优化pandas内存入门

在平常是用pandas的时候,虽然用的很愉快,但遇到数据量很大的时候总是很慢,这篇文章主要介绍了一些简单优化dataframe使用内存的方法,大大提高pandas使用的效率。

简单的概念

# coding: utf-8
import pandas as pd

# 读取数据
df = pd.read_csv("test.csv")

# 得到精确的内存信息
df.info(memory_usage='deep')

# 说明:之后都用df来表示读取到的dataframe

pandas中每一个数据类型都有一个专门的类来处理。

  • ObjectBlock: 字符串列的块
  • FloatBlock: 浮点数列的块
  • Numpy ndarray:整型和浮点数值的块(非常快,用C数组构建的)
for dtype in ['float', 'int', 'object']:
    # 选中对应的dtype列
    selected_dtype = df.select_dtypes(include=[dtype])
    # 查看内存使用量的平均值
    mean_usage_b = selected_dtype.memory_usage(deep=True).mean()
    # 获取到的数据单位为K, 这里转换一下
    mean_usage_mb = mean_usage_b / 1024 ** 2
    print("Average memory usage for {} columns:{:03.2
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值