2.1 矩阵运算(第2章矩阵代数)

内容概述

本节讲解了一些矩阵运算的基本法则,其中最重要的是要理解矩阵乘法的意义(复合变换)和矩阵乘法的性质(比如很重要的矩阵乘法结合律),除了矩阵乘法,还讨论了矩阵的和矩阵的标量乘法矩阵的乘幂矩阵的转置等概念和计算方法。

矩阵标记

A A A m × n m \times n m×n矩阵,则 A A A的第 i i i行第 j j j列的元素用 a i j a_{ij} aij来表示。 A A A的各列是 R m \mathbb R^m Rm中的向量,用黑体 a 1 , ⋯   , a n \boldsymbol a_1, \cdots, \boldsymbol a_n a1,,an表示,写作 A = [ a 1 a 2 ⋯ a n ] A = \begin{bmatrix}\boldsymbol a_1 & \boldsymbol a_2 & \cdots & \boldsymbol a_n\end{bmatrix} A=[a1a2an]。注意 a i j a_{ij} aij是第 j j j个列向量 a j \boldsymbol a_j aj的第 i i i个元素。

m × n m \times n m×n矩阵 A = [ a i j ] A=\begin{bmatrix}a_{ij}\end{bmatrix} A=[aij]对角线元素 a 11 , a 22 , a 33 , ⋯ a_{11},a_{22},a_{33},\cdots a11,a22,a33,,它们组成 A A A的主对角线。对角矩阵是一个方阵,它的非对角线元素全是0。例如 n × n n \times n n×n单位矩阵 I n \boldsymbol I_n In。元素全是零的 m × n m \times n m×n矩阵称为零矩阵,用 0 \boldsymbol 0 0表示。零矩阵的维数通常可由上下文知道,否则我们就用 0 m × n 0_{m\times n} 0m×n表示。

和与标量乘法

向量运算可以自然地推广到矩阵。我们称两个矩阵相等,若它们有相同的维数(即有相同的行数和列数),而且对应元素相等。 A A A B B B都是 m × n m \times n m×n矩阵,则和 A + B A+B A+B也是 m × n m \times n m×n矩阵,它的各列是 A A A B B B对应列之和。因列的向量加法是对应元素相加,故 A + B A+B A+B的每个元素也就是 A A A B B B的对应元素相加。 仅当 A A A B B B有相同的维数, A + B A+B A+B才有定义。
r r r是标量而 A A A是矩阵,则标量乘法 r A rA rA 是一个矩阵,它的每一列是 A A A的对应列的 r r r倍。
定理:

A A A B B B C C C是相同维数的矩阵, r r r s s s为数,则有:
a. A + B = B + A A+B = B + A A+B=B+A
b. ( A + B ) + C = A + ( B + C ) (A+B)+C = A+(B+C) (A+B)+C=A+(B+C)
c. A + 0 = A A+0=A A+0=A
d. r ( A + B ) = r A + r B r(A+B) = rA + rB r(A+B)=rA+rB
e. ( r + s ) A = r A + s A (r+s)A=rA+sA (r+s)A=rA+sA
f. r ( s A ) = ( r s ) A r(sA)=(rs)A r(sA)=(rs)A

矩阵乘法

矩阵乘法的定义

根据1.8节1.9节的知识,从线性变换的角度考虑, m × n m\times n m×n矩阵 A A A左乘向量 x \boldsymbol x x相当于把 x \boldsymbol x x R n \mathbb R^n Rn映射到 R m \mathbb R^m Rm
现在考虑一种“复合映射”的情况,也就是将 x \boldsymbol x x先左乘矩阵 B B B,再左乘矩阵 A A A,则得到的向量是经过两次线性变换的向量 A ( B x ) A(B\boldsymbol x) A(Bx)。如下图所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yLULwo1b-1574754110062)(en-resource://database/16855:1)]
由此引出矩阵乘法的意义:

我们将矩阵乘法定义为一种“复合映射“,即,定义一种运算 A B AB AB,使得:
A ( B x ) = ( A B ) x A(B\boldsymbol x) = (AB)\boldsymbol x A(Bx)=(AB)x
上式左边是根据之前的知识得到的,意义是将一个向量 x \boldsymbol x x进行两次变换,而我们引入向量乘法的目的,就是要通过两个矩阵的积,将这两个步骤合并为一个步骤,直接表示这一”复合映射“的过程:
在这里插入图片描述

由上述矩阵乘法的意义,可以推导矩阵乘法的计算公式:

A A A m × n m \times n m×n矩阵, B B B n × p n \times p n×p矩阵, x \boldsymbol x x属于 R p \mathbb R^p Rp,用 b 1 , ⋯   , b p \boldsymbol b_1, \cdots, \boldsymbol b_p b1,,bp表示 B B B的各列,而 x \boldsymbol x x的元素为 x 1 , ⋯   , x p x_1,\cdots,x_p x1,,xp,则根据1.4节描述的矩阵和向量乘积的定义有:
B x = x 1 b 1 + ⋯ + x p b p B\boldsymbol x=x_1\boldsymbol b_1 + \cdots + x_p\boldsymbol b_p Bx=x1b1++xpbp
易知, B x B\boldsymbol x Bx R n \mathbb R^n Rn中的向量。再由1.4节中描述的矩阵-向量积的性质有:
A ( B x ) = A ( x 1 b 1 ) + ⋯ + A ( x p b p ) = x 1 A b 1 + ⋯ + x p A b p A(B\boldsymbol x)=A(x1\boldsymbol b_1)+\cdots+A(x_p\boldsymbol b_p)=x_1A\boldsymbol b_1+\cdots+x_pA\boldsymbol b_p A(Bx)=A(x1b1)++A(xpbp)=x1Ab1++xpAbp
向量 A ( B x ) A(B\boldsymbol x) A(Bx)是向量 [ A b 1 A b 2 ⋯ A b p ] \begin{bmatrix}A\boldsymbol b_1 & A\boldsymbol b_2 & \cdots & A\boldsymbol b_p\end{bmatrix} [Ab1Ab2Abp]的线性组合,以 x \boldsymbol x x的元素为权。若把这些向量表示成一个矩阵的各列,就有:
A ( B x ) = [ A b 1 A b 2 ⋯ A b p ] x A(B\boldsymbol x)=\begin{bmatrix}A\boldsymbol b_1 &A\boldsymbol b_2 & \cdots & A\boldsymbol b_p\end{bmatrix}\boldsymbol x A(Bx)=[Ab1Ab2Abp]x
于是,乘以矩阵 [ A b 1 A b 2 ⋯ A b p ] \begin{bmatrix}A\boldsymbol b_1 &A\boldsymbol b_2 & \cdots & A\boldsymbol b_p\end{bmatrix} [Ab1Ab2Abp] x \boldsymbol x x变换为 A ( B x ) A(B\boldsymbol x) A(Bx),由上述关于矩阵乘法的意义,我们就找到了矩阵乘法这种运算的具体计算方式。

根据上述讨论,得出矩阵乘法运算的具体定义:
定义:

A A A m × n m\times n m×n矩阵, B B B n × p n \times p n×p矩阵, B B B的列是 b 1 , ⋯   , b p \boldsymbol b_1,\cdots,\boldsymbol b_p b1,,bp,则乘积 A B AB AB m × p m \times p m×p矩阵,它的各列是 A b 1 , ⋯   , A b p A\boldsymbol b_1, \cdots, A\boldsymbol b_p Ab1,,Abp,即:
A B = A [ b 1 b 2 ⋯ b p ] = [ A b 1 A b 2 ⋯ A b p ] AB = A\begin{bmatrix}\boldsymbol b_1 & \boldsymbol b_2 & \cdots & \boldsymbol b_p\end{bmatrix} = \begin{bmatrix}A\boldsymbol b_1 & A\boldsymbol b_2 & \cdots & A\boldsymbol b_p\end{bmatrix} AB=A[b1b2bp]=[Ab1Ab2Abp]
需要注意, A A A的列数必须等于 B B B的行数,否则该运算无法成立。
总结:复合映射是线性变换,它的标准矩阵是 A B AB AB,矩阵乘法对应于线性变换的复合。

例:

计算 A B AB AB,其中 A = [ 2 3 1 − 5 ] A=\begin{bmatrix}2 & 3 \\ 1 & -5\end{bmatrix} A=[2135] B = [ 4 3 6 1 − 2 3 ] B=\begin{bmatrix}4 & 3 & 6 \\ 1 & -2 & 3\end{bmatrix} B=[413263]

解:

B B B写成 [ b 1 b 2 b 3 ] \begin{bmatrix}\boldsymbol b_1 &\boldsymbol b_2 &\boldsymbol b_3\end{bmatrix} [b1b2b3]的形式,并分别计算:
A b 1 = [ 2 3 1 − 5 ] [ 4 1 ] = [ 11 − 1 ] A\boldsymbol b_1 = \begin{bmatrix}2 & 3 \\ 1 & -5\end{bmatrix}\begin{bmatrix}4 \\ 1\end{bmatrix} = \begin{bmatrix}11 \\ -1\end{bmatrix} Ab1=[2135][41]=[111]
A b 2 = [ 2 3 1 − 5 ] [ 3 − 2 ] = [ 0 13 ] A\boldsymbol b_2 = \begin{bmatrix}2 & 3 \\ 1 & -5\end{bmatrix}\begin{bmatrix}3 \\ -2\end{bmatrix} = \begin{bmatrix}0 \\ 13\end{bmatrix} Ab2=[2135][32]=[013]
A b 3 = [ 2 3 1 − 5 ] [ 6 3 ] = [ 21 − 9 ] A\boldsymbol b_3 = \begin{bmatrix}2 & 3 \\ 1 & -5\end{bmatrix}\begin{bmatrix}6 \\ 3\end{bmatrix} = \begin{bmatrix}21 \\ -9\end{bmatrix} Ab3=[2135][63]=[219]
因此:
A B = A [ b 1 b 2 b 3 ] = [ 11 0 21 − 1 13 − 9 ] AB = A\begin{bmatrix}\boldsymbol b1 &\boldsymbol b_2 &\boldsymbol b_3\end{bmatrix}=\begin{bmatrix}11 & 0 & 21 \\ -1 & 13 & -9 \end{bmatrix} AB=A[b1b2b3]=[111013219]

由上述运算过程可以得出如下事实:

A B AB AB的每一列都是 A A A的各列的线性组合,以 B B B的对应列的元素为权。

矩阵乘法的行列法则

上面给出的矩阵乘法的算法,偏重于对矩阵意义的理解,这里给出矩阵的一种数值计算方法,重点在于方便运算:
矩阵乘法的行列法则:

若乘积 A B AB AB有定义,则 A B AB AB的第 i i i行第 j j j列的元素是 A A A的第 i i i行与 B B B的第 j j j列对应元素乘积之和。若 ( A B ) i j (AB)_{ij} (AB)ij A B AB AB ( i , j ) (i,j) (i,j)元素, A A A m × n m \times n m×n矩阵,则:
( A B ) i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i n b n j (AB)_{ij}=a_{i1}b_{1j} + a_{i2}b{2j}+\cdots+a_{in}b_{nj} (AB)ij=ai1b1j+ai2b2j++ainbnj

矩阵乘法的性质

下列定理列出了矩阵乘法的重要性质,其中 I m \boldsymbol I_m Im表示 m × m m \times m m×m单位矩阵,对 R m \mathbb R^m Rm中的一切 x \boldsymbol x x I m = x \boldsymbol I_m = \boldsymbol x Im=x
定理:

A A A m × n m \times n m×n矩阵, B B B C C C的维数使下列各式的乘积有定义:
a. A ( B C ) = ( A B ) C A(BC)=(AB)C A(BC)=(AB)C (乘法结合律)
b. A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC (乘法左分配律)
c. ( B + C ) A = B A + C A (B+C)A=BA+CA (B+C)A=BA+CA (乘法右分配律)
d. r ( A B ) = ( r A ) B = A ( r B ) r(AB) =(rA)B=A(rB) r(AB)=(rA)B=A(rB) r r r为任意数
e. I m A = A = A I m \boldsymbol I_mA=A=A\boldsymbol I_m ImA=A=AIm (矩阵乘法的恒等式)

对于上述性质(a),可以直接从矩阵乘积的意义上去理解。根据矩阵乘积的意义,两个矩阵 A A A B B B相乘,也就是 A B AB AB的定义是,先对某向量进行 B B B变换,再进行 A A A变换;也就是说,对某一向量直接进行 A B AB AB变换,和对该向量先进行 B B B变换,再进行 A A A变换,是等价的。再看性质(a):

  • 等式的左边,含义是,先进行 C C C变换,再进行 B B B变换,最后进行 A A A变换。
  • 等式的右边,含义是:先进行 C C C变换,再进行 A B AB AB变换。

由于对某一向量直接进行 A B AB AB变换,和对该向量先进行 B B B变换,再进行 A A A变换是等价的,所以这条性质自然成立。
当然也可以从矩阵乘积”列定义“的角度去证明性质(a):
证明:


C = [ c 1 ⋯ c p ] C=\begin{bmatrix}\boldsymbol c_1 & \cdots & \boldsymbol c_p\end{bmatrix} C=[c1cp]
由矩阵乘法的定义:
B C = [ B c 1 ⋯ B c p ] BC=\begin{bmatrix}\boldsymbol Bc_1 & \cdots & B\boldsymbol c_p\end{bmatrix} BC=[Bc1Bcp]
A ( B C ) = [ A ( B c 1 ) ⋯ A ( B c p ) ] A(BC)=\begin{bmatrix}A(B\boldsymbol c_1) & \cdots & A(B\boldsymbol c_p)\end{bmatrix} A(BC)=[A(Bc1)A(Bcp)]
A B AB AB乘积的定义可知:对一切 x \boldsymbol x x,有 A ( B x ) = ( A B ) x A(B\boldsymbol x)=(AB)\boldsymbol x A(Bx)=(AB)x,该定律也适用于上述矩阵 C C C对应的各个列向量 c 1 , ⋯   , c p \boldsymbol c_1, \cdots,\boldsymbol c_p c1,,cp,所以有
A ( B C ) = [ ( A B ) c 1 ⋯ ( A B ) c p ] = ( A B ) C A(BC) = \begin{bmatrix}(AB)\boldsymbol c_1 & \cdots & (AB)\boldsymbol c_p\end{bmatrix} = (AB)C A(BC)=[(AB)c1(AB)cp]=(AB)C
其余性质也可使用这种思路得到证明。
对于上述性质(a),也就是乘法结合律,可以起到方便运算的作用。例如,四个矩阵的积 A B C D ABCD ABCD,可以根据运算的方便程度,转换为 A ( B C ) D A(BC)D A(BC)D进行运算。但需要注意的是,一般来说, A B AB AB B A BA BA并不相同。这是因为, A B AB AB的列是 A A A的各列的线性组合,而 B A BA BA的各列是 B B B的各列的线性组合。若恰巧有 A B = B A AB=BA AB=BA,那么称 A A A B B B彼此可交换。
需注意如下事实:

  1. 一般情况下, A B ≠ B A AB \neq BA AB=BA
  2. 消去律对矩阵乘法不成立,即若 A B = A C AB = AC AB=AC,一般情况下, B = C B=C B=C并不成立
  3. 若乘积 A B AB AB是零矩阵,一般情况下,不能断定 A = 0 A=0 A=0 B = 0 B=0 B=0

矩阵的乘幂

A A A n × n n \times n n×n矩阵, k k k是正整数,则 A k A^k Ak表示 k k k A A A的乘积(由于矩阵 A A A左乘矩阵 B B B需要满足 A A A的列必须等于 B B B的行,因此只有 n × n n \times n n×n方阵才能和自身相乘)。
k = 0 k=0 k=0,则 A 0 x A^0\boldsymbol x A0x就是 x \boldsymbol x x自身。因此 A 0 A^0 A0被解释为单位矩阵。

矩阵的转置

给定 m × n m \times n m×n矩阵 A A A,则 A A A转置是一个 n × m n \times m n×m矩阵,用 A T A^T AT表示,它的列是由 A A A的对应行构成的。
例:

A = [ a b c d ] A=\begin{bmatrix}a & b \\ c & d\end{bmatrix} A=[acbd],则 A T = [ a c b d ] A^T=\begin{bmatrix}a & c \\ b & d\end{bmatrix} AT=[abcd]

定理:

a. ( A T ) T = A (A^T)^T = A (AT)T=A
b. ( A + B ) T = A T + B T (A+B)^T=A^T + B^T (A+B)T=AT+BT
c. 对任意数 r r r ( r A ) T = r A T (rA)^T = rA^T (rA)T=rAT
d. ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

上述性质的证明均可以通过将矩阵看作向量列的组合来实现。

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值