HybridSN 高光谱分类

实验平台:colab。

该分类网络结构:首先用 3D卷积,然后使用 2D卷积。

数据集:Indian_pines(16个种类)。

评价指标:loss,precision,recall,f1-score,support

网络模型:

class HybridSN(nn.Module):
  def __init__(self):
    super(HybridSN,self).__init__()
    self.conv3d1=nn.Conv3d(1,8,kernel_size=(7,3,3),stride=1,padding=0)
    self.bn1=nn.BatchNorm3d(8)
    self.conv3d2=nn.Conv3d(8,16,kernel_size=(5,3,3),stride=1,padding=0) 
    self.bn2=nn.BatchNorm3d(16)
    self.conv3d3=nn.Conv3d(16,32,kernel_size=(3,3,3),stride=1,padding=0)
    self.bn3=nn.BatchNorm3d(32)
    self.conv2d1=nn.Conv2d(576,64,kernel_size=(3,3),stride=1,padding=0)
    self.bn4=nn.BatchNorm2d(64)
    self.fc1=nn.Linear(18496,256)
    self.fc2=nn.Linear(256,128)
    self.fc3=nn.Linear(128,16)
    self.dropout=nn.Dropout(0.4)
  def forward(self,x):
    out=F.relu(self.bn1(self.conv3d1(x)))
    out=F.relu(self.bn2(self.conv3d2(out)))
    out=F.relu(self.bn3(self.conv3d3(out)))
    out = F.relu(self.bn4(self.conv2d1(out.reshape(out.shape[0],-1,19,19))))
    out = out.reshape(out.shape[0],-1)
    out = F.relu(self.dropout(self.fc1(out)))
    out = F.relu(self.dropout(self.fc2(out)))
    out = self.fc3(out)
    return out
# 随机输入,测试网络结构是否通
x = torch.randn(1, 1, 30, 25, 25)
net = HybridSN()
y = net(x)
print(y.shape)

参考:

第四周:卷积神经网络 part3 - Justing778 - 博客园

https://link.zhihu.com/?target=https%3A//github.com/OUCTheoryGroup/colab_demo/blob/master/202003_models/HybridSN_GRSL2020.ipynb

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: HybridSN (Hybrid Spectral-Spatial Network) 是一种用于光谱图像分类的深度学习方法。它将光谱和空间信息结合在一起,以便更好地分类图像。 使用 HybridSN 进行光谱图像分类的基本流程如下: 1. 预处理光谱图像数据,包括数据标准化和集成。 2. 建立 HybridSN 模型。这通常包括在模型中添加卷积层和全连接层,并使用激活函数进行非线性转换。 3. 训练 HybridSN 模型。这通常使用带有标签的光谱图像数据进行,并使用反向传播算法和优化器来最小化损失函数。 4. 在训练后使用 HybridSN 模型进行预测。这可以使用未标记的光谱图像数据进行,以便将图像分类到相应的类别。 希望这能帮助! ### 回答2: HybridSN是一种用于光谱图像分类的深度学习网络模型。该模型结合了光谱特征和空间特征,可以有效地提光谱图像分类的准确性和性能。 在使用HybridSN进行光谱图像分类时,首先需要将原始光谱图像预处理,包括去除噪音、校正波长和幅度等步骤。然后,将预处理后的图像输入到HybridSN模型进行训练和分类HybridSN模型采用了两个分支,分别用于提取光谱特征和空间特征。光谱分支主要通过卷积和池化等操作来学习光谱信息,捕捉光谱图像中不同波长的差异。空间分支则通过卷积和池化操作来学习图像的空间结构信息。 在训练过程中,HybridSN模型采用了多任务学习的策略,同时进行光谱分类和空间分类。这样可以使模型更好地学习到图像中的光谱和空间信息的关联,从而提图像分类的准确性。 训练完成后,使用HybridSN模型进行光谱图像分类时,只需要将待分类光谱图像输入模型,模型将会自动提取特征并输出相应的分类结果。 总而言之,HybridSN模型是一种有效的光谱图像分类方法。通过结合光谱和空间特征,该模型能够提分类准确性,并广泛应用于农业、地质、环境等领域,对光谱图像的分析和应用具有重要意义。 ### 回答3: 光谱图像分类是一种通过分析大量具有连续频谱信息的图像数据来识别和分类不同地物或物体的方法。HybridSN是一种基于混合卷积神经网络(CNN)和光谱角度分解的光谱图像分类方法。 HybridSN方法首先通过光谱角度分解将光谱数据分解成光谱角度和光谱幅值两部分。光谱角度表示光谱数据的频谱分布特征,光谱幅值则反映了光谱数据的强度信息。然后,使用卷积神经网络(CNN)对分解后的光谱角度进行学习和提取特征。 在HybridSN中,CNN主要负责学习光谱角度的空间信息和局部特征,以便更好地区分不同的地物类别。通过卷积层、池化层和全连接层的组合,CNN能够从光谱数据中提取出有区分性的特征。然后,将提取的特征输入到分类器中进行分类。 与传统的光谱图像分类方法相比,HybridSN具有以下优势:首先,光谱角度分解能够更好地利用光谱数据的频谱信息,提取更丰富的特征;其次,使用CNN进行特征学习和提取,使得分类性能更好;最后,HybridSN结构简单,容易实现,并且对于不同类型的光谱数据都具有较好的适用性。 总之,HybridSN是一种有效的光谱图像分类方法,能够通过混合卷积神经网络和光谱角度分解来提取光谱数据的特征,并实现准确的分类

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值