最近学习稀疏表示和字典学习,了解到了OMP算法和KSVD算法,看了大量资料,理解如下:
1. OMP算法:
可以解决的问题:
已知过完备字典D,和输入图像y,通过公式 y=Dx求出稀疏系数x,其中,y是已经转换为列向量的图像
参考学习资料:相应的学习链接网址点击这里
2. KSVD算法:
可以解决的问题:
已知输入图像y,初始化一个DCT字典(也可以是其他字典),通过K步SVD分解计算的迭代,更新字典D和求解稀疏系数x
参考学习资料:
可以解决的问题:
已知过完备字典D,和输入图像y,通过公式 y=Dx求出稀疏系数x,其中,y是已经转换为列向量的图像
参考学习资料:相应的学习链接网址点击这里
可以解决的问题:
已知输入图像y,初始化一个DCT字典(也可以是其他字典),通过K步SVD分解计算的迭代,更新字典D和求解稀疏系数x
参考学习资料: