OMP和KSVD在图像稀疏表示和字典学习中的理解

本文介绍了在图像稀疏表示和字典学习中,OMP(Orthogonal Matching Pursuit)和KSVD(K-Singular Value Decomposition)算法的理解。OMP算法用于已知过完备字典D和输入图像y,求解稀疏系数x;KSVD算法则在已知图像y和初始字典D的情况下,通过K步SVD迭代更新字典D和稀疏系数x。
摘要由CSDN通过智能技术生成

最近学习稀疏表示和字典学习,了解到了OMP算法和KSVD算法,看了大量资料,理解如下:

1. OMP算法:

可以解决的问题:
已知过完备字典D,和输入图像y,通过公式 y=Dx求出稀疏系数x,其中,y是已经转换为列向量的图像

参考学习资料:相应的学习链接网址点击这里

2. KSVD算法:

可以解决的问题:
已知输入图像y,初始化一个DCT字典(也可以是其他字典),通过K步SVD分解计算的迭代,更新字典D和求解稀疏系数x

参考学习资料:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值