1.8 线性变换介绍(第1章 线性代数中的线性方程组)

内容概述

本节先从矩阵方程引入了向量变换的一系列概念,接着以矩阵变换为例,探讨了引入向量变换概念后,一些思考问题的新角度以及和之前章节一些概念的结合。最后,由矩阵变换的性质引入了一类比较重要的变换:线性变换,并探讨了线性变换的性质和几个线性变换的例子。需要注意的是,之前学习的线性组合的概念是针对同一空间的向量而言的,而这里线性变换的概念则是针对不同空间的向量而言的。

变换的概念

矩阵方程 A x = b A\boldsymbol x = \boldsymbol b Ax=b
在线性代数中的应用不仅仅是直接与向量的线性组合问题有关,通常的情况是把矩阵 A A A当作一种对象,它通过乘法“作用”于向量 x \boldsymbol x x,产生的新向量称为 A x A\boldsymbol x Ax
例:
参考下面的方程 A x = b A\boldsymbol x = \boldsymbol b Ax=b
[ 4 − 3 1 3 2 0 5 1 ] [ 1 1 1 1 ] = [ 5 8 ] \begin{bmatrix}4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1\end{bmatrix}\begin{bmatrix}1 \\ 1 \\ 1 \\ 1\end{bmatrix} = \begin{bmatrix}5 \\ 8\end{bmatrix} [42301531]1111=[58]
和下面的方程 A u = 0 A\boldsymbol u = \boldsymbol 0 Au=0
[ 4 − 3 1 3 2 0 5 1 ] [ 1 4 − 1 3 ] = [ 0 0 ] \begin{bmatrix}4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1\end{bmatrix}\begin{bmatrix}1 \\ 4 \\ -1 \\ 3\end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix} [42301531]1413=[00]
乘以矩阵 A A A后,将 x \boldsymbol x x变成 b \boldsymbol b b,将 u \boldsymbol u u变成 0 \boldsymbol 0 0
在这里插入图片描述
由这个新观点,解方程 A x = b A\boldsymbol x = \boldsymbol b Ax=b就是要求出 R 4 \mathbb R^4 R4中所有经过乘以 A A A的“作用”后,变为 R 2 \mathbb R^2 R2 b \boldsymbol b b的向量的 x \boldsymbol x x

x \boldsymbol x x A x A\boldsymbol x Ax对应由一个向量集到另一个向量集的函数。这个概念推广了通常的函数概念。

R n \mathbb R^n Rn R m \mathbb R^m Rm的一个变换 T \boldsymbol T T是一个规则,它把 R n \mathbb R^n Rn中每个向量 x \boldsymbol x x对应以 R m \mathbb R^m Rm中的一个向量 T ( x ) \boldsymbol T(\boldsymbol x) T(x)。集 R n \mathbb R^n Rn称为 T \boldsymbol T T定义域,而 R m \mathbb R^m Rm称为 T \boldsymbol T T余定义域。符号 T : R n → R m \boldsymbol T: \mathbb R^n \rightarrow \mathbb R^m T:RnRm说明 T \boldsymbol T T的定义域是 R n \mathbb R^n Rn而余定义域是 R m \mathbb R^m Rm。对于 R n \mathbb R^n Rn中的向量 x \boldsymbol x x R m \mathbb R^m Rm中向量 T ( x ) \boldsymbol T(\boldsymbol x) T(x)称为 x \boldsymbol x x(在 T \boldsymbol T T作用下)的像。所有像 T ( x ) \boldsymbol T(\boldsymbol x) T(x)的集合称为 T \boldsymbol T T值域
在这里插入图片描述
这里要注意余定义域值域的区别:

余定义域仅仅说明了定义域中 x \boldsymbol x x的像存在于哪个空间,而值域则说明了 x \boldsymbol x x的像的具体的取值范围。从这个意义上来说,值域一定是余定义域的子集。

这里引入了向量变换的重要概念,至于变换的类型和性质,则由下文继续深入。

矩阵变换

对于一个 m × n m \times n m×n的矩阵 A A A,将矩阵变换 A x A\boldsymbol x Ax记为 x → A x \boldsymbol x \rightarrow A\boldsymbol x xAx。需要注意的是,根据矩阵运算的法则,上述变换 T \boldsymbol T T的定义域为 R n \mathbb R^n Rn A A A n n n列意味着有 n n n个未知数,说明 x \boldsymbol x x属于 R n \mathbb R^n Rn),余定义域为 R m \mathbb R^m Rm A x A\boldsymbol x Ax的计算结果可以看成是矩阵 A A A各列的线性组合,因此计算出来的结果向量肯定和组成 A A A的各列的向量元素个数相等,属于 R m \mathbb R^m Rm), T \boldsymbol T T的值域为 A A A的列的所有线性组合(从等价的向量方程的角度去看待矩阵方程可以得出这个观点)。
例:
A = [ 1 − 3 3 5 − 1 7 ] A=\begin{bmatrix}1 & -3 \\ 3 & 5 \\ -1 & 7\end{bmatrix} A=131357 u = [ 2 − 1 ] \boldsymbol u=\begin{bmatrix}2 \\ -1\end{bmatrix} u=[21] b = [ 3 2 − 5 ] \boldsymbol b=\begin{bmatrix}3 \\ 2 \\-5\end{bmatrix} b=325 c = [ 3 2 5 ] \boldsymbol c=\begin{bmatrix}3 \\ 2 \\5\end{bmatrix} c=325,定义变换 T : R 2 → R 3 \boldsymbol T: \mathbb R^2 \rightarrow \mathbb R^3 T:R2R3 T ( x ) = A x \boldsymbol T(\boldsymbol x) = A\boldsymbol x T(x)=Ax,于是:
T ( x ) = A x = [ 1 − 3 3 5 − 1 7 ] [ x 1 x 2 ] = [ x 1 − 3 x 2 3 x 1 + 5 x 2 − x 1 + 7 x 2 ] \boldsymbol T(\boldsymbol x) = A\boldsymbol x = \begin{bmatrix}1 & -3 \\ 3 & 5 \\ -1 & 7\end{bmatrix}\begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix}x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2\end{bmatrix} T(x)=Ax=131357[x1x2]=x13x23x1+5x2x1+7x2
a. 求 u \boldsymbol u u在变换 T \boldsymbol T T下的像 T ( x ) \boldsymbol T(\boldsymbol x) T(x)
b. 求 R 2 \mathbb R^2 R2中的向量 x \boldsymbol x x,使它在 T \boldsymbol T T下的像是 b \boldsymbol b b
c. 是否有其他向量在 T \boldsymbol T T下的像也是 b \boldsymbol b b
d. 确定 c \boldsymbol c c是否属于变换 T \boldsymbol T T的值域。
解:
a. 通过计算,可得 T ( u ) = [ 5 1 9 ] \boldsymbol T(\boldsymbol u) = \begin{bmatrix}5 \\ 1 \\ 9\end{bmatrix} T(u)=519,也就是说,变换 T \boldsymbol T T R 2 \mathbb R^2 R2中的向量 u \boldsymbol u u变换为了 R 3 \mathbb R^3 R3中的另一个向量。如图所示:
在这里插入图片描述
b. 本质就是要求解矩阵方程 A x = b A\boldsymbol x = \boldsymbol b Ax=b,增广行化简得到:
[ 1 0 1.5 0 1 − 0.5 0 0 0 ] \begin{bmatrix}1 & 0 & 1.5 \\ 0 & 1 & -0.5 \\ 0 & 0 & 0 \end{bmatrix} 1000101.50.50
易知,向量 x = [ 1.5 − 0.5 ] \boldsymbol x = \begin{bmatrix}1.5 \\ -0.5\end{bmatrix} x=[1.50.5] T \boldsymbol T T下的像是给定的向量 b \boldsymbol b b
c. 由上述增广矩阵的形式可以看出,方程的解是唯一的,所以仅有一个 x \boldsymbol x x使它的像是 b \boldsymbol b b
d. 问题表达的是:对某个 x \boldsymbol x x c = T ( x ) \boldsymbol c = \boldsymbol T(\boldsymbol x) c=T(x),也就是说,方程组 A x = c A\boldsymbol x = \boldsymbol c Ax=c是否相容。将对应的增广矩阵进行行化简后得:
[ 1 − 3 3 0 1 2 0 0 − 35 ] \begin{bmatrix}1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -35 \end{bmatrix} 1003103235
明显的,该方程组不相容,因此 c \boldsymbol c c不属于 T \boldsymbol T T的值域(但根据定义, c \boldsymbol c c仍属于 T \boldsymbol T T的余定义域, T \boldsymbol T T的余定义域为 R 3 \mathbb R^3 R3)。

下面是矩阵变换的几个例子,可以从图形学的角度感受下矩阵变换的作用:
在这里插入图片描述
在这里插入图片描述

线性变换

1.4节引入了如下定理:

A A A m × n m \times n m×n矩阵,则变换 x → A x \boldsymbol x \rightarrow A\boldsymbol x xAx有以下性质:
A ( u + v ) = A u + A v A(\boldsymbol u + \boldsymbol v) = A\boldsymbol u + A\boldsymbol v A(u+v)=Au+Av
A ( c u ) = c A u A(c\boldsymbol u) = cA\boldsymbol u A(cu)=cAu

参考矩阵的上述性质,引入线性代数中最重要的一类变换:
定义:

变换(或映射) T \boldsymbol T T称为线性的,若:
a. 对 T \boldsymbol T T的定义域中一切 u \boldsymbol u u v \boldsymbol v v T ( u + v ) = T ( u ) + T ( v ) \boldsymbol T(\boldsymbol u + \boldsymbol v) = \boldsymbol T(\boldsymbol u) + \boldsymbol T(\boldsymbol v) T(u+v)=T(u)+T(v)
b. 对 T \boldsymbol T T的定义域中一切 u \boldsymbol u u和数 c c c T ( c u ) = c T ( u ) \boldsymbol T(c\boldsymbol u) = c\boldsymbol T(\boldsymbol u) T(cu)=cT(u)

显然,每个矩阵变换都是线性变换(下面一节将说明,所有的线性变换都是矩阵变换)。
上述性质(a)说明,先将 R n \mathbb R^n Rn中的 u \boldsymbol u u v \boldsymbol v v相加然后再作用以 T \boldsymbol T T的结果 T ( u + v ) \boldsymbol T(\boldsymbol u + \boldsymbol v) T(u+v)等于先把 T \boldsymbol T T作用于 u \boldsymbol u u v \boldsymbol v v然后将 R m \mathbb R^m Rm中的 T ( u ) \boldsymbol T(\boldsymbol u) T(u) T ( v ) \boldsymbol T(\boldsymbol v) T(v)相加。
由上述性质又可以推出如下的性质:

T \boldsymbol T T是线性变换,则:
T ( 0 ) = 0 \boldsymbol T(\boldsymbol 0) = \boldsymbol 0 T(0)=0
且对 T \boldsymbol T T的定义域中一切向量 u \boldsymbol u u v \boldsymbol v v以及数 c c c d d d有:
T ( c u + d v ) = c T ( u ) + d T ( v ) \boldsymbol T(c\boldsymbol u + d\boldsymbol v) = c\boldsymbol T(\boldsymbol u) + d\boldsymbol T(\boldsymbol v) T(cu+dv)=cT(u)+dT(v)

证明如下:

T ( 0 ) = T ( 0 ⋅ 0 ) = 0 T ( 0 ) = 0 \boldsymbol T(\boldsymbol 0) = \boldsymbol T(0 \cdot \boldsymbol0) = 0\boldsymbol T(\boldsymbol 0) = \boldsymbol 0 T(0)=T(00)=0T(0)=0
T ( c u + d v ) = T ( c u ) + T ( d v ) = c T ( u ) + d T ( v ) \boldsymbol T(c\boldsymbol u + d\boldsymbol v) = \boldsymbol T(c\boldsymbol u) + \boldsymbol T(d\boldsymbol v) = c\boldsymbol T(u) + d\boldsymbol T(v) T(cu+dv)=T(cu)+T(dv)=cT(u)+dT(v)

并且,对于所有 u \boldsymbol u u v \boldsymbol v v c c c d d d,若一个变换满足 T ( c u + d v ) = c T ( u ) + d T ( v ) \boldsymbol T(c\boldsymbol u + d\boldsymbol v) = c\boldsymbol T(\boldsymbol u) + d\boldsymbol T(\boldsymbol v) T(cu+dv)=cT(u)+dT(v),它必是线性的(取 c = d = 1 c = d =1 c=d=1可得 T ( u + v ) = T ( u ) + T ( v ) \boldsymbol T(\boldsymbol u + \boldsymbol v) = \boldsymbol T(\boldsymbol u) + \boldsymbol T(\boldsymbol v) T(u+v)=T(u)+T(v)),取 d = 0 d = 0 d=0可得 T ( c u ) = c T ( u ) \boldsymbol T(c\boldsymbol u) = c\boldsymbol T(\boldsymbol u) T(cu)=cT(u)
可以推广到大于两个向量的向量集的情况:
T ( c 1 v 1 + ⋯ + c p v p ) = c 1 T ( v 1 ) + ⋯ + c p T ( v p ) \boldsymbol T(c_1\boldsymbol v_1 + \cdots + c_p\boldsymbol v_p) = c_1\boldsymbol T(\boldsymbol v_1) + \cdots + c_p\boldsymbol T(\boldsymbol v_p) T(c1v1++cpvp)=c1T(v1)++cpT(vp)
上式称为叠加原理。设想 v 1 , v 2 , ⋯   , v p \boldsymbol v_1,\boldsymbol v_2,\cdots,\boldsymbol v_p v1,v2,,vp为进入某个系统的信号, T ( v 1 ) , T ( v 2 ) , ⋯   , T ( v p ) \boldsymbol T(\boldsymbol v_1),\boldsymbol T(\boldsymbol v_2),\cdots,\boldsymbol T(\boldsymbol v_p) T(v1),T(v2),,T(vp)为系统对这些信号的响应。系统满足叠加原理,若某一输入可表示为这些信号的线性组合,则系统的响应是对各个信号的响应的同样的线性组合。
例:

给定实数 r r r,定义 T : R 2 → R 2 \boldsymbol T: \mathbb R^2 \rightarrow \mathbb R^2 T:R2R2 T ( x ) = r x \boldsymbol T(\boldsymbol x) = r\boldsymbol x T(x)=rx。设 r = 3 r=3 r=3,证明 T \boldsymbol T T是线性变换。

解:

u \boldsymbol u u v \boldsymbol v v属于 R 2 \mathbb R^2 R2 c c c, d d d为数,则有:
T ( c u + d v ) = 3 ( c u + d v ) = 3 c u + 3 d v = c ( 3 u ) + d ( 3 v ) = c T ( u ) + d T ( v ) \boldsymbol T(c\boldsymbol u + d\boldsymbol v)=3(c\boldsymbol u + d\boldsymbol v) = 3c\boldsymbol u + 3d \boldsymbol v=c(3\boldsymbol u) + d(3 \boldsymbol v)=c\boldsymbol T(\boldsymbol u) + d\boldsymbol T(\boldsymbol v) T(cu+dv)=3(cu+dv)=3cu+3dv=c(3u)+d(3v)=cT(u)+dT(v)
因此, T \boldsymbol T T是线性变换。

事实上,当 0 ≤ r ≤ 1 0 \leq r \leq 1 0r1时, T \boldsymbol T T称为压缩变换,当 r > 1 r > 1 r>1时, T \boldsymbol T T称为拉伸变换。
在这里插入图片描述
例:

下图是 u = [ 4 1 ] \boldsymbol u = \begin{bmatrix}4 \\ 1\end{bmatrix} u=[41] v = [ 2 3 ] \boldsymbol v = \begin{bmatrix}2 \\ 3\end{bmatrix} v=[23],和 v + v = [ 6 4 ] \boldsymbol v + \boldsymbol v = \begin{bmatrix}6 \\ 4\end{bmatrix} v+v=[64] T = A = [ 0 − 1 1 0 ] \boldsymbol T = A = \begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix} T=A=[0110]下的像:
在这里插入图片描述
这里可以从几何意义上分别看到该变换的意义((这是一个从 R 2 \mathbb R^2 R2 R 2 \mathbb R^2 R2的线性变换,因此可以用同一个坐标系来描述,这个变换让 R 2 \mathbb R^2 R2中的向量逆时针旋转90°)逆时针旋转90°)以及变换的性质( T ( u + v ) = T ( u ) + T ( v ) \boldsymbol T(\boldsymbol u + \boldsymbol v) = \boldsymbol T(\boldsymbol u) + \boldsymbol T(\boldsymbol v) T(u+v)=T(u)+T(v)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值