( x 1 , . . . x m ) = w 0 + w 1 x 1 + . . . + w m x m = x w f(x_1,...x_m)=w_0+w_1x_1+...+w_mx_m=\bold x\bold w f(x1,...xm)=w0+w1x1+...+wmxm=xw 其中, x = [ 1 , x 1 , x 2 , . . . , x m ]   w = [ w 0 , w 1 , w 2 , . . . , w m ] T \bold x = [1,x_1,x_2,...,x_m]\ \bold w = [w_0,w_1,w_2,...,w_m]^T x=[1,x1,x2,...,xm] w=[w0,w1,w2,...,wm]T 也就是找一组参数 w k k = 1 m {w_k}^m_{k=1} wkk=1m,使得在训练集上,函数与预测值尽可能接近。

对于本次的分类问题来说,线性回归的输出值与分类任务中的目标值不兼容。线性回归的结果范围为全体实数,而对于本次实验的多分类问题,变量结果即属于的类别,换言之,我们期望的结果标签的种类数量和训练样本的总类别数量一致。因此考虑使用softmax函数来将回归结果映射到种类上,从而表示分类结果。对于K分类问题,有: s o f t m a x i ( z ) = e z i ∑ k = 1 K e z k   f i ( x ) = s o f t m a x i ( x W ) = e x w i ∑ k = 1 K e x w k softmax_i(\bold z)=\frac{e^{z_i}}{\sum^K_{k=1}e^{z_k}}\ f_i(\bold x)=softmax_i(\bold{xW})=\frac{e^{\bold{xw_i}}}{\sum^K_{k=1}e^{\bold{xw_k}}} softmaxi(z)=k=1Kezkezi fi(x)=softmaxi(xW)=k=1Kexwkexwi 其中, W \bold W W为: W ≜ [ w 1 , w 2 . . . , w K ] \bold W\triangleq \left[\begin{matrix}{\bold w_1,\bold w_2...,\bold w_K}\end{matrix}\right] W[w1,w2...,wK] 易见,所有类的softmax函数值之和为1。每一类的函数值就为它的概率。

1.2 损失函数表示与优化
经过上面的讨论与操作,对于多分类问题,预测结果是在每一类上的概率,即维度数等于类数的向量。与之对应的实际结果可以用独热向量表示,即是本类的那一维度为1,其他维度为0的向量。为了使得预测结果与实际结果尽量接近,我们考虑用损失函数用于衡量预测结果和实际结果的差距。在数学上,该分类问题等价于找到合适的向量 w \bold w w,使得损失函数最小化。依据本次实验的要求,损失函数需要分别考虑交叉熵损失和均方误差损失,即损失函数分别为: L 1 ( w 1 , w 2 , . . . , w K ) = − 1 N ∑ l = 1 N ∑ k = 1 K y k ( l ) log ⁡ s o f t m a x k ( x ( l ) W )   L 2 ( w 1 , w 2 , . . . , w K ) = 1 N ∑ l = 1 N ∑ k = 1 K ( s o f t m a x k ( x ( l ) W ) − y k ( l ) ) 2 L_1(\bold w_1,\bold w_2,...,\bold w_K)=-\frac1N\sum^N_{l=1}\sum^K_{k=1}y_k^{(l)}\log softmax_k(\bold x^{(l)}\bold W)\ L_2(\bold w_1,\bold w_2,...,\bold w_K)=\frac1N\sum^N_{l=1}\sum^K_{k=1}(softmax_k(\bold x^{(l)}\bold W)-y^{(l)}_k)^2 L1(w1,w2,...,wK)=N1l=1Nk=1Kyk(l)logsoftmaxk(x(l)W) L2(w1,w2,...,wK)=N1l=1Nk=1K(softmaxk(x(l)W)yk(l))2 其中, y k ( l ) y_k^{(l)} yk(l)是第 k k k y ( l ) y^{(l)} y(l)的元素。

考虑使用梯度下降法使得损失函数最小化。两个损失函数的梯度分别为: KaTeX parse error: Undefined control sequence: \part at position 8: \frac{\̲p̲a̲r̲t̲ ̲L(\bold W)}{\pa…

梯度下降法的参数更新方式为: KaTeX parse error: Undefined control sequence: \part at position 45: …}-r\left.\frac{\̲p̲a̲r̲t̲ ̲L(\bold W)}{\pa…

其中 r r r为学习率。对于凹函数,通过适当的学习率,对模型参数进行迭代更新,最终可以收敛到最小值点。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值