1.9 线性变换的矩阵(第1章 线性代数中的线性方程组)

内容概述

本节首先指出了线性变换矩阵变换的等价性,并介绍了用矩阵来描述线性变换的方法;接着,举了几个二维空间线性变换的几何特性;最后,从线性变换的角度讨论了解的存在性唯一性问题,并和之前的概念进行了关联。

R n \mathbb R^n Rn R m \mathbb R^m Rm的线性变换和矩阵变换的关系

下面的讨论指出,

  • R n \mathbb R^n Rn R m \mathbb R^m Rm的每一个线性变换实际上都是一个矩阵变换 x → A x \boldsymbol x \rightarrow A\boldsymbol x xAx
  • 变换 T \boldsymbol T T的重要性质都归结为 A A A的性质。
  • 寻找矩阵 A A A的关键是了解 T \boldsymbol T T完全由它对 n × n n \times n n×n单位矩阵 I n \boldsymbol I_n In的各列的作用所决定。
    例:

I n = [ 1 0 0 1 ] \boldsymbol I_n = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} In=[1001]的两列是 e 1 = [ 1 0 ] \boldsymbol e_1 = \begin{bmatrix}1 \\ 0\end{bmatrix} e1=[10] e 2 = [ 0 1 ] \boldsymbol e_2 = \begin{bmatrix}0 \\ 1\end{bmatrix} e2=[01],设 T \boldsymbol T T R 2 \mathbb R^2 R2 R 3 \mathbb R^3 R3的线性变换,满足:
T ( e 1 ) = [ 5 7 − 2 ] , T ( e 2 ) = [ − 3 8 0 ] \boldsymbol T(\boldsymbol e_1) = \begin{bmatrix}5 \\ 7 \\ -2\end{bmatrix}, \boldsymbol T(\boldsymbol e_2) = \begin{bmatrix}-3 \\ 8 \\ 0\end{bmatrix} T(e1)=572,T(e2)=380
在此条件下求出 R 2 \mathbb R^2 R2中任意向量 x \boldsymbol x x的像的公式。

解:

对于 R 2 \mathbb R^2 R2中的任意向量 x \boldsymbol x x,有:
x = [ x 1 x 2 ] = x 1 [ 1 0 ] + x 2 [ 0 1 ] = x 1 e 1 + x 2 e 2 \boldsymbol x = \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = x_1\begin{bmatrix}1 \\ 0\end{bmatrix} + x_2\begin{bmatrix}0 \\1\end{bmatrix} = x_1\boldsymbol e_1 + x_2\boldsymbol e_2 x=[x1x2]=x1[10]+x2[01]=x1e1+x2e2
因为 T \boldsymbol T T是线性变换,所以有:
T ( x ) = x 1 T ( e 1 ) + x 2 T ( e 2 ) = x 1 [ 5 7 − 2 ] + x 2 [ − 3 8 0 ] = [ 5 x 1 − 3 x 2 7 x 1 + 8 x 2 − 2 x 1 + 0 ] \boldsymbol T(\boldsymbol x)=x_1\boldsymbol T(\boldsymbol e_1)+x_2\boldsymbol T(e_2)=x_1\begin{bmatrix}5 \\ 7 \\-2\end{bmatrix} + x_2\begin{bmatrix}-3 \\ 8 \\0\end{bmatrix} = \begin{bmatrix}5x_1-3x_2 \\ 7x_1+8x_2 \\-2x_1 + 0\end{bmatrix} T(x)=x1T(e1)+x2T(e2)=x1572+x2380=5x13x27x1+8x22x1+0
如果把上述 T ( e 1 ) \boldsymbol T(\boldsymbol e_1) T(e1) T ( e 2 ) \boldsymbol T(\boldsymbol e_2) T(e2)作为矩阵的列,把上式写成向量相乘的形式,那么可以得到下面的公式:
T ( x ) = [ T ( e 1 ) T ( e 2 ) ] [ x 1 x 2 ] = A x \boldsymbol T(\boldsymbol x) = [\boldsymbol T(\boldsymbol e_1)\quad \boldsymbol T(\boldsymbol e_2)]\begin{bmatrix}x_1 \\ x_2\end{bmatrix} = A\boldsymbol x T(x)=[T(e1)T(e2)][x1x2]=Ax
上面举的例子是一个感性认识,下面是定理和证明:
定理:
T : R n → R m \boldsymbol T:\mathbb R^n \rightarrow \mathbb R^m T:RnRm为线性变换,则存在唯一的矩阵 A A A,使得对 R n \mathbb R^n Rn中一切 x \boldsymbol x x
T ( x ) = A x \boldsymbol T(\boldsymbol x) = A\boldsymbol x T(x)=Ax
事实上, A A A m × n m \times n m×n矩阵,它的第 j j j列是向量 T ( e j ) \boldsymbol T(\boldsymbol e_j) T(ej),其中 e j \boldsymbol e_j ej R n \mathbb R^n Rn中单位矩阵 I n \boldsymbol I_n In的第 j j j列:
A = [ T ( e 1 ) ⋯ T ( e n ) ] A = [\boldsymbol T(\boldsymbol e_1)\quad \cdots \quad \boldsymbol T(\boldsymbol e_n)] A=[T(e1)T(en)]

证明:

x = I n x = [ e 1 ⋯ e n ] x = x 1 e 1 + ⋯ + x n e n \boldsymbol x = \boldsymbol I_n\boldsymbol x = [\boldsymbol e_1 \quad \cdots \quad \boldsymbol e_n]\boldsymbol x = x_1\boldsymbol e_1 + \cdots +x_n\boldsymbol e_n x=Inx=[e1en]x=x1e1++xnen,由于 T \boldsymbol T T是线性变换,知:
T ( x ) = T ( x 1 e 1 + ⋯ + x n e n ) = x 1 T ( e 1 ) + ⋯ + x n T ( e n ) = [ T ( e 1 ) ⋯ T ( e n ) ] [ x 1 . . . x n ] = A x \boldsymbol T(\boldsymbol x)=\boldsymbol T(x_1\boldsymbol e_1 + \cdots + x_n\boldsymbol e_n) = x_1\boldsymbol T(\boldsymbol e_1) + \cdots + x_n\boldsymbol T(\boldsymbol e_n) = [\boldsymbol T(\boldsymbol e_1) \quad \cdots \quad \boldsymbol T(\boldsymbol e_n)]\begin{bmatrix}x_1 \\ ...\\ x_n\end{bmatrix} = A\boldsymbol x T(x)=T(x1e1++xnen)=x1T(e1)++xnT(en)=[T(e1)T(en)]x1...xn=Ax
矩阵 A A A称为线性变换 T \boldsymbol T T的标准矩阵。
上述讨论表明了:由 R n \mathbb R^n Rn R m \mathbb R^m Rm的每个线性变换都可看作矩阵变换,反之亦然。并且:

  • 线性变换强调映射的性质
  • 矩阵变换描述该映射的具体实现

例:

T : R 2 → R 2 \boldsymbol T: \mathbb R^2 \rightarrow \mathbb R^2 T:R2R2为把 R 2 \mathbb R^2 R2中每一个点绕原点逆时针旋转正角度 φ \varphi φ的变换。求出这个变换的标准矩阵。

解:

[ 1 0 ] \begin{bmatrix}1 \\ 0 \end{bmatrix} [10]变换为 [ cos ⁡ φ sin ⁡ φ ] \begin{bmatrix}\cos \varphi \\ \sin \varphi \end{bmatrix} [cosφsinφ] [ 0 1 ] \begin{bmatrix}0 \\ 1\end{bmatrix} [01]变换为 [ − sin ⁡ φ cos ⁡ φ ] \begin{bmatrix}-\sin \varphi \\ \cos \varphi \end{bmatrix} [sinφcosφ],由上述定理可知:
A = [ cos ⁡ φ − sin ⁡ φ sin ⁡ φ cos ⁡ φ ] A = \begin{bmatrix}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} A=[cosφsinφsinφcosφ]
在这里插入图片描述

R 2 → R 2 \mathbb R^2 \rightarrow \mathbb R^2 R2R2线性变换的几何变换举例

下图表示了几种 R 2 → R 2 \mathbb R^2 \rightarrow \mathbb R^2 R2R2线性变换的几何图像表现。因为这些变换都是线性的,故它们完全由变换对 I 2 \boldsymbol I_2 I2的作用决定。
在这里插入图片描述
在这里插入图片描述

存在与唯一性问题

这里从线性变换的角度来思考存在性与唯一性的问题。
首先引入两个定义:
定义1:

映射 T : R n → R m \boldsymbol T: \mathbb R^n \rightarrow R^m T:RnRm称为到 R m R^m Rm上的映射,若 R m R^m Rm中每个 b \boldsymbol b b R n \mathbb R^n Rn中至少一个 x \boldsymbol x x的像(也称为满射)。

定义2:

映射 T : R n → R m \boldsymbol T: \mathbb R^n \rightarrow R^m T:RnRm称为一对一映射(或1:1),若 R m \mathbb R^m Rm中每个 b \boldsymbol b b R n \mathbb R^n Rn中至多一个 x \boldsymbol x x的像(也称为单射)。

定义1描述的是存在性问题,也可以等价于下面的语句:

  • T \boldsymbol T T的值域是整个余定义域 R m \mathbb R^m Rm时, T \boldsymbol T T是到 R m \mathbb R^m Rm上的。
  • R m \mathbb R^m Rm中每个 b \boldsymbol b b,方程 T ( x ) = b \boldsymbol T(x) = \boldsymbol b T(x)=b至少有一个解,也就是说,方程 T ( x ) = b \boldsymbol T(x) = \boldsymbol b T(x)=b是相容的。

对应的,如果 R m \mathbb R^m Rm中有某个 b \boldsymbol b b,使得方程 T ( x ) = b \boldsymbol T(\boldsymbol x) = \boldsymbol b T(x)=b无解,那么映射 T \boldsymbol T T不是到 R m \mathbb R^m Rm上的。
在这里插入图片描述
定义2描述的是唯一性问题。对于 R m \mathbb R^m Rm中每个 b \boldsymbol b b,对应于如下两种情况:

  • 方程 T ( x ) = b \boldsymbol T(x) = \boldsymbol b T(x)=b有唯一的解
  • 方程 T ( x ) = b \boldsymbol T(x) = \boldsymbol b T(x)=b无解
    在这里插入图片描述

例:

T \boldsymbol T T是线性变换,它的标准矩阵为:
[ 1 − 4 8 1 0 2 − 1 3 0 0 0 5 ] \begin{bmatrix}1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\0 & 0 & 0 & 5\end{bmatrix} 100420810135
T \boldsymbol T T是否把 R 4 \mathbb R^4 R4映上到 R 3 \mathbb R^3 R3 T \boldsymbol T T是否是一对一映射?

解:

  1. 由于上述矩阵是阶梯形矩阵,且每一行均有主元位置,因此,对于 R 3 \mathbb R^3 R3中的每个 b \boldsymbol b b,方程 A x = b A\boldsymbol x = \boldsymbol b Ax=b是相容的。因此, T \boldsymbol T T R 4 \mathbb R^4 R4映射到 R 3 \mathbb R^3 R3上。
  2. 因为 A x = b A\boldsymbol x = \boldsymbol b Ax=b含有自由变量(4列有四个变量,但只有3行,每一行一个主元,所以只有3个基本变量),所以每个 b \boldsymbol b b都有多个 x \boldsymbol x x的像,所以 T \boldsymbol T T不是一对一的。

下面的定理很重要,把线性无关线性变换的概念联系了起来。
定理:

T : R n → R m \boldsymbol T: \mathbb R^n \rightarrow \mathbb R^m T:RnRm为线性变换,则 T \boldsymbol T T是一对一的当且仅当方程 A x = 0 A\boldsymbol x = \boldsymbol 0 Ax=0仅有平凡解。

证明:

  1. T \boldsymbol T T是一对一的。又因 T \boldsymbol T T是线性的,故 T ( 0 ) = 0 \boldsymbol T(\boldsymbol 0) = \boldsymbol 0 T(0)=0,所以方程 T ( x ) = 0 \boldsymbol T(\boldsymbol x) = \boldsymbol 0 T(x)=0仅有一个解,这个解就是平凡解 0 \boldsymbol 0 0
  2. T \boldsymbol T T不是一对一的。则 R m \mathbb R^m Rm中某个 b \boldsymbol b b R n \mathbb R^n Rn中至少两个相异向量的像(假设这两个向量分别是 u \boldsymbol u u v \boldsymbol v v),因此有 T ( u ) = b \boldsymbol T(\boldsymbol u) = \boldsymbol b T(u)=b T ( v ) = b \boldsymbol T(\boldsymbol v) = \boldsymbol b T(v)=b。又因为 T \boldsymbol T T是线性的,所以有: T ( u − v ) = T ( u ) − T ( v ) = b − b = 0 \boldsymbol T(\boldsymbol u-\boldsymbol v)=\boldsymbol T(\boldsymbol u) - \boldsymbol T(\boldsymbol v) = \boldsymbol b -\boldsymbol b =\boldsymbol 0 T(uv)=T(u)T(v)=bb=0
    由于 u ≠ v \boldsymbol u \neq \boldsymbol v u=v,所以向量 u − v \boldsymbol u - \boldsymbol v uv不是零向量,又因为 T ( 0 ) = 0 \boldsymbol T(\boldsymbol 0) = \boldsymbol 0 T(0)=0,所以方程 T ( x ) = 0 \boldsymbol T(x) = \boldsymbol 0 T(x)=0有多于一个解

综上,定理中的两个条件同时成立或同时不成立,因此该定理得证。

根据上述定理,结合以前学到的内容,又可以归纳出下述定理:
定理:

T : R n → R m \boldsymbol T: \mathbb R^n \rightarrow \mathbb R^m T:RnRm是线性变换,设 A A A T \boldsymbol T T的标准矩阵,则:

  1. T \boldsymbol T T R n \mathbb R^n Rn映上到 R m \mathbb R^m Rm,当且仅当 A A A的各列生成 R m \mathbb R^m Rm
  2. T \boldsymbol T T是一对一的,当且仅当 A A A的各列线性无关

例:

T ( x 1 , x 2 ) = ( 3 x 1 + x 2 , 5 x 1 + 7 x 2 , x 1 + 3 x 2 ) \boldsymbol T(x_1, x_2) = (3x_1 + x_2, 5x_1 +7x_2, x_1+3x_2) T(x1,x2)=(3x1+x2,5x1+7x2,x1+3x2),证明 T \boldsymbol T T是一对一线性变换。 T \boldsymbol T T是否将 R 2 \mathbb R^2 R2映上到 R 3 \mathbb R^3 R3

解:

T ( x ) = [ 3 x 1 + x 2 5 x 1 + 7 x 2 x 1 + 3 x 2 ] = [ 3 1 5 7 1 3 ] [ x 1 x 2 ] \boldsymbol T(x) = \begin{bmatrix}3x_1 + x_2 \\ 5x_1 + 7x_2 \\x_1+3x_2\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 5 & 7\\1 &3\end{bmatrix}\begin{bmatrix}x_1 \\ x_2\end{bmatrix} T(x)=3x1+x25x1+7x2x1+3x2=351173[x1x2]
T \boldsymbol T T的确是线性变换,它的标准矩阵如上式所示。 A A A的列是线性无关的,因为它们互相之间不是倍数关系,所以, T \boldsymbol T T是一对一的。
另外,由1.4节的定理( A A A的各列生成 R m \mathbb R^m Rm等价于 A A A在每一行都有一个主元位置),由于 A A A只有两列,而一行的主元均需在上一行的右边,而这是不可能的,所以 A A A的各列不能生成 R 3 \mathbb R^3 R3,对应的线性变换不是映上到 R 3 \mathbb R^3 R3的。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值