一、微分的定义
定义 设函数 y = f ( x ) y = f(x) y=f(x) 在某区间内有定义, x 0 x_0 x0 及 x 0 + Δ x x_0 + \Delta x x0+Δx 在这区间内,如果函数的增量
Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y = f(x_0 + \Delta x) - f(x_0) Δy=f(x0+Δx)−f(x0)
可表示为
Δ y = A Δ x + o ( x ) , (1) \Delta y = A \Delta x + o(x) , \tag{1} Δy=AΔx+o(x),(1)
其中 A A A 是不依赖于 Δ x \Delta x Δx 的常数,那么称函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 是可微的,而 A Δ x A \Delta x AΔx 叫做函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 相应于自变量增量 Δ x \Delta x Δx 的微分,记作 d y \mathrm{d}y dy ,即
d y = A Δ x \mathrm{d}y = A \Delta x dy=AΔx
下面讨论函数可微的条件。设函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 可微,则按定义有 ( 1 ) (1) (1) 式成立。 ( 1 ) (1) (1) 式两边除以 Δ x \Delta x Δx ,得
Δ y Δ x = A + o ( x ) Δ x \cfrac{\Delta y}{\Delta x} = A + \cfrac{o(x)}{\Delta x} ΔxΔy=A+Δxo(x)
于是,当 Δ x → 0 \Delta x \to 0 Δx→0 时,由上式可得
A = lim Δ x → 0 Δ y Δ x = f ′ ( x 0 ) A = \lim_{\Delta x \to 0} \cfrac{\Delta y}{\Delta x} = f'(x_0) A=Δx→0limΔxΔy=f′(x0)
因此,如果函数 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 可微,那么 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 也一定可导(即 f ′ ( x 0 ) f'(x_0) f′(x0) 存在),且 A = f ′ ( x 0 ) A = f'(x_0) A=f′(x0) 。
反之,如果 y = f ( x ) y = f(x) y=f(x) 在点 x 0 x_0 x0 可导,即
lim Δ x → 0 Δ y Δ x = f ′ ( x 0 ) \lim_{\Delta x \to 0} \cfrac{\Delta y}{\Delta x} = f'(x_0) Δx→0limΔxΔy=f′(x0)
存在,根据极限与无穷小的关系,上式可写成
Δ y Δ x = f ′ ( x 0 ) + α \cfrac{\Delta y}{\Delta x} = f'(x_0) + \alpha ΔxΔy=f′(x0)+α
其中 α → 0 \alpha \to 0 α→0 (当 Δ x → 0 \Delta x \to 0 Δx→0)。由此又有
Δ y = f ′ ( x 0 ) Δ x + α Δ x . \Delta y = f'(x_0) \Delta x + \alpha \Delta x . Δy=f′(x0)Δx+αΔx.
因 α Δ x = o ( x ) \alpha \Delta x = o(x) αΔx=o(x) ,且 f ′ ( x ) f'(x) f′(x) 不依赖于 Δ x \Delta x Δx ,故上式相当于 ( 1 ) (1) (1) 式。所以 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 也是可微的。
由此可见,函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可微的充分必要条件是函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可导,且当 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可微时,其微分一定是
d y = f ′ ( x ) Δ x . (2) \mathrm{d}y = f'(x) \Delta x . \tag{2} dy=f′(x)Δx.(2)
当 f ′ ( x ) ≠ 0 f'(x) \neq 0 f′(x)=0 时,有
lim Δ x → 0 Δ y d y = lim Δ x → 0 Δ y f ′ ( x 0 ) Δ x = 1 f ′ ( x 0 ) lim Δ x → 0 Δ y Δ x = 1. \lim_{\Delta x \to 0} \cfrac{\Delta y}{\mathrm{d}y} = \lim_{\Delta x \to 0} \cfrac{\Delta y}{f'(x_0) \Delta x} = \cfrac{1}{f'(x_0)} \lim_{\Delta x \to 0} \cfrac{\Delta y}{\Delta x} = 1 . Δx→0limdyΔy=Δx→0limf′(x0)ΔxΔy